請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100971完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 徐善慧 | zh_TW |
| dc.contributor.advisor | Shan-hui Hsu | en |
| dc.contributor.author | 楊凱瑞 | zh_TW |
| dc.contributor.author | Kai-Ruei Yang | en |
| dc.date.accessioned | 2025-11-26T16:18:14Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-14 | - |
| dc.identifier.citation | [1] Ahmad, Z.; Salman, S.; Khan, S. A.; Amin, A.; Rahman, Z. U.; Al-Ghamdi, Y. O.; Akhtar, K.; Bakhsh, E. M.; Khan, S. B., Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels. 2022, 8(3), 167. DOI:10.3390/gels8030167
[2] Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S., Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chemical Engineering Journal. 2022, 439, 135756. DOI: 10.1016/j.cej.2022.135756 [3] Zhou, L.; Dai, C.; Fan, L.; Jiang, Y.; Liu, C.; Zhou, Z.; Guan, P.; Tian, Y.; Xing, J.; Li, X., Injectable self‐healing natural biopolymer‐based hydrogel adhesive with thermoresponsive reversible adhesion for minimally invasive surgery. Advanced Functional Materials. 2021, 31(14), 2007457. DOI: 10.1002/adfm.202007457 [4] Zhao, Y.; Cui, J.; Qiu, X.; Yan, Y.; Zhang, Z.; Fang, K.; Yang, Y.; Zhang, X.; Huang, J., Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Advances in Colloid and Interface Science. 2022, 308, 102749. DOI: 10.1016/j.cis.2022.102749 [5] Gao,F.; Yang, X.; Song,W., Bioinspired supramolecular hydrogel from design to applications. Small methods. 2024, 8(4), 2300753. DOI:10.1002/smtd.202300753 [6] Park, N.; Kim, J., Hydrogel‐based artificial muscles: overview and recent progress. Advanced Intelligent Systems. 2020, 2(4), 1900135. DOI:10.1002/aisy.201900135 [7] Ko, J.; Kim, D.; Song, Y.; Lee, S.; Kwon, M.; Han, S.; Kang, D.; Kim, Y.; Huh, J.; Koh, J. S., Electroosmosis-driven hydrogel actuators using hydrophobic/hydrophilic layer-by-layer assembly-induced crack electrodes. ACS Nano. 2020, 14(9), 11906-11918. DOI:10.1021/acsnano.0c04899 [8] Jang, S.; Park, S., 4D printed untethered milli-gripper fabricated using a biodegradable and biocompatible electro-and magneto-active hydrogel. Sensors and Actuators B-chemical. 2023, 384, 133654. DOI:10.1016/j.snb.2023.133654 [9] Zeenat, L.; Zolfagharian, A.; Sriya, Y.; Sasikumar, S.; Bodaghi, M.; Pati, F., 4D Printing for vascular tissue engineering: Progress and Challenges. Advanced Materials Technologies. 2023, 8(23), 2300200. DOI:10.1002/admt.202300200 [10] Zhang, X.; Li, Y.; Zhao, Z. Ding, J. Shan, H.; Ren, R.; Du, C., An intelligent hydrogel platform with triple‐triggered on‐demand release for accelerating diabetic wound healing. Small Methods. 2024, 2401127. DOI:10.1002/smtd.202401127 [11] Huang, Y. C.; Cheng, Q. P.; Jeng, U. S.; Hsu, S. h., A biomimetic bilayer hydrogel actuator based on thermoresponsive gelatin methacryloyl-poly (N-isopropylacrylamide) hydrogel with three-dimensional printability. ACS Applied Materials&Interfaces. 2023, 15(4), 5798-5810. DOI:10.1021/acsami.2c18961 [12] Le, X. ; Lu, W.; Zhang, J.; Chen, T., Recent progress in biomimetic anisotropic hydrogel actuators. Advanced Science. 2019, 6(5), 1801584. DOI:10.1002/advs.201801584 [13] Liu, J.; Jiang, L.; He, S.; Zhang, J.; Shao, W., Recent progress in PNIPAM-based multi-responsive actuators: a mini-review. Chemical Engineering Journal. 2022, 433, 133496. DOI:10.1016/j.cej.2021.133496 [14] Gupta, P.; Purwar, R., Electrospun pH responsive poly (acrylic acid-co-acrylamide) hydrogel nanofibrous mats for drug delivery. Journal of Polymer Research. 2020, 27(10), 296. DOI:10.1007/s10965-020-02236-9 [15] Wu, T.; Li, J.; Li, J.; Ye, S.; Wei, J.; Guo, J., A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties. Journal of Materials Chemistry C. 2016, 4(41), 9687-9696. DOI:10.1039/C6TC02629J [16] Nagase, K.; Okano, T.; Kanazawa, H., Poly (N-isopropylacrylamide) based thermoresponsive polymer brushes for bioseparation, cellular tissue fabrication, and nano actuators. Nano-Structures & Nano-Objects. 2018, 16, 9-23. DOI:10.1016/j.nanoso.2018.03.010 [17] Boutris, C.; Chatzi, E.; Kiparissides, C., Characterization of the LCST behaviour of aqueous poly (N-isopropylacrylamide) solutions by thermal and cloud point techniques. Polymer Journal. 1997, 38(10), 2567-2570. DOI:10.1016/S0032-3861(97)01024-0 [18] Saravanou, S. F.; Ioannidis, K.; Dimopoulos, A.; Paxinou, A.; Kounelaki, F.; Varsami, S. M.; Tsitsilianis, C.; Papantoniou, I.; Pasparakis, G., Dually crosslinked injectable alginate-based graft copolymer thermoresponsive hydrogels as 3D printing bioinks for cell spheroid growth and release. Carbohydrate polymers. 2023, 312, 120790. DOI:10.1016/j.carbpol.2023.120790 [19] Navara, A. M.; Kim, Y. S.; Xu, Y.; Crafton, C. L.; Diba, M.; Guo, J. L.; Mikos, A. G., A dual-gelling poly (N-isopropylacrylamide)-based ink and thermoreversible poloxamer support bath for high-resolution bioprinting. Bioactive Materials. 2022, 14, 302-312. DOI:10.1016/j.bioactmat.2021.11.016 [20] Cheng, F. M.; Chen, H. X.; Li, H. D., Recent progress on hydrogel actuators. Journal of Materials Chemistry B. 2021, 9(7), 1762-1780. DOI:10.1039/D0TB02524K [21] Shi, Q.; Liu, H.; Tang, D.; Li, Y.; Li, X.; Xu, F., Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications. NPG Asia materials. 2019, 11(1), 64. DOI:10.1038/s41427-019-0165-3 [22] Zhang, X.; Aziz, S.; Zhu, Z., Tough and fast thermoresponsive hydrogel soft actuators. Advanced Materials Technologies. 2025, 2401920. DOI:10.1002/admt.202401920 [23] Qiu, X.; Zhang, X., Self‐healing polymers for soft actuators and robots. Journal of polymer science. 2024, 62(14), 3137-3155. DOI:10.1002/pol.20230496 [24] Bonardd, S.; Nandi, M.; Hernandez Garcia, J. I.; Maiti, B., Abramov, A.; Diaz Diaz, D., Self-healing polymeric soft actuators. Chemical Reviews. 2022, 123(2), 736-810. DOI:10.1021/acs.chemrev.2c00418 [25] Li, Q.; Liu, J. D.; Liu, S. S.; Wang, C. F.; Chen, S., Frontal polymerization-oriented self-healing hydrogels and applications toward temperature-triggered actuators. Industrial & Engineering Chemistry Research. 2019, 58(9), 3885-3892. DOI:10.1021/acs.iecr.8b05369 [26] Zhou, C.; Dai, S.; Zhou, X.; Zhu, H.; Cheng, G.; Ding, J., Ethanol stimuli-responsive toughening PNIPAM/PVA self-healing hydrogel thermal actuator. New journal of chemistry. 2023, 47(12), 5825-5831. DOI:10.1039/D2NJ05147H [27] Dong, Y.; Wang, J.; Guo, X.; Yang, S.; Ozen, M. O.; Chen, P.; Liu, X.; Du, W.; Wiao, F.; Demirci, U.; Liu, B. F., Multi-stimuli-responsive programmable biomimetic actuator. Nature Communications. 2019, 10(1), 4087. DOI:10.1038/s41467-019-12044-5 [28] Zhang, Y.; Cao, X.; Zhao, Y.; Li, H.; Xiao, S.; Chen, Z.; Huang, G.; Sun, Y.; Liu, Z.; He, Z., An anisotropic hydrogel by programmable ionic crosslinking for sequential two-Stage actuation under single stimulus. Gels. 2023, 9(4), 279. DOI:10.3390/gels9040279 [29] Li, W.; Guan, Q.; Li, M.; Saiz, E.; Hou, X., Nature-inspired strategies for the synthesis of hydrogel actuators and their applications. Progress in Polymer Science. (2023), 140, 101665. DOI:10.1016/j.progpolymsci.2023.101665 [30] Shirahama, H.; Lee, B. H.; Tan, L. P.; Cho, N. J., Precise tuning of facile one-pot gelatin methacryloyl (GelMA) synthesis. Scientific Reports. 2016, 6(1), 31036. DOI:10.1038/srep31036 [31] Wu, S. D.; Hsu, S. h., 4D bioprintable self-healing hydrogel with shape memory and cryopreserving properties. Biofabrication. 2021, 13(4), 045029. DOI:10.1088/1758-5090/ac2789 [32] Hsu, S. h.; K. C. Hung, ;Y. Y. Lin, ; C. H. Su, ;H. Y. Yeh, ;U. S. Jeng, ;C. Y. Lu, ; S. A. Dai, ; Fu, W. E; Lin, J. C.. Water-based synthesis and processing of novel biodegradable elastomers for medical applications. Journal Of Materials Chemistry B. 2014, 2(31), 5083-5092. DOI:10.1039/c4tb00572d [33] Cheng, Q. P.; Mandsberg, N. K.; Levkin, P. A.; Hsu, S. h., UV‐Induced Photopatterning of the thermoresponsive properties of a Poly (ethylene glycol) methylether acrylate‐co‐poly (N‐isopropylacrylamide) hydrogel. Small Structures. 2025, 2400560. DOI:10.1002/sstr.202400560 [34] Han, Z.; Lu, Y.; Qu, S., Design of fatigue‐resistant hydrogels. Advanced Functional Materials. 2024, 34(21), 2313498. DOI:10.1002/adfm.202313498 [35] Alsaid, Y.; Wu, S.; Wu, D.; Du, Y.; Shi, L.; Khodambashi, R.; Rico, R.; Hua, M.; Yan, Y.; Zhao, Y., Tunable sponge‐like hierarchically porous hydrogels with simultaneously enhanced diffusivity and mechanical properties. Advanced materials. 2021, 33(20), 2008235. DOI:10.1002/adma.202008235 [36] Young, A. T.; White, O. C.; Daniele, M. A., Rheological properties of coordinated physical gelation and chemical crosslinking in gelatin methacryloyl (GelMA) hydrogels. Macromolecular bioscience. 2020, 20(12), 2000183. DOI:10.1002/mabi.202000183 [37] Teoh, J. H.; Mozhi, A.; Sunil, V.; Tay, S. M.; Fuh, J.; Wang, C.H., 3D printing personalized, photocrosslinkable hydrogel wound dressings for the treatment of thermal burns. Advanced Functional Materials. 2021, 31(48), 2105932. DOI:10.1002/adfm.202105932 [38] Hong, S.; Sycks, D.; Chan, H. F.; Lin, S.; Lopez, G. P.; Guilak, F.; Leong, K. W.; Zhao, X., 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials. 2015, 27(27), 4035. DOI:10.1002/adma.201501099 [39] Hsieh, C. T.; Hsu, S. h., Double-network polyurethane-gelatin hydrogel with tunable modulus for high-resolution 3D bioprinting. ACS Appl. Mater. Interfaces. 2019, 11(36), 32746-32757. DOI:10.1021/acsami.9b10784 [40] Thiele, S.; Andersson, J.; Dahlin, A.; Hailes, R. L., Tuning the thermoresponsive behavior of surface-attached PNIPAM networks: varying the crosslinker content in SI-ATRP. Langmuir. 2021, 37(11), 3391-3398. DOI:10.1021/acs.langmuir.0c03545 [41] Celli, J. P.; Turner, B. S.; Afdhal, N. H.; Ewoldt, R. H.; McKinley, G. H.; Bansil, R.; Erramilli, S., Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules. 2007, 8(5), 1580-1586. DOI:10.1021/bm0609691 [42] Kavishvar, D.; Ramachandran, A., The yielding behaviour of human mucus. Advances In Colloid And Interface Science. 2023, 322, 103049. DOI:10.1016/j.cis.2023.103049 [43] Narayana, S.; Gowda, B. J.; Hani, U.; Ahmed, M. G.; Asiri, Z. A.; Paul, K., Smart poly (N-isopropylacrylamide)-based hydrogels: a tour D’horizon of biomedical applications. Gels. 2025, 11(3), 207. DOI:10.3390/gels11030207 [44] Ge, S.; Li, J.; Geng, J.; Liu, S.; Xu, H.; Gu, Z., Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties. Materials Horizons. 2021, 8(4), 1189-1198. DOI:10.1039/d0mh01762k [45] Zhu, J.; Marchant, R. E., Design properties of hydrogel tissue-engineering scaffolds. Expert Review Of Medical Devices. 2011, 8(5), 607-626. DOI:10.1586/erd.11.27 [46] Wang, Y.; Chen, Y.; Zheng, J.; Liu, L.; Zhang, Q., Three-dimensional printing self-healing dynamic/photocrosslinking gelatin-hyaluronic acid double-network hydrogel for tissue engineering. ACS omega. 2022, 7(14), 12076-12088. DOI:10.1021/acsomega.2c00335 [47] Xiong, H.; Yue, T.; Wu, Q.; Zhang, L.; Xie, Z.; Liu, J.; Zhang, L.; Wu, J., Self-healing bottlebrush polymer networks enabled via a side-chain interlocking design. Materials Horizons. 2023, 10(6), 2128-2138. DOI:10.1039/D3MH00274H [48] Jeong, J. H.; Schmidt, J. J.; Cha, C.; Kong, H., Tuning responsiveness and structural integrity of a pH responsive hydrogel using a poly (ethylene glycol) cross-linker. Soft Matter. 2010, 6(16), 3930-3938. DOI:10.1039/C0SM00094A [49] Piantanida, E.; Alonci, G.; Bertucci, A.; De Cola, L., Design of nanocomposite injectable hydrogels for minimally invasive surgery. Accounts of Chemical Research. 2019, 52(8), 2101-2112. DOI:10.1021/acs.accounts.9b00114 [50] Guo, M.; Wu, Y.; Xue, S.; Xia, Y.; Yang, X.; Dzenis, Y.; Li, Z.; Lei, W.; Smith, A. T.; Sun, L., A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. Journal of Materials Chemistry A. 2019, 7(45), 25969-25977. DOI:10.1039/C9TA10183G [51] Kuang, X.; Arıcan, M. O.; Zhou, T.; Zhao, X.; Zhang,Y. S., Functional tough hydrogels: design, processing, and biomedical applications. Accounts of Materials Research. 2022, 4(2), 101-114. DOI:10.1021/accountsmr.2c00026 [52] Li, J.; Ma, Q.; Xu, Y.; Yang, M.; Wu, Q.; Wang, F.; Sun, P., Highly bidirectional bendable actuator engineered by LCST–UCST bilayer hydrogel with enhanced interface. ACS Applied Materials&Interfaces. 2020, 12(49), 55290-55298. DOI:10.1021/acsami.0c17085 [53] Jiang, H.; Fan, L.; Yan, S.; Li, F.; Li, H.; Tang, J., Tough and electro-responsive hydrogel actuators with bidirectional bending behavior. Nanoscale. 2019, 11(5), 2231-2237. DOI:10.1039/C8NR07863G [54] Ma, Y.; Hua, M.; Wu, S.; Du, Y.; Pei, X.; Zhu, X.; Zhou, F.; He, X., Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Science Advances. 2020, 6(47), eabd2520. DOI:10.1126/sciadv.abd2520 [55] Tie, B. S. H.; Daly, M.; Zhuo, S.; Halligan, E.; Keane, G.; Geever, J.; Geever, L., The exponential shapeshifting response of N-Vinylcaprolactam hydrogel bilayers due to temperature change for potential minimally invasive surgery. Journal of Functional Biomaterials. 2024, 15(9), 242. DOI:10.3390/jfb15090242 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100971 | - |
| dc.description.abstract | 多功能水凝膠因應新興材料應用的需求,尤其是在具生物相容性的水凝膠致動器方面備受關注。然而,如何同時將韌性、自癒合性質和可逆雙向致動能力整合到具生物相容性的致動器中仍是一項挑戰。在此,利用新型聚(N-異丙基丙烯酰胺)-明膠甲基丙烯酰(PNIPAM-GelMA;“PNG”)水凝膠作為主動層,開發了一種可3D列印、具生物相容性與可逆雙向致動能力的雙層水凝膠致動器。光交聯後的PNG水凝膠展現出自癒合能力,並具備良好的彈性(儲存模量約13 kPa)與韌性(線性黏彈性區間可達240%剪切應變)。小角度X射線散射(Small-Angle X-ray Scattering,SAXS)分析揭示了由互鎖的PNIPAM側鏈組成的動態PNIPAM團簇之存在,這解釋了PNG水凝膠的自癒合行為。以PNG作為主動層、GelMA作為被動層所構成的3D列印雙層水凝膠致動器不僅展現可雙向驅動性能,亦具備針頭可注射性。此外,將 PNG 主動層與具自癒合性質的被動層(例如聚胺酯-GelMA 複合水凝膠)配對,可實現致動器的整體自癒合功能。即便在切斷後修復,該致動器仍能維持顯著的雙向彎曲角度(37 °C時約380°,25 °C時約−270°)。此多功能 PNG系統成功整合韌性、自發性自癒合性質和可逆雙向致動能力,有效地克服了現有具生物相容性的水凝膠致動器之關鍵限制,為開發用於生物醫學應用的致動器提供嶄新進展。 | zh_TW |
| dc.description.abstract | Multifunctional hydrogels are highly desirable for emerging material applications, particularly for biocompatible hydrogel actuators. However, integrating toughness, self-healing, and reversible bidirectional actuation into a biocompatible actuator remains challenging. Herein, a 3D-printable and biocompatible bilayer hydrogel actuator with reversible bidirectional actuation is developed using a new poly(N-isopropylacrylamide)-gelatin methacryloyl (PNIPAM-GelMA; “PNG”) hydrogel as the active layer. The photo-crosslinked PNG hydrogel shows self-healing ability as well as good elasticity (storage modulus ~13 kPa) and toughness (linear viscoelastic range up to 240% shear strain). Small-angle X-ray scattering analysis for microstructure of PNG reveals the presence of dynamic PNIPAM clusters composed of interlocking PNIPAM side chains, accounting for the self-healing behavior of PNG hydrogel. The 3D-printed bilayer actuator with PNG as the active layer and GelMA as the passive layer exhibits bidirectional actuation and fine needle injectability. Moreover, pairing the PNG active layer with a self-healable passive layer (e.g., polyurethane-GelMA composite hydrogel) gives rise to a self-healable actuator. This actuator, repaired upon cutting, retains significant bidirectional bending angles (~380° at 37°C; ~−270° at 25°C). The multifunctional PNG system effectively addresses key limitations of current biocompatible hydrogel actuators by integrating toughness, autonomous self-healing ability, and reversible bidirectional actuation, offering substantial progress in developing actuators for biomedical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:18:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:18:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II 英文摘要 III 目次 IV 圖次 VI 表次 VII 第一章 文獻回顧 1 1.1. 水凝膠致動器之發展與應用潛力 1 1.2. 水凝膠致動器之材料選擇與列印策略 1 1.3. 水凝膠致動器之挑戰與整合需求 2 1.4. 研究目的 2 第二章 材料與研究方法 3 2.1. 明膠甲基丙烯酰(GELMA)之合成與鑑定 3 2.1.1. 明膠甲基丙烯酰(GelMA)之合成 3 2.1.2. 氫核磁共振光譜(1H NMR)分析 3 2.2. 聚N-異丙基丙烯醯胺(PNIPAM)-GELMA(PNG)水凝膠之製備與表徵 4 2.2.1. PNIPAM-GelMA(PNG)水凝膠之製備 4 2.2.2. 傅立葉轉換紅外光譜儀(FT-IR)分析 4 2.2.3. PNG水凝膠自癒合性能之評估 4 2.2.4. PNG水凝膠交聯程度之評估 4 2.2.5. PNG水凝膠溶脹能力之評估 5 2.2.6. PNG水凝膠去溶脹能力之評估 5 2.3. PNG前驅液與水凝膠之流變特性分析 5 2.4. 小角度X射線散射(SAXS)分析 6 2.4.1. PNG水凝膠之SAXS分析 6 2.4.2. PNG水凝膠之SAXS曲線擬合 6 2.5. 3D列印PNG水凝膠之針頭注射性評估 7 2.6. PNG/GELMA雙層水凝膠之製備與致動行為 8 2.6.1. PNG/GelMA條狀雙層水凝膠之製備 8 2.6.2. PNG/GelMA條狀雙層水凝膠之致動行為 8 2.6.3. PNG/GelMA星形與葉形雙層水凝膠致動器之製備 9 2.6.4. PNG/GelMA星形與葉形雙層水凝膠致動器之致動行為 10 2.7. 水凝膠中的細胞培養與水凝膠之降解行為 10 2.7.1. PNG和GelMA水凝膠中的細胞培養 10 2.7.2. PNG和GelMA水凝膠之降解行為 11 2.8. 3D列印水凝膠致動器之針頭注射性與雙向致動能力評估 11 2.8.1. 3D列印水凝膠致動器之針頭注射性評估 11 2.8.2. 3D列印水凝膠致動器之雙向致動能力評估 11 2.9. 具自癒合能力的PUGG水凝膠被動層之製備 12 2.10. 3D列印水凝膠致動器之自癒合性質與雙向致動能力 12 2.10.1. PNG/PUGG條狀雙層水凝膠之製備與自癒合性質評估 12 2.10.2. PNG/PUGG條狀雙層水凝膠之雙向致動能力評估 13 2.10.3. 3D列印星形雙層水凝膠致動器之製備與自癒合性質評估 13 2.10.4. 3D列印星形雙層水凝膠致動器之雙向致動能力評估 13 2.11. 統計分析 14 第三章 實驗結果 15 3.1. GELMA 與 PNG 水凝膠之合成與表徵 15 3.2. PNG 水凝膠的優化 17 3.3. PNG 前驅液與水凝膠之流變性質分析 20 3.4. PNG 水凝膠之小角度 X 射線散射(SAXS)分析 23 3.5. 紫外光固化後的 3D 列印 PNG 水凝膠之針頭注射性 27 3.6. PNG/GELMA 雙層水凝膠之製備與特性分析 29 3.7. 針頭注射性與注射後的 3D 列印水凝膠致動器之雙向致動能力 38 3.8. 自癒合 3D 列印水凝膠致動器之雙向致動行為 39 第四章 討論 44 第五章 結論 53 第六章 未來展望 54 參考文獻 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 水凝膠致動器 | - |
| dc.subject | 三維列印 | - |
| dc.subject | 雙向致動能力 | - |
| dc.subject | 自癒合性質 | - |
| dc.subject | N-異丙基丙烯醯胺 | - |
| dc.subject | Hydrogel actuator | - |
| dc.subject | 3D printing | - |
| dc.subject | Bidirectional actuation | - |
| dc.subject | Self-healing | - |
| dc.subject | N-isopropylacrylamide | - |
| dc.title | 具生物相容性、自癒合性質、針頭注射性與雙向致動能力之3D列印水凝膠致動器 | zh_TW |
| dc.title | A biocompatible and self-healable 3D-printed bidirectional hydrogel actuator with needle injectability | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖昭仰;周佳靚;侯詠德;張書瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Yaug Liao ;Chia-Ching Chou;Yung-Te Hou;Shu-Wei Chang | en |
| dc.subject.keyword | 水凝膠致動器,三維列印雙向致動能力自癒合性質N-異丙基丙烯醯胺 | zh_TW |
| dc.subject.keyword | Hydrogel actuator,3D printingBidirectional actuationSelf-healingN-isopropylacrylamide | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202504573 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.05 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
