Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100927
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳忠幟zh_TW
dc.contributor.advisorChung-Chih Wuen
dc.contributor.author陳柏瑞zh_TW
dc.contributor.authorPo-Jui Chenen
dc.date.accessioned2025-11-26T16:07:46Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-11-08-
dc.identifier.citationChapter 1
[1] S.-J. Zou, Y. Shen, F.-M. Xie, J.-D. Chen, Y.-Q. Li, and J.-X. Tang, “Recent advances in organic light-emitting diodes: toward smart lighting and displays,” Mater. Chem. Front. 4(3), 788–820 (2020).
[2] C. I. Park, M. Seong, M. A. Kim, D. Kim, H. Jung, M. Cho, S. H. Lee, H. Lee, S. Min, J. Kim, M. Kim, J.-H. Park, S. Kwon, B. Kim, S. J. Kim, W. Park, J.-Y. Yang, S. Yoon, and I. Kang, “World’s first large size 77-inch transparent flexible OLED display,” J. Soc. Inf. Disp. 26(5), 287–295 (2018).
[3] S. Garner, D. Chowdhury, and S. Lewis, “Ultrathin glass substrates for thin, lightweight, flexible OLED lighting,” Inf. Disp. 35(4), 9–13 (2019).
[4] K. Blankenbach, “Automotive displays—the bigger the better,” Inf. Disp. 38(5), 30–34 (2022)
[5] Mitsuhiro Koden, “History of Flexible OLEDs,” in Flexible OLEDs, SpringerBriefs in Applied Sciences and Technology, Springer, Singapore, pp. 19-33 (2022).
[6] S.-M. Lee, J. H. Kwon, S. Kwon, and K. C. Choi, “A review of flexible OLEDs toward highly durable unusual displays,” IEEE Trans. Electron Devices 64(5), 1922–1931 (2017).
[7] I. Lee and J.-L. Lee, “Transparent electrode of nanoscale metal film for optoelectronic devices,” J. Photon. Energy 5, 057609 (2015).
[8] S. Kim and B. Hwang, “Ag nanowire electrode with patterned dry film photoresist insulator for flexible organic light-emitting diode with various designs,” Mater. Des. 160, 572–577 (2018).
[9] A. E. Adetayo, T. N. Ahmed, A. Zakhidov, and G. W. Beall, “Improvements of organic light-emitting diodes using graphene as an emerging and efficient transparent conducting electrode material,” Adv. Opt. Mater. 9(14), 2002102 (2021).
[10] S. Li, L. Lan, M. Li, Z. Gao, X. Yan, D. Fu, and X. Sun, “Thin-film encapsulation for OLEDs and its advances: toward engineering,” Materials 18(13), 3175 (2025).
[11] Z.-R. Cyue, W.-K. Lee, L.-Y. Yu, G.-D. Su, and C.-C. Wu, “Optics of curved OLEDs,” SID Symp. Dig. Tech. Pap. 50(1), 1907–1910 (2019).
[12] K. Yang, W. Li, and B. Han, “Comprehensive optical evaluation of specialty OLED display,” SID Symp. Dig. Tech. Pap. 56(S1), 1310–1312 (2025).
[13] W.-K. Lee, P.-J. Chen, Z.-R. Cyue, and C.-C. Wu, “Image distortion and image correction of curved OLED displays,” SID Symp. Dig. Tech. Pap. 51(1), 1404–1407 (2020).
[14] J. Lei, H. Zhu, X. Huang, J. Lin, Y. Zheng, Y. Lu, Z. Chen, and W. Guo, “Mini-LED backlight: advances and future perspectives,” Crystals 14, 922 (2024).
[15] G. Tan, Y. Huang, M.-C. Li, S.-L. Lee, and S.-T. Wu, “High dynamic range liquid crystal displays with a mini-LED backlight,” Opt. Express 26(13), 16572–16584 (2018).
[16] “miniLED / Full-Array LED TV Display,” Sony Taiwan, https://www.sony.com.tw/zh/bravia/miniled-fullarrayled-tv-display
[17] “MiniLED vs OLED: A Comparison,” TCL Electronics: TCL Australia Blog, Jul. 11, 2023, https://www.tcl.com/au/en/blog/mini-led-and-oled-a-comparison
[18] S. Kikuchi, Y. Shibata, T. Ishinabe, and H. Fujikake, “Thin mini-LED backlight using reflective mirror dots with high luminance uniformity for mobile LCDs,” Opt. Express 29(17), 26724–26735 (2021).
[19] J.-H. Chen, C.-H. Huang, T.-Y. Lee, F.-C. Chen, T.-S. Kao, and H.-C. Kuo, “Advancing LED technology: the FDCSP element’s breakthrough in mini and micro-LED packaging and backlight module enhancement,” Discover Nano 19, 94 (2024).
[20] L. Xu, C. C. Ming, Y. Li, K. Fan, M. Zhang, H. Sun, and Z. Guo, “Uniform illumination realized by large viewing angle of gallium nitride-based mini-LED chip with translucent sublayer pairs,” IEEE Access 9, 74713–74718 (2021).
[21] W. Zhang, Y. Chen, J. Cai, L. Deng, S. Xu, Y. Ye, Q. Yan, T. Guo, and E. Chen, “Uniformity improvement of a mini-LED backlight by a quantum-dot color conversion film with nonuniform thickness,” Opt. Lett. 48(21), 5643–5646 (2023).
[22] P.-J. Chen, C.-C. Wu, C.-T. Lin, H. Tsou, Y.-H. Huang, and C.-C. Wu, “Composite mini-LED backlight packaging structure with high efficiency and improved uniformity,” SID Symp. Dig. Tech. Pap. 56(1), 452–455 (2025).
[23] H. Kakeya, A. Hayashishita, and M. Ominami, “Autostereoscopic display based on time-multiplexed parallax barrier with adaptive time-division,” J. Soc. Inf. Disp. 26(10), 595–601 (2018).
[24] J.-C. Liou and F.-H. Chen, “Design and fabrication of optical system for time-multiplex autostereoscopic display,” Opt. Express 19(12), 11007–11017 (2011).
[25] Z.-B. Sun, Z.-N. Yuan, Y.-P. Huo, S.-C. Dong, A. Y. L. Cheung, V. Vashchenko, O. Vashchenko, A. Srivastava, and H.-S. Kwok, “Reducing resolution loss in naked-eye 3D display using dual ferroelectric liquid crystal shutters for time-multiplexed light-field display,” J. Soc. Inf. Disp. 32(5), 406–414 (2024).
[26] S. Lee, J. Park, J. Heo, B. Kang, D. Kang, H. Hwang, J. Lee, Y. Choi, K. Choi, and D. Nam, “Autostereoscopic 3D display using directional subpixel rendering,” Opt. Express 26(16), 20233–20247 (2018).
[27] G. Borjigin and H. Kakeya, “Autostereoscopic display for multiviewers positioned at different distances using time-multiplexed layered directional backlight,” Appl. Opt. 60(12), 3353–3357 (2021).
[28] H. Wang, O. Yaroshchuk, X. Zhang, Z. Zhuang, P. Surman, X. W. Sun, and Y. Zheng, “Large-aperture transparent beam steering screen based on LCMPA,” Appl. Opt. 55(28), 7824–7829 (2016).
[29] N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[30] J. Gong, M. Biabanifard, K. Yoshida, G. A. Turnbull, A. Di Falco, and I. D. W. Samuel, “OLED illuminated metasurfaces for holographic image projection,” Light Sci. Appl. 14, 294 (2025).
[31] S. Sun, J. Li, X. Li, X. Zhao, K. Li, and L. Chen, “Dynamic 3D metasurface holography via cascaded polymer dispersed liquid crystal,” Microsyst. Nanoeng. 10, 203 (2024).
[32] Y. Song, J. Yuan, Q. Chen, X. Liu, Y. Zhou, J. Cheng, S. Xiao, M. K. Chen, and Z. Geng, “Three-dimensional varifocal meta-device for augmented reality display,” PhotoniX 6, 6 (2025).
[33] Q. Sun, Z. Tian, C. Xu, A. Yu, F. Li, and F. Yun, “Double-layer metasurface integrated with micro-LED for naked-eye 3D display,” Nanomaterials 14, 1624 (2024).
[34] J. Qu, H. Luo, and C. Yu, “Dual-wavelength polarization-dependent bifocal metalens for achromatic optical imaging based on holographic principle,” Sensors 22, 1889 (2022).
[35] S. Wang, Z.-L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B.-O. Guan, S. Xiao, and X. Li, “Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers,” Light Sci. Appl. 10, 24 (2021).
[36] H. Duan, Z. Li, Q. Gao, and X. Liu, “Applications of electromagnetic metasurfaces in three-dimensional imaging: A review,” Mater. Des. 248, 113519 (2024).
[37] P.-J. Chen, C.-C. Wu, C.-J. Chang, C.-T. Tsai, C.-W. Lu, K.-T. Cheng, G.-D. J. Su, S.-W. Cheng, R.-W. Liao, R.-L. Dong, and C.-C. Wu, “Angular-resolution-improved light-field display architecture using polarization-dependent deflection metasurface and polarization switching,” Opt. Express 33(21), 43837–43854 (2025).

Chapter 2
[1] M. Nam, J. Chang, H. Kim, Y. H. Son, Y. Jeon, J. H. Kwon, and K. C. Choi, “Highly reliable and stretchable OLEDs based on facile patterning method: toward stretchable organic optoelectronic devices,” npj Flex. Electron. 8, 17 (2024).
[2] E. H. Cho, Y. W. Kim, J. Sim, H. Yeon, S. Baek, S. M. Jeong, J. Lee, Y. Jeon, and K. C. Choi, “Recent advances in flexible and wearable OLEDs for biomedical applications: a review,” Mater. Horiz. 12, 8862-8894 (2025).
[3] J.-H. Hong, J. Yoon, Y. Kim, and C. Lee, “Embracing stretchable ‘form factor-free’ displays," Inf. Disp. 39(6), 6–15 (2023).
[4] Z. Zhao, K. Liu, Y. Liu, Y. Guo, and Y. Liu, “Intrinsically flexible displays: key materials and devices,” Natl. Sci. Rev. 9, (2022).
[5] K. S. Kang, S. Y. Jeong, Y. Jeon, J. H. Kwon, and K. C. Choi, “Enhancing flexibility and reliability in wearable OLEDs through silbione-blended hybrimer-based encapsulation,” npj Flex. Electron. 9, 49 (2025).
[6] L. Huang, D. Liao, Z. Feng, J. Jiang, W. Wang, Y. Zhou, Y. Liu, and K. Chen, “Optimization of support layer in foldable OLED module,” Proc. SID Int. Conf. Display Technol. (ICDT) 56(S1), 1748–1751 (2025).
[7] Z.-R. Cyue, W.-K. Lee, L.-Y. Yu, G.-D. Su, and C.-C. Wu, “Optics of curved OLEDs,” SID Symp. Digest Tech. Papers 50(1), 1907–1910 (2019).
[8] K. Käläntär, “Optical performance characterization of curved OLED light sources,” J. Soc. Inf. Display 29, 105–114 (2021).
[9] K. Yang, W. Li, and B. Han, “Comprehensive optical evaluation of specialty OLED display,” Proc. SID Int. Conf. Display Technol. (ICDT) 56(S1), 1310–1312 (2025).
[10] Y. Yanagisawa, H. Ikeda, Y. Hirakata, S. Yamazaki, M. Hirose, and M. Kasuga, “Curved OLED display to effectively enhance natural 3D,” J. Soc. Inf. Display 24(1), 413–434 (2016).

Chapter 3
[1] B. Zheng, Z. Deng, J. Zheng, L. Wu, W. Yang, Z. Lin, H. Wang, P. Shen, and J. Li, “An advanced high-dynamic-range LCD for smartphones,” SID Symp. Dig. Tech. Pap. 41-2, 566–568.
[2] C.-H. Huang, C.-Y. Kang, S.-H. Chang, C.-H. Lin, C.-Y. Lin, T. Wu, C.-W. Sher, C.-C. Lin, P.-T. Lee, and H.-C. Kuo, “Ultra-high light extraction efficiency and ultra-thin mini-LED solution by freeform surface chip scale package array,” Crystals 9, 202 (2019).
[3] Z.-T. Ye, C.-C. Hu, and Y.-J. Zheng, “Wide heart-shaped mini-LEDs without a second lens as a large area, ultra-high luminance, and flat light source,” Opt. Express 32, 5874–5884 (2024).
[4] M. Yamaguchi and S. Ohkawa, “Emission device, surface light source device, display and light flux control member,” U.S. patent 7,348,723 B2 (Mar. 25 2008).
[5] S. Kikuchi, Y. Shibata, T. Ishinabe, and H. Fujikake, “Thin mini-LED backlight using reflective mirror dots with high luminance uniformity for mobile LCDs,” Opt. Express 29, 26724–26734 (2021).
[6] L. Xu, C. C. Ming, Y. Li, K. Fan, M. Zhang, H. Sun, and Z. Guo, “Uniform illumination realized by large viewing angle of gallium nitride-based mini-LED chip with translucent sublayer pairs,” IEEE Access 9, 74713–74718 (2021).
[7] W. Zhang, Y. Chen, J. Cai, L. Deng, S. Xu, Y. Ye, Q. Yan, T. Guo, and E. Chen, “Uniformity improvement of a mini-LED backlight by a quantum-dot color conversion film with nonuniform thickness,” Opt. Lett. 48, 5643–5646 (2023).
[8] Y.-L. Chen, Z.-T. Ye, W. Lai, C.-C. Chiu, K.-W. Lin, and P. Han, “Application of Mini-LEDs with Microlens Arrays and Quantum Dot Film as Extra-Thin, Large-Area, and High-Luminance Backlight,” Nanomaterials 12, 1032 (2022).

Chapter 4
[1] T. Wang, C. Yang, J. Chen, Y. Zhao, and J. Zong, “Naked-eye light field display technology based on mini/micro light emitting diode panels: a systematic review and meta-analysis,” Sci. Rep. 14, 24381 (2024).
[2] X. Pei, S. Xing, X. Yu, G. Xin, X. Wen, C. Ning, X. Xie, B. Fu, H. Dong, X. Sang, and B. Yan, “Three-dimensional light field fusion display system and coding scheme for extending depth of field,” Opt. Lasers Eng. 169, 107716 (2023).
[3] X. Sang, X. Gao, X. Yu, S. Xing, Y. Li, and Y. Wu, “Interactive floating full-parallax digital three-dimensional light-field display based on wavefront recomposing,” Opt. Express 26, 8883 (2018).
[4] T. Li, Q. Huang, S. Alfaro, A. Supikov, and R. Azuma, “68‐2: View‐Dependent Light‐Field Display that Supports Accommodation Using a Commercially‐Available High Pixel Density LCD Panel,” SID Symposium Digest of Technical Papers 51(1), 1013–1016 (2020).
[5] Q. Zhang and H. Kakeya, “An autostereoscopic display system with four viewpoints in full resolution using active anaglyph parallax barrier,” Proc. SPIE 8648, 86481R (2013).
[6] G.-J. Lv, J. Wang, W.-X. Zhao, and Q.-H. Wang, “Three-dimensional display based on dual parallax barriers with uniform resolution,” Appl. Optics 52, 6011–6016 (2013).
[7] Y. Takaki, “Multi‐view 3‐D display employing a flat‐panel display with slanted pixel arrangement,” J. Soc. Inf. Disp. 18(7), 476–482 (2010).
[8] Q.-H. Wang, A.-H. Wang, W.-X. Zhao, Y.-H. Tao, and D.-H. Li, “Autostereoscopic display based on multi-layer lenticular lens,” Optik 122, 1326–1328 (2010).
[9] D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[10] G. M. Williams, C. Dupuy, J. Brown, S. Grimm, H. Akhavan, and J. P. Harmon, “Three-dimensional gradient index microlens arrays for light-field and holographic imaging and displays,” Appl. Optics 62, 3710–3718 (2023).
[11] D. Fattal, Z. Peng, T. Tran, S. Vo, M. Fiorentino, J. Brug, and R. G. Beausoleil, “A multi-directional backlight for a wide-angle, glasses-free three-dimensional display,” Nature 495, 348–351 (2013).
[12] A. Cserkaszky, P. A. Kara, R. R. Tamboli, A. Barsi, M. G. Martini, L. Bokor, and T. Balogh, “Angularly continuous light‐field format: Concept, implementation, and evaluation,” J. Soc. Inf. Disp. 27, 442–461 (2019).
[13] S. Kergaßner and J. Fröhlich, “Evaluating the angular resolution of a simulated light field display in regards to three-dimensionality, motion parallax and viewing experience,” Electron. Imaging 35(2), SDA-383 (2023).
[14] G. Zhang, Y. He, H. Liang, X. Chen, D. Deng, and J. Zhou, “Directional and Eye-Tracking Light Field Display with Efficient Rendering and Illumination,” Micromachines 14, 1465 (2023).
[15] T. Huang, B. Han, X. Zhang, and H. Liao, “High-performance autostereoscopic display based on the lenticular tracking method,” Opt. Express 27, 20421–20430 (2019).
[16] Y. Takaki, K. Tanaka, and J. Nakamura, “Super multi-view display with a lower resolution flat-panel display,” Opt. Express 19, 4129–4139 (2011).
[17] D. Kang, J.-H. Choi, and H. Hwang, “Autostereoscopic 3D Display System for 3D Medical Images,” Appl. Sci. 12, 4288 (2022).
[18] L. Yang, X. Sang, X. Yu, B. Yan, K. Wang, and C. Yu, “Viewing-angle and viewing-resolution enhanced integral imaging based on time-multiplexed lens stitching,” Opt. Express 27, 15679–15692 (2019).
[19] J. Hua, Y. Li, P. Ge, D. Yi, L. Chen, and W. Qiao, “Time-multiplexed vector light field display with intertwined views via metagrating matrix,” Opt. Lasers Eng. 164, 107527 (2023).
[20] X. Wang and H. Hua, “Time-multiplexed method for view density enhancement in integral imaging-based light field displays,” Opt. Lett. 47, 4471–4474 (2022).
[21] B. Liu, X. Sang, X. Yu, X. Gao, L. Liu, C. Gao, P. Wang, Y. Le, and J. Du, “Time-multiplexed light field display with 120-degree wide viewing angle,” Opt. Express 27, 35728–35739 (2019).
[22] H. Kakeya, “21‐3: A Full‐HD Super‐Multiview Display with Time‐Division Multiplexing Parallax Barrier,” SID Symp. Dig. Tech. Pap. 49, 259–262 (2018).
[23] T.-H. Jen, X. Shen, G. Yao, Y.-P. Huang, H.-P. D. Shieh, and B. Javidi, “Dynamic integral imaging display with electrically moving array lenslet technique using liquid crystal lens,” Opt. Express 23, 18415–18421 (2015).
[24] Y. Intaravanne and X. Chen, “Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles,” Nanophotonics 9, 1003–1014 (2020).
[25] T. Badloe, I. Kim, Y. Kim, J. Kim, and J. Rho, “Electrically Tunable Bifocal Metalens with Diffraction‐Limited Focusing and Imaging at Visible Wavelengths,” Adv. Sci. 8, 2102646 (2021).
[26] A. H. Dorrah, N. A. Rubin, A. Zaidi, M. Tamagnone, and F. Capasso, “Metasurface optics for on-demand polarization transformations along the optical path,” Nat. Photon. 15, 287–296 (2021).
[27] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118, 113901 (2017).
[28] X. Xia, X. Zhang, L. Zhang, P. Surman, and Y. Zheng, “Time-multiplexed multi-view three-dimensional display with projector array and steering screen,” Opt. Express 26, 15528–15538 (2018).
[29] N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13, 139–150 (2014).
[30] H.-T. Chen, A. J. Taylor, and N. Yu, “A review of metasurfaces: physics and applications,” Rep. Prog. Phys., 79, 076401 (2016).
[31] A. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7, 989–1011 (2018).
[32] H. Hsiao, C. H. Chu, and D. P. Tsai, “Fundamentals and Applications of Metasurfaces,” Small Methods 1, 1600064 (2017).
[33] W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, “A broadband achromatic metalens for focusing and imaging in the visible,” Nat. Nanotechnol. 13, 220–226 (2017).
[34] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, “A broadband achromatic metalens in the visible,” Nat. Nanotechnol. 13, 227–232 (2018).
[35] Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, and H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21, 10739–10745 (2013).
[36] N. Li, Y. H. Fu, Y. Dong, T. Hu, Z. Xu, Q. Zhong, D. Li, K. H. Lai, S. Zhu, Q. Lin, Y. Gu, and N. Singh, “Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation,” Nanophotonics 8, 1855–1861 (2019).
[37] J. Xu, M. Cua, E. H. Zhou, Y. Horie, A. Faraon, and C. Yang, “Wide-angular-range and high-resolution beam steering by a metasurface-coupled phased array,” Opt. Lett. 43, 5255–5258 (2018).
[38] D. Wen, F. Yue, M. Ardron, and X. Chen, “Multifunctional metasurface lens for imaging and Fourier transform,” Sci. Rep. 6, 27628 (2016).
[39] S. C. Malek, A. C. Overvig, A. Alù, and N. Yu, “Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces,” Light Sci. Appl. 11, 246 (2022).
[40] G. K. Shirmanesh, R. Sokhoyan, P. C. Wu, and H. A. Atwater, “Electro-optically Tunable Multifunctional Metasurfaces,” ACS Nano 14, 6912–6920 (2020).
[41] W. Wan, J. Gao, and X. Yang, “Metasurface Holograms for Holographic Imaging,” Adv. Opt. Mater. 5, 1700541 (2017).
[42] X. Ni, A. V. Kildishev, and V. M. Shalaev, “Metasurface holograms for visible light,” Nat. Commun. 4, 2807 (2013).
[43] P. Zheng, Q. Dai, Z. Li, Z. Ye, J. Xiong, H.-C. Liu, G. Zheng, and S. Zhang, “Metasurface-based key for computational imaging encryption,” Sci. Adv. 7, eabg0363 (2021).
[44] J. Hu, X. Zhao, Y. Lin, A. Zhu, X. Zhu, P. Guo, B. Cao, and C. Wang, “All-dielectric metasurface circular dichroism waveplate,” Sci. Rep. 7, 41893 (2017).
[45] X. Chen, M. Chen, M. Q. Mehmood, D. Wen, F. Yue, C. Qiu, and S. Zhang, “Longitudinal Multifoci Metalens for Circularly Polarized Light,” Adv. Opt. Mater. 3, 1201–1206 (2015).
[46] Z. Yao and Y. Chen, “Focusing and imaging of a polarization-controlled bifocal metalens,” Opt. Express 29, 3904–3913 (2021).
[47] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, and F. Capasso, “Metasurface Polarization Optics: Independent Phase Control of Arbitrary Orthogonal States of Polarization,” Phys. Rev. Lett. 118, 113901 (2017).
[48] Q. Fan, Y. Wang, M. Liu, and T. Xu, “High-efficiency, linear-polarization-multiplexing metalens for long-wavelength infrared light,” Opt. Lett. 43, 6005–6008 (2018).
[49] M. Ye, V. Ray, Y. Peng, W. Guo, and Y. S. Yi, “Linear polarization distinguishing metalens in visible wavelength,” Opt. Lett. 44, 399–402 (2019).
[50] X. Zang, H. Ding, Y. Intaravanne, L. Chen, Y. Peng, J. Xie, Q. Ke, A. V. Balakin, A. P. Shkurinov, X. Chen, Y. Zhu, and S. Zhuang, “A Multi‐Foci Metalens with Polarization‐Rotated Focal Points,” Laser Photonics Rev. 13, 1970051 (2019).
[51] C. Chen, Y. Wang, M. Jiang, J. Wang, J. Guan, B. Zhang, L. Wang, J. Lin, and P. Jin, “Parallel Polarization Illumination with a Multifocal Axicon Metalens for Improved Polarization Imaging,” Nano Lett. 20, 5428–5434 (2020).
[52] Z. Shi and F. Capasso, “Polarization-dependent metasurfaces for 2D/3D switchable displays,” Proc. SPIE 10676, 1067618 (2018).
[53] M. Park, C. Park, Y. S. Hwang, E. Kim, D. Choi, and S. Lee, “Virtual‐Moving Metalens Array Enabling Light‐Field Imaging with Enhanced Resolution,” Adv. Opt. Mater. 8, 2000820 (2020).
[54] P. Moitra, X. Xu, R. M. Veetil, X. Liang, T. W. W. Mass, A. I. Kuznetsov, and R. Paniagua-Domínguez, “Electrically Tunable Reflective Metasurfaces with Continuous and Full-Phase Modulation for High-Efficiency Wavefront Control at Visible Frequencies,” ACS Nano 17, 16952–16959 (2023).
[55] J. Li, P. Yu, S. Zhang, and N. Liu, “Electrically-controlled digital metasurface device for light projection displays,” Nat. Commun. 11, 3574 (2020).
[56] C.-Y. Fan, P.-Y. Tang, V.-C. Su, K.-T. Cheng, C.-Y. Teng, M.-Y. Tsai, C.-H. Chiang, K.-L. Xu, and G.-D. J. Su, “Technological process optimization and measurement of image quality of the electrically bifocal metalens,” Opt. Lett. 48, 4452–4456 (2023).
[57] H. Chung and O. D. Miller, “Tunable Metasurface Inverse Design for 80% Switching Efficiencies and 144° Angular Deflection,” ACS Photonics 7, 2236–2243 (2020).
[58] Z. Ma, T. Tian, Y. Liao, X. Feng, Y. Li, K. Cui, F. Liu, H. Sun, W. Zhang, and Y. Huang, “Electrically switchable 2N-channel wave-front control for certain functionalities with N cascaded polarization-dependent metasurfaces,” Nat. Commun. 15, 8370 (2024).
[59] A. Boev, R. Bregovic, and A. Gotchev, “Visual-quality evaluation methodology for multiview displays,” Displays 33, 103–112 (2012).
[60] C.-J. Chang, C.-C. Wu, P.-J. Chen, W.-K. Lee, C.-T. Tsai, G.-D. J. Su, S.-W. Cheng, R.-W. Liao, R.-L. Dong, and C.-C. Wu, “Stacking architecture for collimated backlight using cylindrical lens sheet with linear light sources or edge-lit/direct-lit BLU,” Opt. Express 32, 12228–12240 (2024).
[61] J. Jung, H. Park, H. Y. Jung, S. E. Jung, S. G. Kim, T. H. Kim, Y. J. Lim, B.-C. Ku, M. Kim, and S. H. Lee, “Recent progress in liquid crystal devices and materials of TFT-LCDs,” J. Inf. Disp. 25(1), 121–142 (2024).
[62] A. Patoux, G. Agez, C. Girard, V. Paillard, P. R. Wiecha, A. Lecestre, F. Carcenac, G. Larrieu, and A. Arbouet, “Challenges in nanofabrication for efficient optical metasurfaces,” Sci. Rep. 11, 5620 (2021).
[63] S. Gao, C. Park, S. Lee, and D. Choi, “A highly efficient bifunctional dielectric metasurface enabling Polarization‐Tuned focusing and deflection for visible light,” Adv. Opt. Mater. 7, 1801337 (2019).
[64] D. Wang, Q. Fan, J. Wang, Z. Zhang, Y. Liang, and T. Xu, “All-dielectric metasurface beam deflector at the visible frequencies,” Guangdian Gongcheng 44, 103–107 (2017).
[65] K.-C. Peng, J.-L. Pan, J.-L. Weng, Y.-H. Lee, J.-A. Chiang, and G.-D. Su, “Design and Fabrication of Metasurfaces-Based Polarizing Beam Splitter with Tailored Deflection Angles for 940-nm Wavelength,” Photonics 11, 655 (2024).
[66] P. Dainese, L. Marra, D. Cassara, A. Portes, J. Oh, J. Yang, A. Palmieri, J. R. Rodrigues, A. H. Dorrah, and F. Capasso, “Shape optimization for high efficiency metasurfaces: theory and implementation,” Light Sci. Appl. 13, 300 (2024).
[67] T. Ye, D. Wu, and K. Wang, “High efficiency and large angle polarization independent beam deflection metagrating by Bayesian optimization,” Opt. Express 33, 2759–2771 (2025).
[68] A. Sabzevari and A. Hatef, "Inverse design and optimization of a one-dimensional metagrating beam deflector by smart pattern search," Appl. Opt. 63, 4793–4798 (2024).
[69] J.-S. Park, S. W. D. Lim, A. Amirzhan, H. Kang, K. Karrfalt, D. Kim, J. Leger, A. Urbas, M. Ossiander, Z. Li, and F. Capasso, “All-glass 100 mm diameter visible metalens for imaging the cosmos,” Nanophotonics 13(4), 987–997 (2024).
[70] W.-P. Liao, H.-L. Liu, Y.-F. Lin, S.-S. Su, Y.-T. Chen, G.-B. Lin, T.-C. Tseng, T.-K. Lin, C.-C. Chen, W.-H. Huang, S.-W. Chen, J.-M. Shieh, P. Yu, and Y.-C. Chang, “I-line photolithographic metalenses enabled by distributed optical proximity correction with a deep-learning model,” Opt. Express 30(12), 21184–21197 (2022).
[71] J. Hua, E. Hua, F. Zhou, J. Shi, C. Wang, H. Duan, Y. Hu, W. Qiao, and L. Chen, “Foveated glasses-free 3D display with ultrawide field of view via a large-scale 2D-metagrating complex,” Light Sci. Appl. 10, 213 (2021).
[72] SCIL Nanoimprint Solutions, “SCIL Nanoimprint Solutions”, https://scil-nano.com/.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100927-
dc.description.abstract顯示技術的演進改變了人類對視覺資訊的感知與互動方式,範圍涵蓋廣及個人消費型電子產品到大型公共顯示。除了發光材料與驅動電路的創新外,光學結構亦對顯示特性具有關鍵影響,透過調控光線的萃取、傳輸與塑型,進而改善顯示器的效率、角度分佈、色彩準確度、對比度與整體影像品質。傳統平面顯示面板中常應用微透鏡陣列、多層薄膜、擴散片、梯形反射壁結構與黑色矩陣等光學元件,以提升光效率、控制視角或抑制反射。與此同時,新興應用如可摺疊與可捲曲裝置、沉浸式擴增/虛擬實境(AR/VR)系統、車載顯示、高動態範圍(HDR)顯示器及光場顯示等,皆推動了從毫米至奈米尺度的多樣化光學結構需求。在巨觀尺度下,光的傳播主要受幾何光學支配;當結構尺寸接近光波長時,幾何光與波動光的效應同時顯現;而在次波長尺度中,則以波動光學為主導,藉由例如超構表面或光柵等奈米結構達到精確的振幅、相位與偏振狀態控制。本論文的研究動機即在於探討如何透過跨尺度光學結構設計,以克服次世代顯示器在效率、均勻性及影像品質改善上的挑戰。
本論文的第一部分探討曲面基板對影像顯示的影響。軟性與曲面 OLED 面板可實現新穎的顯示器外觀設計,但同時改變了光線入射與出射基板的角度。我們推導了光線從顯示元件至空氣各界面的入射角與出射角的幾何關係,用以模擬在凸面圓柱與凹面圓柱結構中的發光、折射與透射行為。研究顯示,曲率造成的發光面與出射面的角度不匹配會導致影像扭曲與亮度不均。透過逆向座標映射及不同位置、不同出射角的亮度補償所建立的影像修正方法,有效還原影像扭曲並達到發光範圍的亮度均勻,為高品質曲面顯示提供一項可行的光學解決方案。
第二部分我們聚焦於 mini-LED 背光的亮度均勻度提升與碳足跡降低。為提升直下式背光 LCD 的效率並減少功耗,本研究提出一種複合型階梯式mini-LED 封裝結構,結合毫米級曲面與 10–100 µm 大小階梯結構,以更精確控制LED的出光場型。幾何光追跡與混合光學模擬(幾何-波動)結果顯示,優化後的封裝結構可在僅 3 mm 的光學距離內達成超過 90% 的光學效率與 80% 的亮度均勻性,有效減少 LED 數量與封裝材料的使用。當階梯尺寸縮小至約 10 µm 時,繞射效應顯現並造成微幅的光線擴數,對均勻度又略有提升。此階梯狀設計除具備薄型化與高效率的特性外,還可適用於大面積射出成形的製程。
第三部分則探討將奈米尺度的偏振調控超穎表面應用於3D光場顯示。我們開發了一種結合偏振切換的扭曲向列液晶元件與準直背光的偏振調控的偏折式超穎表面,實現以時間多工達到雙倍角解析度的光場顯示架構。首先,建立了品質穩定的 TiO2 超穎表面製程,以確保高結構精度與良好光學性能。每一個 TiO2 超穎表面子像素可將兩種正交偏振光分別偏折至不同方向;九個超穎表面子像素與其對應的顯示器子像素共同構成一個光控制單元,可以產生 18 個獨立視角,相較傳統無時間多工架構的3D顯示器多了兩倍角度解析度。實驗結果證明了切換偏振的光束轉向,並且偏折誤差小於 0.2°,且當與 ±1.1° 的準直背光整合時,多數視角間的串擾低於 5%。此外,我們也以15 × 15個控制單元的超穎表面做為原型,展示了全彩四視角的立體影像顯示,驗證了利用極化調控超穎表面實現時間多工光場顯示架構的可行性。
zh_TW
dc.description.abstractThe evolution of display technologies has reshaped how humans perceive and interact with visual information, from personal consumer electronics to large-scale public displays. In addition to innovations in emissive materials and driving circuits, optical structures typically influence display performance by modulating how light is extracted, guided, and shaped, consequently affecting efficiency, angular distribution, color fidelity, contrast, and image quality of the displays. For example, traditional flat panels employ microlens arrays, multilayer thin films, diffusers, bank structures, and black matrices to improve their efficiency, control viewing angles, and suppress reflections. Meanwhile, emerging applications such as foldable and rollable devices, immersive augmented reality (AR)/virtual reality (VR) systems, automotive dashboards, high dynamic range (HDR) monitors, and light-field displays have driven the need for increasingly diverse optical structures ranging from millimeter scales down to nanometer scales. At macroscopic scales, geometric optics governs light propagation, whereas at scales on the order of the optical wavelength both ray-based and wave-optical effects become significant. At subwavelength scales, wave optics dominates, and nanostructures such as metasurfaces and gratings enable the control of amplitude, phase, and polarization of light. The motivation of this dissertation is to explore how multi-scale optical structures can be engineered to overcome challenges in efficiency, uniformity, and image fidelity for next-generation displays.
In the first part of the dissertation, we investigate how displayed images are influenced by curved substrate. Flexible and curved OLED panels enable novel form factors but inevitably alter optical paths and perceived images. A geometric-optics framework was developed to analyze emission, refraction, and transmission in cylindrical convex and cylindrical concave structures. The curvature-induced mismatch between the emission and exit surfaces was shown to cause geometric distortion, along with brightness variations across the screen. A corresponding correction method, derived from inverse coordinate mapping and angle-dependent intensity compensation, successfully restored proper image aspect ratio and uniform brightness, providing a practical solution for high-quality curved displays.
In the second part, we focus on improving the luminance uniformity and carbon footprint of the mini-LED backlight. To enhance luminance uniformity and reduce power consumption in direct-lit LCDs, a composite stepped-shape mini-LED packaging structure was proposed. The design integrates millimeter-scale freeform profiles and 10–100 µm micro-steps to control emission more precisely. Both ray-tracing and hybrid geometric-wave optics simulations confirmed that the optimized packaging structure achieves over 90% optical efficiency and 80% luminance uniformity within a 3 mm optical distance, and indicated that the stepped structure can potentially reduce LED counts and material usage. Meanwhile, diffraction effects emerging at the 10 µm scale were shown to further enhance beam broadening, leading to a slight improvement in luminance uniformity. This design offers a thin and energy-efficient backlight architecture suitable for large-scale injection molding.
In the third part, the nanoscale, polarization-dependent deflection metasurface combined with a twisted nematic liquid-crystal device and a collimated backlight was developed to realize a time-multiplexed, angular-resolution-doubled light-field display. A robust fabrication process for TiO2 metasurfaces was established to ensure high structural fidelity and optical performance. Each TiO2 metasurface sub-pixel is designed to deflect orthogonal polarizations into two distinct directions. A group of nine metasurface sub-pixels and their corresponding display sub-pixels together constitute a control unit, enabling the generation of 18 distinct views within a compact configuration. Experiments confirmed < 0.2° deflection error, polarization-switchable beam steering, and most inter-view crosstalk < 5 % when integrated with a ±1.1° collimated backlight. Furthermore, a 15×15-control-unit prototype demonstrated full-color four-view 3D imaging, confirming the feasibility of employing metasurfaces for the time-multiplexed display architecture.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:07:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:07:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
中文摘要 v
ABSTRACT vii
CONTENTS x
LIST OF FIGURES xiii
LIST OF TABLES xxiii
Chapter 1 Introduction 1
1.1 Overview of Flexible Organic Light Emitting Devices 1
1.2 Overview of Mini-LED Backlight Packaging 4
1.3 Overview of Autostereoscopic Light Field Display Architecture 6
1.4 Dissertation Motivation and Organization 9
References 10
Figures of Chapter 1 15
Chapter 2 Image Distortion and Image Correction of Curved OLED Displays 21
2.1 Introduction 21
2.2 Geometric Relation 23
2.3 Image Distortion and Recovery 27
2.4 Intensity Reduction and Recovery 31
2.5 Conclusion 33
References 35
Tables of Chapter 2 37
Figures of Chapter 2 38
Chapter 3 Composite Mini-LED Backlight Packaging Structure with High Efficiency and Improved Uniformity 53
3.1 Introduction 53
3.2 Stepped-shape packaging design 55
3.3 Structural Shape Optimization 57
3.4 Hybrid wave and ray simulation for structure pitch under 10 µm 58
3.5 Conclusion 62
References 64
Figures of Chapter 3 65
Chapter 4 Angular-Resolution-Improved Light Field Display Architecture Using Polarization Dependent Deflection Metasurface and Polarization Switching 76
4.1 Introduction 76
4.2 Time-Multiplexing Autostereoscopic Display Architecture 79
4.3 Deflective Metasurface Design and Simulation 83
4.4 Metasurface Fabrication 88
4.5 Optical Characteristics of Metasurface 90
4.6 Integrated Metasurface with Collimated Backlight and Display Panel 93
4.7 Metasurface Efficiency Improvement 98
4.8 Conclusion 101
References 103
Tables of Chapter 4 112
Figures of Chapter 4 115
Chapter 5 Summary 143
5.1 Dissertation Summary 143
-
dc.language.isoen-
dc.subject可撓式顯示-
dc.subject影像修正-
dc.subjectmini-LED-
dc.subject封裝微結構-
dc.subject光場顯示-
dc.subject超穎表面-
dc.subject時間多工架構-
dc.subjectflexible display-
dc.subjectimage correction-
dc.subjectmini-LED-
dc.subjectpackaging microstructure-
dc.subjectlight field display-
dc.subjectmetasurface-
dc.subjecttime-multiplexed architecture-
dc.title跨尺度之先進顯示器元件設計模擬與應用zh_TW
dc.titleMultiscale Design, Simulation, and Applications of Advanced Display Devicesen
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree博士-
dc.contributor.oralexamcommittee蘇國棟;蔡志宏;張志豪;陳俐吟;黃奕翔zh_TW
dc.contributor.oralexamcommitteeGuo-Dung J. Su;Chih-Hung Tsai;Chih-Hao Chang;Li-Yin Chen;Yi-Hsiang Huangen
dc.subject.keyword可撓式顯示,影像修正mini-LED封裝微結構光場顯示超穎表面時間多工架構zh_TW
dc.subject.keywordflexible display,image correctionmini-LEDpackaging microstructurelight field displaymetasurfacetime-multiplexed architectureen
dc.relation.page145-
dc.identifier.doi10.6342/NTU202504653-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-11-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-11-27-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved