Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂榮祥zh_TW
dc.contributor.advisorRong-Shyang Luen
dc.contributor.author杜秉霖zh_TW
dc.contributor.authorBing-Lin Tuen
dc.date.accessioned2025-11-26T16:05:33Z-
dc.date.available2025-11-27-
dc.date.copyright2025-11-26-
dc.date.issued2025-
dc.date.submitted2025-11-19-
dc.identifier.citation[1] Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961. 10.1016/0029-5582(61)90469-8.
[2] A. Salam and J.C. Ward. Electromagnetic and weak interactions. Physics Letters, 13(2):168–171, 1964. 10.1016/0031-9163(64)90711-5.
[3] Steven Weinberg. A Model of Leptons. Physical Review Letters, 19:1264, 1967. 10.1103/PhysRevLett.19.1264.
[4] Michael E. Peskin and Daniel V. Schroeder. An Introduction to Quantum Field Theory. Westview Press, 1995.
[5] G. Aad et al. Combined measurement of the higgs boson mass in pp collisions at √s = 7 and 8 tev with the atlas and cms experiments. Phys. Rev. Lett., 114(19):191803, 2015.
[6] Francis Halzen and Alan D. Martin. Quarks and Leptons: An Introductory Course in Modern Particle Physics. John Wiley & Sons, 1984.
[7] Chris Quigg. Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. Princeton University Press, 2nd edition, 2013.
[8] J. Iliopoulos. Introduction to the standard model of electro-weak interactions. In C. Grojean and M. Mulders, editors, Proceedings of the 2012 School of High-Energy Physics, La Pommeraye, Anjou, France, 6–19 June 2012, CERN–2014–008, Geneva, 2014. CERN. Published by CERN.
[9] F. Gelis and E. Iancu and J. Jalilian-Marian and R. Venugopalan. The Color Glass Condensate. Ann. Rev. Nucl. Part. Sci., 60:463–489, 2010. 10.1146/annurev.nucl.010909.083629.
[10] A. Author and B. Collaborator. Higher-order QCD corrections in diphoton production. Journal of High Energy Physics, 10:123–145, 2023.
[11] P. Aurenche, M. Fontannaz, J. P. Guillet, E. Pilon, and M. Werlen. A new critical study of photon production in hadronic collisions. Phys. Rev. D, 73:094007, 2006.
[12] ATLAS Collaboration. Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a higgs boson decaying into invisible particles at 13 tev with the atlas detector. Eur. Phys. J. C, 82:105, 2022.
[13] S. Bethke. Experimental tests of asymptotic freedom. Progress in Particle and Nuclear Physics, 58(2):351–386, 2007.
[14] M. Klasen, T. Kleinwort, and G. Kramer. Inclusive jet production in γp and γγ processes: Direct and resolved photon cross sections in next-to-leading order qcd, December 1997. Submitted to Eur. Phys. J. C.
[15] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clustering algorithm. JHEP, 0804:063, 2008.
[16] Stefano Catani and Michael H. Seymour. A general algorithm for calculating jet cross sections in nlo qcd. Nucl. Phys. B, 485:291–419, 1997. Erratum: Nucl.Phys.B510:503-504,1998.
[17] CMS Collaboration. Development of the cms detector for the cern lhc run 3. Journal of Instrumentation, 19(05):P05064, 2024.
[18] CMS Collaboration. Performance of the CMS electromagnetic calorimeter in pp collisions at √s = 13 TeV. JINST, 19:P09004, 2024. 10.48550/arXiv.2403.15518.
[19] CMS Collaboration. The hadron calorimeter project: Technical design report. Technical Report CERN-LHCC-97-031, CMS-TDR-2, CERN, 1997.
[20] CMS Collaboration. Cms trigger performance documentation. https://twiki.cern.ch/twiki/bin/view/CMSPublic/WorkBookHLTTutorial. Accessed: 2025-06-18.
[21] Particle-flow event reconstruction in cms and performance for jets, taus, and met. Technical Report CMS-PAS-PFT-09-001, CMS Collaboration, 2009.
[22] Pileup removal algorithms. Technical Report CMS-PAS-JME-14-001, CMS Collaboration, 2014.
[23] CMS Collaboration. Photon id efficiency scale factors for 2016–2018. https://twiki.cern.ch/twiki/bin/view/CMS/EgammaIDRecipesRun2. Accessed: 2025-06-18.
[24] M. Cacciari, G. P. Salam, and G. Soyez. Fastjet user manual. Eur. Phys. J. C, 72:1896, 2012.
[25] CMS Collaboration. Particle-flow reconstruction and global event description with the cms detector. JINST, 12(10):P10003, 2017.
[26] Matteo Cacciari and Gavin P. Salam. Pileup subtraction using jet areas. Phys. Lett. B, 659:119–126, 2008. [arXiv:0707.1378].
[27] Jet energy scale and resolution in the cms experiment in pp collisions at 8 tev. Technical Report CMS-JME-16-003, CMS Collaboration, 2017.
[28] ATLAS Collaboration. Search for boosted diphoton resonances in the 10 to 70 gev mass range using 138 fb−1 of 13 tev pp collisions with the atlas detector. JHEP, 12:123, 2022.
[29] ATLAS Collaboration. Measurement of W±W±jj production and limits on anomalous quartic gauge couplings with the atlas detector. Phys. Rev. D, 96:112004, 2017.
[30] P. Pigard on behalf of the CMS Collaboration. Vector boson fusion and scattering results from cms. In Proceedings of the Fifth Annual LHCP, 2018.
[31] David L. Rainwater, R. Szalapski, and D. Zeppenfeld. Probing color-singlet exchange in z + two-jet events at the cern lhc. Physical Review D, 54(11):6680–6689, 1996.
[32] David L. Rainwater, Tilman Plehn, and D. Zeppenfeld. Probing the higgs boson via weak boson fusion in lepton plus missing transverse momentum final states. Physical Review D, 61(9):093005, 2000.
[33] Wouter Verkerke and David P. Kirkby. The RooFit Toolkit for Data Modeling — Users Manual. UCSB / CERN / ROOT, 2003. version 2.91 (or later).
[34] CMS Collaboration. Measurement of the production cross section for pairs of isolated photons in pp collisions at √s = 7 tev. European Physical Journal C, 74:3129, 2014.
[35] CMS Collaboration. The cms statistical analysis and combination tool: Combine. CERN EP / arXiv preprint, CERN-EP-2024-078:–, 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100919-
dc.description.abstract本研究探討在兩光子(diphoton)與兩噴流(2-jet)產生過程中觀察電弱(electroweak)產物的靈敏度。分析使用 CMS 實驗在大型強子對撞機(LHC)上以中心質量能量 √s = 13 TeV 進行的模擬質子-質子碰撞事件,並設計選擇準則以增強電弱訊號相較於主要的強作用(strong interaction)背景。電弱成分透過對雙噴流不變質量 mjj 及贗快度差 ∆η 分布進行模板擬合(template fit)來提取,並選取最佳化的相空間以提高訊號靈敏度。本研究評估不同選擇策略下的統計顯著性,並探討分離電弱貢獻的可行性。結果不僅驗證了模板擬合方法的有效性,亦可作為未來實驗測量的重要參考。zh_TW
dc.description.abstractThis study presents an investigation of the sensitivity to the electroweak production of a diphoton system accompanied by two jets. The analysis uses simulated proton-proton collision events at a center-of-mass energy of √s = 13 TeV, generated by the CMS experiment at the Large Hadron Collider. Event selections are optimized to enhance the electroweak signal over the dominant strong interaction background. The electroweak contribution is determined via a template fit to the dijet invariant mass (mjj) and pseudorapidity separation (∆η) distributions within a fiducial phase space chosen to maximize signal sensitivity. The study evaluates the expected statistical significance of the signal under different selection strategies and assesses the feasibility of isolating the electroweak contribution. The results provide insight into the effectiveness of the template fitting method and serve as a baseline for future experimental measurements.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-11-26T16:05:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-11-26T16:05:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
Acknowledgements ii
摘要 iv
Abstract v
Contents vi
List of Figures x
List of Tables xii
Denotation xiii
Chapter 1 Introduction 1
1.1 EWK process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Chapter 2 Theoretical Background 5
2.1 Introduction to the Standard Model . . . . . . . . . . . . . . . . . . 5
2.1.1 Electroweak Theory and Gauge Symmetry . . . . . . . . . . . . . . 6
2.1.2 Gauge Bosons and Their Interactions . . . . . . . . . . . . . . . . . 8
2.2 Diphoton Production in the Standard Model . . . . . . . . . . . . . . 10
2.2.1 Direct and Fragmentation Processes . . . . . . . . . . . . . . . . . 11
2.2.2 Electroweak Diphoton Production with Two Jets . . . . . . . . . . . 12
2.3 Quantum Chromodynamics (QCD) and Jet Production . . . . . . . . 13
2.3.1 QCD and Strong Interactions . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Jet Production Mechanisms . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Interplay Between QCD and Electroweak Interactions . . . . . . . . 16
Chapter 3 Experimental Scheme 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Collision Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 The CMS Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Tracker System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Electromagnetic Calorimeter (ECAL) . . . . . . . . . . . . . . . . 21
3.3.3 Hadronic Calorimeter (HCAL) . . . . . . . . . . . . . . . . . . . . 23
3.3.4 Muon System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3.5 Solenoid Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.6 Pseudorapidity and Rapidity . . . . . . . . . . . . . . . . . . . . . 24
3.4 Data Acquisition System . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.1 Trigger System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.2 Event Storage and Processing . . . . . . . . . . . . . . . . . . . . . 28
3.5 Calibration and Alignment . . . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Calibration of Subdetectors . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Detector Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6 Pileup and Its Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.1 Definition of Pileup . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6.2 Effects on Physics Measurements . . . . . . . . . . . . . . . . . . . 31
3.6.3 Pileup Mitigation Techniques . . . . . . . . . . . . . . . . . . . . . 31
3.7 Luminosity and Event Yield Estimation . . . . . . . . . . . . . . . . 32
Chapter 4 Event Selection 34
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 MC simulation and background samples . . . . . . . . . . . . . . . . 34
4.2.1 MC simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 background reducible samples . . . . . . . . . . . . . . . . . . . . 36
4.3 Photons Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.1 Use of ∆R in Photon Reconstruction . . . . . . . . . . . . . . . . . 41
4.4 Jets Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Event Selection Criteria . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.1 Photon Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.5.2 Jet Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.3 Electroweak Signal Region Definition . . . . . . . . . . . . . . . . 49
Chapter 5 Background Estimation 53
5.1 Fitting Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.1 Template Fit with TFractionFitter . . . . . . . . . . . . . . . . . . . 53
5.1.2 Extended Likelihood Fit with RooFit . . . . . . . . . . . . . . . . . 54
5.1.3 Physics Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Estimation of Fake Photon Background Using Template Fit in σηη . . 55
5.3 Extraction of Prompt Photon Fraction in mjj Bins . . . . . . . . . . 57
5.3.1 Event Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Template Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Fitting Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.3.4 Estimation of Signal-Like Yields Using Photon Purity . . . . . . . . 59
5.4 Extraction of Relative Contributions in the mjj Spectrum . . . . . . . 64
5.5 Confidence Interval Determination for the EWK Signal Yield . . . . 67
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
References 71
-
dc.language.isoen-
dc.subject標準模型-
dc.subject電弱作用-
dc.subject規範玻色子耦合-
dc.subject雙光子產生-
dc.subject緊湊緲子線圈-
dc.subjectStandard Model-
dc.subjectDiphoton production-
dc.subjectElectroweak interaction-
dc.subjectCMS measurement-
dc.subjectGauge boson coupling-
dc.title在CMS探測器中觀察雙光子伴隨雙噴流電弱產生過程之靈敏度研究zh_TW
dc.titleStudy of sensitivity in observing electroweak production of diphoton in association with two jets at CMS detectoren
dc.typeThesis-
dc.date.schoolyear114-1-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭家銘;裴思達zh_TW
dc.contributor.oralexamcommitteeChia-Ming Kuo;Stathes Paganisen
dc.subject.keyword標準模型,電弱作用規範玻色子耦合雙光子產生緊湊緲子線圈zh_TW
dc.subject.keywordStandard Model,Diphoton productionElectroweak interactionCMS measurementGauge boson couplingen
dc.relation.page75-
dc.identifier.doi10.6342/NTU202502786-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-11-19-
dc.contributor.author-college理學院-
dc.contributor.author-dept物理學系-
dc.date.embargo-lift2026-01-01-
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-114-1.pdf10.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved