Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李峻霣zh_TW
dc.contributor.advisorJiun-Yun Lien
dc.contributor.author高偉翔zh_TW
dc.contributor.authorWei-Hsiang Kaoen
dc.date.accessioned2025-11-26T16:16:36Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-10-16-
dc.identifier.citationY. J. Mii, " Semiconductor Industry Outlook and New Technology Frontiers," 2024 IEEE International Electron Devices Meeting (IEDM) , pp. 1-6, Dec. 2024.
G. Han and Y. Hao, "Design technology co-optimization towards sub-3 nm technology nodes," Journal of Semiconductors, vol. 42, no. 2, p. 020301, 2021.
K. Derbyshire, "Moving To GAA FETs," Semiconductor Engineering, 20 Feb. 2020. [Online]. Available: http://semiengineering.com/moving-to-gaa-fets/.
H. Takato, K. Sunouchi, N. Okabe, A. Nitayama, K. Hieda, F. Horiguchi, and F. Masuoka, "High performance CMOS surrounding gate transistor (SGT) for ultra high density LSIs," Tech. Dig., Int. Electron Devices Meeting (IEDM), pp. 222-225, Dec. 1988.
H. Lee, L. E. Yu, S. W. Ryu, J. W. Han, K. Jeon, D. Y. Jang, et al., "Sub-5nm all-around gate FinFET for ultimate scaling," 2006 Symp. VLSI Technol. Dig. Tech. Papers, pp. 58-59, Jun. 2006.
D. Jang, D. Yakimets, G. Eneman, P. Schuddinck, M. G. Bardon, P. Raghavan, et al., "Device exploration of nanosheet transistors for sub-7-nm technology node," IEEE Transactions on Electron Devices, vol. 64, no. 6, pp. 2707-2713, 2017.
S. Reboh, R. Coquand, N. Loubet, N. Bernier, E. Augendre, R. Chao, et al., "Imaging, modeling and engineering of strain in gate-all-around nanosheet transistors," 2019 IEEE Int. Electron Devices Meeting (IEDM), pp. 11-5, Dec. 2019.
Private communication with TSMC.
S. D. Kim, M. Guillorn, I. Lauer, P. Oldiges, T. Hook, and M. H. Na, "Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond," 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conf. (S3S), pp. 1-3, Oct. 2015.
J. S. Christensen, H. H. Radamson, A. Y. Kuznetsov, and B. G. Svensson, "Diffusion of phosphorus in relaxed Si1− xGex films and strained Si/Si1− xGex heterostructures.," Journal of Applied Physics, vol. 94, no. 10, pp. 6533-6540, 2003.
N. R. Zangenberg, J. Fage-Pedersen, J. L. Hansen, and A. N. Larsen, "Boron and phosphorus diffusion in strained and relaxed Si and SiGe," Journal of Applied Physics, vol. 94, no. 6, p. 3883, Aug 2003.
A. Fick, "V. On liquid diffusion.," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 10, no. 63, pp. 30-39, 1855.
D. Gupta, "Diffusion in bulk solids and thin films: Some phenomenological examples," in Diffusion Process in Advanced Technological Materials, Norwich, NY, USA: William Andrew Publishing, 2005, pp. 4-5.
J.Crank, in The mathematics of diffusion., Oxford, U.K., Oxford university press., 1979.
C. S. Fuller and J. A. Ditzenberger, "Diffusion of donor and acceptor elements in silicon.," Journal of Applied Physics, vol. 27, no. 5, pp. 544-553, 1956.
J. S. Christensen, H. H. Radamson, A. Y. Kuznetsov, and B. G. Svensson, "Phosphorus and boron diffusion in silicon under equilibrium conditions," Applied Physics Letters, vol. 82, no. 14, pp. 2254-2256, 2003.
N. R. Zangenberg, J. Chevallier, J. L. Hansen, and A. Nylandsted Larsen, "The influence of oxide/nitride surface layers on diffusion in Si and SiGe.," Applied Physics A, vol. 81, no. 5, pp. 1077-1082, 2005.
Y. Bar-Yam and J. D. Joannopoulos, "Electronic structure and total-energy migration barriers of silicon self-interstitials.," Physical Review B, vol. 30, no. 4, p. 1844, 1984.
C. S. Nichols, C. G. Van de Walle and S. T. Pantelides, "Mechanisms of dopant impurity diffusion in silicon.," Physical Review B, vol. 40, no. 8, p. 5484, 1989.
H. Ryssel and I. Ruge, "Ion Implantation," in Process and Device Simulation for MOS-VLSI Circuits, Dordrecht, The Netherlands: Springer Netherlands, 1986.
C. Lim,S. Park and J. Chang, "First-Principle Calculations of Interfacial Resistance between Nickel Silicide and Hyperdoped Silicon with N-Type Dopants Arsenic, Phosphorus, Antimony, Selenium and Tellurium.," Applied Surface Science Advances, vol. 24, p. 100646, 2024.
R. Dormaier and S. E. Mohney, "Factors controlling the resistance of Ohmic contacts to n-InGaAs.," Journal of Vacuum Science & Technology B, vol. 30, no. 3, 2012.
D. K. Schroder, in Semiconductor Material and Device Characterization, 3rd ed., USA: Wiley-IEEE Press, 2006, pp. 146-149.
J. Foggiato, W.S. Yoo, M. Ouaknine, T. Murakami and T. Fukada, "Optimizing the formation of nickel silicide.," Materials Science and Engineering: B, no. 114, pp. 56-60, 2004.
A. Y. Hou, Y. H. Ting, K. L. Tai, C. Y. Huang, K. C. Lu, and W. W. Wu, "Atomic-scale silicidation of low resistivity Ni-Si system through in-situ TEM investigation," Applied Surface Science, vol. 538, p. 148129, 2021.
R. Pascu and C. Romanitan, "Phase transition of nickel silicide compounds and their electrical properties.," Journal of Materials Science: Materials in Electronics, vol. 32, no. 12, pp. 16811-16823, 2021.
F. C. Hsu, R. S. Muller, C. Hu and P. K. Ko, "A simple punchthrough model for short-channel MOSFET's.," IEEE transactions on electron devices, vol. 30, no. 10, pp. 1354-1359, 1983.
M. S. Lundstrom, "2D MOS Electrostatics," in Fundamentals of Nanotransistors, vol. 6. Singapore: World Scientific, 2017, p. 178.
H. C. Neitzert, N. Layadi, P. Roca i Cabarrocas, R. Vanderhaghen and M. Kunst, "In situ measurements of changes in the structure and in the excess charge‐carrier kinetics at the silicon surface during hydrogen and helium plasma exposure.," Journal of Applied Physics, vol. 78, no. 3, pp. 1438-1445, 1995.
H. J. Osten, D. Knoll, and H. Rücker, "Dopant diffusion control by adding carbon into Si and SiGe: principles and device application," Materials Science and Engineering: B, vol. 87, no. 3, pp. 262-270, 2001.
A. K. Panigrahy, V. V. S. Amudalapalli, D. S. Rani, M. N. Bhukya, H. B. Valiveti, V. B. Sreenivasulu, and R. Swain, "Spacer dielectric analysis of multi-channel nanosheet FET for nanoscale applications," IEEE Access, vol. 12, p. 73160–73168, 2024.
T. F. Kelly and M. K. Miller, "Atom probe tomography," Review of scientific instruments, vol. 78, no. 3, p. 031101, 2007.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100964-
dc.description.abstract  隨著摩爾定律演進,奈米片電晶體被視為實現2奈米節點的關鍵結構。然而,n型奈米片電晶體面臨了前所未見的問題:通道有效遷移率不如模擬所預測的高。推測造成此差異的原因可能為磷原子自源極/汲極擴散至通道,奈米片電晶體製程與前幾代電晶體相比多了矽鍺犧牲層,矽鍺犧牲層的存在可能進一步促進了磷原子擴散。由此本論文將著重探討磷原子在奈米片電晶體結構中可能的擴散路徑,其中分為兩大類擴散路徑,塊材擴散與介面擴散。
  對於塊材擴散,本論文分別考慮矽塊材、矽鍺塊材與氮化矽塊材三種擴散路徑。成長無摻雜/磷摻雜/無摻雜之薄膜結構,進行熱擴散製程後以二次離子質譜進行濃度分析。將所得濃度分布以所選函數進行擬合,再藉由擬合參數計算擴散率。考慮到奈米片結構對擴散的影響,覆蓋層的有無與晶向差異((100)、(110))皆被納入塊材擴散的實驗條件之中。結果顯示,有覆蓋層之磷原子擴散率較無覆蓋層低,兩者擴散活化能無明顯差異;而不同晶向上的擴散率未呈現固定大小關係,但(110)晶向上的磷原子擴散活化能低於(100)晶向。
  對於介面擴散,本論文考慮矽/矽鍺介面與矽/氮化矽介面兩種擴散路徑。實驗設計以「間距」為變數的電阻量測。在p型矽基板上以磷原子離子佈植定義n型源極/汲極,其中源極與汲極之間的距離定義為間距,範圍為50 nm至5 μm,並且間距上具有已沉積之矽鍺或氮化矽薄膜,後進行不同溫度熱擴散製程,同時形成鎳矽合金以降低接觸電阻。實驗結果以電阻對間距的關係圖來表示。矽/矽鍺介面在間距小於2 μm時電阻將隨間距增加而以指數形式增加,之後則趨於飽和,此趨勢與穿通效應模擬一致。相較之下,矽/氮化矽介面則與模擬結果不同,電阻值的增加不呈指數形式的變化,推測原因為介面中存在大量缺陷而助長了磷原子的擴散。
zh_TW
dc.description.abstractAs Moore’s Law continues to advance, nanosheet transistors have been used as a unit structure for the 2-nm technology node and beyond. However, n-type nanosheet transistors might face an unprecedented challenge due to the diffusion of n-type dopants, which could degrade the channel’s effective mobility. Compared with previous generations of transistors, the nanosheet process introduces SiGe sacrificial layers, which may further enhance phosphorus diffusion. This thesis investigates the possible diffusion paths of phosphorus atoms in a nanosheet transistor structure.
There are two types of diffusion of phosphorus in a nanosheet: bulk and interface diffusion. For bulk diffusion, this work considers three pathways: diffusion in Si, SiGe, or SiNx. Undoped, phosphorus-doped, and undoped thin-film structures were prepared, followed by thermal diffusion processes and analysis of the phosphorus concentrations using secondary ion mass spectrometry (SIMS). The measured concentration profiles are fitted with selected functions to extract the diffusion coefficients. To account for the structural impact of nanosheet architectures, the effects of the presence of capping layers and crystal orientation differences ((100) and (110)) on the phosphorus diffusion are considered. The results suggest that phosphorus diffusivity is lower with a capping layer, while the activation energies show no significant difference. Moreover, although no consistent trend is observed in diffusivity across different crystal orientations, the activation energy of phosphorus diffusion is found to be lower for the (110) orientation than along the (100) orientation.
For the interface diffusion, two pathways are considered in this study: the Si/SiGe interface and the Si/SiNx interface. A experiment is designed to characterize the resistance between two heavily n-doped regions by varying its spacing on a p-type Si substrate. Between the heavily-doped regions, SiGe or SiNₓ thin films are covered to investigate the phosphorus diffusion at various temperatures. The results are analyzed by plotting resistance as a function of spacing. For the Si/SiGe interface, the resistance increases exponentially with the spacing below 2 μm and then approaches saturation, which is attributed to the punch-through effects across two n+/p junctions. In contrast, the Si/SiNₓ interface does not follow an exponential increase with spacing, which might imply the presence of high-density defects at the interface, enhancing the phosphorus diffusion.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:16:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:16:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 #
誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
第1章 引言 1
1.1 摩爾定律的演進 1
1.2 環繞式閘極電晶體 3
1.3 研究動機 6
1.4 論文架構 8
第2章 磷原子在矽與矽鍺磊晶薄膜的擴散現象 9
2.1 減壓化學氣相沉積系統 9
2.2 擴散機制與擴散率 12
2.2.1 初始條件 二維有限擴散源 13
2.2.2 初始條件 有限厚度擴散源 14
2.2.3 初始條件 擴展擴散源 15
2.2.4 濃度分布擬合與擴散率萃取 16
2.3 磷原子在矽(鍺)塊材中的擴散 19
2.3.1 矽與矽鍺的效應 20
2.3.2 晶格方向效應 29
2.3.3 比較與討論 36
2.4 結論 39
第3章 磷原子在介面中的擴散特性 41
3.1 實驗設計 41
3.2 磷原子擴散模擬 42
3.3 磷原子在矽/氮化矽與矽/矽鍺介面中的擴散 48
3.3.1 鎳矽合金電阻率 48
3.3.2 磷原子在矽/矽鍺的擴散 50
3.3.3 磷原子在矽/氮化矽的擴散 52
3.4 穿通效應 56
3.5 結論 59
第4章 結論與未來工作 60
4.1 結論 60
4.2 未來工作 61
參考文獻 62
-
dc.language.isozh_TW-
dc.subject奈米片電晶體-
dc.subject化學氣相沉積-
dc.subject原位摻雜-
dc.subject磷原子擴散率-
dc.subject穿通效應-
dc.subjectnanosheet transistor-
dc.subjectchemical vapor deposition-
dc.subjectin-situ doping-
dc.subjectphosphorus diffusivity-
dc.subjectpunch-through-
dc.title磷原子擴散對奈米片電晶體之影響zh_TW
dc.titleEffects of Phosphorus Diffusion on Nanosheet Transistoren
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee羅廣禮;李敏鴻zh_TW
dc.contributor.oralexamcommitteeGuang-Li Luo;Min-Hung Leeen
dc.subject.keyword奈米片電晶體,化學氣相沉積原位摻雜磷原子擴散率穿通效應zh_TW
dc.subject.keywordnanosheet transistor,chemical vapor depositionin-situ dopingphosphorus diffusivitypunch-throughen
dc.relation.page64-
dc.identifier.doi10.6342/NTU202504583-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-10-17-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved