請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10077完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭欽龍 | |
| dc.contributor.author | Ying-Ta Chen | en |
| dc.contributor.author | 陳瑩達 | zh_TW |
| dc.date.accessioned | 2021-05-20T21:00:16Z | - |
| dc.date.available | 2016-07-29 | |
| dc.date.available | 2021-05-20T21:00:16Z | - |
| dc.date.copyright | 2011-07-29 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | 王立志. (1996). 氣候變遷對台灣林業的衝擊與適應. Paper presented at the 氣候變遷衝擊評估與因應策略建議研討會, 台大思亮館.
王松永, 張豐丞, 李怡真, 楊賜霖, & 林法勤. (2005). 柳杉疏伐木有效利用之探討. 臺大實驗林研究報告, 19(4), 293-300. 任億安, & 陳宛君. (1996). 六龜試驗林疏伐作業個案採運成本及疏伐效率分析. 台灣林業科學, 11(4), 475-480. 吳俊賢, 林俊成, 李國忠, 陳溢宏, 林麗貞, & 林瑞進. (2005). 森林能源作物之二氧化碳吸存效果與能源產出效率. 台大實驗林研究報告, 19(1), 43-53. 吳珮瑛, 林宗昱, & 劉哲良. (2010). 不同國際組織與結盟下之碳排放交易成本有效性的檢視. 法制論叢, 46, 41-84. 吳學平. (2000). 新竹林區柳杉人工林疏伐工作之研究: 國立台灣大學森林學系碩士論文. 李國忠, 林俊成, 賴建興, & 林麗貞. (2004). 台大實驗林森林生態系不同林分經營策略之碳貯存效果. 臺大實驗林研究報告, 18(4), 261-272. 李意德, 曾慶波, 吳仲民, 周光益, & 陳步峰. (1998). 我國熱帶天然林植被C貯存量的估算. 林業科學研究, 11(2), 156-162. 李國忠, 林俊成, & 陳麗琴. (2000). 台灣杉人工林碳吸存潛力及其成本效益分析. 台灣林業科學, 15(1), 115-123. 林俊成, 李國忠, & 林裕仁. (1999). 柳杉人工林碳貯存效果與適應成本研究. 臺大實驗林研究報告, 13(1), 51-60. 林裕仁, 李國忠, & 林俊成. (2002). 以生物量與材積關係式推估台灣地區森林林木碳貯存量之研究. 台大實驗林研究報告, 16(2), 71-79. 林裕仁, 劉瓊霦, & 林俊成. (2002). 台灣地區主要用材比重與碳含量測定. 台灣林業科學, 17(3), 291-299. 林俊成, 鄭美如, 劉淑芬, & 李國忠. (2002). 全民造林運動二氧化碳吸存潛力之經濟效益評估. 台灣林業科學, 17(3), 311-321. 邱志明. (2006). 疏伐撫育經營策略對森林碳吸存之影響. 林業研究專訊, 13(1), 6-9. 邱志明. (2009). 疏伐對紅檜人工林碳吸存效益之評估. 林業研究專訓, 16(2), 31-36. 袁孝維, 丁宗蘇, & 謝欣怡. (2005). 柳杉造林地疏伐對野生動物群聚的影響. Zoological Studies, 44(3), 393-402. 高強. (1982). 臺灣柳杉最佳疏伐與輪伐期之經濟分析. 台北: 國立成功大學工業管理科學系. 郭迺鋒, 謝秀宜, & 王淑眉. (2001). 電子商務經營模式的不確定因素對企業獲利之影響. 產業金融季刊, 110, 2-15. 陳明杰. (2007). 疏伐作業對人工林林地水土保持影響. 林業研究專訊, 14(1), 10-13. 馮豐隆. (2000). 固定源總量調查-森林碳吸存之效益評估期末報告: 行政院環境保護署. 楊盛行. (1997). 臺灣地區森林二氧化碳之涵容量估算. 中華生質能源學會會誌, 16(2), 1-10. 楊榮啟, & 林文亮. (2003). 森林測計學. 台北: 國立編譯館. 楊榮啟, 陳昭明, & 林文亮. (1976). 柳杉人工林之經濟疏伐 (pp. 39-94): 國立台灣大學農學院實驗林研究報告. 楊榮啟, 馮豐隆, & 黃俊維. (1998). 林業對溫室氣體減量策略規劃及衝擊評估(二). 鄭欽龍, 陳重銘, & 陳瑩達. (2006). 台灣人工林疏伐成本之計量分析. 中華林學季刊, 39(1), 57-66. Arp, P. A., & Lavigne, D. R. (1982). Planning with goal programming: a case study for multiple- use of forested land. Forest Chronicle, 58, 225-232. Balboa-Murias, M. Á., Rodrígues-Soalleiro, R., Merino, A., & Álvarez-González, J. G. (2006). Temporal variations and distribution of carbon stocks in aboveground biomass of radiata pine and maritime pine pure stands under different silvicultural alternatives. Forest Ecology and Management, 237, 29-38. Baral, A., & Guha, G. S. (2004). Trees for carbon sequestration or fossil fuel substitution: the issue of cost vs. carbon benefit. Biomass and Bioenergy, 27, 41-55. Bass, S., Dubois, O., & Costa, P. M. (2000). Rural livelihood and carbon management. London: International Institute for Environment and Development Bäumler, R., & Zech, W. (1999). Effects of forest thinning on the streamwater chemistry of two forest watersheds in Bavarian Alps. Forest Ecology and Management, 116, 119-128. Bell, E. F. (1976). Goal programming for land use planning. Oregon: USDA Forest Service. Berndes, G., Hoogwijk, M., & Broek, R. v. d. (2003). The contribution of biomass in the future global energy supply: a review of 17 studies. Biomass and Bioenergy, 25, 1-28. Bertomeu, M., & Romero, C. (2001). Managing forest biodiversity: a zero- one goal programming approach. Agricultural System, 68(197-213). Bettinger, P., Boston, K., Siry, J. P., & Grebner, D. L. (2009). Forest management and planning. Boston: Amsterdam. Biswal, M. P., & Acharya, S. (2009). Transformation of a multi- choice linear programming problem. Applied Mathematics and Computation, 210, 182-188. Bjornstad, E. (2005). An engineering economics approach to the estimation of forest fuel supply in North- Trondelag country, Norway. Biomass and Bioenergy, 10, 161-188. Bottoms, K. E., & Bartlett, E. T. (1975). Resource allocation through goal programming. Journal of Range Management, 28(6), 442-447. Bravo, F., Jandl, R., Gadow, K. V., LeMay, V. (2008). Forest management strategies and carbon sequestration, in Gadow, K., Pukkala. T., Tomé, M. (Eds.), Managing Forest Ecosystems: The Challenge of Climate Change. Springer Inc., Heidelberg, pp. 179-194. Brazee, R. J., & Newman, D. H. (1999). Observations on recent forest economics research on risk and uncertainty. Journal of Forest Economics, 5(2), 193-200. Briceño-Elizondo, E., Garcia-Gonzalo, J., Peltola, H., & Kellomäki, S. (2006). Carbon stocks and timber yield in two boreal forest ecosystems under current and changing climatic conditions subjected to varying management regimes. Environmental Science and Policy, 9, 237-252. Brodie, J. D., Adams, D. M., & Kao, C. (1978). Analysis of economic impacts on thinning and rotation for Douglas- fir using dynamic programming. Forest Science, 24(4), 513-522. Brodie, J. D., & Kao, C. (1979). Optimizing thinning in Douglas- fir with three- descriptor dynamic programming to account for accelerated diameter growth. Forest Science, 25(4), 665-672. Brose, P., & Wade, D. (2002). Potential fire behavior in pine flatwood forests following three different fuel reduction techniques. Forest Ecology and Management, 163, 71-84. Buongiorno, J., & Gilless, J. K. (2003). Decision methods for forest resource management. Boston: Academic. Chang, C. T. (2007). Multi-choice goal programming. Omega, 35, 389-396. Chang, C. T. (2008). Revised multi-choice goal programming. Applied Mathematical Modelling, 32(12), 2587-2595. Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming (Vol. 1). New Tork: Wiley. Charnes, A., Cooper, W. W., & Ferguson, R. (1955). Optimal estimation of executive compensation by linear programming. Management Science, 1, 138-151. Chiang, J. M., McEwan, R. W., Yaussy, D. A., & Brown, K. J. (2008). The effects of prescribed fire and silvicultural thinning on the aboveground carbon stocks and net primary production of overstory trees in an oak-hickory ecosystem in southern Ohio. Forest Ecology and Management, 255, 1584-1594. Clutter, J. L., Fortson, J. C., Pienaar, L. V., Brister, G. H., & Bailey, R. L. (1983). Timber Management: A Quality Approach. New York: Wiley. Davis, L. S., Johnson, K. N., Bettinger, P. S., & Howard, T. E. (2001). Forest Management. New York: McGraw-Hill. De Kluyver, C. A., Daellenbach, H. G., & Whyte, A. G. D. (1980). A two- stage, multiple objective mathematical programming approach to optimal thinning and harvesting. Forest Science, 26(4), 674-686. Demirbas, A. (2004). Bioenergy, Global Warming, and Environmental Impacts. Energy Sources, 26, 225-236. Diaz-Balteiro, L., & Rodriquez, L. C. E. (2006). Optimal rotations on Eucalyptus plantations including carbon sequestration- A comparison of results in Brazil and Spain. Forest Ecology and Management, 229, 247-258. Diaz-Balteiro, L., & Romero, C. (2003). Forest management optimisation models when carbon captured is considered: a goal programming approach. Forest Ecology and Management, 174, 447-457. Dieter, M. (2001). Land expectation values for spruce and beech calculated with Monte Carlo modeling techniques. Forest Policy and Economics, 2(2), 157-166. Domac, J., Richards, K., & Risovic, S. (2005). Socio- economic drivers in implementing bioenergy projects. Biomass and Bioenergy, 28, 97-106. Eriksson, E. (2006). Thinning operations and their impact on biomass production in stands of Norway spruce and Scots pine. Biomass and Bioenergy, 30, 848-854. Fearnside, P. (1999). Forests and global warming mitigation in Brazil: opportunities in the Brazilian forest sector for responses to global warming under the 'clean development mechanism'. Biomass and Bioenergy, 16, 171-189. Field, D. B. (1973). Goal programming for forest management. Forest Science, 19, 125-135. Field, D. B. (1973). Goal programming for forest management. Forest Science, 19, 125-135. Finkral, A. J., & Evans, A. M. (2008). The effects of a thinning treatment on carbon stocks in a northern Arizona ponderosa pine forest. Forest Ecology and Management, 225, 2743-2750. Freppaz, D., Minciardi, R., Robba, M., Rovatti, M., Sacile, R., & Taramasso, A. (2004). Optimizing forest biomass exploitation for energy supply at a regional level. Biomass and Bioenergy, 26, 15-25. Fukuda, M., Iehara, T., & Matsumoto, M. (2003). Carbon stock estimates for sugi and hinoki forests in Japan. Forest Ecology and Management, 184, 1-16. Guan, B. T., Huang, Z. B., & Chung, N. J. (2003). Possible impacts of climate change on potential tree plant forms of a mountain region in central Taiwan. Taiwania, 48(4), 259-272. Harmon, M. E., & Marks, B. (2002). Effects of silvicultural practices on carbon stores in Douglas- fir—western hemlock forests in the Pacific Northwest, USA.: results from a simulation model. Canadian Journal of Forest Research, 32, 863-877. Hayes, J. P., Chan, S. S., Emmingham, W. H., Tappeiner, J. C., Kellogg, L. D., & Bailey, J. D. (1997). Wildlife response to thinning young forests in the Pacific Northwest. Journal of Forestry, 95(8), 28-33. Heikkilä, J., Sirén, M., & Äijälä, J. O. (2007). Management alternatives of energy wood thinning stands. Biomass and Bioenergy, 31, 255-266. Helms, J. A. (1998). The Dictionary of Forestry. Bethesda, MD: Society of American Forests. Hertz, D. B., & Thomas, H. (1983). Risk Analysis and Its Application. New York: N. Y.: Wiley. Hillier, F. S., & Lieberman, G. J. (2001). Introduction to Operation Research (7th ed.). New York: N. Y.: McGraw-Hill. Homeyack, J. A., Harrison, D. J., & Krohn, W. B. (2005). Long-term effects of precommercial thinning on small mammals in northern Maine. Forest Ecology and Management, 205, 43-57. Hotvedt, J. E. (1983). Application of linear goal programming to forest harvest scheduling. Southern Journal of Agricultural Economics, 15, 103-108. Huang, C. H., & D., K. G. (2001). The cost of sequestering carbon on private forest lands. Forest Policy and Economics, 2, 133-142. Ignizio, J. P. (1976). Goal programming and extensions. Lexington: Lexington Books. Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., & Lee, T. C. (1988). Introduction to the theory and practice of econometrics (2nd ed.). New York: Wiley. Kanninen, M., Péres, D., Montero, M., & Víquez, E. (2004). Intensity and timing of the first thinning of Tectona grandis plantations in Costa Rica: results of a thinning trial. Forest Ecology and Management, 203, 89-99. Kao, C., & Brodie, J. D. (1979). Determination of optimal thinning entry interval using dynamic programming. Forest Science, 25(4), 672-674. Kao, C., & Brodie, J. D. (1980). Simultaneous optimization of thinnings and rotation with continuous stocking and entry intervals. Forest Science, 26(3), 338-346. Kimmins, J. P. (1997). Predicting sustainability of forest bioenergy production in the face of changing paradigms. Biomass and Bioenergy, 13(4), 201-212. Klemperer, W. D. (1996). Forest Resource Economic and Finance. New York: McGraw-Hill. Larocque, G. R., Bhatti, J. S., Boutin, R., & Chertov, O. (2008). Uncertainty analysis in carbon cycle models of forest ecosystems: research needs and development of a theoretical framework to estimate error propagation. Ecological Modellin, 219, 400-412. Lee, S. M. (1972). Goal programming for decision analysis. Philadelphia: Auerback. Levitin, A. (2003). Introduction to the Design & Analysis of Algorithm. Boston: Addison-Wesley. Liao, C. N. (2009). Formulating the multi- segment goal programming. Computer and Industrial Engineering, 56, 138-141. Malinen, J., Pesonen, M., Maatta, T., & Kajanus, M. (2001). Potential harvest for wood fuels(energy wood) from logging residues and first thinning in Southern Finland. Biomass and Bioenergy, 20, 189-196. Matthews, J. (1989). Silvicultural Systems. Oxford: Oxford University Press. Matthews, R. W. (2001). Modelling of energy and carbon budgets of wood fuel coppice systems. Biomass and Bioenergy, 21, 1-19. McAllister, W. (2007). Data structures and algorithms using Java. Sudbury: Mass: Jones and Bartlett Publishers. McHale, M. R., McPherson, E. G., & Burke, I. C. (2007). The potential of urban tree plantings to be cost effective in carbon credit markets. Urban Forestry and Urban Greening, 6, 49-60. Mederski, P. S. (2006). A comparison of harvesting productivity and costs in thinning operations with and without midfield. Forest Ecology and Management, 224, 286-296. Mendoza, G. A., & Martins, H. (2006). Multi- criteria decision analysis in natural resource management: A critical review of methods and new modeling paradigms. Forest Ecology and Management, 230, 1-22. Nhantumbo, I., Dent, J. B., & Kowero, G. (2001). Goal programming: Application in the management of the miombo woodland in Mozambique. European Journal of Operational Research, 133, 310-322. Nurmi, J. (1999). The storage of logging residue for fuel. Biomass and Bioenergy, 17, 41-47. Oliveira, F. d., Volpi, N. M. P., & Sanquetta, C. R. (2003). Goal programming in a planning problem. Applied Mathematics and Computation, 140, 165-178. Peltoniemi, M., Palosuo, T., Monni, S., & Mäkipää, R. (2006). Factors affecting the uncertainty of sinks and stocks of carbon in Finnish forests soil and vegetation. Forest Ecology and Management, 232, 75-85. Plantinga, A. J., Mauldin, T., & Miller, D. J. (1999). An econometric analysis of the costs of sequestering carbon in forests. American Journal of Agricultural Economics, 81(4), 812-824. Pohjola, J., & Valsta, L. (2007). Carbon credits and management of Scots pine and Norway spruce stands in Finland. Forest Policy and Economics, 9, 789-798. Richards, K., & Stokes, C. (2004). A review of forest carbon sequestration cost studies: a dozen years of research. Climatic Change, 63(1/2), 1-48. Río, M. d., Barbeito, I., Bravo-Oviedo, A., Calama, R., Cañellas, I., Herrero, C., & Bravo, F. (2008). Carbon sequestration in Mediterranean pine forests. In K. Gadow, T. Pukkala & M. Tomé (Eds.), Managing Forest Ecosystems: The Challenge of Climate Change (Vol. 17, pp. 221-245). London: Springer. Romero, C. (1991). Handbook of critical issues in goal programming. Oxford: Pergamon. Salas, C., LeMay, V., Núñez, P., Pacheco, P., & Espinosa, A. (2006). Spatial pattern in an old-growth Nothofagus obliqua forest in south-central Chile. Forest Ecology and Management, 231, 38-46. Schlamadinger, B., & Marland, G. (1996). The role of forest and bioenergy strategies in the global carbon cycle. Biomass and Bioenergy, 10(5), 275-300. Schlamadinger, B., Spitzer, J., Kohlmaier, G. H., & Ludeke, M. (1995). Carbon balance of bioenergy from logging residues. Biomass and Bioenergy, 8(4), 221-234. Schoene, D., & Netto, M. (2005). The Kyoto Protocol: what does it mean for forests and forestry? Unasylva, 222(56), 3-10. Sheeran, K. A. (2006). Forest conservation in the Philippines: A cost- effective approach to mitigating climate change. Ecological Economy, 58, 338-349. Sorensen, C. D., Finkral, A. J., Kolb, T. E., & Huang, C. H. (2011). Short- and long-term effects of thinning and prescribed fire on carbon stocks in ponderosa pine stands in northern Arizona. Forest Ecology and Management, 261, 460-472. Sullivan, B. W., Kolb, T. E., Hart, S. C., Kaye, J. P., Dore, S., & Montes-Helu, M. (2008). Thinning reduces soil carbon dioxide but not methane flux from southwestern USA ponderosa pine forests. Forest Ecology and Management, 255, 4047-4055. Swisher, J. N. (1991). Cost and performance of CO2 storage in forestry projects. Biomass and Bioenergy, 1(6), 317-328. Tamiz, M., Jones, D. F., & Eldarzi, E. (1995). A review of goal programming and its application. Annals of Operation Research, 58, 39-54. Vesterdal, L., Dalsgaard, M., Felby, C., Raulund-Rasmussen, K., & Jørgensen, B. B. (1995). Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands. Forest Ecology and Management, 77(1-3), 1-10. Weintraub, A., & Romero, C. (2006). Operations research models and the management of agricultural and forestry resources: a review and comparison. Interfaces, 36(5), 446-457. Worrell, R., & Hampson, A. (1995). The influence of some foret operations on the sustainable management of forest soils—a review. Forestry, 62, 62-85. Yanai, R. D., Twery, M. J., & S, L. S. (1998). Woody understory response to changes in overstory density: Thinning in Allegheny hardwoods. Forest Ecology and Management, 102(1), 45-60. Yin, Y., Wu, Y., & Bartell, S. M. (2009). A spatial simulation model for forest succession in the upper Mississippi river floodplain. Ecological Complexity, 6, 494-502. Yousefpour, R., & Hanewinkel, M. (2009). Modelling of forest conversion planning with an adaptive simulation- optimization approach and simultaneous consideration of the values of timber, carbon and biodiversity. Ecological Economics, 68, 1711-1722. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10077 | - |
| dc.description.abstract | 對森林經營者而言,選取適當工具規劃可達成多目標森林經營的疏伐作業並非易事。本研究旨在改善複選目標規劃技術之求解效率並探討其相關技術於疏伐減碳等多目標森林經營之適用性。在確認疏伐作業的成本效能實屬可行後,本研究首先以二元搜尋演算法結合複選目標規劃法,提出三階複選目標規劃法改良複選規劃法之求解效率,並以可供檢證之加拿大多目標森林經營案例比較兩者在多目標森林經營之求解效率。接著,利用多段目標規劃法配合線性規劃法,同時將疏伐面積及疏伐程度作為決策變數,以此建置新竹林管處柳杉人工林疏伐減碳規劃模型並探討該方法的適用性。確認三種方法在林業經營規劃可行後,本研究整合三種方法提出新竹柳杉人工林之最適疏伐減碳多目標規劃。
由加拿大多目標森林經營案例之驗證結果可知,複選目標規劃法相較於目標規劃法可迅速協助森林經營者找出最適經營期程,但目標值設定偏差則可能無法找到較佳解。三階複選目標規劃法則可在擴增搜尋範圍後,以每次運算減少一半搜尋範圍的方式,避免純粹使用複選目標規劃程式求解時的設定與比較,以有效找到較佳解。多段目標規劃法配合線性規劃法建置之新竹林管處人工林疏伐減碳模型研究結果顯示,該方法可一次模擬768種疏伐組合並找出最適疏伐期程以達到最大化碳吸存量的目標。本研究最後整合三階複選目標規劃法及多段目標規劃法進行新竹林區管理處之疏伐減碳等多目標規劃。研究結果指出,森林經營者應用此二方法可避免設定多種疏伐制度及目標值組合的模擬與比較,迅速找到能達成碳吸存、就業機會及土壤保護經營目標之最適疏伐期程。 | zh_TW |
| dc.description.abstract | It is not an easy task for forest managers to choose proper techniques to plan an appropriate thinning schedule for multiple forest management. The purpose of this paper is to improve the efficiency of multi-choice goal programming (MCGP) in searching better solutions and discuss the application of its related techniques toward various forest management problems. After confirming the feasibility of thinning in by cost-effectiveness analysis, the 3-level MCGP is firstly proposed to complete the insufficiency of the MCGP technique by combining binary search algorithm with MCGP and verify its efficiency by a credible Canadian multiple forest management case. Second, the application of combining multi-segment goal programming (MSGP) with linear programming to take both thinned area and thinning intensity as decision variables is evaluated by building a model of reducing carbon by thinning for artificial Sugi. in Hsinchu Forest District. Finally, both three techniques is applied to propose a thinning schedule for Hsinchu Forest District to achieve multiple forest management when carbon reduction is considered.
The results show that MCGP can rapidly help forest managers to search for a proper planning horizon for Canadian multiple forest management case. But, forest managers may miss a better ideal solution while the set target goal values are far from the best ideal solution. After expending the search range, 3-level MCGP can reduce the search range by half in each run and avoid the number of comparison in MCGP method. Second, the model built by MSGP with linear goal programming indicates that 768 times of simulation can be finished in just one run and still get the appropriate thinning schedule to maximize the carbon sequestration. Finally, the 3-level MCGP and LP are applied to build a model for artificial Sugi. age-classes in Hsinchu Forest District to plan an appropriate thinning schedule for multiple forest management when carbon reduction is considered. The results show that these two techniques can reduce many simulations and comparisons in various thinning regimes and combinations of target goal values to plan an appropriate thinning schedule to achieve the expected carbon sequestration, jobs and soil protection goals. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T21:00:16Z (GMT). No. of bitstreams: 1 ntu-100-D93625002-1.pdf: 2813250 bytes, checksum: f9f25f7edcdc1d8c74d83b9d6ddaf491 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 目錄
謝誌 I 中文摘要 III Abstract IV 第壹章、緒論 1 一、研究背景 1 二、研究流程 5 第貳章、文獻回顧 7 一、疏伐之減碳效果 7 二、碳吸存之成本效能 12 三、數學規劃法在林業經營之應用 14 第參章、研究方法 19 一、研究架構 19 二、研究案例 22 三、分析技術 24 (一)複選目標規劃法 24 (二)多段目標規劃法 28 (三)蒙地卡羅模擬法 29 第肆章、三階複選目標規劃法之研究 31 一、期望目標值設定概念之探討 31 二、三階複選目標規劃法之設定 33 三、三階複選目標規劃法設定步驟 36 第伍章、疏伐成本效能及不確定性評估 38 一、蒙地卡羅模擬模型設定 38 二、模型參數設定 40 三、成本效能指數與風險分析 42 四、小結 45 第陸章、MCGP及3-level MCGP於森林經營之應用 46 一、加拿大多目標森林經營案例 46 二、MCGP決策最適經營期程之效率 49 三、MCGP求取最適經營期程之較佳解 51 四、3-level MCGP、GP及MCGP之求解效率比較 53 五、3-level MCGP及GP之林地配置比較 58 六、小結 59 第柒章、多段目標規劃在疏伐規劃之應用 60 一、新竹林管處人工林案例 60 二、疏伐減碳模型設定 62 (一)目標式及限制式設定 63 (二)疏伐後生長率 66 三、最大碳吸存目標之最適疏伐規劃 68 四、最終蓄積 70 五、小結 71 第捌章、新竹林管處柳杉林減碳多目標規劃方案 72 一、目標值及目標式設定 72 (一)碳吸存目標 72 (二)就業機會目標及目標式 72 (三)土壤沖蝕控制目標及目標式 74 二、多目標森林經營之最適疏伐規劃 76 三、小結 80 第玖章、結果與討論 81 第拾章、參考文獻 84 第拾壹章、附錄 93 表目錄 表2-3-1、DP、LP及GP之比較 17 表5-2-1、不同疏伐程度之疏伐木收穫 40 表5-2-2、55年生之林分蓄積推估 40 表5-3-1、不同疏伐程度的減碳效果 42 表5-3-2、不同疏伐的減碳成本效能指數 43 表5-3-3、不同疏伐之成本效能指數之累積機率 44 表6-1-1、林地利用政策 47 表6-1-2、加拿大案例之期望目標值及研究結果 48 表6-2-1、最適經營期程決策 50 表6-3-1、MCGP求取之最適經營期程較佳解 52 表6-4-1、三階複選目標規劃之目標值設定及求得解 54 表6-4-2、三階複選目標規劃及目標規劃求得解之比較 56 表6-4-3、任意設定目標值並利用MCGP求解 57 表6-5-1、林地配置的改變 58 表7-1-1、新竹林管處各齡級之林況 61 表7-2-1、不同齡級在各期經不同程度疏伐後之生長率 67 表7-3-1、最適疏伐規劃之林地配置及碳吸存量 69 表8-1-1、各疏伐作業細項之工資及效率 73 表8-1-2、不同疏伐程度的土壤沖蝕增量 75 表8-2-1、三階複選規劃法之計算過程 76 表8-2-2、碳吸存等多目標森林經營之疏伐期程規劃與產出 79 圖目錄 圖1-2-1、研究流程 6 圖3-1-1、研究架構 21 圖3-3-1、複選目標規劃法之求解概念 27 圖4-1-1、複選目標規劃法之目標值設定偏差問題 32 圖4-2-1、三階複選規劃法之求解概念 35 圖6-4-1、三階複選目標規劃過程中各目標的目標值改變比率 55 | |
| dc.language.iso | zh-TW | |
| dc.title | 三階複選目標規劃法於森林疏伐減碳規劃之研究 | zh_TW |
| dc.title | A Study on 3-level Multi-choice Goal Programming for Carbon Reduction by Forest Thinning | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭祈全,汪大雄,馮豐隆,謝雨生,張錦特 | |
| dc.subject.keyword | 森林經營,複選目標規劃,森林疏伐,碳吸存,多段目標規劃, | zh_TW |
| dc.subject.keyword | forest management,multi-choice goal programming,forest thinning,carbon sequestration,multi-segment goal programming, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-07-22 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 2.75 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
