請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100867完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇剛毅 | zh_TW |
| dc.contributor.advisor | KANG-YI SU | en |
| dc.contributor.author | 凌叙倢 | zh_TW |
| dc.contributor.author | SHIU-JIE LING | en |
| dc.date.accessioned | 2025-10-09T16:52:41Z | - |
| dc.date.available | 2025-08-05 | - |
| dc.date.copyright | 2025-10-09 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | 1. Organization, W.H. Lung cancer. 26 June 2023.
2. team, A.C.S.m.a.e.c. Key Statistics for Lung Cancer. January 29, 2024 [cited 2025 January 10]. 3. Bray, F., M. Laversanne, H. Sung, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 2024. 74(3): p. 229-263. 4. Cruz, C.S.D., L.T. Tanoue, and R.A. Matthay, Lung cancer: epidemiology, etiology, and prevention. Clinics in chest medicine, 2011. 32(4): p. 605-644. 5. Society, C.C. Prognosis and survival for lung cancer. May 2020. 6. Oser, M.G., M.J. Niederst, L.V. Sequist, and J.A. Engelman, Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. The Lancet Oncology, 2015. 16(4): p. e165-e172. 7. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Translational lung cancer research, 2016. 5(3): p. 288. 8. Wee, P. and Z. Wang, Epidermal growth factor receptor cell proliferation signaling pathways. Cancers, 2017. 9(5): p. 52. 9. Purba, E.R., E.-i. Saita, and I.N. Maruyama, Activation of the EGF receptor by ligand binding and oncogenic mutations: the “rotation model”. Cells, 2017. 6(2): p. 13. 10. Ha, S.Y., S.-J. Choi, J.H. Cho, et al., Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR. Oncotarget, 2015. 6(7): p. 5465. 11. Zhou, F. and C. Zhou, Lung cancer in never smokers-the east Asian experience. Transl Lung Cancer Res. 2018; 7 (4): 450–63. 12. Gower, A., Y. Wang, and G. Giaccone, Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. Journal of molecular medicine, 2014. 92: p. 697-707. 13. Golding, B., A. Luu, R. Jones, and A.M. Viloria-Petit, The function and therapeutic targeting of anaplastic lymphoma kinase (ALK) in non-small cell lung cancer (NSCLC). Molecular cancer, 2018. 17: p. 1-15. 14. Reita, D., L. Pabst, E. Pencreach, et al., Direct targeting KRAS mutation in non-small cell lung cancer: focus on resistance. Cancers, 2022. 14(5): p. 1321. 15. Canale, M., K. Andrikou, I. Priano, et al., The role of TP53 mutations in EGFR-mutated non-small-cell lung cancer: clinical significance and implications for therapy. Cancers, 2022. 14(5): p. 1143. 16. Chen, X., T. Zhang, W. Su, et al., Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death & Disease, 2022. 13(11): p. 974. 17. Mogi, A. and H. Kuwano, TP53 mutations in nonsmall cell lung cancer. BioMed Research International, 2011. 2011(1): p. 583929. 18. Zhang, Y., Q. Meng, Q. Sun, et al., LKB1 deficiency-induced metabolic reprogramming in tumorigenesis and non-neoplastic diseases. Molecular Metabolism, 2021. 44: p. 101131. 19. Zhang, S., X. Xiao, Y. Yi, et al., Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduction and Targeted Therapy, 2024. 9(1): p. 149. 20. Brown, J.S., S.R. Amend, R.H. Austin, et al., Updating the definition of cancer. Molecular Cancer Research, 2023. 21(11): p. 1142-1147. 21. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674. 22. Hanahan, D., Hallmarks of cancer: new dimensions. Cancer discovery, 2022. 12(1): p. 31-46. 23. Novikov, N.M., S.Y. Zolotaryova, A.M. Gautreau, and E.V. Denisov, Mutational drivers of cancer cell migration and invasion. British journal of cancer, 2021. 124(1): p. 102-114. 24. Velez, A.M.A. and M.S. Howard, Tumor-suppressor genes, cell cycle regulatory checkpoints, and the skin. North American Journal of Medical Sciences, 2015. 7(5): p. 176. 25. Sharma, S., T.K. Kelly, and P.A. Jones, Epigenetics in cancer. Carcinogenesis, 2010. 31(1): p. 27-36. 26. Fan, C., S. Zhang, Z. Gong, et al., Emerging role of metabolic reprogramming in tumor immune evasion and immunotherapy. Science China Life Sciences, 2021. 64: p. 534-547. 27. Liu, S., X. Zhang, W. Wang, et al., Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Molecular cancer, 2024. 23(1): p. 1-57. 28. Brunner, J.S. and L.W. Finley, Metabolic determinants of tumour initiation. Nature Reviews Endocrinology, 2023. 19(3): p. 134-150. 29. Liberti, M.V. and J.W. Locasale, The Warburg effect: how does it benefit cancer cells? Trends in biochemical sciences, 2016. 41(3): p. 211-218. 30. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nature medicine, 2013. 19(11): p. 1423-1437. 31. Kim, J. and R.J. DeBerardinis, Mechanisms and implications of metabolic heterogeneity in cancer. Cell metabolism, 2019. 30(3): p. 434-446. 32. Gupta, P.B., I. Pastushenko, A. Skibinski, C. Blanpain, and C. Kuperwasser, Phenotypic plasticity: driver of cancer initiation, progression, and therapy resistance. Cell stem cell, 2019. 24(1): p. 65-78. 33. Wu, Z., Y.F. Lee, X.H. Yeo, S.Y. Loo, and W.L. Tam, Shifting the gears of metabolic plasticity to drive cell state transitions in cancer. Cancers, 2021. 13(6): p. 1316. 34. DeBerardinis, R.J. and N.S. Chandel, We need to talk about the Warburg effect. Nature metabolism, 2020. 2(2): p. 127-129. 35. Barba, I., L. Carrillo-Bosch, and J. Seoane, Targeting the Warburg Effect in Cancer: Where Do We Stand? International Journal of Molecular Sciences, 2024. 25(6): p. 3142. 36. Fu, Y., T. Zou, X. Shen, et al., Lipid metabolism in cancer progression and therapeutic strategies. MedComm, 2021. 2(1): p. 27-59. 37. Liu, X., P. Zhang, J. Xu, G. Lv, and Y. Li, Lipid metabolism in tumor microenvironment: novel therapeutic targets. Cancer Cell International, 2022. 22(1): p. 224. 38. Jin, H.-R., J. Wang, Z.-J. Wang, et al., Lipid metabolic reprogramming in tumor microenvironment: from mechanisms to therapeutics. Journal of Hematology & Oncology, 2023. 16(1): p. 103. 39. Jin, L., G. Alesi, and S. Kang, Glutaminolysis as a target for cancer therapy. Oncogene, 2016. 35(28): p. 3619-3625. 40. Villar, V.H., F. Merhi, M. Djavaheri-Mergny, and R.V. Durán, Glutaminolysis and autophagy in cancer. Autophagy, 2015. 11(8): p. 1198-1208. 41. Osellame, L.D., T.S. Blacker, and M.R. Duchen, Cellular and molecular mechanisms of mitochondrial function. Best practice & research Clinical endocrinology & metabolism, 2012. 26(6): p. 711-723. 42. Casanova, A., A. Wevers, S. Navarro-Ledesma, and L. Pruimboom, Mitochondria: It is all about energy. Frontiers in physiology, 2023. 14: p. 1114231. 43. Fogg, V.C., N.J. Lanning, and J.P. MacKeigan, Mitochondria in cancer: at the crossroads of life and death. Chinese journal of cancer, 2011. 30(8): p. 526. 44. Wallace, D.C., Mitochondria and cancer. Nature Reviews Cancer, 2012. 12(10): p. 685-698. 45. Sun, Y., Y. Guo, X. Shi, et al., An overview: the diversified role of mitochondria in cancer metabolism. International journal of biological sciences, 2023. 19(3): p. 897. 46. Wang, S.-F., L.-M. Tseng, and H.-C. Lee, Role of mitochondrial alterations in human cancer progression and cancer immunity. Journal of biomedical science, 2023. 30(1): p. 61. 47. Ma, Y., L. Wang, and R. Jia, The role of mitochondrial dynamics in human cancers. American journal of cancer research, 2020. 10(5): p. 1278. 48. Chen, W., H. Zhao, and Y. Li, Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 333. 49. Darvin, P. and V. Sasidharan Nair, Understanding mitochondrial dynamics and metabolic plasticity in cancer stem cells: Recent advances in cancer treatment and potential therapeutic approaches. Frontiers in Oncology, 2023. 13: p. 1155774. 50. Sabharwal, S.S. and P.T. Schumacker, Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles' heel? Nature Reviews Cancer, 2014. 14(11): p. 709-721. 51. Kuo, C.-L., A. Ponneri Babuharisankar, Y.-C. Lin, et al., Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: foe or friend? Journal of biomedical science, 2022. 29(1): p. 74. 52. Peng, C., X. Li, F. Ao, et al., Mitochondrial ROS driven by NOX4 upregulation promotes hepatocellular carcinoma cell survival after incomplete radiofrequency ablation by inducing of mitophagy via Nrf2/PINK1. Journal of Translational Medicine, 2023. 21(1): p. 218. 53. Pandey, S., V. Anang, and M.M. Schumacher, Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. International Review of Cell and Molecular Biology, 2024. 386: p. 223-247. 54. Zhang, J., X. Wang, V. Vikash, et al., ROS and ROS‐mediated cellular signaling. Oxidative medicine and cellular longevity, 2016. 2016(1): p. 4350965. 55. Aggarwal, V., H.S. Tuli, A. Varol, et al., Role of reactive oxygen species in cancer progression: molecular mechanisms and recent advancements. Biomolecules, 2019. 9(11): p. 735. 56. Zhou, X., B. An, Y. Lin, et al., Molecular mechanisms of ROS-modulated cancer chemoresistance and therapeutic strategies. Biomedicine & Pharmacotherapy, 2023. 165: p. 115036. 57. Trinh, V.H., T. Nguyen Huu, D.K. Sah, et al., Redox Regulation of PTEN by Reactive Oxygen Species: Its Role in Physiological Processes. Antioxidants, 2024. 13(2): p. 199. 58. Qutub, A.A. and A.S. Popel, Reactive oxygen species regulate hypoxia-inducible factor 1α differentially in cancer and ischemia. Molecular and cellular biology, 2008. 28(16): p. 5106-5119. 59. Zhang, L., Y. Cao, X. Guo, et al., Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma. Journal of Zhejiang University-SCIENCE B, 2023. 24(1): p. 32-49. 60. Lemos, H., L. Huang, T.L. McGaha, and A.L. Mellor, Cytosolic DNA sensing via the stimulator of interferon genes adaptor: Yin and Yang of immune responses to DNA. European journal of immunology, 2014. 44(10): p. 2847-2853. 61. Chauvin, S.D., W.A. Stinson, D.J. Platt, S. Poddar, and J.J. Miner, Regulation of cGAS and STING signaling during inflammation and infection. Journal of Biological Chemistry, 2023. 299(7). 62. Zhang, R., R. Kang, and D. Tang, STING1 in different organelles: location dictates function. Frontiers in immunology, 2022. 13: p. 842489. 63. Zhang, Z., H. Zhou, X. Ouyang, et al., Multifaceted functions of STING in human health and disease: from molecular mechanism to targeted strategy. Signal Transduction and Targeted Therapy, 2022. 7(1): p. 394. 64. Ahn, J., T. Xia, H. Konno, et al., Inflammation-driven carcinogenesis is mediated through STING. Nature communications, 2014. 5(1): p. 5166. 65. He, L., X. Xiao, X. Yang, et al., STING signaling in tumorigenesis and cancer therapy: a friend or foe? Cancer letters, 2017. 402: p. 203-212. 66. Samson, N. and A. Ablasser, The cGAS–STING pathway and cancer. Nature cancer, 2022. 3(12): p. 1452-1463. 67. Zhang, L., C. Jiang, Y. Zhong, et al., STING is a cell-intrinsic metabolic checkpoint restricting aerobic glycolysis by targeting HK2. Nature Cell Biology, 2023. 25(8): p. 1208-1222. 68. Cai, W., J. Zhao, Y. Chen, et al., STING regulates aging-related osteoporosis by mediating the Hk2-Vdac1 mitochondrial axis. Free Radical Biology and Medicine, 2024. 225: p. 1-14. 69. Li, X.-D., Y.-H. Chiu, A.S. Ismail, et al., Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proceedings of the National Academy of Sciences, 2011. 108(42): p. 17390-17395. 70. Hou, F., L. Sun, H. Zheng, et al., MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. cell, 2011. 146(3): p. 448-461. 71. West, A.P., G.S. Shadel, and S. Ghosh, Mitochondria in innate immune responses. Nature Reviews Immunology, 2011. 11(6): p. 389-402. 72. Refolo, G., T. Vescovo, M. Piacentini, G.M. Fimia, and F. Ciccosanti, Mitochondrial interactome: a focus on antiviral signaling pathways. Frontiers in cell and developmental biology, 2020. 8: p. 8. 73. He, Q.-q., Y. Huang, L. Nie, et al., MAVS integrates glucose metabolism and RIG-I-like receptor signaling. Nature communications, 2023. 14(1): p. 5343. 74. Trishna, S., A. Lavon, A. Shteinfer-Kuzmine, A. Dafa-Berger, and V. Shoshan-Barmatz, Overexpression of the mitochondrial anti-viral signaling protein, MAVS, in cancers is associated with cell survival and inflammation. Molecular Therapy-Nucleic Acids, 2023. 33: p. 713-732. 75. Chen, L., J. Hou, B. You, et al., An analysis regarding the prognostic significance of mavs and its underlying biological mechanism in ovarian cancer. Frontiers in cell and developmental biology, 2021. 9: p. 728061. 76. Wang, X., Q. Wang, C. Zheng, and L. Wang, MAVS: The Next STING in Cancers and Other Diseases. Critical Reviews in Oncology/Hematology, 2024: p. 104610. 77. Soda, M., Y.L. Choi, M. Enomoto, et al., Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 2007. 448(7153): p. 561-566. 78. Ray, D.B., G.A. Merrill, F.J. Brenner, et al., T24 HRAS transformed NIH/3T3 mouse cells (GhrasT-NIH/3T3) in serial tumorigenic in vitro/in vivo passages give rise to increasingly aggressive tumorigenic cell lines T1-A and T2-A and metastatic cell lines T3-HA and T4-PA. Experimental Cell Research, 2016. 340(1): p. 1-11. 79. Hayashi, N., A. Yamasaki, S. Ueda, et al., Oncogenic transformation of NIH/3T3 cells by the overexpression of L-type amino acid transporter 1, a promising anti-cancer target. Oncotarget, 2021. 12(13): p. 1256. 80. Siskind, L.J., R.N. Kolesnick, and M. Colombini, Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion, 2006. 6(3): p. 118-125. 81. Yu, L., C. Zhou, J. Fan, J. Shanklin, and C. Xu, Mechanisms and functions of membrane lipid remodeling in plants. The Plant Journal, 2021. 107(1): p. 37-53. 82. Saito, R.d.F., L.N.d.S. Andrade, S.O. Bustos, and R. Chammas, Phosphatidylcholine-derived lipid mediators: the crosstalk between cancer cells and immune cells. Frontiers in immunology, 2022. 13: p. 768606. 83. Dimou, A., V. Tsimihodimos, and E. Bairaktari, The critical role of the branched chain amino acids (BCAAs) catabolism-regulating enzymes, branched-chain aminotransferase (BCAT) and branched-chain α-keto acid dehydrogenase (BCKD), in human pathophysiology. International Journal of Molecular Sciences, 2022. 23(7): p. 4022. 84. Richard, D.M., M.A. Dawes, C.W. Mathias, et al., L-tryptophan: basic metabolic functions, behavioral research and therapeutic indications. International Journal of Tryptophan Research, 2009. 2: p. IJTR. S2129. 85. Adeva-Andany, M.M., N. Carneiro-Freire, M. Seco-Filgueira, C. Fernández-Fernández, and D. Mouriño-Bayolo, Mitochondrial β-oxidation of saturated fatty acids in humans. Mitochondrion, 2019. 46: p. 73-90. 86. Ju, H.-Q., J.-F. Lin, T. Tian, D. Xie, and R.-H. Xu, NADPH homeostasis in cancer: functions, mechanisms and therapeutic implications. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 231. 87. TeSlaa, T., M. Ralser, J. Fan, and J.D. Rabinowitz, The pentose phosphate pathway in health and disease. Nature metabolism, 2023. 5(8): p. 1275-1289. 88. Nakrani, M.N., R.H. Wineland, and F. Anjum, Physiology, glucose metabolism. 2020. 89. Maddalena, F., V. Condelli, D.S. Matassa, et al., TRAP1 enhances Warburg metabolism through modulation of PFK1 expression/activity and favors resistance to EGFR inhibitors in human colorectal carcinomas. Molecular Oncology, 2020. 14(12): p. 3030-3047. 90. Kang, B.-H., TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors. BMB reports, 2012. 45(1): p. 1-6. 91. Hunt, M., S. Greene, K. Hultenby, et al., Alternative exon usage selectively determines both tissue distribution and subcellular localization of the acyl-CoA thioesterase 7 gene products. Cellular and molecular life sciences, 2007. 64: p. 1558-1570. 92. Rosso, M., M. Munoz, and M. Berger, The role of neurokinin‐1 receptor in the microenvironment of inflammation and cancer. The Scientific World Journal, 2012. 2012(1): p. 381434. 93. Kim, S.S., I. Kycia, M. Karski, et al., DNAJB1-PRKACA in HEK293T cells induces LINC00473 overexpression that depends on PKA signaling. PLoS One, 2022. 17(2): p. e0263829. 94. Tani, T., H. Mathsyaraja, M. Campisi, et al., TREX1 inactivation unleashes cancer cell STING–interferon signaling and promotes antitumor immunity. Cancer discovery, 2024. 14(5): p. 752-765. 95. Seth, R.B., L. Sun, C.-K. Ea, and Z.J. Chen, Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. cell, 2005. 122(5): p. 669-682. 96. Che, T.-F., C.-W. Lin, Y.-Y. Wu, et al., Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC. Oncotarget, 2015. 6(35): p. 37349. 97. Ishikawa, H. and G.N. Barber, STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008. 455(7213): p. 674-678. 98. Brownell, J., J. Bruckner, J. Wagoner, et al., Direct, interferon-independent activation of the CXCL10 promoter by NF-κB and interferon regulatory factor 3 during hepatitis C virus infection. Journal of virology, 2014. 88(3): p. 1582-1590. 99. Zunica, E.R., C.L. Axelrod, L.A. Gilmore, E. Gnaiger, and J.P. Kirwan, The Bioenergetic Landscape of Cancer. Molecular Metabolism, 2024: p. 101966. 100. Legaki, A.-I., I.I. Moustakas, M. Sikorska, et al., Hepatocyte mitochondrial dynamics and bioenergetics in obesity-related non-alcoholic fatty liver disease. Current obesity reports, 2022. 11(3): p. 126-143. 101. Xing, J., L. Qi, X. Liu, et al., Roles of mitochondrial fusion and fission in breast cancer progression: a systematic review. World Journal of Surgical Oncology, 2022. 20(1): p. 331. 102. Youle, R.J. and A.M. Van Der Bliek, Mitochondrial fission, fusion, and stress. Science, 2012. 337(6098): p. 1062-1065. 103. Li, A., M. Gao, B. Liu, et al., Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death & Disease, 2022. 13(5): p. 444. 104. Sun, Y., S.R. Aliyari, K. Parvatiyar, et al., STING directly interacts with PAR to promote apoptosis upon acute ionizing radiation-mediated DNA damage. Cell Death & Differentiation, 2025: p. 1-13. 105. Zhang, R., R. Kang, and D. Tang, The STING1 network regulates autophagy and cell death. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 208. 106. Ning, X., Y. Wang, M. Jing, et al., Apoptotic caspases suppress type I interferon production via the cleavage of cGAS, MAVS, and IRF3. Molecular cell, 2019. 74(1): p. 19-31. e7. 107. Gokhale, N.S., K. Somfleth, M.G. Thompson, et al., Cellular RNA interacts with MAVS to promote antiviral signaling. bioRxiv, 2023. 108. Li, T., X. Li, K.S. Attri, et al., O-GlcNAc transferase links glucose metabolism to MAVS-mediated antiviral innate immunity. Cell host & microbe, 2018. 24(6): p. 791-803. e6. 109. Stoolman, J.S. and N.S. Chandel, Glucose metabolism linked to antiviral responses. cell, 2019. 178(1): p. 10-11. 110. Zhang, W., G. Wang, Z.-G. Xu, et al., Lactate is a natural suppressor of RLR signaling by targeting MAVS. cell, 2019. 178(1): p. 176-189. e15. 111. Zarrella, S., M.R. Miranda, V. Covelli, et al., Endoplasmic Reticulum Stress and Its Role in Metabolic Reprogramming of Cancer. Metabolites, 2025. 15(4): p. 221. 112. Almanza, A., A. Carlesso, C. Chintha, et al., Endoplasmic reticulum stress signalling–from basic mechanisms to clinical applications. The FEBS journal, 2019. 286(2): p. 241-278. 113. Chen, X., C. Shi, M. He, S. Xiong, and X. Xia, Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal Transduction and Targeted Therapy, 2023. 8(1): p. 352. 114. Ma, K., G. Chen, W. Li, et al., Mitophagy, mitochondrial homeostasis, and cell fate. Frontiers in cell and developmental biology, 2020. 8: p. 467. 115. Zhou, X., J. Wang, L. Yu, et al., Mitophagy and cGAS–STING crosstalk in neuroinflammation. Acta Pharmaceutica Sinica B, 2024. 14(8): p. 3327-3361. 116. Muccilli, S.G., B. Schwarz, B. Shue, et al., Mitochondrial hyperactivity and reactive oxygen species drive innate immunity to the yellow fever virus-17D live-attenuated vaccine. PLoS pathogens, 2025. 21(4): p. e1012561. 117. Buskiewicz, I.A., T. Montgomery, E.C. Yasewicz, et al., Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Science signaling, 2016. 9(456): p. ra115-ra115. 118. Vasileiou, P.V., K. Evangelou, K. Vlasis, et al., Mitochondrial homeostasis and cellular senescence. Cells, 2019. 8(7): p. 686. 119. Vernucci, E., C. Tomino, F. Molinari, et al., Mitophagy and oxidative stress in cancer and aging: focus on sirtuins and nanomaterials. Oxidative medicine and cellular longevity, 2019. 2019(1): p. 6387357. 120. Schmitt, C.A., B. Wang, and M. Demaria, Senescence and cancer—role and therapeutic opportunities. Nature reviews Clinical oncology, 2022. 19(10): p. 619-636. 121. O’Sullivan, E.A., R. Wallis, F. Mossa, and C.L. Bishop, The paradox of senescent-marker positive cancer cells: challenges and opportunities. npj Aging, 2024. 10(1): p. 41. 122. Lacombe, A. and L. Scorrano. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. in Seminars in cell & developmental biology. 2024. Elsevier. 123. Kochumon, S., A. Al-Sayyar, T. Jacob, et al., IL-1β-Induced CXCL10 Expression in THP-1 Monocytic Cells Involves the JNK/c-Jun and NF-κB-Mediated Signaling. Pharmaceuticals, 2024. 17(7): p. 823. 124. Oo, Y.H., S. Shetty, and D.H. Adams, The role of chemokines in the recruitment of lymphocytes to the liver. Digestive Diseases, 2010. 28(1): p. 31-44. 125. Midha, A., S. Dearden, and R. McCormack, EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). American journal of cancer research, 2015. 5(9): p. 2892. 126. Kolanko, E., A. Cargnoni, A. Papait, et al., The evolution of in vitro models of lung fibrosis: promising prospects for drug discovery. European Respiratory Review, 2024. 33(171). 127. Cabrera-Fuentes, H.A., G. Barreto, E.A. Al-Suhaimi, and E.A. Liehn, Fibroblast plasticity in pulmonary and cardiovascular fibrosis: Mechanistic insights and emerging therapeutic targets. Archives of Medical Research, 2025. 56(4): p. 103173. 128. Chong, Z.X., S.K. Yeap, and W.Y. Ho, Transfection types, methods and strategies: a technical review. PeerJ, 2021. 9: p. e11165. 129. Demory, M.L., J.L. Boerner, R. Davidson, et al., Epidermal growth factor receptor translocation to the mitochondria. Journal of Biological Chemistry, 2009. 284(52): p. 36592-36604. 130. Pagano, C., L. Coppola, G. Navarra, et al., N6-Isopentenyladenosine impairs mitochondrial metabolism through inhibition of EGFR translocation on mitochondria in glioblastoma cells. Cancers, 2022. 14(24): p. 6044. 131. Yu, R., B. Zhu, and D. Chen, Type I interferon-mediated tumor immunity and its role in immunotherapy. Cellular and molecular life sciences, 2022. 79(3): p. 191. 132. Bushinsky, D.A. and N.S. Krieger, Effects of acid on bone. Kidney international, 2022. 101(6): p. 1160-1170. 133. Klein, S.G., S.M. Alsolami, S. Arossa, et al., In situ monitoring reveals cellular environmental instabilities in human pluripotent stem cell culture. Communications Biology, 2022. 5(1): p. 119. 134. Hwang, M.S., J. Boulanger, J.D. Howe, et al., MAVS polymers smaller than 80 nm induce mitochondrial membrane remodeling and interferon signaling. The FEBS journal, 2019. 286(8): p. 1543-1560. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100867 | - |
| dc.description.abstract | 腫瘤生成(tumor initiation)是一個由基因突變驅動的早期過程,其中驅動性突變(driver mutations)賦予細胞異常的生長優勢,使其跳脫正常細胞對增殖與分化的調控,進而持續擴增並朝向惡性轉化。為因應快速增殖所需的能量與物質,腫瘤細胞會重新編排其代謝模式,此一過程稱為代謝重編程(metabolic reprogramming),粒線體作為細胞能量核心器官,在其中扮演不可或缺的角色,特別是在能量產生與代謝訊號傳導方面。
在東亞地區,表皮生長因子受體(epidermal growth factor receptor, EGFR)突變是非小細胞肺癌中最常見的驅動事件,尤其以 exon 19 缺失與 exon 21 的 L858R 點突變最為常見。儘管 EGFR 在腫瘤形成中的角色已有諸多研究,但其是否與粒線體功能調控直接相關仍未被充分闡明。因此,本研究旨在探討 EGFR L858R突變是否會影響粒線體功能與細胞代謝的變化。 本研究建立了穩定過表現 EGFR L858R 的 NIH3T3 細胞株,並發現其增殖速率與集落形成能力皆高於對照組。此外,EGFR L858R 細胞培養液呈現加速變黃,並有顯著乳酸累積,搭配 Seahorse 分析也觀察到其氧化磷酸化與糖解能力均上升,顯示代謝活性顯著改變。透過萃取細胞中的粒線體蛋白,發現EGFR L858R有粒線體轉位的現象,進一步探索可能參與代謝重編程的粒線體蛋白,我們細胞的粒線體蛋白質體,交叉比對 MitoCarta3.0 資料庫後篩選出五個具有粒線體功能的蛋白,其中包含STING1與MAVS。我們發現 EGFR L858R 細胞中STING1與MAVS蛋白表現均明顯上升,MAVS也呈現高分子量寡聚體化(oligomerization)的現象。這類 MAVS 聚集型態類似病毒感染時所誘發的 prion-like 聚集模式,但有趣的是,第一型干擾素(如 Ifn-α, Ifn-β)並未被顯著上調,顯示此聚集可能並未活化典型免疫路徑,反而誘導 Cxcl10 等與發炎及代謝壓力相關的基因上升。此外,cleaved caspase-3 表現下降與PARP上升的現象,也暗示 EGFR L858R 細胞可能透過重新調控 MAVS/STING1 訊號,壓抑細胞凋亡並促進代謝適應,進一步支持先前觀察到的細胞型態與代謝功能變化。 | zh_TW |
| dc.description.abstract | Tumor initiation is a complex, multistep process in which cells acquire oncogenic mutations that provide clonal growth advantages. To sustain unchecked proliferation and evade nutrient limitations, tumor cells undergo profound metabolic reprogramming. Mitochondria, as the central hub of energy production and metabolic integration, are believed to play critical roles in this transformation.
Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-related mortality worldwide. In East Asian populations, mutations in the epidermal growth factor receptor (EGFR), particularly the L858R point mutation in exon 21, are highly prevalent. Although oncogenic signaling of EGFR has been extensively studied, its direct involvement in regulating mitochondrial metabolism during early tumorigenesis is not well understood. In this study, we aimed to elucidate the mitochondrial mechanisms underlying EGFR L858R-driven metabolic remodeling during tumor initiation. We established a stable NIH3T3 cell line overexpressing EGFR L858R to model early oncogenic transformation. These cells exhibited enhanced proliferation, altered morphology, and increased colony-forming ability compared to control cells. Notably, the culture medium of EGFR L858R cells turned yellow more rapidly, corresponding with a significant increase in extracellular lactate levels, indicating a shift toward glycolytic metabolism. Seahorse analysis confirmed enhanced glycolysis and oxidative phosphorylation in EGFR L858R cells. We further isolated the mitochondrial fraction and confirmed the translocation of EGFR L858R protein to mitochondria. To explore EGFR's influence on mitochondrial function, we performed proteomic profiling of mitochondrial extracts. Bioinformatic filtering using the MitoCarta3.0 database revealed five EGFR-regulated mitochondrial proteins, among which STING1 and MAVS were of particular interest due to their dual roles in immune signaling and metabolism. We observed elevated STING1 expression and increased MAVS oligomerization in EGFR L858R cells, but without corresponding activation of canonical type-I interferon responses. Interestingly, only Cxcl10 expression was significantly upregulated, suggesting a non-canonical signaling route. Moreover, the apoptosis landscape appeared dysregulated, with reduced cleaved CAPSASE-3 and BCL-2 expression but increased PARP levels, pointing toward survival-promoting mitochondrial adaptation rather than cell death. In summary, our findings suggest that EGFR L858R not only rewires mitochondrial metabolism but may also redirect immune-related adaptors such as STING1 and MAVS toward supporting tumor-like metabolic states. Further investigation into their mechanistic interactions with mitochondrial EGFR may uncover novel regulatory axes in early tumorigenesis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-09T16:52:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-10-09T16:52:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv Chapter 1 Introduction 1 1.1 Lung Cancer Epidemiology 2 1.2 Tumor initiation and 6+2 characteristic of cancer cells 3 1.3 Metabolism shift of cancer cells 4 1.4 Mitochondria and cancer metabolism 6 1.5 Stimulator of interferon genes protein (STING1) 7 1.6 Mitochondrial antiviral-signaling protein (MAVS) 8 Chapter 2 Specific Aim 10 Chapter 3 Material and Method 12 3.1 Cell culture 13 3.2 Transfection and stable cell line establishment 13 3.3 Protein extraction and Western blotting analysis 14 3.4 Immunoprecipitation (IP) 15 3.5 Non-reducing SDS-PAGE 15 3.6 RNA extraction and real-time quantitative PCR (qPCR) 16 3.7 Mitochondrial DNA extraction and copy number quantification by qPCR 16 3.8 Cell proliferation assay 17 3.9 Colony formation assay 17 3.10 Mitochondrial fractionation 18 3.11 L-Lactate assay 18 3.12 MitoTracker Staining 19 3.13 Immunofluorescence microscopy (IF) 19 3.14 Seahorse metabolic analysis 20 3.15 Proteomic analysis 21 3.16 Statistical analysis 22 Chapter 4 Results 23 4.1 Alteration of cell characteristics of mutant EGFR overexpressed fibroblast 24 4.2 Proteomics analysis of mitochondrial protein demonstrated up-regulation of metabolism pathways 24 4.2.1 Pathway analysis of mitochondrial proteomics revealed metabolism related pathways alteration in EGFR L858R overexpressing NIH3T3 cells 25 4.2.2 Detailed pathway analysis highlighted five mitochondria functional proteins that have relations with bioenergetics 26 4.3 STING1 and MAVS play roles in EGFR L858R driven tumor initiation 27 4.4 MAVS prion-like aggregation increased in EGFR L858R cells 28 4.5 EGFR L858R-induced MAVS aggregation triggers non-classical downstream signaling 28 4.6 EGFR L858R would cause metabolism shift in NIH-3T3 cells 29 4.7 Mitochondria morphology shown more fusion pattern in EGFR L858R overexpression cells 31 4.8 EGFR L858R induced apoptosis-related protein alteration 32 Chapter 5 Conclusion 33 Chapter 6 Discussion 35 6.1 Metabolism regulation role of STING1 and MAVS in cancer 36 6.2 MAVS aggregation and STING1 upregulation may enhance glycolysis via a non-canonical context 37 6.3 Protein overexpression-induced ER stress and ROS in cells 38 6.4 Mitochondria fusion pattern in EGFR L858R cells 38 6.5 Other metabolic pathways enriched in pathway analysis 39 6.6 Other predicted pathways 40 6.7 The immune function of STING1 and MAVS during tumor initiation 41 6.8 Limitation to this study 42 6.8.1 Model cell selection 42 6.8.2 Construction of cell model 43 6.8.3 EGFR L858R dependent metabolism shift 43 6.8.4 Role of EGFR translocation in mitochondrial remodeling 44 6.8.5 Functional validation of STING1 and MAVS in metabolic regulation 44 6.8.6 Confounding factors in medium pH value 45 6.8.7 MitoTracker quantification of mitochondrial morphology 45 6.8.8 Methods for observation of MAVS oligomerization 46 6.8.9 Flow cytometry could be applied to assay apoptosis status of cells 46 Chapter 7 Figures 47 Figure 1. Alteration of cell characteristics in NIH3T3 cells overexpressing EGFR L858R. 48 Figure 2. Proteomics analysis reveals metabolic reprogramming in EGFR L858R-expressing cells 51 Figure 3. Western blotting and qPCR analysis of protein expression level of EGFR L858R, STING1, and MAVS. 55 Figure 4. Subcellular localization and protein interaction of EGFR L858R, MAVS, and STING1. 57 Figure 5. Non-reducing SDS-PAGE reveals increased MAVS oligomerization in EGFR L858R-expressing cells. 60 Figure 6. mRNA level of type-I interferon-related genes. 61 Figure 7. Metabolism alteration in EGFR L858R overexpressed cells. 62 Figure 8. Mitochondria morphology and copy number analysis. 66 Figure 9. Apoptotic pathway alterations in EGFR L858R-expressing cells. 67 Figure 10. Graphical abstract. 70 Chapter 8 Tables 71 Table 1. List of antibodies 72 Table 2. List of primers 73 Chapter 9 Reference 74 Chapter 10 Appendix 83 | - |
| dc.language.iso | en | - |
| dc.title | 表皮生長因子受體L858R突變調控粒線體代謝之研究 | zh_TW |
| dc.title | Study on the EGFR L858R Mutant Modulating Metabolic Status in Mitochondria | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林亮音;楊雅倩;郭靜穎;潘思樺 | zh_TW |
| dc.contributor.oralexamcommittee | LIANGIN LING;YA-CHIEN YAN;CHING-YING KUO;SZU-HUA PAN | en |
| dc.subject.keyword | 腫瘤生成,EGFR L858R,粒線體轉位,代謝,蛋白質體,STING1,MAVS, | zh_TW |
| dc.subject.keyword | tumor initiation,EGFR L858R,mitochondria translocation,metabolism,proteome,STING1,MAVS, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202503946 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.14 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
