請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10069完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 丁宗蘇 | |
| dc.contributor.author | Chieh Tien | en |
| dc.contributor.author | 田婕 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:59:42Z | - |
| dc.date.available | 2011-08-01 | |
| dc.date.available | 2021-05-20T20:59:42Z | - |
| dc.date.copyright | 2011-08-01 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-22 | |
| dc.identifier.citation | Adams, J., Green, W. and Zhang, Y. (2008) Leaf margins and temperature in the North American flora: Recalibrating the paleoclimatic thermometer. Global and Planetary Change. 60:523–534.
Aizen, M. A. and Ezcurra, C. (2008) Do leaf margins of the temperate forest flora of southern South America reflect a warmer past? Global Ecology and Biogeography. 17:164–174. Ash, A. W., Ellis, B., Hickey, L. J., Johnson, K. R., Wilf, P. and Wing, S. L. (1999) Manual of leaf architecture: morphological descriptions and categorization of dicotyledonous and net–veined monocotyledonous angiosperms. Smithsonian Institution, Washington, DC. 67pp. Bailey, I. W. and Sinnott, E. W. (1915) A botanical index or cretaceous and tertiary climate. Science. 41:831–834. Bailey, I. W. and Sinnott, E. W. (1916) The climatic distribution of certain types of Angiosperm leaves. Am. J. Bot. 3:24–39. Baker–Brosh, K. F. and Peet, R. K. (1997) The ecological significance of lobed and toothed leaves in temperate forest trees. Ecology. 78:1250–1255. Burnham, R. J. and Johnson, S. Y. (1994) Paleoecological and floristic heterogeneity in the plant–fossil record: an analysis based on the Eocene of Washington. United states government printing office. 36pp. Canny, M. J. (1990) What becomes of the transpiration stream. New Phytologist. 114:341–368. Chaloner, W. G. and Creber, G. T. (1990) Do fossil plants give a climatic signal? Journal of the Geological Society. 147:343–350. Chen, Tsing-Chang, Shih-Yu Wang, Wan-Ru Huang, Ming-Cheng Yen. (2004) Variation of the East Asian summer monsoon rainfall. Journal of Climate. 17:744–762. Christophel and Blackburn. (1978) The Tertiary megafossil flora of Maslin Bay, South Australia: a preliminary report. Alcheringa. 2:3ll–319. Dilcher, D.L. (1973) A Paleoclimatic Interpretation of the Eocene Floras of Southeastern North America. In: A. Graham, (Editor) Vegetation and Vegetational History oi Northern Latin America. Elsevier, Amsterdam. 39–59. Dolph, G. E. (1970) A comparison of local and regional leaf characteristics in Indiana. Proceedings of the Indiana Academy of Science. 80:99–103. Dolph, G. E. (1979) Variation in leaf margin with respect to climate in Costa Rica. Bulletin of the Torrey Botanical Club. 106:104–109. Dolph, G. E. (1984) Leaf form of the woody plants of Indiana as related to environment. Being alive on land. Tasks for Vegetation Science. 13:51–61. Dolph, G. E. and Dilcher, D. L. (1979) Foliar physiognomy as an aid in determining paleoclimate. Palaeontographica Abteilung B. 170:151–172. Feild, T. S., Sage, T. L., Czerniak, C. and Iles, W. J. D. (2005) Hydathodal leaf teeth of Chloranthus japonicus (Chloranthaceae) prevent guttation–induced flooding of the mesophyll. Plant Cell and Environment. 28:1179–1190. Gentry, A. H. (1969) A comparison of some leaf characteristics of tropical dry forest and tropical wet forest in Costa Rica. Turrialba. 19:419–28. Greenwood D. R. (2007) Fossil angiosperm leaves and climate: from Wolfe and Dilcher to Burnham and Wilf. Courier Forschungsinstitut Senckenberg. 258: 95–108. Greenwood, D. R., Wilf, P., Wing, S. L. and Christophel, D. C. (2004) Paleotemperature estimation using leaf–margin analysis: is Australia different? Palaios. 19:129–142. Gregory-Wodzicki, K.M. (2000) Relationships between leaf morphology and climate, Bolivia: Implications for estimating paleoclimate from fossil floras. Paleobiology. 26: 668–688. Grossman, D. H., Faber-Langendoen, D., Weakley, A.S., Anderson, M., Bourgeron, P., Crawford, R., Goodin, K., Landaal, S., Met- zler, K., Patterson, K., Pyne, M., Reid, M. and Sneddon, L. (1998) International classification of ecological of communities: terrestrial vegetation of the United States. Volume I. The National Vegetation Classification System: development, status, and applications. The Nature Conservancy, Arlington, VA, USA. 1–126. Hickey, L. J. and Wolfe, J. A. (1975) The bases of angiosperm phylogeny: vegetative morphology. Annals of the Missouri Botanical Garden. 62:538–589. Hinojosa, L. F., Perez, F., Gaxiola, A. and Sandoval, I. (2010) Historical and phylogenetic constraints on the incidence of entire leaf margins: insights from a new South American model. Global Ecology and Biogeography. 20:380–390 Holdridge, L. R. (1967) Life Zone Ecology. San Jose, Costa Rica: Tropical Science Center. 54pp. Larsen, K. (1995) Flora of Taiwan. Nordic Journal of Botany. 15:574–574. Lin, S. H., Liu, C. M., Huang, W. C., Lin, S. S., Yen, T. H., Wang, H. R., Kuo, J. T. and Lee, Y. C. (2010) Developing a yearly warning index to assess the climatic impact on the water resources of Taiwan, a complex–terrain island. Journal of Hydrology. 390:13–22. Martinetto, E., Uhl, D. and Tarabra, E. (2007) Leaf physiognomic indications for a moist warm–temperate climate in NW Italy during the Messinian (Late Miocene). Palaeogeography, Palaeoclimatology, Palaeoecology. 253:41–55. Roth, A., Mosbrugger, V., Belz, G. and Neugebauer, H. J. (1995) Hydrodynamic modeling study of angiosperm leaf venation types. Botanica Acta. 108:121–126. Royer, D. L. and Wilf, P. (2006) Why do toothed leaves correlate with cold climates? Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences. 167:11–18. Royer, D. L., Kooyman, R. M., Little, S. A. and Wilf, P. (2009) Ecology of leaf teeth: a multi–site analysis from an Australian subtropical rainforest. American Journal of Botany. 96:738–750. Royer, D. L., Wilf, P., Janesko, D. A., Kowalski, E. A. and Dilcher, D. L. (2005) Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record. American Journal of Botany. 92:1141–1151. Schuepp, P. (1993) Tansley review No. 59. Leaf boundary layers. New Phytologist. 125:477–507. Shelford, V. E. (1913) Animal communities in temperate, America. University of Chicago Press, Chicago,Illinois, USA. 375pp. Su, H. (1984a) Studies on the climate and vegetation types of the natural forests in Taiwan (I): analysis of the variations on climatic factors. Quarterly Journal of Chinese Forestry. 17:1–14. Su, H. (1984b) Studies on the climate and vegetation types of the natural forests in Taiwan (II): altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry. 17:57–73. Su, H. (1985) Studies on the climate and vegetation types of the natural forests in Taiwan (III) A scheme of geographical climatic regions. Quarterly Journal of Chinese Forest. 18:33–44. Su, T., Xing, Y. W., Liu, Y. S., Jacques, F. M. B., Chen, W. Y., Huang, Y. J. and Zhou, Z. K. (2010) Leaf margin analysis: a new equation from humid to mesic forests in China. Palaios. 25:234–238. Takhtajan, A. (1986) Floristic regions of the world. Engl. edn. Translated by T. S. Crovello, ed. by Arthur Cronquist, Univ. Calif. Press Berkeley. 522 pp. Taylor, D.W. and Hickey L.J. (1996) Flowering Plant Origin, Evolution, and Phylogeny. Chapman and Hall, New York. 402 pp. Traiser, C., Klotz, S., Uhl, D. and Mosbrugger, V. (2005) Environmental signals from leaves-a physiognomic analysis of European vegetation. New Phytologist. 166:465–484. Wilf, P. (1997) When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology. 23:373–390. Wilf, P., Wing, S. L., Greenwood, D. R. and Greenwood, C. L. (1998) Using fossil leaves as paleoprecipitation indicators: An Eocene example. Geology. 26:203–206. Wing, S. L. and Greenwood, D. R. (1993) Fossils and fossil climate – the case for equable continental interiors in the Eocene. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 341:243–252. Wolfe, J. (1979) Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the northern hemisphere and Australasia. US Geological Survey Professional Paper. 1106: 1–37. Wolfe, J. (1993) A method of obtaining climatic parameters from leaf assemblages. US Geological Survey bulletin (USA). 71 pp. Yang, J., Wang, Y. F., Spicer, R. A., Mosbrugger, V., Li, C. S. and Sun, Q. G. (2007) Climatic reconstruction at the Miocene Shanwang basin, China, using leaf margin analysis, clamp, coexistence approach, and overlapping distribution analysis. American Journal of Botany. 94:599–608. 丁憲中、應紹舜 (2005) 西勢水庫集水區植群分析之研究,國立臺灣大學生物資源暨農學院實驗林研究報告,19(1):1–16。 王中原 (2000) 臺灣北部內雙溪流域低海拔亞熱帶闊葉森林之次級演替,93頁。 王仁義 (2006) 濁口溪流域植群類型與環境因子之相關性研究,國立中山大學生物科學系碩士論文,65頁。 呂金誠 (2005) 雪山坑溪野生動物重要棲息環境植群監測研究,行政院農業委員會林務局委託研究計畫系列,94–03–8–01號,78頁。 呂福原、歐辰雄 (2001) 丹大地區植群生態調查(第二年),行政院農業委員會林務局保育研究系列,90–03號,144頁。 周富三 (2004) 台灣西南部荖濃溪下游次生林與人工林之植物組成於序列植被類型,國立台灣大學生物資源暨農學院實驗林研究報告,18(2):115–127。 周富三 (2006) 臺灣西南部楠梓仙溪中上游集水區常綠闊葉林植群生態之研究,國立中山大學生物科學系研究所博士論文,96頁。 易湘玲 (2005) 太麻里林試所實驗林之植群研究,國立中山大學生物科學系研究所碩士論文,60頁。 林旭宏 (1988) 南澳闊葉樹保護區植群生態之研究,國立台灣大學森林學研究所碩士論文,118頁。 林建融 ( 2009) 台灣植群多樣性組成及分布之探討,國立台灣大學森林學研究所碩士論文,127頁。 林勝國 (2009) 關刀溪森林生態系干擾地植群更新之研究,國立中興大學生命科學系研究所碩士論文,93頁。 林逸盈 (2004) 八掌溪上游地區闊葉林之植群研究,國立中山大學生物科學系碩士論文,68頁。 邱清安、呂金誠、林博雄、廖敏君 (2005) 臺灣地區Holdridge生命帶之繪製,國家公園學報,15(1):61–78。 邱清安、林鴻志、廖敏君、曾彥學、歐辰雄、呂金誠、曾喜育 (2008) 臺灣潛在植群形相分類方案,林業研究季刊,30(4):89–112。 柳榗 (1975) 台灣紅檜扁柏林群落生態之研究,台灣農學會報,92:134–178。 洪淑華 (2007) 和平北溪森林植物社會沿海拔梯度之物種多樣性研究,國立宜蘭大學自然資源學系研究所碩士論文,109頁。 張道明 (2007) 恆春半島老佛山植群生態之研究,國立屏東科技大學森林系研究所碩士論文,71頁。 陳子英、余秋豐、宋梧魁、程宗德 (2002) 宜蘭東北區之山地植群多變數分析,國立臺灣大學生物資源暨農學院實驗林研究報告,16(3):201–214頁。 陳和田、李金玲、鄭忠財、呂福原 (2009) 沙里仙溪北玉山植群之研究,中華林學季刊,42:1–22。 陳俊銘 (2004) 臺灣東北部北勢溪上游之植群分析,國立台灣大學森林學研究所碩士論文,92頁。 黃順成 (2009) 鹿寮水庫植群與整合性地理資訊監測系統建立之研究,國立中興大學生命科學系研究所碩士論文,104頁。 黃騰禾 (2009) 草嶺地區之植群,國立中興大學生命科學系研究所碩士論文,72頁。 楊遠波 (2006) 太魯閣國家公園陶塞溪流域植物資源基礎調查,內政部營建署太魯閣國家公園管理處,58頁。 楊寶霖 (1976) 紅檜台灣扁柏林型之林份材積混淆樹種更新與林分分布之統計研究,台灣林業,2(7):6–18。 葉慶龍 (2003) 里龍山植群生態調查(第二年),行政院農業委員會林務局保育研究系列,92–14號,96頁。 劉宇軒 (2004) 臺灣海岸山脈北段森林植物群落之研究,國立東華大學自然資源管理研究所碩士論文,71頁。 劉棠瑞、蘇鴻傑 (1989) 森林植物生態學,臺灣商務印書館出版,462頁。 劉業經 (1972) 台灣木本植物誌,台中:中興大學農學院出版委員會,887頁。 歐辰雄、呂金誠 (2003) 雪霸國家公園植群生態調查–尖石地區,內政部營建屬雪霸國家公園管理處委託研究報告,80頁。 歐辰雄、林鴻志 (2004) 雪霸國家公園植群生態調查–大小劍地區,內政部營建屬雪霸國家公園管理處委託研究報告,116頁。 鄭忠財 (2009) 泰安橫龍山地區植群生態研究,國立嘉義大學農學院林業暨自然資料研究所碩士論文,148頁。 鍾國基 (2005) 萬大溪濱溪植群生態研究,國立嘉義大學農學院林業暨自然資料研究所碩士論文,130頁。 蘇聲欣 (2001) 臺北近郊低海拔闊葉林之研究,國立台灣大學植物學研究所碩士論文,124頁。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10069 | - |
| dc.description.abstract | 葉緣分析是探討植物相的物種全緣率與年均溫之正相關的單變量分析,常用於推估古氣溫,或延伸探討葉緣形態與其他環境條件的關聯。本研究利用台灣26篇已發表的植群文獻調查之844個原生闊葉林樣區,配合年均溫、年降水、最冷季降水以及最暖季降水資料,進行全台灣及其六個地理氣候區的葉全緣率與年均溫及降水的迴歸分析,並比較在樣區尺度、平均樣區尺度以及區域尺度下的葉緣分析結果,結果顯示:(1)在樣區尺度下,全緣率與年均溫皆呈極顯著正相關;全緣率與部份降水因子亦有顯著相關,惟相關度並不高,對於多變量迴歸結果貢獻亦不大。(2)各空間尺度的葉緣分析均顯示全緣率與年均溫成正相關。然而在樣區尺度時,由於樣區面積太小,分布也不甚平均,導致迴歸式之相關度並不高。以集成樣區計算平均全緣率可以避免前述問題,但全緣率有隨集成樣區擴大而遞減的趨勢,須至少以15個文獻樣區為集成樣區(面積約0.5 ha),迴歸分析結果才趨於穩定。(3)僅以物種分布極端值來推估之區域尺度資料,其葉緣分析結果無異於大規模集成樣區,因此葉緣分析應可借助標本資料,增加分析物種數,同時解決樣區不足的問題。(4)由於台灣具特殊的生態環境與植物播遷歷史,台灣各尺度葉緣分析迴歸式都顯著異於國外其他已發表文獻。(5)除資料不足的東南區外,各分區的全緣率與年均溫均有顯著正相關,且東北、西北、中西區的迴歸式斜率顯著小於西南區及東區,然而分區樣區數不足及群落分布易干擾分析結果,實際的生態差異仍需進一步分析。綜合以上,台灣森林的植物葉全緣率與年均溫及降水因子的關聯深具研究潛力,可提供目前還十分缺乏的東亞葉緣分析之相關資訊。 | zh_TW |
| dc.description.abstract | Leaf-margin analysis (LMA) is an univariate regression analysis based on the positive correlation between the ratio of woody dicotyledonous species with entire leaf margins and mean annual temperature, which is often applied to estimate paleo-climate. I used data of 844 plots from 26 native vegetation investigation reports in Taiwan and four climatic variables, mean annual temperature (MAT), annual precipitation, and precipitation of coldest and warmest season, to analyze the ratio of entire leave species (REL) and its correlation with MAT and precipitation in Taiwan and its six biogeoclimatic regions at habitat, mean habitat, and regional scales. The results indicate that: (1) at habitat scale, REL had significantly positive correlation with MAT and some precipitation factors, but the correlations with precipitation factors were much weaker. (2) REL was positively correlated with MAT at all scales. At habitat scale, because the plots were with small area and uneven distribution, REL of plots showed great variation and had weak correlation with MAT. Compiling data from multiple plots, preferably at least 15 plots (about 0.5 ha in total area), could yield consistent results. (3) The LMA regression model from larger multiple plots data was similar with regional scale LMA, indicating that using extreme distribution data could be a reliable data source for LMA. Therefore, using specimen information could compensate the shortcomings caused by insufficient and uneven sampling. (4) LMA regression models in this study all significantly differed from results in other countries. This may be due to the unique ecological environment and plant dispersal history in Taiwan. (5) At habitat scale, MAT was significantly positive correlated with REL in all biogeoclimatic regions. But the Northeast, Northwest and Central-west regions had significantly lower slopes of regression than Southwest and East regions. Due to uneven and limited plots in each region, further studies are needed to examine the detail differences among the biogeoclimatic regions. In conclusion, LMA has high potential in Taiwan and results will fill the current information void in East Asia. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:59:42Z (GMT). No. of bitstreams: 1 ntu-100-R98625017-1.pdf: 3660812 bytes, checksum: 05387950e28af39ec6e134b7f33904dc (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II 目次 IV 圖次 VII 表次 VIII 壹、前言 1 一、葉緣分析起源 1 二、葉緣分析與葉相分析 2 三、葉緣分析之研究前提 3 1. 水分及年均溫的變異限制 3 2. 植物地理及分類的相似性 4 3. 物種數量以及樣區面積的影響 4 4. 試驗資料的地理分布均勻度 5 四、葉緣分析之相關生理解釋 5 1. 鋸齒葉與落葉性的關聯 5 2. 鋸齒葉與氣體交換速率及光合作用的關聯 6 五、氣溫之外的變因對葉緣分析的影響 7 六、台灣的葉緣分析研究潛力 8 1. 台灣森林的葉全緣率與環境降水的關聯 9 2. 台灣森林不同空間尺度的葉全緣率與環境氣溫的關聯 9 3. 台灣森林不同空間尺度的葉緣分析結果與國外研究之比較 10 4. 台灣各地理氣候區的樣區尺度葉緣分析 10 貳、材料與方法 11 一、研究區域 11 二、研究方法 12 1. 資料數化 12 2. 資料分析 13 參、結果 18 一、樣區尺度下全緣率與環境因子之關係 18 1. 綜合樣區 18 2. 東北區 18 3. 西北區 19 4. 中西區 19 5. 西南區 19 6. 東區結果 20 二、樣區尺度、平均樣區尺度以及區域尺度之葉緣分析 20 1. α樣區尺度 20 2. α-n平均樣區尺度 21 3. γ區域尺度之葉緣分析線性迴歸結果 22 三、樣區規模對葉緣分析的影響 22 四、台灣與國外LMA研究之比較 23 五、台灣樣區尺度之氣候分區葉緣分析比較 23 肆、討論 25 一、台灣森林之樣區尺度葉全緣率與環境降水的關聯 25 二、台灣森林不同空間尺度的葉緣分析結果及迴歸式之差異比較 25 1. 葉緣分析迴歸式的解釋能力差異 25 2. 各尺度的葉緣分析迴歸式差異 26 3. 區域尺度的葉緣分析結果以及應用可能 27 三、台灣森林不同空間尺度的葉緣分析與國外研究之比較 28 四、台灣各地理氣候區的樣區尺度葉緣分析 29 伍、結論 31 陸、參考文獻 32 附錄、植物名錄 61 | |
| dc.language.iso | zh-TW | |
| dc.title | 台灣森林的葉全緣率與年均溫、降水之關聯 | zh_TW |
| dc.title | Leaf Margins and Their Relationships with Annual Temperature and Precipitation in Forests of Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江智民,林宜靜,鹿兒陽,謝長富 | |
| dc.subject.keyword | 迴歸分析,溫度梯度,海拔,鋸齒葉,台灣, | zh_TW |
| dc.subject.keyword | Regression analysis,temperature gradient,altitude,toothed leaves,Taiwan, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-07-25 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 森林環境暨資源學研究所 | zh_TW |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 3.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
