Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100968
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周佳靚zh_TW
dc.contributor.advisorChia-Ching Chouen
dc.contributor.author黃綮璿zh_TW
dc.contributor.authorChing-Hsuan Huangen
dc.date.accessioned2025-11-26T16:17:34Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-18-
dc.identifier.citation[1] Yeo, S. J., Oh, M. J., & Yoo, P. J. (2019). Structurally controlled cellular architectures for high‐performance ultra‐lightweight materials. Advanced Materials, 31(34), 1803670.
[2] Feng, J., Fu, J., Yao, X., & He, Y. (2022). Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications. International Journal of Extreme Manufacturing, 4(2), 022001.
[3] Yang, Y., Song, X., Li, X., Chen, Z., Zhou, C., Zhou, Q., & Chen, Y. (2018). Recent progress in biomimetic additive manufacturing technology: from materials to functional structures. Advanced Materials, 30(36), 1706539.
[4] Wang, Z., Zhang, J., Li, Z., & Shi, C. (2020). On the crashworthiness of bio-inspired hexagonal prismatic tubes under axial compression. International Journal of Mechanical Sciences, 186, 105893.
[5] Brezny, R., & Green, D. J. (1990). Characterization of edge effects in cellular materials. Journal of materials science, 25(11), 4571-4578.
[6] Ronge, H., Krishnan, S., & Ramamoorthy, S. (2020). Evaluation of stochastic and periodic cellular materials for combined heat dissipation and noise reduction: experiments and modeling. IEEE Transactions on Components, Packaging and Manufacturing Technology, 10(7), 1185-1203.
[7] Stoeckel, F., Konnerth, J., & Gindl-Altmutter, W. (2013). Mechanical properties of adhesives for bonding wood—A review. International Journal of Adhesion and Adhesives, 45, 32-41.
[8] Wang, R. Z., Suo, Z., Evans, A. G., Yao, N., & Aksay, I. A. (2001). Deformation mechanisms in nacre. Journal of Materials Research, 16(9), 2485-2493.
[9] Yuan, Q., Chen, B., Chen, B., & Wang, Z. (2016). New insight into the toughening mechanisms of seashell: From arch shape to multilayer structure. Journal of Nanomaterials, 2016(1), 3817985.
[10] Yan, X., Rao, C., Lu, L., Sharf, A., Zhao, H., & Chen, B. (2019). Strong 3D printing by TPMS injection. IEEE Transactions on Visualization and Computer Graphics, 26(10), 3037-3050.
[11] Baobaid, N., Ali, M. I., Khan, K. A., & Al-Rub, R. K. A. (2022). Fluid flow and heat transfer of porous TPMS architected heat sinks in free convection environment. Case Studies in Thermal Engineering, 33, 101944.
[12] Lin, C., Wen, G., Yin, H., Wang, Z. P., Liu, J., & Xie, Y. M. (2022). Revealing the sound insulation capacities of TPMS sandwich panels. Journal of Sound and Vibration, 540, 117303.
[13] Gao, T., Liu, K., Wang, X., Shen, L., Zhao, Y., Wei, K., & Wang, Z. (2023). Elastic wave manipulation via functional incorporation of air-solid phases in hybrid TPMS. Composites Communications, 44, 101745.
[14] Baena-Moreno, F. M., Gonzalez-Castano, M., Navarro de Miguel, J. C., Miah, K. U., Ossenbrink, R., Odriozola, J. A., & Arellano-Garcia, H. (2021). Stepping toward efficient microreactors for CO2 methanation: 3D-printed gyroid geometry. ACS Sustainable Chemistry & Engineering, 9(24), 8198-8206.
[15] Tsai, Y. Y., & Chang, S. W. (2023). Pullout strength of triply periodic minimal surface-structured bone implants. International Journal of Mechanical Sciences, 237, 107795.
[16] Yoo, D. (2012). New paradigms in internal architecture design and freeform fabrication of tissue engineering porous scaffolds. Medical engineering & physics, 34(6), 762-776.
[17] Al‐Ketan, O., Rezgui, R., Rowshan, R., Du, H., Fang, N. X., & Abu Al‐Rub, R. K. (2018). Microarchitected stretching‐dominated mechanical metamaterials with minimal surface topologies. Advanced Engineering Materials, 20(9), 1800029.
[18] Zhang, J., Xie, S., Li, T., Liu, Z., Zheng, S., & Zhou, H. (2023). A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices. Thin-Walled Structures, 190, 110989.
[19] Wang, Y., Liu, F., Zhang, X., Zhang, K., Wang, X., Gan, D., & Yang, B. (2021). Cell-size graded sandwich enhances additive manufacturing fidelity and energy absorption. International Journal of Mechanical Sciences, 211, 106798.
[20] Park, S. Y., Kim, K. S., AlMangour, B., Grzesiak, D., & Lee, K. A. (2021). Effect of unit cell topology on the tensile loading responses of additive manufactured CoCrMo triply periodic minimal surface sheet lattices. Materials & Design, 206, 109778.
[21] Yang, X., Yang, Q., Shi, Y., Yang, L., Wu, S., Yan, C., & Shi, Y. (2022). Effect of volume fraction and unit cell size on manufacturability and compressive behaviors of Ni-Ti triply periodic minimal surface lattices. Additive Manufacturing, 54, 102737.
[22] Karimipour-Fard, P., Behravesh, A. H., Jones-Taggart, H., Pop-Iliev, R., & Rizvi, G. (2020). Effects of design, porosity and biodegradation on mechanical and morphological properties of additive-manufactured triply periodic minimal surface scaffolds. Journal of the Mechanical Behavior of Biomedical Materials, 112, 104064.
[23] Han, L., & Che, S. (2018). An overview of materials with triply periodic minimal surfaces and related geometry: from biological structures to self‐assembled systems. Advanced Materials, 30(17), 1705708.
[24] Corkery, R. W., & Tyrode, E. C. (2017). On the colour of wing scales in butterflies: iridescence and preferred orientation of single gyroid photonic crystals. Interface focus, 7(4), 20160154.
[25] Tian, Y., Liu, X., Luo, Q., Yao, H., Wang, J., Dang, C., ... & Xuan, Y. (2023). Sea urchin skeleton-inspired triply periodic foams for fast latent heat storage. International Journal of Heat and Mass Transfer, 206, 123944.
[26] Al-Ketan, O., Assad, M. A., & Al-Rub, R. K. A. (2017). Mechanical properties of periodic interpenetrating phase composites with novel architected microstructures. Composite Structures, 176, 9-19.
[27] Nguyen-Van, V., Liu, J., Peng, C., Zhang, G., Nguyen-Xuan, H., & Tran, P. (2022). Dynamic responses of bioinspired plastic-reinforced cementitious beams. Cement and Concrete Composites, 133, 104682.
[28] Zhang, J., Xie, S., Li, T., Liu, Z., Zheng, S., & Zhou, H. (2023). A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices. Thin-Walled Structures, 190, 110989.
[29] AlMahri, S., Santiago, R., Lee, D. W., Ramos, H., Alabdouli, H., Alteneiji, M., ... & Alves, M. (2021). Evaluation of the dynamic response of triply periodic minimal surfaces subjected to high strain-rate compression. Additive Manufacturing, 46, 102220.
[30] Zhang, L. (2018). Energy absorption characteristics of metallic triply periodic minimal surface sheet structures under compressive loading. Additive Manufacturing.
[31] Fashanu, O., Rangapuram, M., Abutunis, A., Newkirk, J., Chandrashekhara, K., Misak, H., & Klenosky, D. (2022). Mechanical performance of sandwich composites with additively manufactured triply periodic minimal surface cellular structured core. Journal of Sandwich Structures & Materials, 24(2), 1133-1151.
[32] Ejeh, C. J., Barsoum, I., & Al-Rub, R. K. A. (2022). Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. International Journal of Mechanical Sciences, 223, 107293.
[33] Rahmani, R., Antonov, M., Kollo, L., Holovenko, Y., & Prashanth, K. G. (2019). Mechanical behavior of Ti6Al4V scaffolds filled with CaSiO3 for implant applications. Applied Sciences, 9(18), 3844.
[34] Chatzigeorgiou, C., Piotrowski, B., Chemisky, Y., Laheurte, P., & Meraghni, F. (2022). Numerical investigation of the effective mechanical properties and local stress distributions of TPMS-based and strut-based lattices for biomedical applications. Journal of the mechanical behavior of biomedical materials, 126, 105025.
[35] Al-Ketan, O., Rowshan, R., & Al-Rub, R. K. A. (2018). Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Additive manufacturing, 19, 167-183.
[36] Al‐Ketan, O., Rezgui, R., Rowshan, R., Du, H., Fang, N. X., & Abu Al‐Rub, R. K. (2018). Microarchitected stretching‐dominated mechanical metamaterials with minimal surface topologies. Advanced Engineering Materials, 20(9), 1800029.
[37] Abueidda, D. W., Bakir, M., Al-Rub, R. K. A., Bergström, J. S., Sobh, N. A., & Jasiuk, I. (2017). Mechanical properties of 3D printed polymeric cellular materials with triply periodic minimal surface architectures. Materials & Design, 122, 255-267.
[38] Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021.
[39] Feng, J., Fu, J., Shang, C., Lin, Z., & Li, B. (2018). Porous scaffold design by solid T-splines and triply periodic minimal surfaces. Computer Methods in Applied Mechanics and Engineering, 336, 333-352.
[40] Novak, N., Borovinšek, M., Al-Ketan, O., Ren, Z., & Vesenjak, M. (2022). Impact and blast resistance of uniform and graded sandwich panels with TPMS cellular structures. Composite Structures, 300, 116174.
[41] Zhang, J., Xie, S., Li, T., Liu, Z., Zheng, S., & Zhou, H. (2023). A study of multi-stage energy absorption characteristics of hybrid sheet TPMS lattices. Thin-Walled Structures, 190, 110989.
[42] Ejeh, C. J., Barsoum, I., & Al-Rub, R. K. A. (2022). Flexural properties of functionally graded additively manufactured AlSi10Mg TPMS latticed-beams. International Journal of Mechanical Sciences, 223, 107293.
[43] Zhang, F., Qian, K., Lu, P., Liu, S., Lu, S., Liu, Q., & Cui, B. (2024). Quasi-static compressive fracture behavior of three-period minimum surface Al2O3/Al composites fabricated by stereolithography. Journal of Materials Research and Technology, 30, 4950-4960.
[44] Guo, C., Song, W., & Dai, Z. (2012). Structural design inspired by beetle elytra and its mechanical properties. Chinese Science Bulletin, 57(8), 941-947.
[45] Chiang, Y., Tung, C. C., Lin, X. D., Chen, P. Y., Chen, C. S., & Chang, S. W. (2021). Geometrically toughening mechanism of cellular composites inspired by Fibonacci lattice in Liquidambar formosana. Composite Structures, 262, 113349.
[46] Ghimire, A., Tsai, Y. Y., Chen, P. Y., & Chang, S. W. (2021). Tunable interface hardening: Designing tough bio-inspired composites through 3D printing, testing, and computational validation. Composites Part B: Engineering, 215, 108754.
[47] André, D., Girardot, J., & Hubert, C. (2019). A novel DEM approach for modeling brittle elastic media based on distinct lattice spring model. Computer Methods in Applied Mechanics and Engineering, 350, 100-122.
[48] Cusatis, G., Pelessone, D., & Mencarelli, A. (2011). Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory. Cement and Concrete Composites, 33(9), 881-890.
[49] Al‐Ketan, O., & Abu Al‐Rub, R. K. (2021). MSLattice: A free software for generating uniform and graded lattices based on triply periodic minimal surfaces. Material Design & Processing Communications, 3(6), e205.
[50] Stukowski, A. (2009). Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modelling and simulation in materials science and engineering, 18(1), 015012.
[51] Yang, D., Zhang, Z., Chen, X., Han, X., Xu, T., Li, X., ... & Sun, Y. (2020). Quasi-static compression deformation and energy absorption characteristics of basalt fiber-containing closed-cell aluminum foam. Metals, 10(7), 921.
[52] Verlet, L. (1967). Computer" experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 159(1), 98.
[53] Jiang, F., Liu, H., Chen, X., & Tsuji, T. (2022). A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem. Journal of Computational Physics, 454, 110963.
[54] ASTM D638-14 (2014) Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken. http://www.astm.org
[55] Cusatis, G., Pelessone, D., & Mencarelli, A. (2011). Lattice discrete particle model (LDPM) for failure behavior of concrete. I: Theory. Cement and Concrete Composites, 33(9), 881-890.
[56] Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021.
[57] Zhang, Y., Hsieh, M. T., & Valdevit, L. (2021). Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Composite Structures, 263, 113693.
[58] 廖唯瑄(2023)。以多材料3D列印三度週期最小曲面互穿相及三明治複合材料之壓縮機械性質研究。﹝碩士論文。國立清華大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/k9327h。
[59] Lorenz, C. D., & Stevens, M. J. (2003). Fracture behavior of Lennard-Jones glasses. Physical Review E, 68(2), 021802.
[60] Emir, E., & Bahçe, E. (2023). Investigation of the mechanical properties triple periodic minimal surfaces lattice structures with functional graded of porosity. Journal of Cellular Plastics, 59(4), 251-268.
[61] Yu, S., Sun, J., & Bai, J. (2019). Investigation of functionally graded TPMS structures fabricated by additive manufacturing. Materials & Design, 182, 108021.
[62] Zhang, Y., Hsieh, M. T., & Valdevit, L. (2021). Mechanical performance of 3D printed interpenetrating phase composites with spinodal topologies. Composite Structures, 263, 113693.
[63] Senniangiri, N., Girimurugan, R., Vairavel, M., Boopathiraja, C., Gnanaprakash, A., & Gokulakannan, S. (2020). Exploring the mechanical properties of the polyjet printed verowhite specimens. J. Crit. Rev, 7(10).
[64] Zhang, F., Qian, K., Lu, P., Liu, S., Lu, S., Liu, Q., & Cui, B. (2024). Quasi-static compressive fracture behavior of three-period minimum surface Al2O3/Al composites fabricated by stereolithography. Journal of Materials Research and Technology, 30, 4950-4960.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100968-
dc.description.abstract自然界不斷啟發我們探索並開發仿生材料設計,以滿足工程應用的需求。許多天然結構展現出卓越的特性。三重週期最小曲面(Triply Periodic Minimal Surfaces, TPMS)是一種在蝴蝶翅膀中發現的天然結構,具有相互連通的多孔架構以及可透過數學精確控制的幾何特徵。TPMS結構在設計多孔材料時,能同時達成輕量化與擁有優異機械性能。
在本研究中,多材料TPMS結構被成功設計並製造,並透過壓縮實驗與顆粒模擬法進行研究。系統性地探討了結構的機械性質,包括應力–應變行為、致密化應變、楊氏模數、比能量吸收(SEA)以及應力分佈,並將實驗結果與現有文獻進行比較。本研究探討了三種設計:TPMS-片層(TPMS-Sheet)、TPMS-漸變(TPMS-Graded)以及TPMS-互穿相複合材料(TPMS-IPC)。在TPMS-片層結構中,Gyroid比Primitive在楊氏模數與比能量吸收(SEA)方面展現出更優異的機械性質。使用邵氏硬度範圍為 30 至 95 的材料時,材料硬度的提升會導致更高的應力反應,並影響所有相關的機械性質。實驗與模擬結果一致顯示,層狀塌陷通常從結構的頂部或底部開始,且模擬預測的機械性值普遍高於實驗結果。在TPMS-漸變設計中,其機械行為與漸變相對密度的設計相似,兩種設計在力學表現上有相似特性。Gyroid-Graded與Diamond-Graded結構具有相近的楊氏模數,分別為34.1MPa和34.6MPa,而Primitive-Graded則表現最弱。塌陷現象一律從最柔軟的上層結構開始。對於 TPMS-IPC 結構,其應力–應變曲線通常表現為短暫的彈性區,隨後進入延伸的平臺區。模擬的應力分佈符合實驗中強化材的裂紋生長位置,型變分佈也符合實驗結果,Primitive-IPC從頂部和底部開始、Gyroid-IPC和Diamond-IPC從底部開始發生型變。
這些研究結果能夠優化 TPMS 的設計,尤其在漸變與多材料的應用中提升機械性能,以應用於多種工程領域。
zh_TW
dc.description.abstractNatural materials constantly inspire us to explore and exploit the materials design space for engineering applications. Numerous extraordinary properties are found in natural materials. Triply Periodic Minimal Surfaces (TPMS) are natural structures discovered in butterfly wings, characterized by interconnected porous architectures and mathematically controllable geometric features. The TPMS structures offer a lightweight and great mechanical performance solution for creating porous material.
In this study, multi-material TPMS structures were designed, fabricated, and evaluated through both compression experiments and particle-based simulations. The mechanical properties of the structures—including stress–strain behavior, densification point, Young’s modulus, specific energy absorption (SEA), and stress distribution—were systematically investigated and compared with existing literature. Three designs were explored: TPMS-Sheet, TPMS-graded, and interpenetrating phase composites (TPMS-IPC). For TPMS-Sheet structures, the gyroid topology demonstrated superior mechanical performance in terms of Young’s modulus and SEA compared to primitive, particularly using materials with Shore hardness values ranging from 30 to 95. Increasing material hardness resulted in higher stress responses and influenced all related mechanical parameters. Both experimental and simulation results consistently showed that layer collapse typically initiates from the top or bottom of the structure, with simulations generally predicting higher mechanical property values. In TPMS-graded designs, mechanical behavior was found to be comparable to that based on graded relative density, supporting their alignment in structural performance. Gyroid- and Diamond-Graded structures displayed similar Young’s modulus values, which are 34.1 and 34.6 MPa, whereas Primitive-Graded was the weakest. Collapse consistently began in the softest (top) layer. For TPMS-IPC structures, stress–strain curves typically featured a short elastic region followed by an extended plateau. The stress distribution in the simulation corresponds to the initial position where cracks appear in the reinforcement in the experiment. The deformation distribution also corresponds to the experiment. The Primitive-IPC starts to deform from the top and bottom of the structure; the Gyroid-IPC and Diamond-IPC start to deform from the bottom of the structure.
These findings provide valuable insights into optimizing TPMS-based designs for enhanced mechanical performance in graded and multi-material applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:17:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:17:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書#
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES xv
Chapter 1 Introduction 1
1.1 Background and Objectives 1
1.2 Literature Review 2
1.2.1 Triply Periodic Minimize Surface 2
1.2.2 Manufacturing TPMS Structures with Various Material 4
1.3 Computational Modeling in Bio-Inspired Structures 6
1.4 Article Structure Overview 7
Chapter 2 Methodology 8
2.1 Workflow of This Study 8
2.2 Model Design 10
2.3 Addictive Manufacturing 12
2.4 Tensile Test 14
2.5 Quasi-static Compression Test 15
2.6 Particle-Based Simulation 15
2.6.1 Lennard-Jones potential. 15
2.6.2 Equation of Verlet Integration 16
2.6.3 Energy Minimization and Conjugate Gradient Method 17
2.6.4 Simulation Setting 18
2.6.5 Material Tensile Simulation 20
Chapter 3 Additive Manufacturing Material Tensile Experiment and Simulation 21
3.1 Experiment Material Tensile Test Results 21
3.2 Material Tensile Simulation Result 25
Chapter 4 TPMS Compression Test Results 29
4.1 TPMS-Sheet Compression Test 29
4.1.1 TPMS-Sheet Compression Experiment Results 29
4.1.2 TPMS-Sheet Compression Experiment Results Compared to Literature 30
4.1.3 TPMS-Sheet Compression Experiment Results Compared to Simulation 37
4.1.4 TPMS-Sheet with Varies Rigidity Compression Experiment Results 39
4.1.5 TPMS-Sheet with Varies Rigidity Compression Experiment Results Compared to Simulation 53
4.2 TPMS-Graded Compression Test 63
4.2.1 TPMS-Graded Compression Experiment Results 63
4.2.2 TPMS-Graded Compression Experiment Results Compared to Literature 68
4.2.3 TPMS-Graded Compression Experiment Results Compared to Simulation 71
4.3 TPMS-IPC Compression Test 73
4.3.1 TPMS-IPC Compression Experiment Results 73
4.3.2 TPMS-IPC Compression Experiment Results Compared to Literature 77
4.3.3 TPMS-IPC Compression Experiment Results Compared to Simulation 85
Chapter 5 Conclusions and Outlooks 87
5.1 Conclusions 87
5.2 Future Works and Outlook 88
REFERENCE 89
Appendix 96
-
dc.language.isoen-
dc.subject仿生材料-
dc.subject三重週期最小曲面-
dc.subject輕量化設計-
dc.subject準靜態壓縮-
dc.subject比能量吸收-
dc.subject顆粒模擬-
dc.subjectBio-inspired material-
dc.subjectTriply Periodic Minimal Surface-
dc.subjectLightweight Design-
dc.subjectQuasi static Compression Test-
dc.subjectSpecific Energy Absorption-
dc.subjectParticle-based Simulation-
dc.title多材料積層製造於三重週期最小曲面結構之不同邵氏硬度、漸變邵氏硬度與互穿相設計在壓縮機械性質上之研究zh_TW
dc.titleInvestigation of Compressive Mechanical Properties of Triply Periodic Minimal Surface Structures Fabricated by Multi-Material Additive Manufacturing with Varying Shore Hardness, Graded Shore Hardness, and Interpenetrating Phase Designsen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張書瑋;黃仲偉zh_TW
dc.contributor.oralexamcommitteeShu-Wei Chang;Chang-Wei Huangen
dc.subject.keyword仿生材料,三重週期最小曲面輕量化設計準靜態壓縮比能量吸收顆粒模擬zh_TW
dc.subject.keywordBio-inspired material,Triply Periodic Minimal SurfaceLightweight DesignQuasi static Compression TestSpecific Energy AbsorptionParticle-based Simulationen
dc.relation.page102-
dc.identifier.doi10.6342/NTU202504589-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-10-20-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved