請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100945完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林峻永 | zh_TW |
| dc.contributor.advisor | Chun-Yeon Lin | en |
| dc.contributor.author | 楊彥泰 | zh_TW |
| dc.contributor.author | Yen-Tai Yang | en |
| dc.date.accessioned | 2025-11-26T16:12:13Z | - |
| dc.date.available | 2025-11-27 | - |
| dc.date.copyright | 2025-11-26 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-10-30 | - |
| dc.identifier.citation | [1] J. B. Kim and E. Toyserkani, “Design strategies for eddy-current displacement sensor systems: review and recommendations,” IEEE Sens. J., vol. 12, no. 12, pp. 3346–3355, Dec. 2012, doi: 10.1109/JSEN.2012.2204321.
[2] T. Yamaguchi, Y. Iwai, S. Inagaki, and M. Ueda, “A method for detecting bearing wear in a drain pump utilizing an eddy-current displacement sensor,” Meas., vol. 33, no. 3, pp. 207–215, Apr. 2003, doi: 10.1016/S0263-2241(02)00067-2. [3] Y. Du, Z. Zhang, W. Yin, S. Zhu, Z. Chen, and H. Xu, “Conductivity classification of non-magnetic tilting metals by eddy current sensors,” Sensors, vol. 20, no. 9, Art. no. 2608, May 2020, doi: 10.3390/s20092608. [4] Y. Yu, Y. Zou, M. Al Hosani, and G. Tian, “Conductivity invariance phenomenon of eddy current NDT: Investigation, verification, and application,” IEEE Trans. Magn., vol. 53, no. 1, Art. no. 6200207, Jan. 2017, doi: 10.1109/TMAG.2016.2616328. [5] K.-M. Lee, C.-Y. Lin, B. Hao, and M. Li, “Coupled parametric effects on magnetic fields of eddy-current induced in non-ferrous metal plate for simultaneous estimation of geometrical parameters and electrical conductivity,” IEEE Trans. Magn., vol. 53, no. 10, Art. no. 6202209, Oct. 2017, doi: 10.1109/TMAG.2017.2715831. [6] X. Ma, A. J. Peyton, and Y. Y. Zhao, “Measurement of the electrical conductivity of open-celled aluminium foam using non-contact eddy current techniques,” NDT&E Intl., vol. 38, no. 5, pp. 359–367, Jul. 2005, doi: 10.1016/j.ndteint.2004.10.003. [7] Z. Zeng, Y. Liao, X. Liu, J. Lin, and Y. Dai, “Detection of fiber fracture in unidirectional CFRP by remote field eddy-current testing,” IEEE Trans. Instrum. Meas., vol. 69, no. 8, pp. 5755–5762, Aug. 2020, doi: 10.1109/TIM.2019.2957914. [8] H. Fukutomi, T. Takagi, and M. Nishikawa, “Remote field eddy current technique applied to non-magnetic steam generator tubes,” NDT&E Intl., vol. 34, no. 1, pp. 17–23, Jan. 2001, doi: 10.1016/S0963-8695(00)00026-8. [9] W. Yin and A. J. Peyton, “Thickness measurement of metallic plates with an electromagnetic sensor using phase signature analysis,” in Proc. IEEE Instrum. Meas. Technol. Conf. (IMTC), 2007, Warsaw, Poland, May 2007, doi: 10.1109/IMTC.2007.379258. [10] H. Wang, W. Li, and Z. Feng, “Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation,” IEEE Trans. Instrum. Meas., vol. 64, no. 9, pp. 2557–2564, Sep. 2015, doi: 10.1109/TIM.2015.2406053. [11] C. V. Dodd and W. E. Deeds, “Analytical Solutions to Eddy-Current Probe-Coil Problems,” J. Appl. Phys., vol. 39, no. 6, pp. 2829–2838, May 1968, doi: 10.1063/1.1656680. [12] J. W. Luquire, W. E. Deeds, and C. V. Dodd, “Alternating Current Distribution Between Planar Conductors,” J. Appl. Phys., vol. 41, no. 10, pp. 3983–3991, Sep. 1970, doi: 10.1063/1.1658399. [13] Y. Li, T. Theodoulidis, and G. Y. Tian, “Magnetic Field-Based Eddy-Current Modeling for Multilayered Specimens,” IEEE Trans. Magn., vol. 43, no. 11, pp. 4010–4015, Nov. 2007, doi: 10.1109/TMAG.2007.904930. [14] M. Lu, L. Yin, A. J. Peyton, and W. Yin, “A Novel Compensation Algorithm for Thickness Measurement Immune to Lift-Off Variations Using Eddy Current Method,” IEEE Trans. Instrum. Meas., vol. 65, no. 12, pp. 2773–2779, Dec. 2016, doi: 10.1109/TIM.2016.2600918. [15] W. Yin and K. Xu, “A Novel Triple-Coil Electromagnetic Sensor for Thickness Measurement Immune to Lift-Off Variations,” IEEE Trans. Instrum. Meas., vol. 65, no. 1, pp. 164–169, Jan. 2016, doi: 10.1109/TIM.2015.2479106. [16] C. Wang, T. Wang, B. Liu, F. Tian, and X. Lu, “Metal Thickness Measurement System Based on a Double-Coil Eddy-Current Method With Characteristic Ratio Detection,” IEEE Trans. Ind. Electron., vol. 70, no. 12, pp. 12904–12912, Dec. 2023, doi: 10.1109/TIE.2023.3239881. [17] W. Li, Y. Ye, K. Zhang, and Z. Feng, “A Thickness Measurement System for Metal Films Based on Eddy-Current Method With Phase Detection,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3940–3949, May 2017, doi: 10.1109/TIE.2017.2650861. [18] Z. Qu, W. Wang, Z. Yang, Q. Bao, and Y. Zheng, “High-Precision Thickness Measurement of Cu Film on Si-Based Wafer Using Erasable Printed Eddy Current Coil and High-Sensitivity Associated Circuit Techniques,” IEEE Trans. Ind. Electron., vol. 69, no. 9, pp. 9556–9565, Sep. 2022, doi: 10.1109/TIE.2021.3111570. [19] Y. Qiu et al., “A Metal Film Thickness Measurement System With a Large Range Based on High-Performance ME Sensors,” IEEE/ASME Trans. Mechatron., pp. 1–10, 2025, doi: 10.1109/TMECH.2024.3517698. [20] K.-M. Lee, B. Hao, M. Li, and K. Bai, “Multiparameter Eddy-Current Sensor Design for Conductivity Estimation and Simultaneous Distance and Thickness Measurements,” IEEE Trans. Ind. Inf., vol. 15, no. 3, pp. 1647–1657, Mar. 2019, doi: 10.1109/TII.2018.2843319. [21] D. Zhang, Y. Yu, C. Lai, and G. Tian, “Thickness measurement of multi-layer conductive coatings using multifrequency eddy current techniques,” Nondestr. Test. Eval., vol. 31, no. 3, pp. 191–208, Jul. 2016, doi: 10.1080/10589759.2015.1081903. [22] W. Cheng, “Thickness Measurement of Metal Plates Using Swept-Frequency Eddy Current Testing and Impedance Normalization,” IEEE Sensors J., vol. 17, no. 14, pp. 4558–4569, Jul. 2017, doi: 10.1109/JSEN.2017.2710356. [23] F. Loete, Y. Le Bihan, and D. Mencaraglia, “Novel Wideband Eddy Current Device for the Conductivity Measurement of Semiconductors,” IEEE Sensors J., vol. 16, no. 11, pp. 4151–4152, Jun. 2016, doi: 10.1109/JSEN.2016.2544403. [24] P. Huang et al., “Decoupling Permeability, Conductivity, Thickness, Lift-Off for Eddy Current Testing Using Machine Learning,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1–10, 2023, doi: 10.1109/TIM.2023.3293565. [25] C.-Y. Lin, Y.-C. Wu, and M. Teng, “Development of a Magnetic/Eddy-Current Sensing System For Simultaneous Estimation of Electrical Conductivity and Thickness in Non-Ferrous Metal Plates,” IEEE/ASME Trans. Mechatron., vol. 28, no. 1, pp. 360–371, Feb. 2023, doi: 10.1109/TMECH.2022.3199821. [26] B. Hao, K.-M. Lee, and K. Bai, “Distributed current source modeling method for 3D eddy current problem in magnetic conductor with discrete state-space J-φ formulation,” J. Comput. Phys., vol. 401, p. 109027, Jan. 2020, doi: 10.1016/j.jcp.2019.109027. [27] M. Fan, P. Huang, B. Ye, D. Hou, G. Zhang, and Z. Zhou, “Analytical modeling for transient probe response in pulsed eddy current testing,” NDT&E Intl., vol. 42, no. 5, pp. 376–383, Jul. 2009, doi: 10.1016/j.ndteint.2009.01.005. [28] Z. Xue, M. Fan, B. Cao, and B. Ye, “Analytical model of pulsed eddy current signal with variable time resolution,” J. Nondestr. Eval., vol. 41, no. 3, p. 54, Sep. 2022, doi: 10.1007/s10921-022-00885-y. [29] Y. Li, G. Y. Tian, and A. Simm, “Fast analytical modelling for pulsed eddy current evaluation,” NDT&E Intl., vol. 41, no. 6, pp. 477–483, Sep. 2008, doi: 10.1016/j.ndteint.2008.02.001. [30] H. Wang, J. Huang, L. Liu, S. Qin, and Z. Fu, “A Novel Pulsed Eddy Current Criterion for Non-Ferromagnetic Metal Thickness Quantifications under Large Liftoff,” Sensors, vol. 22, no. 2, p. 614, Jan. 2022, doi: 10.3390/s22020614. [31] M. Fan, B. Cao, A. I. Sunny, W. Li, G. Tian, and B. Ye, “Pulsed eddy current thickness measurement using phase features immune to liftoff effect,” NDT&E Intl., vol. 86, pp. 123–131, Mar. 2017, doi: 10.1016/j.ndteint.2016.12.003. [32] C. S. Angani, D. G. Park, G. D. Kim, C. G. Kim, and Y. M. Cheong, “Differential pulsed eddy current sensor for the detection of wall thinning in an insulated stainless steel pipe,” J. Appl. Phys., vol. 107, no. 9, p. 09E720, May 2010, doi: 10.1063/1.3337725. [33] D. G. Park, C. S. Angani, G. D. Kim, C. G. Kim, and Y. M. Cheong, “Evaluation of Pulsed Eddy Current Response and Detection of the Thickness Variation in the Stainless Steel,” IEEE Trans. Magn., vol. 45, no. 10, pp. 3893–3896, Oct. 2009, doi: 10.1109/TMAG.2009.2024219. [34] X. Chen and Y. Lei, “Excitation current waveform for eddy current testing on the thickness of ferromagnetic plates,” NDT&E Intl., vol. 66, pp. 28–33, Sep. 2014, doi: 10.1016/j.ndteint.2014.04.006. [35] Y. Wang, M. Fan, B. Cao, B. Ye, and D. Wen, “Measurement of coating thickness using lift-off point of intersection features from pulsed eddy current signals,” NDT&E Intl., vol. 116, p. 102333, Dec. 2020, doi: 10.1016/j.ndteint.2020.102333. [36] C.-Y. Lin, R.-Y. Huang, M. Teng, and Y.-C. Wu, “Pulsed Eddy Current Sensor for Cascade Electrical Conductivity and Thickness Estimation in Nonferrous Metal Plates,” IEEE Sensors J., vol. 23, no. 8, pp. 8323–8334, Apr. 2023, doi: 10.1109/JSEN.2023.3257316. [37] X. Zheng et al., “Analyzing the permeability distribution of multilayered specimens using pulsed eddy-current testing with multi-scale 1D-ResNet,” NDT&E Intl., vol. 149, p. 103247, Jan. 2025, doi: 10.1016/j.ndteint.2024.103247. [38] S. Xie, Z. Chen, T. Takagi, and T. Uchimoto, “Development of a very fast simulator for pulsed eddy current testing signals of local wall thinning,” NDT&E Intl., vol. 51, pp. 45–50, Oct. 2012, doi: 10.1016/j.ndteint.2012.06.002. [39] X. Chen and Y. Lei, “Electrical conductivity measurement of ferromagnetic metallic materials using pulsed eddy current method,” NDT&E Intl., vol. 75, pp. 33–38, Oct. 2015, doi: 10.1016/j.ndteint.2015.06.005. [40] D. Desjardins, T. W. Krause, and L. Clapham, “Transient eddy current method for the characterization of magnetic permeability and conductivity,” NDT&E Intl., vol. 80, pp. 65–70, Jun. 2016, doi: 10.1016/j.ndteint.2016.02.010. [41] M. Morozov, G. Yun Tian, and P. J. Withers, “The pulsed eddy current response to applied loading of various aluminium alloys,” NDT&E Intl., vol. 43, no. 6, pp. 493–500, Sep. 2010, doi: 10.1016/j.ndteint.2010.05.004. [42] Y. He, F. Luo, M. Pan, X. Hu, J. Gao, and B. Liu, “Defect classification based on rectangular pulsed eddy current sensor in different directions,” Sens. Actuators A Phys., vol. 157, no. 1, pp. 26–31, Jan. 2010, doi: 10.1016/j.sna.2009.11.012. [43] S. Qian, X. Zuo, Y. He, G. Tian, and H. Zhang, “Detection technology to identify money based on pulsed eddy current technique,” in Proc. 17th Int. Conf. Autom. Comput., Huddersfield, U.K., Sep. 2011. [44] D. Chen, Q. Ji, L. Zhao, and H. Zhang, “Application of pulsed eddy current and ultrasonic sensors in paint film thickness measuring,” in Proc. Chinese Control Decis. Conf. (CCDC), Guilin, China, Jun. 2009, pp. 4461–4464, doi: 10.1109/CCDC.2009.5192349. [45] Y. He, G. Tian, H. Zhang, M. Alamin, A. Simm, and P. Jackson, “Steel Corrosion Characterization Using Pulsed Eddy Current Systems,” IEEE Sensors J., vol. 12, no. 6, pp. 2113–2120, Jun. 2012, doi: 10.1109/JSEN.2012.2184280. [46] N. A. Ahmad Latif, I. M. Zainal Abidin, and N. Jamaludin, “Simulation and Experimental Investigation of Pulsed Eddy Current Technique for Defect Evaluation,” IJEEI, vol. 6, no. 3, pp. 317–322, Sep. 2018, doi: 10.11591/ijeei.v6i3.503. [47] A. Sophian, G. Tian, and M. Fan, “Pulsed eddy current non-destructive testing and evaluation: A review,” Chin. J. Mech. Eng., vol. 30, no. 3, pp. 500–514, May 2017, doi: 10.1007/s10033-017-0122-4. [48] I. D. Adewale and G. Y. Tian, “Decoupling the Influence of Permeability and Conductivity in Pulsed Eddy-Current Measurements,” IEEE Trans. Magn., vol. 49, no. 3, pp. 1119–1127, Mar. 2013, doi: 10.1109/TMAG.2012.2225634. [49] T. Theodoulidis, “Developments in Calculating the Transient Eddy-Current Response From a Conductive Plate,” IEEE Trans. Magn., vol. 44, no. 7, pp. 1894–1896, Jul. 2008, doi: 10.1109/TMAG.2008.919482. [50] S. Xie, Z. Chen, T. Takagi, and T. Uchimoto, “Efficient Numerical Solver for Simulation of Pulsed Eddy-Current Testing Signals,” IEEE Trans. Magn., vol. 47, no. 11, pp. 4582–4591, Nov. 2011, doi: 10.1109/TMAG.2011.2151872. [51] H. Zhu, C. Wang, H. Chen, and J. Wang, “Pulsed eddy current signal denoising based on singular value decomposition,” J. Shanghai Jiaotong Univ. (Sci.), vol. 21, no. 1, pp. 121–128, Feb. 2016, doi: 10.1007/s12204-015-1691-y. [52] M. S. Safizadeh, B. A. Lepine, D. S. Forsyth, and A. Fahr, “Time–frequency analysis of pulsed eddy current signals,” J. Nondestr. Eval., vol. 20, pp. 73–86, Jun. 2001, doi: 10.1023/A:1012244208475. [53] H. Tsuboi, N. Seshima, I. Sebestyen, J. Pavo, S. Gyimothy, and A. Gasparics, “Transient Eddy Current Analysis of Pulsed Eddy Current Testing by Finite Element Method,” IEEE Trans. Magn., vol. 40, no. 2, pp. 1330–1333, Mar. 2004, doi: 10.1109/TMAG.2004.825009. [54] T. Meng, L. Xiong, X. Zheng, Y. Tao, and W. Yin, “Real-Time Tunnel-Magnetoresistive-Based Pulsed Eddy Current Testing With Deep Learning,” IEEE Sensors J., vol. 24, no. 9, pp. 15540–15550, May 2024, doi: 10.1109/JSEN.2024.3373756. [55] M. Srivastava, C. L. Anderson, and J. H. Freed, “A New Wavelet Denoising Method for Selecting Decomposition Levels and Noise Thresholds,” IEEE Access, vol. 4, pp. 3862–3877, 2016, doi: 10.1109/ACCESS.2016.2587581. [56] T. Wu and S. Zhang, “A Signal Denoising Method for Pulsed Eddy Current Testing Based on Parameter Optimization of VMD Combined with Wavelet Threshold,” in Proc. Int. Conf. Adv. Control Syst. Autom. Technol. (ACSAT), Nanjing, China, Nov. 2024, pp. 283–290. doi: 10.1109/ACSAT63853.2024.10824033. [57] B. Luo, Y. Shi, W. Zhang, and Y. Li, “Denoising Algorithm for Pulsed Eddy Current Response Signals Based on Empirical Mode Decomposition,” in Proc. IEEE Int. Conf. Electron. Meas. Instrum. (ICEMI), 16th, Harbin, China, Aug. 2023, pp. 406–410. doi: 10.1109/ICEMI59194.2023.10270249. [58] Cheh Pan, “Gibbs phenomenon removal and digital filtering directly through the fast Fourier transform,” IEEE Trans. Signal Process., vol. 49, no. 2, pp. 444–448, Feb. 2001, doi: 10.1109/78.902128. [59] J. Chen, X. Geng, F. Yao, X. Liao, Y. Zhang, and Y. Wang, “Single-Cycle Pulse Signal Recognition Based on One-Dimensional Deep Convolutional Neural Network,” Electronics, vol. 13, no. 3, p. 511, Jan. 2024, doi: 10.3390/electronics13030511. [60] J. Wilde and Y. Lai, “Design optimization of an eddy current sensor using the finite-elements method,” Microelectron. Rel., vol. 43, no. 3, pp. 345–349, Mar. 2003, doi: 10.1016/S0026-2714(02)00341-4. [61] Y. Yating and Du Pingan, “Optimization of an Eddy Current Sensor Using Finite Element Method,” in Proc. Int. Conf. Mechatronics Autom. (ICMA), Harbin, China, Aug. 2007, pp. 3795–3800. doi: 10.1109/ICMA.2007.4304179. [62] Z. Su, C. Ye, A. Tamburrino, L. Udpa, and S. Udpa, “Optimization of coil design for eddy current testing of multi-layer structures,” JAE, vol. 52, no. 1–2, pp. 315–322, Dec. 2016, doi: 10.3233/JAE-162030. [63] I. T. Rekanos, C. S. Antonopoulos, and T. D. Tsiboukis, “Shape design of cylindrical probe coils for the induction of specified eddy current distributions,” IEEE Trans. Magn., vol. 35, no. 3, pp. 1797–1800, May 1999, doi: 10.1109/20.767380. [64] B. Sawicki and A. Krupa, “Optimization of coil geometry using Monte Carlo method with HTCondor and Microsoft Azure technologies,” Przegląd Elektrotechniczny, vol. 95, no. 5, pp. 114–118, May 2019, doi: 10.15999/48.2019.05.28. [65] A. Trakic, F. Liu, H. S. Lopez, H. Wang, and S. Crozier, “Longitudinal gradient coil optimization in the presence of transient eddy currents,” Magn. Reson. Med., vol. 57, no. 6, pp. 1119–1130, Jun. 2007, doi: 10.1002/mrm.21243. [66] . Li and D. A. Lowther, “Topological Sensitivity Analysis for Steady State Eddy Current Problems With an Application to Nondestructive Testing,” IEEE Trans. Magn., vol. 47, no. 5, pp. 1294–1297, May 2011, doi: 10.1109/TMAG.2010.2091717. [67] H. T. Zhou, K. Hou, H. L. Pan, J. J. Chen, and Q. M. Wang, “Study on the Optimization of Eddy Current Testing Coil and the Defect Detection Sensitivity,” Procedia Eng., vol. 130, pp. 1649–1657, 2015, doi: 10.1016/j.proeng.2015.12.331. [68] W. C. Chew, Lecture 16: Waves in Layered Media, ECE 604 Electromagnetic Theory, Purdue University, p. 167, Fall 2020. [Online]. Available: https://engineering.purdue.edu/wcchew/ece604f20/Lecture%20Notes/Lect16.pdf [69] R. A. Serway and J. S. Faughn, College Physics, 4th ed. Fort Worth, TX: Saunders College Publishing, 1995, ch. 19, pp. 590 [70] W. Yin, R. Huang, M. Lu, Z. Zhang, and A. Peyton, "Measurements of thickness for metallic plates with co-axial holes using a novel analytical method with the modified integration range," IEEE Access, vol. 8, pp. 198380–198389, Nov. 2020, doi: 10.1109/ACCESS.2020.3035333. [71] 黃士誠, “應用於非導磁金屬導電率量測之磁電渦流感測器開發”, 臺灣大學機械工程學系碩士論文, 2020. [72] 吳易秦, “幾何及材料特性估測之單點式磁電渦流感測器開發” , 臺灣大學機械工程學系碩士論文, 2021. [73] 黃仁淵, “嵌入式脈衝渦電流感測掃描系統開發” , 臺灣大學機械工程學系碩士論文, 2022. [74] 林俊宇, “應用於導電率、導磁率及厚度估測之多頻率渦電流感測方法” , 臺灣大學機械工程學系碩士論文, 2023. [75] 蔡承祐, “應用於非導磁金屬板厚度與導電率及提離距離估測之渦電流感測系統開發” , 臺灣大學機械工程學系碩士論文, 2024. [76] Ibukun D. Adewale and G. Y. Tian, "Decoupling the Influence of Permeability and Conductivity in Pulsed Eddy-Current Measurements," IEEE Trans. Magn., vol. 49, no. 3, pp. 1119-1127, Mar. 2013, doi: 10.1109/TMAG.2012.2228296. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100945 | - |
| dc.description.abstract | 本研究提出即時脈衝渦電流感測系統,結合理論模型建立、參數估測、訊號處理與硬體設計,即時估測金屬板之厚度、導電率與導磁率。理論部分將傳統僅應用於頻域的截斷區域本徵函數展開模型擴展至時域應用,建立金屬材料電磁響應與激勵訊號之對應關係,並針對方波階躍響應引入簡單修正方法去除吉布斯效應對時域曲線邊緣的影響,透過有限元素法模擬進行驗證,證實此模型可有效描述材料參數與磁場變化之物理關聯,並可在短時間內生成大量資料,使用於建立機器學習模型的訓練資料集。在估測方法中探討多種機器學習方法,並整合其優點提出混合式神經網路架構,能直接由量測訊號進行厚度、導電率與導磁率的多參數估測,展現多元應用潛力。
訊號處理部分針對高頻雜訊與有限取樣率造成的誤差提出多項改良策略,大幅提升訊號穩定度並降低隨機雜訊影響,此序列式訊號處理流程確保了後續估測過程的可靠性,硬體設計方面,本研究以穿隧磁阻感測器搭配最佳化激勵線圈為核心,設計一體化線圈支架,使感測器盡可能靠近金屬表面,提升感測靈敏度與訊噪比,同時以資料擷取系統即時進行資料取樣與顯示,在厚度0.2至5.0毫米、導電率1.29至58.3 MS/m、導磁率1至150的範圍內,完成多參數即時估測,平均誤差僅 3.83%,而單次反算時間僅約80毫秒,兼具準確度與可攜性。 | zh_TW |
| dc.description.abstract | This paper proposes a real-time pulsed eddy current sensing system that integrates theoretical modeling, parameter inversion, signal processing, and hardware design for accurate estimation of thickness, electrical conductivity, and relative permeability of metallic plates. In terms of theory, the conventional Truncated Region Eigenfunction Expansion model, which has traditionally been limited to the frequency domain, is successfully extended to the time domain to establish a direct correspondence between the electromagnetic response of metallic materials and the excitation signals. A simple correction method is further introduced to eliminate the Gibbs phenomenon at the step edges of square wave excitation, thus improving the applicability of the time-domain response. Finite element analyses are performed for validation, validating that the proposed model effectively captures the physical relationship between material parameters and magnetic field variations. Moreover, the model can rapidly generate large datasets within a short computation time, which are subsequently employed to construct training data for machine learning models. In the inversion stage, multiple machine learning approaches are compared, and a hybrid neural network architecture that combines their advantages is proposed. This framework enables direct multi-parameter inversion of thickness, conductivity, and permeability from the measured signals, demonstrating strong potential for extensive applications.
For signal processing, several stages are designed to mitigate high-frequency noise and sampling limitations, significantly enhancing the stability of the processed signals and reducing the influence of random noise. This sequential signal-processing workflow ensures the reliability of the subsequent inversion process. For hardware design, a Tunneling Magnetoresistance sensor combined with an optimized excitation coil is adopted as the core of the system. An integrated coil–sensor chassis is designed to minimize the distance between the sensor and the sample surface, thereby improving sensitivity and signal-to-noise ratio. The system utilize data acquisition system and MATLAB, enabling real-time sampling, processing, and visualization of the measured signals. Experimental validation demonstrates that the proposed system is capable of performing multi-parameter real-time estimations within the ranges of thickness from 0.2 to 5.0 mm, conductivity from 1.29 to 58.3 MS/m, and relative permeability from 1 to 150. The system achieves an average estimation error of only 3.83%, with each estimaion requiring merely 80 ms, thus presenting both high accuracy and portability. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:12:13Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-11-26T16:12:13Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目次 v 表次 viii 圖次 ix 符號與縮寫解釋 xi 1 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 1 1.2.1 渦電流感測 1 1.2.2 脈衝渦電流 3 1.2.3 最佳化與訊號處理 5 1.3 問題描述 5 1.4 研究貢獻 6 1.5 論文架構 6 2 第二章 脈衝渦電流即時感測系統設計 7 2.1 感測器系統設計 7 2.2 正向模型 8 2.2.1 渦電流物理模型 8 2.2.2 時域渦電流模型 12 2.2.3 集膚效應 18 2.2.4 線圈最佳化 19 2.3 逆向模型 22 2.3.1 反射係數的展開與多重反射邊界條件 22 2.3.2 暫態響應 23 2.3.3 基於特徵值與神經網路的電磁與幾何參數估測 25 2.3.4 基於階躍響應的導電與導磁估測 26 2.4 系統架構 29 3 第三章 數值模擬驗證 30 3.1 線圈最佳化 30 3.2 激勵頻率穿透性與暫態磁場響應分析 34 3.3 有限元素模擬與時域TREE方法之驗證與比較 37 3.4 時域響應上升沿及穩態之變量分析 39 3.5 導電率、導磁率與厚度之神經網路反算 49 3.6 導電率、導磁率之網格反算 55 4 第四章 實驗架構與結果 58 4.1 脈衝渦電流感測系統硬體設計 58 4.1.1 磁感測器選用 58 4.1.2 電路設計 60 4.1.3 機構設計 61 4.2 實驗結果 64 4.2.1 幾何與電磁參數驗證 64 4.2.2 實驗架設 66 4.2.3 神經網路厚度、導電率及導磁率估測 72 4.2.4 網格導電率及導磁率估測 78 4.2.5 重複性測試 82 4.3 結果比較 85 5 第五章 結論與未來展望 89 5.1 結論 89 5.2 未來展望 90 參考文獻 92 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 脈衝渦電流 | - |
| dc.subject | 即時估測 | - |
| dc.subject | 穿隧磁阻感測器 | - |
| dc.subject | 神經網路 | - |
| dc.subject | 多參數估測 | - |
| dc.subject | Pulsed eddy current sensing system | - |
| dc.subject | Real-time estimation | - |
| dc.subject | Tunneling magnetoresistance sensor | - |
| dc.subject | Neural network | - |
| dc.subject | Multi-parameter estimation | - |
| dc.title | 即時金屬板導電率與導磁率及厚度估測之脈衝渦電流感測系統開發 | zh_TW |
| dc.title | Development of a Real-Time Pulsed Eddy Current Sensing System for Metal Plate Conductivity, Permeability and Thickness Estimation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 114-1 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃漢邦;楊士進;鍾添淦;林佑儒 | zh_TW |
| dc.contributor.oralexamcommittee | Hang-Pang Huang;Shih-Chin Yang;Tien-Kan Chung;Yu-Ju Lin | en |
| dc.subject.keyword | 脈衝渦電流,即時估測穿隧磁阻感測器神經網路多參數估測 | zh_TW |
| dc.subject.keyword | Pulsed eddy current sensing system,Real-time estimationTunneling magnetoresistance sensorNeural networkMulti-parameter estimation | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202504609 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-10-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2025-11-27 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-114-1.pdf | 4.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
