Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10086
標題: 二維結的平滑化
Smoothings of Knot Diagrams for 2-dimensional Knots
作者: Yi-Sheng Wang
王以晟
指導教授: 楊樹文(Su-Win Yang),李瑩英(Yng-Ing Lee)
關鍵字: 結的不變量,二維結,二維結的平滑化,
knot invariant,2-knots,smoothings of 2-knot diagrams,
出版年 : 2011
學位: 碩士
摘要: 在 Khovanov's theory 中,利用結的平滑化, 得到了一個chain complex, 更進一步的可以得到一個結的不變量,稱它為Khovanov's homology。
但在 Bar-Natan 教授的一篇文章中,曾用另一個方式重新解釋這個chain complex,他先不將每一個平滑化的圖,看作向量空間,反而用cobordism作為它的 differential。這是一個更抽象的chain complex,但很特別。這似乎是從一個更原始的角度來看此種chain complex。
本文描述了我們將這個方法推廣到曲面嵌入四維空間(2-knots)的一些結果及遇到的困難,其中也包括如何平滑化曲面圖和一些在 Roseman moves 間的 chain homotopy equivalence。
The Khovanov's homology is the most powerful knot invariant up to now. In [1], Prof. Bar-Natan gives a new idea to interpret the Khovanov's homology. We wonder whether we can mimic his method and apply to the 2-dimensional knots. In this article, we present some results we found, and some difficulties we encountered.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10086
全文授權: 同意授權(全球公開)
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved