請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100602完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | zh_TW |
| dc.contributor.advisor | Hung-Yu Wei | en |
| dc.contributor.author | 戴安廣 | zh_TW |
| dc.contributor.author | An-Kuang Tai | en |
| dc.date.accessioned | 2025-10-08T16:04:55Z | - |
| dc.date.available | 2025-10-09 | - |
| dc.date.copyright | 2025-10-08 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | [1] Road Vehicles—Vehicle to Grid Communication Interface—Part 20: Network and Application Protocol Requirements, 2022.
[2] D. Abd Eldjalil Chekired, S. Dhaou, L. Khoukhi, and H. T. Mouftah. Dynamic Pricing Model for EV Charging-Discharging Service Based on Cloud Computing Scheduling. In Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), pages 1010–1015, Valencia, Spain, June 2017. [3] A. Alnoman, S. K. Sharma, and W. Ejaz. Emerging Edge Computing Technologies for Distributed Internet of Things (IoT) Systems, Oct. 2018. [4] S. J. Ankar and P. K.P. Optimal Sizing and Energy Management of Electric Vehicle Hybrid Energy Storage Systems With Multi-Objective Optimization Criterion. IEEE Transactions on Vehicular Technology, 73(8):11082–11096, Aug. 2024. [5] P. Biswas, A.Rashid, A.K.M.A.Habib,M.Mahmud,S.M.A.Motakabber,S.Hos sain, M. Rokonuzzaman, A. H. Molla, Z. Harun, M. M. H. Khan, W.-H. Cheng, and T. M. T. Lei. Vehicle to Grid: Technology, Charging Station, Power Trans mission, Communication Standards, Techno-Economic Analysis, Challenges, and Recommendations. World Electric Vehicle Journal, 16(3), 2025. [6] E. Bozkaya-Aras. Optimizing Service Migration in IoT Edge Networks: Digital Twin-Based Computation and Energy-Efficient Approach. In Proc. IEEE Wireless Communications and Networking Conference (WCNC), pages 1–6, Milan, Italy, Mar. 2025. [7] V. Chamola, A. Sancheti, S. Chakravarty, N. Kumar, and M. Guizani. An IoT and Edge Computing Based Framework for Charge Scheduling and EV Selection in V2G Systems. IEEE Transactions on Vehicular Technology, 69(10):10569–10580, Oct. 2020. [8] Y. Chiang, Y. Zhang, H. Luo, T.-Y. Chen, G.-H. Chen, H.-T. Chen, Y.-J. Wang, H.-Y. Wei, and C.-T. Chou. Management and Orchestration of Edge Computing for IoT: A Comprehensive Survey. IEEE Internet of Things Journal, 10(16):14307–14331, Aug. 2023. [9] R. Cárdenas, P. Arroba, J. Risco-Martín, and J. Moya. Modeling and Simulation of Smart Grid-Aware Edge Computing Federations. Cluster Computing, 26:719–743, 2022. [10] M. Escoto, A. Guerrero, E. Ghorbani, and A. A. Juan. Optimization Challenges in Vehicle-to-Grid (V2G) Systems and Artificial Intelligence Solving Methods. Applied Sciences, 14(12):5211, 2024. [11] G. Fischer, S. Poore, R. Alden, D. Lewis, and D. Ionel. Smart Systems Employ ing IoT Devices for Monitoring and Control of Electric Vehicle Residential Charging. In Proc. 13th International Conference on Renewable Energy Research and Applications (ICRERA), pages 1817–1822, Nagasaki, Japan, Nov. 2024. [12] E. Gümrükcü, J. R. A. Klemets, J. A. Suul, F. Ponci, and A. Monti. Decentralized Energy Management Concept for Urban Charging Hubs With Multiple V2G Aggregators. IEEE Transactions on Transportation Electrification, 9(2):2367–2381, June 2023. [13] A. Hussain and P. Musilek. Fairness and Utilitarianism in Allocating Energy to EVs During Power Contingencies Using Modified Division Rules. IEEE Transactions on Sustainable Energy, 13(3):1444–1456, July 2022. [14] Jayakumar, Deepalakshmi and N, Manickavalli and K, Dhatchayini and O, Ramkumar and R, Rajmohan. Enhancing Security and Trust Management in IoT-Driven Edge Computing Environment Using Ensemble Learning Techniques. In Proc.IEEE International Conference on Pervasive Computing and Social Networks (ICPCSN), pages 986–991, Salem, India, Mar. 2025. [15] O. Kolawole and I. Al-Anbagi. The Impact of EV Battery Cycle Life on Charge Discharge Optimization in a V2G Environment. In Proc. IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT), pages 1–5, Washington, DC, USA, Feb. 2018. [16] P. Kumar, H. K. Channi, R. Kumar, A. Rajiv, B. Kumari, G. Singh, S. Singh, I. F. Dyab, and J. Lozanović. A Comprehensive Review of Vehicle-to-Grid Integration in Electric Vehicles: Powering the Future. Energy Conversion and Management: X, X:100864, 2024. [17] Y.-C. Lee, Y. Chiang, and H.-Y. Wei. Edge Computing QoE Maximization in EV Parking Scenario. In Proc. IEEE 99th Vehicular Technology Conference (VTC2024-Spring), pages 1–5, Singapore, 2024. [18] T. Lehtola. Vehicle-to-Grid Applications and Battery Cycle Aging: A Review. Renewable and Sustainable Energy Reviews, 208:115013, 2025. [19] Y. Li, H. Su, X. Chen, J. Liu, and R. Shi. A V2G Scheduling Strategy Based on Electric Vehicle Users’ Willingness Model. In Proc. IEEE Conference on Energy Internet and Energy Systems Integration (EI2), pages 237–243, Taiyuan, China, Oct. 2021. [20] A. Madathodika, H. Shareef, P. Achikkulath, R. Errouissi, and A. Wahyudie. Multi Level Charging Strategy for EVs to Improve User Experience and Station Utilization. IEEE Transactions on Intelligent Transportation Systems, 25(9):11497–11508, Sept. 2024. [21] J. A. Martins and J. M. F. Rodrigues. Intelligent Monitoring Systems for Electric Vehicle Charging. Applied Sciences, 15(5):2741, Mar. 2025. [22] Q. N. Minh, V.-H. Nguyen, V. K. Quy, L. A. Ngoc, A. Chehri, and G. Jeon. Edge Computing for IoT-Enabled Smart Grid: The Future of Energy. Energies, 15(17):6140, 2022. [23] M. Murroni, M. Anedda, M. Fadda, P. Ruiu, V. Popescu, C. Zaharia, and D. Giusto. 6G—Enabling the New Smart City: A Survey. Sensors, 23(17):7528, 2023. [24] I. Nutkani, H. Toole, N. Fernando, and L. Andrew. Impact of EV Charging on Electrical Distribution Network and Mitigating Solutions–A Review. IET Smart Grid, 2024. [25] OKTE. Total DAM Results. Published Information of Day Ahead Market, 2025. [Online]. Available: https://www.okte.sk/en/short-term-market/published-information-of-dam/total-dam-results/. [26] K. Pan, C.-D. Liang, and M. Lu. Optimal Scheduling of Electric Vehicle Ordered Charging Considering Battery Degradation. Applied Energy (or relevant journal), 2024. [27] K. J. Prakash, S. Gobimohan, J. F. M. Rani, P. S. L. Mageshwari, I. Fawad, and G. Suganya. Edge Intelligent in IoT: Algorithms and Applications. In Proc. International Conference on Science, Technology, Engineering and Mathematics (ICONSTEM), pages 1–5, Chennai, India, Feb. 2024. [28] S. Rathore, P. K. Sharma, and H. Rathore. A Distributed Deep Learning Approach With Mobile Edge Computing for Next Generation IoT Networks Security. In Proc. World Conference on Communications and Computing (WCONF), pages 1–3, Raipur, India, Aug. 2023. [29] N. V. A. Ravikumar, R. S. S. Nuvvula, P. P. Kumar, N. H. Haroon, U. D. Butkar, and A. Siddiqui. Integration of Electric Vehicles, Renewable Energy Sources, and IoT for Sustainable Transportation and Energy Management: A Comprehensive Review and Future Prospects. In Proc. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), pages 505–511, Oshawa, ON, Canada, Sept. 2023. [30] M. Saha, S. S. Thakur, and A. Bhattacharya. Optimal Scheduling of Electric Vehicles: Leveraging Grid-to-Vehicle (G2V) and Vehicle-to-Grid (V2G) Prices: A Game-Theoretic Approach. In Proc. IEEE International Conference on Sustainable Energy Future Electric Transportation (SEFET), pages 1–6, Bhubaneswar, India, Jan. 2023. [31] D. Said, S. Cherkaoui, and L. Khoukhi. Advanced Scheduling Protocol for Electric Vehicle Home Charging with Time-of-Use Pricing. In Proc. IEEE International Conference on Communications (ICC), pages 6272–6276, Budapest, Hungary, June 2013. [32] M. Saxena, S. Srivastava, V. K. Dwivedi, R. Chitranshi, and P. K. Mishra. Minimizing End-to-End Latency in Edge Computing-Enabled IoT Networks Through Edge-to-Edge Resource Allocation. In Proc. IEEE International Conference on IoT, Communication and Automation Technology (ICICAT), pages 1512–1517, Gorakhpur, India, Jan. 2024. [33] A. Sharma, S. Shih, and D. Srinivasan. A Smart Scheduling Strategy for Charging and Discharging of Electric Vehicles. In Proc. IEEE Innovative Smart Grid Technologies- Asia (ISGT Asia), pages 1–6, Bangkok, Thailand, Nov. 2015. [34] E. Sortomme and M. A. El-Sharkawi. Optimal Charging Strategies for Unidirectional Vehicle‑to‑Grid. IEEE Transactions on Smart Grid, 2(1):131–138, 2011. [35] A. Tayri and X. Ma. Grid Impacts of Electric Vehicle Charging: A Review of Challenges and Mitigation Strategies. Energies, 18(14):3807, 2025. [36] A. Ullah, Fawad, A. Nadeem, M. Arif, M. M. Bashir, and W. Choi. 6G Internet-of-Things Assisted Smart Homes and Buildings: Enabling Technologies, Opportunities and Challenges. Internet of Things, 32:101658, July 2025. [37] U.S. Department of Energy. Vehicles-to-Grid Integration Assessment Report. Technical report, U.S. Department of Energy, Washington, DC, Jan. 2025. [38] J.-Y. Voon, Y. Chiang, C.-R. Jia, and H.-Y. Wei. Collaborative Vehicular Edge Computing Design for Delay-Sensitive Applications. In Proc. IEEE 99th Vehicular Technology Conference (VTC2024-Spring), pages 1–5, Singapore, 2024. [39] F. Wang, L. Jiao, K. Zhu, and L. Zhang. Online Edge Computing Demand Response via Deadline-Aware V2G Discharging Auctions. IEEE Transactions on Mobile Computing, 22(12):7279–7293, Dec. 2023. [40] J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, and P. Finamore. Cycle-Life Model for Graphite-LiFePO4 Cells. Journal of Power Sources, 196:3942–3948, Apr. 2011. [41] J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, and M. W. Verbrugge. Degradation of Lithium Ion Batteries Employing Graphite Negatives and Nickel–Cobalt–Manganese Oxide+Spinel Manganese Oxide Positives: Part I, Aging Mechanisms and Life Estimation. Journal of Power Sources, 269:937–948, Dec. 2014. [42] R. Wang, H. Min, W. Sun, R. Jiang, and Z. Liu. Real-Time Optimized Dispatching Control Strategy for EV V2G Based on Dynamic TOU Price. In Proc. 3rd International Conference on Energy and Electrical Power Systems (ICEEPS), pages 1236–1243, Guangzhou, China, 2024. [43] X. Xu, K. Li, F. Wang, Z. Mi, Y. Jia, and Y. Jing. A Multi-Timescale Response Capability Evaluation Model of EV Aggregator Considering Customers'Response Willingness. In Proc. IEEE Industry Applications Society Annual Meeting, pages 1–10, Detroit, MI, USA, Oct. 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100602 | - |
| dc.description.abstract | 隨著6G網路的到來與物聯網驅動的智慧社區快速興起,電動車正逐漸成為未來能源系統的核心組成。車輛對電網(V2G)技術使電動車能夠作為可動態與電網交換電力的移動儲能單元,從而提升整體能源靈活性與穩定性。然而,實務應用中仍面臨多項挑戰:缺乏協調的充放電會導致電網負載劇烈波動;電網資源容量有限;高熱應力下電池退化加速;以及集中式排程架構的通訊與運算延遲問題。為解決上述困境,本文提出一種結合物聯網與邊緣運算的兩階段電動車充放電排程框架。該框架首先在「成本最小化階段」中,聯合優化動態電價與溫度調整後之電池退化成本;接著在「基於代替最優解的平滑階段」中,於維持近似最優成本的前提下細化基線解以增強排程連續性;外層迭代機制則依據電池溫度模擬結果動態更新退化成本權重,確保決策與熱狀態一致。整個框架部署於階層化邊緣運算架構中,使社區控制節點能在低延遲且保護用戶隱私的條件下執行本地化優化。於真實家庭負載與電動車需求場景下的模擬結果顯示,相較於單階段平滑約束排程方法與僅進行成本優化的基線方法,所提兩階段方法在降低經濟成本、維護電池健康與提升電網穩定性方面展現更優的折衷效果。本研究成果突顯了結合物聯網、邊緣運算與先進優化技術,打造可擴展且具實務可行性的6G智慧社區V2G解決方案之潛力。 | zh_TW |
| dc.description.abstract | The advent of 6G networks and the proliferation of IoT-enabled smart communities are accelerating the deployment of electric vehicles (EVs) as integral components of future energy systems. Vehicle-to-Grid (V2G) technology enables EVs to act as mobile storage units that can dynamically exchange power with the grid, enhancing energy flexibility and stability. However, practical challenges remain, including grid load fluctuations due to uncoordinated charging, limited grid resource capacity, battery degradation under high thermal stress, and the latency limitations of centralized scheduling frameworks. To address these issues, this thesis proposes a novel two-phase EV charging and discharging scheduling framework integrated with IoT and edge computing architectures. The proposed method first formulates a cost minimization phase that jointly optimizes dynamic electricity cost and temperature-adjusted battery degradation cost. It then applies an alternative optima-based smoothing phase to refine the baseline solution for operational continuity while maintaining near-optimal cost performance. An outer iteration mechanism further updates degradation cost multipliers based on battery temperature simulation, ensuring thermal-consistent decision making. The framework is deployed within a hierarchical edge computing architecture, enabling community control nodes to perform localized optimization with low latency while preserving user data privacy. Simulation results under realistic household load and EV demand scenarios demonstrate that the proposed two-phase approach achieves superior trade-offs among economic cost reduction, battery health preservation, and grid stability enhancement compared to both single-phase smoothing-constrained scheduling and baseline cost-only optimization. These findings highlight the potential of combining IoT, edge computing, and advanced optimization to build scalable and practical V2G solutions for future 6G-enabled smart communities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-10-08T16:04:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-10-08T16:04:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi Denotation xiii Chapter 1 Introduction 1 Chapter 2 Related Work 9 2.1 Edge Computing Integrated V2G Frameworks 9 2.2 Key V2GScheduling Dimensions 10 Chapter 3 System Model 13 3.1 Scenario Description 14 3.2 System Architecture 15 3.3 Workflow 16 3.4 ISO 15118 Communication Standard 17 3.5 Core Mathematical Models 18 3.5.1 Dynamic Pricing Model 19 3.5.2 EV Priority Calculation 20 3.5.3 Battery Temperature Model 21 3.5.4 Degradation Cost Adjustment 22 3.6 Summary 23 Chapter 4 Proposed Method/Algorithm 25 4.1 Two-Phase Scheduling Design 28 4.2 Alternative Optima and Motivation 31 4.3 Algorithm Workflow 33 4.4 Computational Complexity Analysis 36 4.5 Summary 37 Chapter 5 Simulation Results 39 5.1 Simulation Environment and Parameters 40 5.2 Peak Shaving and Valley Filling Performance of Two-Phase Scheduling 42 5.3 Schemes Description 44 5.4 Schemes Results Comparison and Analysis 46 5.5 Summary and Observations 50 Chapter 6 Conclusion 53 References 57 | - |
| dc.language.iso | en | - |
| dc.subject | 電動車,車輛對電網,物聯網,邊緣運算,兩階段優化,動態電價,電池退化,智慧社區排程, | zh_TW |
| dc.subject | Electric vehicle (EV),Vehicle-to-Grid (V2G),IoT,Edge Computing,Two-Phase Optimization,Dynamic Pricing,Battery Degradation,Smart Community Scheduling, | en |
| dc.title | 物聯網驅動之邊緣運算 V2G 排程:兼顧電網穩定性與經濟效益之研究 | zh_TW |
| dc.title | IoT-Driven Edge Computing V2G Scheduling for Grid Stability and Economic Optimization | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫士勝;王志宇 | zh_TW |
| dc.contributor.oralexamcommittee | Shi-Sheng Sun;Chih-Yu Wang | en |
| dc.relation.page | 63 | - |
| dc.identifier.doi | 10.6342/NTU202502174 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
