請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100962完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | zh_TW |
| dc.contributor.advisor | Huei Wang | en |
| dc.contributor.author | 吳承翰 | zh_TW |
| dc.contributor.author | Cheng-Han Wu | en |
| dc.date.accessioned | 2025-11-26T16:16:10Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-20 | - |
| dc.identifier.citation | REFERENCES
[1] N. DOCOMO, "White Paper 5G Evolution and 6G (Version 5.0)," 2023. [2] Samsung, "6G Spectrum Expanding the Frontier," 2022. [3] T. S. Rappaport et al., "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019-01-01 2019, doi: 10.1109/access.2019.2921522. [4] L. Bariah et al., "A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks," IEEE Access, vol. 8, pp. 174792-174820, 2020-01-01 2020, doi: 10.1109/access.2020.3019590. [5] W. Saad, M. Bennis, and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," IEEE Network, vol. 34, no. 3, pp. 134-142, 2020-05-01 2020, doi: 10.1109/mnet.001.1900287. [6] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The Roadmap to 6G: AI Empowered Wireless Networks," IEEE Communications Magazine, vol. 57, no. 8, pp. 84-90, 2019-08-01 2019, doi: 10.1109/mcom.2019.1900271. [7] Z. Zhang et al., "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, 2019, doi: 10.1109/MVT.2019.2921208. [8] M. Z. Chowdhury, M. Shahjalal, S. Ahmed, and Y. M. Jang, "6G Wireless Communication Systems: Applications, Requirements, Technologies, Challenges, and Research Directions," IEEE Open Journal of the Communications Society, vol. 1, pp. 957-975, 2020, doi: 10.1109/OJCOMS.2020.3010270. [9] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, "Toward 6G Networks: Use Cases and Technologies," IEEE Communications Magazine, vol. 58, no. 3, pp. 55-61, 2020, doi: 10.1109/MCOM.001.1900411. [10] P. Stadler, H. Papurcu, T. Welling, S. Tejero Alfageme, and N. Pohl, "An Overview of State-of-the-Art D-Band Radar System Components," Chips, vol. 1, no. 3, pp. 121-149, 2022. [11] S. Z. Aslam, A. Wilcher, B. Chatterjee, Y. K. Yoon, D. P. Arnold, and S. Sinha, "Challenges and Opportunities in D-Band Transmitter Architectures and Antenna Design, Integration, and Scalability for 6G Communications: A Brief Review," IEEE Access, vol. 13, pp. 33849-33873, 2025-01-01 2025, doi: 10.1109/access.2025.3542771. [12] M. Morgan et al., "A millimeter-wave diode-MMIC chipset for local oscillator generation in the ALMA telescope," in IEEE MTT-S International Microwave Symposium Digest, 2005., 17-17 June 2005 2005, pp. 1587-1590, doi: 10.1109/MWSYM.2005.1517004. [13] E. Bryerton, K. Saini, M. Morgan, M. Stogoski, T. Boyd, and D. Thacker, "Development of electronically tuned local oscillators for ALMA," in 2005 Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, 19-23 Sept. 2005 2005, vol. 1, pp. 72-73 vol. 1, doi: 10.1109/ICIMW.2005.1572412. [14] S. Kang, S. V. Thyagarajan, and A. M. Niknejad, "A 240 GHz Fully Integrated Wideband QPSK Transmitter in 65 nm CMOS," IEEE Journal of Solid-State Circuits, vol. 50, no. 10, pp. 2256-2267, 2015, doi: 10.1109/JSSC.2015.2467179. [15] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and F. Tufvesson, "6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities," Proceedings of the IEEE, vol. 109, no. 7, pp. 1166-1199, 2021, doi: 10.1109/JPROC.2021.3061701. [16] J. Yu et al., "Design of Broadband High-Frequency Multi-Throw RF-MEMS Switches," Micromachines, vol. 15, no. 7, p. 813, 2024. [17] T. H. Jang, K. P. Jung, J.-S. Kang, C. W. Byeon, and C. S. Park, "120-GHz 8-Stage Broadband Amplifier With Quantitative Stagger Tuning Technique," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 785-796, 2020, doi: 10.1109/tcsi.2019.2958366. [18] D.-H. Kim, D. Kim, and J.-S. Rieh, "A $D$ -Band CMOS Amplifier With a New Dual-Frequency Interstage Matching Technique," IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 5, pp. 1580-1588, 2017, doi: 10.1109/tmtt.2017.2655508. [19] P. H. Chen et al., "A 110–180 GHz broadband amplifier in 65-nm CMOS process," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2-7 June 2013 2013, pp. 1-3, doi: 10.1109/MWSYM.2013.6697374. [20] H. H. Hsieh and L. H. Lu, "A 40-GHz Low-Noise Amplifier With a Positive-Feedback Network in 0.18-$\mu{\hbox{m}}$ CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 8, pp. 1895-1902, 2009, doi: 10.1109/TMTT.2009.2025418. [21] L.-J. Huang, C.-C. Chiong, Y.-S. Wang, H. Wang, T.-W. Huang, and C.-C. Chien, "A D-band Low-Noise Amplifier in 28-nm CMOS Technology for Radio Astronomy Applications," in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), 2023-09-18 2023: IEEE, pp. 369-372, doi: 10.23919/eumic58042.2023.10288999. [22] S. Di-Sheng et al., "A 190-GHz amplifier with gain-boosting technique in 65-nm CMOS," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-6 June 2014 2014, pp. 1-3, doi: 10.1109/MWSYM.2014.6848290. [23] B. Yun, D.-W. Park, H. U. Mahmood, D. Kim, and S.-G. Lee, "A D-Band High-Gain and Low-Power LNA in 65-nm CMOS by Adopting Simultaneous Noise- and Input-Matched Gmax-Core," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2519-2530, 2021, doi: 10.1109/tmtt.2021.3066972. [24] Y. T. Chou, C. C. Chiong, and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 24-26 Aug. 2016 2016, pp. 1-3, doi: 10.1109/RFIT.2016.7578197. [25] A. Mazzanti, E. Monaco, M. Pozzoni, and F. Svelto, "A 13.1% tuning range 115GHz frequency generator based on an injection-locked frequency doubler in 65nm CMOS," in 2010 IEEE International Solid-State Circuits Conference - (ISSCC), 7-11 Feb. 2010 2010, pp. 422-423, doi: 10.1109/ISSCC.2010.5433869. [26] E. Monaco, M. Pozzoni, F. Svelto, and A. Mazzanti, "A 6mW, 115GHz CMOS injection-locked frequency doubler with differential output," in 2010 IEEE International Conference on Integrated Circuit Design and Technology, 2-4 June 2010 2010, pp. 236-239, doi: 10.1109/ICICDT.2010.5510246. [27] P.-H. Tsai, Y.-H. Lin, J.-L. Kuo, Z.-M. Tsai, and H. Wang, "Broadband Balanced Frequency Doublers With Fundamental Rejection Enhancement Using a Novel Compensated Marchand Balun," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 5, pp. 1913-1923, 2013, doi: 10.1109/tmtt.2013.2255618. [28] C.-H. Lai, Y. Wang, C.-C. Chiong, and H. Wang, "An Active G-Band Frequency Doubler with High 3rd and 4th Harmonic Suppression in 90-nm CMOS Process," presented at the 2024 49th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), 2024. [29] C. C. Chien, Y. Wang, Y. S. Ng, T. W. Huang, C. C. Chiong, and H. Wang, "A D-Band Frequency Doubler with Gm-Boosting Technique in 28-nm CMOS," in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), 18-19 Sept. 2023 2023, pp. 201-204, doi: 10.23919/EuMIC58042.2023.10288774. [30] M. Möck, İ. K. Aksoyak, and A. Ç. Ulusoy, "A High-Efficiency D-Band Frequency Doubler in 22-nm FDSOI CMOS," in 2022 17th European Microwave Integrated Circuits Conference (EuMIC), 26-27 Sept. 2022 2022, pp. 272-275, doi: 10.23919/EuMIC54520.2022.9923533. [31] H. C. Lin and G. M. Rebeiz, "A 135–160 GHz balanced frequency doubler in 45 nm CMOS with 3.5 dBm peak power," in 2014 IEEE MTT-S International Microwave Symposium (IMS2014), 1-6 June 2014 2014, pp. 1-4, doi: 10.1109/MWSYM.2014.6848544. [32] Y. Wang et al., "A G-band SPST switch with 2.4-dB insertion loss and minimum 28.5-dB isolation using grounded co-planar waveguide folded coupled line topology in 65-nm CMOS technology," in 2017 IEEE MTT-S International Microwave Symposium (IMS), 4-9 June 2017 2017, pp. 1718-1721, doi: 10.1109/MWSYM.2017.8058974. [33] L. Wu, H. Y. Hsu, and S. P. Voinigescu, "A DC to 220-GHz High-Isolation SPST Switch in 22-nm FDSOI CMOS," IEEE Microwave and Wireless Components Letters, vol. 31, no. 6, pp. 775-778, 2021, doi: 10.1109/lmwc.2021.3067003. [34] J. Hoffman et al., "Analog Circuit Blocks for 80-GHz Bandwidth Frequency-Interleaved, Linear, Large-Swing Front-Ends," IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 1985-1993, 2016, doi: 10.1109/jssc.2016.2567445. [35] R. Ciocoveanu, R. Weigel, A. Hagelauer, and V. Issakov, "A Low Insertion-Loss 10–110 GHz Digitally Tunable SPST Switch in 22 nm FD-SOI CMOS," in 2018 IEEE BiCMOS and Compound Semiconductor Integrated Circuits and Technology Symposium (BCICTS), 15-17 Oct. 2018 2018, pp. 1-4, doi: 10.1109/BCICTS.2018.8550908. [36] T. Doan Nhut and D. Zito, "A Compact DC-110GHz SPST Switch in 22nm FDSOI CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 10, pp. 3812-3816, 2023, doi: 10.1109/tcsii.2023.3291081. [37] C.-H. Wu, Y.-S. Wang, and H. Wang, "A 128–170 GHz Broadband Amplifier with Gain-Boosting Technique in 65-nm CMOS Process," presented at the 2024 IEEE Asia-Pacific Microwave Conference (APMC), 2024. [38] 蕭諦賸, "毫米波60-GHz關鍵元件與190-GHz放大器之研製," 碩士, 電信工程學研究所, 國立臺灣大學, 2013年, 2013. [39] 黃莉容, "應用於毫米波之低雜訊放大器及相移器之研究," 國立臺灣大學, 2023. [40] 錢俊嘉, "應用於D頻段之倍頻器、5G通訊之低雜訊放大器及應用於次世代相控陣列雙向放大器之設計," 碩士, 電信工程學研究所, 國立臺灣大學, 2023年, 2023. [41] U. R. Fawwaz T. Ulaby, Fundamentals of Applied Electromagnetics 8/e. 2023. [42] R. B. Marks, "A multiline method of network analyzer calibration," IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 7, pp. 1205-1215, 1991, doi: 10.1109/22.85388. [43] D. Parveg, M. Varonen, D. Karaca, A. Vahdati, M. Kantanen, and K. A. I. Halonen, "Design of a D-Band CMOS Amplifier Utilizing Coupled Slow-Wave Coplanar Waveguides," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1359-1373, 2018, doi: 10.1109/tmtt.2017.2777976. [44] T. Machii, S. Kameda, M. Motoyoshi, and N. Suematsu, "Gain Boosted D-Band CMOS Amplifier Using a Radial Stab for Source AC Grounding," presented at the 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021. [45] F. Karasawa, T. Machii, M. Motoyoshi, T. Furuichi, and N. Suematsu, "130 GHz Band CMOS Amplifier with Miniaturized Interstage Circuit by Stacked Radial Stubs," presented at the 2023 Asia-Pacific Microwave Conference (APMC), 2023. [46] D. E. Bockelman and W. R. Eisenstadt, "Combined differential and common-mode analysis of power splitters and combiners," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 11, pp. 2627-2632, 1995-01-01 1995, doi: 10.1109/22.473188. [47] Y. H. Lee, C. C. Chiong, Y. Wang, and H. Wang, "A Body-Floating G-Band Frequency Doubler for Astronomical Receiver in 90-nm CMOS Process," in 2025 IEEE/MTT-S International Microwave Symposium - IMS 2025, 15-20 June 2025 2025, pp. 1131-1134, doi: 10.1109/IMS40360.2025.11103951. [48] C. Wang and C. H. Li, "A G-Band Frequency Doubler in 40-nm Digital CMOS for THz Applications," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 25-27 Aug. 2021 2021, pp. 1-3, doi: 10.1109/RFIT52905.2021.9565318. [49] B. Cetinoneri, Y. A. Atesal, A. Fung, and G. M. Rebeiz, "$W$ -Band Amplifiers With 6-dB Noise Figure and Milliwatt-Level 170–200-GHz Doublers in 45-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 3, pp. 692-701, 2012, doi: 10.1109/TMTT.2011.2165964. [50] B. Yu, "Design of RF silicon on insulator (SOI) switches for ultra wideband wireless communication applications," 2017. [51] 王雲杉, "微波與毫米波寬頻電路之研究," 國立臺灣大學, 電信工程學研究所, 2021. [52] 李宜恒, "閘汲極變壓器回授低雜訊放大器與應用於天文接收機之G頻段頻率二倍頻器之研究," 國立臺灣大學, 2024. [53] J. S. C. Chien and J. F. Buckwalter, "Compact, High-Isolation 110-140-GHz SPST and SPDT Switches Using a 250-nm InP HBT Process," in 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, 19-24 June 2022 2022, pp. 152-155, doi: 10.1109/IMS37962.2022.9865636. [54] U. Yodprasit, R. Fujimoto, M. Motoyoshi, K. Takano, and M. Fujishima, "D-band 3.6-dB-insertion-loss ASK modulator with 19.5-dB isolation in 65-nm CMOS technology," in 2010 Asia-Pacific Microwave Conference, 7-10 Dec. 2010 2010, pp. 1853-1856. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100962 | - |
| dc.description.abstract | 本論文包含三個部分。第一部分是應用於6G通訊系統發射端的D頻段寬頻驅動放大器設計與量測結果,使用65奈米金氧半場效電晶體製程。第二部分是應用於6G通訊系統本地震盪源之D頻段倍頻器設計與量測結果,使用65奈米金氧半場效電晶體製程。第三部分為應用於涵蓋6G多頻段之超寬頻單刀單擲開關設計與量測結果,使用90奈米金氧半場效電晶體製程。
首先是預計應用於300 GHz相位陣列收發系統之驅動放大器,為了增強混頻器產生的訊號,所提出的放大器不僅需要寬頻寬,還必須提供足夠的增益和輸出功率性能。因此,針對65奈米金氧半場效電晶體製程在D頻段的增益性能較差的問題,採用增益提昇技術來提高增益。此外,本設計也採用了補償匹配技術來獲得更寬的頻寬。量測結果表明,所提出的驅動放大器在大於10 dB小訊號增益下表現出128至170 GHz的頻寬。輸出1dB壓縮點功率在140、150和160 GHz時分別為-7.4、-3.7 和-7.3 dBm。此外,整體晶片包總面積為0.38平方毫米,其中核心電路面積僅為0.1平方毫米。 第二部分提出應用在140 GHz收發系統之本地震盪源組件之低功號D頻段二倍頻器。採用補償馬遜平衡不平衡轉換器來最小化幅度和相位差,以獲得更好的轉換增益和基頻抑制性能。為了增強轉換和輸出功率性能,採用了共源共柵拓樸架構。並採用增益提昇技術進一步提升轉換增益效能。量測結果表明,此二倍頻器的工作頻率範圍為143 GHz至170 GHz,在158 GHz達到-3.5 dB的峰值轉換增益。輸入功率為4.3 dBm時,在158 GHz處輸出峰值功率為0.76 dBm。在整個頻帶內,基頻抑制大於41.3 dBc。此外,此二倍頻器的直流功耗為16.3 mW,含pad面積為0.262 平方毫米。 最後一部分介紹了專為跨多頻段發射機系統設計的超寬頻超緊湊單刀單擲 (SPST) 開關。所提出的開關僅由四個電晶體和幾個電阻器組成,沒有任何大型被動元件,如電感器、變壓器或傳輸線,以最小化晶片尺寸。量測結果顯示,所提出的單刀單擲開關在DC至140 GHz與170 GHz頻寬內,分別實現小於3.3 dB與3.6 dB的插入損耗,具有覆蓋多個超寬頻收發系統的潛力。回波損耗140 GHz與170 GHz內分別優於 14 dB 與 9 dB;隔離度在相同頻段則分別優於 22 dB 與 18.5 dB,展現良好的關斷狀態性能。此開關的核心面積為 980 μm2,比先前報告的毫米波寬頻單刀單擲開關面積小兩個數量級或更多。 | zh_TW |
| dc.description.abstract | This thesis consists of three main parts. The first chapter presents the design and measurement results of a D-band broadband driving amplifier for a 6th-generation wireless system (6G) transmitter fabricated in a 65-nm CMOS process. The second chapter describes the design and measurement results of a D-band doubler for a local oscillation chain in a 140 GHz transceiver system fabricated in a 65-nm CMOS process. The last chapter discusses the design and measurement of an ultra-wideband and compact switch for multi-band coverage in a 6G transceiver system fabricated in a 90-nm CMOS process.
The first part focuses on a driving amplifier designed for the potential network in a 300 GHz phased-array transceiver system. To boost the signal generated by the mixer, the proposed amplifier not only demands a wide bandwidth but also has to provide sufficient gain and output power performance. Therefore, the gain-boosting technique was adopted to boost gain due to the poor gain performance of CMOS in the D-band. Additionally, the compensated matching technique is also utilized in this design to obtain a broader bandwidth. The measurement results show that the proposed driving amplifier exhibits a bandwidth of 128 to 170 GHz over a 10 dB small signal gain. The output 1-dB compression point power levels are -7.4, -3.7, and -7.3 dBm at 140, 150, and 160 GHz, respectively. Furthermore, the total area with pads is 0.38 mm2 (0.42 mm0.9mm), and the core area of the proposed amplifier is 0.1 mm2 (0.15 mm0.665mm). The second part presents a D-band doubler designed for 140 GHz transceivers. The compensated Marchand balun is adopted to minimize the amplitude and phase difference to obtain better conversion gain and rejection performance. In order to enhance the conversion and output power performance, a cascode topology is adopted. The gain-boosting technique is utilized to further increase the conversion gain performance. The measurement results show that the proposed frequency doubler covers from 143 GHz to 170 GHz, and the peak conversion gain is -3.5 dB occurs at 158 GHz. The peak output power exhibits 0.76 dBm at 158 GHz with 4.3 dBm input power. The fundamental rejection is greater than 41.3 dBc in the entire frequency bandwidth. Furthermore, the proposed frequency doubler consumes 16.3 mW DC power, and occupies 0.262 mm2 (0.4 mm 0.655 mm) with all pads. The last part introduces an ultra-wideband and ultra-compact single-pole-single-through (SPST) switch designed for a multi-band transceiver system. The proposed switch is composed of only four transistors and several resistors, and without any large passive components such as an inductor, transformer, or transmission lines to minimize the chip size. The proposed switch achieves less than 3.3 dB and 3.6 dB insertion loss from DC to 140 GHz and 170 GHz, which has the potential to cover multiple ultra-wideband transceiver systems. The return loss is greater than 14 dB and 9 dB within 140 GHz and 170 GHz, respectively. The off-state performance of isolation is better than 22 dB and 18.5 dB within 140 GHz and 170 GHz, respectively. The proposed switch achieves an IP1dB of 10.6 dBm at 75 GHz and an IP1dB of 10 dBm at 110 GHz. The core area of the switch is 980 μm2, which is two or more orders of magnitude smaller than the previously reported mm-Wave broadband SPST switch. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:16:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:16:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvi Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 300-GHz Phase-Array Transceiver System 1 1.1.2 D-band Local Oscillation (LO) Chain [10-14] 3 1.1.3 An Ultra-Wideband Switch [15, 16] 4 1.2 Literature Surveys 6 1.2.1 D-Band Broadband Amplifier in CMOS Process 6 1.2.2 D-Band Frequency Doubler in CMOS Process 8 1.2.3 DC to D-band SPST switch in CMOS Process 10 1.3 Contributions 13 1.3.1 D-band Broadband Amplifier in CMOS process 13 1.3.2 D-band Frequency Doubler in CMOS Process 13 1.3.3 SPST switch in CMOS Process 14 1.4 Thesis Organization 15 Chapter 2 Design of a 128 to 170 GHz Broadband Amplifier with Gain-Boosting Technique in 65-nm CMOS Process 16 2.1 Introduction 16 2.2 Design of D-band Driving Amplifier 19 2.2.1 DC Bias and Device Size Selection 19 2.2.2 Cascode Configuration Design 25 2.2.3 Gain-Boosting Technique [20, 38-40] 26 2.2.4 Circuit Architecture and Post-layout Simulation Results 32 2.3 Measurement Results 39 2.4 Troubleshooting and Discussion 43 2.4.1 EM Simulation Setup 43 2.4.2 Device Model Measurement Result 47 2.4.3 NCH+EM Model 55 2.5 Summary 58 Chapter 3 Design of D-Band Frequency Doubler with Gain-Boosting Technique in 65-nm CMOS Process 60 3.1 Introduction 60 3.2 The Design of D-band Frequency Doubler 63 3.2.1 Biasing Selection and Device Size Selection 63 3.2.2 Cascode configuration and Gain-Boosting technique 69 3.2.3 Marchand Balun Design 71 3.2.4 Circuit Architecture and Post-layout Simulation Results 75 3.3 Measurement Results 80 3.4 Troubleshooting and Discussion 84 3.5 Summary 88 Chapter 4 Design of a DC to D-band Single-Pole Single-Throw Switch in 90-nm CMOS Process 90 4.1 Introduction 90 4.2 The Design of SPST Switch 92 4.2.1 DC Biasing and Device Size Selection 92 4.2.2 Body-Floating Technique 98 4.2.3 Circuit Architecture and Post-layout Simulation Results 102 4.3 Measurement Results 108 4.4 Summary 112 Chapter 5 Conclusions 115 REFERENCES 117 | - |
| dc.language.iso | en | - |
| dc.subject | 互補式金氧半導體 | - |
| dc.subject | 寬頻放大器 | - |
| dc.subject | 二倍頻器 | - |
| dc.subject | 單刀單擲開關 | - |
| dc.subject | 馬遜平衡不平衡轉換器 | - |
| dc.subject | D頻段 | - |
| dc.subject | 300 GHz相位陣列收發系統 | - |
| dc.subject | 140 GHz相位陣列收發系統 | - |
| dc.subject | CMOS | - |
| dc.subject | broadband amplifier | - |
| dc.subject | frequency doubler | - |
| dc.subject | SPST switch | - |
| dc.subject | Marchand balun | - |
| dc.subject | D-band | - |
| dc.subject | 300 GHz phased-arrays transceiver system | - |
| dc.subject | 140 GHz phased-arrays transceiver system | - |
| dc.title | 應用於第六代通訊系統之D頻段放大器、二倍頻器與單刀單擲切換器之研究 | zh_TW |
| dc.title | Research of D-band Amplifier, Frequency Doubler and SPST Switch for 6th-Generation Communication | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃天偉;林坤佑;蔡政翰;王雲杉 | zh_TW |
| dc.contributor.oralexamcommittee | Tian-Wei Huang;Kun-You Lin;Jeng-Han Tsai;Yunshan Wang | en |
| dc.subject.keyword | 互補式金氧半導體,寬頻放大器二倍頻器單刀單擲開關馬遜平衡不平衡轉換器D頻段300 GHz相位陣列收發系統140 GHz相位陣列收發系統 | zh_TW |
| dc.subject.keyword | CMOS,broadband amplifierfrequency doublerSPST switchMarchand balunD-band300 GHz phased-arrays transceiver system140 GHz phased-arrays transceiver system | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202504602 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-20 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.87 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
