Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10037
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王兆麟(Jaw-Lin Wang)
dc.contributor.authorYa-Ching Changen
dc.contributor.author張雅晴zh_TW
dc.date.accessioned2021-05-20T20:57:23Z-
dc.date.available2016-07-29
dc.date.available2021-05-20T20:57:23Z-
dc.date.copyright2011-07-29
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation1. Adams MA, Dolan P, Hutton WC. The stages of disc degeneration as revealed by discograms. J Bone Joint Surg Br 1986;68:36-41.
2. Adams MA, Freeman BJ, Morrison HP, et al. Mechanical initiation of intervertebral disc degeneration. Spine (Phila Pa 1976) 2000;25:1625-36.
3. Adams MA, Hutton WC. The effect of posture on the fluid content of lumbar intervertebral discs. Spine (Phila Pa 1976) 1983;8:665-71.
4. Adams MA, Stefanakis M, Dolan P. Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 2010;25:961-71.
5. Ambard D, Cherblanc F. Mechanical behavior of annulus fibrosus: a microstructural model of fibers reorientation. Ann Biomed Eng 2009;37:2256-65.
6. Andersson GB. Epidemiological features of chronic low-back pain. Lancet 1999;354:581-5.
7. Baer AE, Wang JY, Kraus VB, et al. Collagen gene expression and mechanical properties of intervertebral disc cell-alginate cultures. J Orthop Res 2001;19:2-10.
8. Best BA, Guilak F, Setton LA, et al. Compressive mechanical properties of the human anulus fibrosus and their relationship to biochemical composition. Spine (Phila Pa 1976) 1994;19:212-21.
9. Bogduk N. The lumbar disc and low back pain. Neurosurg Clin N Am 1991;2:791-806.
10. Buckwalter JA. Aging and degeneration of the human intervertebral disc. Spine (Phila Pa 1976) 1995;20:1307-14.
11. Chan SC, Gantenbein-Ritter B, Leung VY, et al. Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells: a feasibility study using organ culture. Spine J 2010;10:486-96.
12. Chiba K, Andersson GB, Masuda K, et al. Metabolism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine (Phila Pa 1976) 1997;22:2885-93.
13. Choi YS. Pathophysiology of degenerative disc disease. Asian Spine J 2009;3:39-44.
14. Chuang SY, Lin LC, Tsai YC, et al. Exogenous crosslinking recovers the functional integrity of intervertebral disc secondary to a stab injury. J Biomed Mater Res A 2010;92:297-302.
15. Chuang SY, Odono RM, Hedman TP. Effects of exogenous crosslinking on in vitro tensile and compressive moduli of lumbar intervertebral discs. Clin Biomech (Bristol, Avon) 2007;22:14-20.
16. Chuang SY, Popovich JM, Jr., Lin LC, et al. The effects of exogenous crosslinking on hydration and fluid flow in the intervertebral disc subjected to compressive creep loading and unloading. Spine (Phila Pa 1976) 2010;35:E1362-6.
17. Elliott DM, Yerramalli CS, Beckstein JC, et al. The effect of relative needle diameter in puncture and sham injection animal models of degeneration. Spine (Phila Pa 1976) 2008;33:588-96.
18. Eyre DR, Dickson IR, Van Ness K. Collagen cross-linking in human bone and articular cartilage. Age-related changes in the content of mature hydroxypyridinium residues. Biochem J 1988;252:495-500.
19. Fairbank J. Total disc replacement for chronic low back pain. BMJ 2011;342:d2745.
20. Freemont AJ. The cellular pathobiology of the degenerate intervertebral disc and discogenic back pain. Rheumatology (Oxford) 2009;48:5-10.
21. Freimark D, Czermak P. Cell-based regeneration of intervertebral disc defects: review and concepts. Int J Artif Organs 2009;32:197-203.
22. Gantenbein B, Grunhagen T, Lee CR, et al. An in vitro organ culturing system for intervertebral disc explants with vertebral endplates: a feasibility study with ovine caudal discs. Spine (Phila Pa 1976) 2006;31:2665-73.
23. Goel VK, Monroe BT, Gilbertson LG, et al. Interlaminar shear stresses and laminae separation in a disc. Finite element analysis of the L3-L4 motion segment subjected to axial compressive loads. Spine (Phila Pa 1976) 1995;20:689-98.
24. Haschtmann D, Stoyanov JV, Ettinger L, et al. Establishment of a novel intervertebral disc/endplate culture model: analysis of an ex vivo in vitro whole-organ rabbit culture system. Spine (Phila Pa 1976) 2006;31:2918-25.
25. Haschtmann D, Stoyanov JV, Ferguson SJ. Influence of diurnal hyperosmotic loading on the metabolism and matrix gene expression of a whole-organ intervertebral disc model. J Orthop Res 2006;24:1957-66.
26. Hedman TP, Saito H, Vo C, et al. Exogenous cross-linking increases the stability of spinal motion segments. Spine (Phila Pa 1976) 2006;31:E480-5.
27. Hirsch C, Schajowicz F. Studies on structural changes in the lumbar annulus fibrosus. Acta Orthop Scand 1953;22:184-231.
28. Holm S, Maroudas A, Urban JP, et al. Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 1981;8:101-19.
29. Humzah MD, Soames RW. Human intervertebral disc: structure and function. Anat Rec 1988;220:337-56.
30. Hwang D, Gabai AS, Yu M, et al. Role of load history in intervertebral disc mechanics and intradiscal pressure generation. Biomech Model Mechanobiol 2011.
31. Iatridis JC, ap Gwynn I. Mechanisms for mechanical damage in the intervertebral disc annulus fibrosus. J Biomech 2004;37:1165-75.
32. Illien-Junger S, Gantenbein-Ritter B, Grad S, et al. The combined effects of limited nutrition and high-frequency loading on intervertebral discs with endplates. Spine (Phila Pa 1976) 2010;35:1744-52.
33. Inoue H. Three-dimensional architecture of lumbar intervertebral discs. Spine (Phila Pa 1976) 1981;6:139-46.
34. Izambert O, Mitton D, Thourot M, et al. Dynamic stiffness and damping of human intervertebral disc using axial oscillatory displacement under a free mass system. Eur Spine J 2003;12:562-6.
35. Jim B, Steffen T, Moir J, et al. Development of an intact intervertebral disc organ culture system in which degeneration can be induced as a prelude to studying repair potential. Eur Spine J 2011.
36. Johannessen W, Elliott DM. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila Pa 1976) 2005;30:E724-9.
37. Junger S, Gantenbein-Ritter B, Lezuo P, et al. Effect of limited nutrition on in situ intervertebral disc cells under simulated-physiological loading. Spine (Phila Pa 1976) 2009;34:1264-71.
38. Kang JD. Does a needle puncture into the annulus fibrosus cause disc degeneration? Spine J 2010;10:1106-7.
39. Kasra M, Goel V, Martin J, et al. Effect of dynamic hydrostatic pressure on rabbit intervertebral disc cells. J Orthop Res 2003;21:597-603.
40. Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. J Bone Joint Surg Am 2006;88 Suppl 2:21-4.
41. Korecki CL, MacLean JJ, Iatridis JC. Characterization of an in vitro intervertebral disc organ culture system. Eur Spine J 2007;16:1029-37.
42. Korecki CL, MacLean JJ, Iatridis JC. Dynamic compression effects on intervertebral disc mechanics and biology. Spine (Phila Pa 1976) 2008;33:1403-9.
43. Kuo YW, Wang JL. Rheology of intervertebral disc: an ex vivo study on the effect of loading history, loading magnitude, fatigue loading, and disc degeneration. Spine (Phila Pa 1976) 2010;35:E743-52.
44. Lee CR, Iatridis JC, Poveda L, et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine (Phila Pa 1976) 2006;31:515-22.
45. Leung VY, Chan D, Cheung KM. Regeneration of intervertebral disc by mesenchymal stem cells: potentials, limitations, and future direction. Eur Spine J 2006;15 Suppl 3:S406-13.
46. Mansour JM, Mow VC. The permeability of articular cartilage under compressive strain and at high pressures. J Bone Joint Surg Am 1976;58:509-16.
47. Marchand F, Ahmed AM. Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine (Phila Pa 1976) 1990;15:402-10.
48. Masuda K. Biological repair of the degenerated intervertebral disc by the injection of growth factors. Eur Spine J 2008;17 Suppl 4:441-51.
49. Meakin JR, Hukins DW. Effect of removing the nucleus pulposus on the deformation of the annulus fibrosus during compression of the intervertebral disc. J Biomech 2000;33:575-80.
50. Melrose J, Smith SM, Little CB, et al. Recent advances in annular pathobiology provide insights into rim-lesion mediated intervertebral disc degeneration and potential new approaches to annular repair strategies. Eur Spine J 2008;17:1131-48.
51. Michalek AJ, Buckley MR, Bonassar LJ, et al. The effects of needle puncture injury on microscale shear strain in the intervertebral disc annulus fibrosus. Spine J 2010;10:1098-105.
52. Mirza SK, Deyo RA. Systematic review of randomized trials comparing lumbar fusion surgery to nonoperative care for treatment of chronic back pain. Spine (Phila Pa 1976) 2007;32:816-23.
53. Moore RJ. The vertebral end-plate: what do we know? Eur Spine J 2000;9:92-6.
54. Mow VC, Kuei SC, Lai WM, et al. Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 1980;102:73-84.
55. Nachemson A, Lewin T, Maroudas A, et al. In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 1970;41:589-607.
56. Panjabi MM, Takata K, Goel V, et al. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 1991;16:888-901.
57. Perie D, Iatridis JC, Demers CN, et al. Assessment of compressive modulus, hydraulic permeability and matrix content of trypsin-treated nucleus pulposus using quantitative MRI. J Biomech 2006;39:1392-400.
58. Perie DS, Maclean JJ, Owen JP, et al. Correlating material properties with tissue composition in enzymatically digested bovine annulus fibrosus and nucleus pulposus tissue. Ann Biomed Eng 2006;34:769-77.
59. Pokharna HK, Phillips FM. Collagen crosslinks in human lumbar intervertebral disc aging. Spine (Phila Pa 1976) 1998;23:1645-8.
60. Raj PP. Intervertebral disc: anatomy-physiology-pathophysiology-treatment. Pain Pract 2008;8:18-44.
61. Risbud MV, Izzo MW, Adams CS, et al. An organ culture system for the study of the nucleus pulposus: description of the system and evaluation of the cells. Spine (Phila Pa 1976) 2003;28:2652-8; discussion 8-9.
62. Roberts S, Menage J, Urban JP. Biochemical and structural properties of the cartilage end-plate and its relation to the intervertebral disc. Spine (Phila Pa 1976) 1989;14:166-74.
63. Roughley PJ, Melching LI, Heathfield TF, et al. The structure and degradation of aggrecan in human intervertebral disc. Eur Spine J 2006;15 Suppl 3:S326-32.
64. Sakai D. Future perspectives of cell-based therapy for intervertebral disc disease. Eur Spine J 2008;17 Suppl 4:452-8.
65. Schollum ML, Appleyard RC, Little CB, et al. A detailed microscopic examination of alterations in normal anular structure induced by mechanical destabilization in an ovine model of disc degeneration. Spine (Phila Pa 1976) 2010;35:1965-73.
66. Shambrook J, McNee P, Clare Harris E, et al. Clinical presentation of low back pain and association with risk factors according to findings on magnetic resonance imaging. Pain 2011.
67. Siemionow K, An H, Masuda K, et al. The Effects of Age, Gender, Ethnicity, and Spinal Level on the Rate of Intervertebral Disc Degeneration. A review of 1712 Intervertebral Discs. Spine (Phila Pa 1976) 2011.
68. Sivan S, Merkher Y, Wachtel E, et al. Correlation of swelling pressure and intrafibrillar water in young and aged human intervertebral discs. J Orthop Res 2006;24:1292-8.
69. Sivan SS, Tsitron E, Wachtel E, et al. Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 2006;399:29-35.
70. Smith LJ, Nerurkar NL, Choi KS, et al. Degeneration and regeneration of the intervertebral disc: lessons from development. Dis Model Mech 2011;4:31-41.
71. Sobajima S, Kim JS, Gilbertson LG, et al. Gene therapy for degenerative disc disease. Gene Ther 2004;11:390-401.
72. Sobajima S, Kompel JF, Kim JS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology. Spine (Phila Pa 1976) 2005;30:15-24.
73. Sobajima S, Shimer AL, Chadderdon RC, et al. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 2005;5:14-23.
74. Soltz MA, Ateshian GA. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J Biomech 1998;31:927-34.
75. Stokes IA, Iatridis JC. Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 2004;29:2724-32.
76. Thompson JP, Pearce RH, Schechter MT, et al. Preliminary evaluation of a scheme for grading the gross morphology of the human intervertebral disc. Spine (Phila Pa 1976) 1990;15:411-5.
77. Twomey L, Taylor J. Age changes in lumbar intervertebral discs. Acta Orthop Scand 1985;56:496-9.
78. Twomey LT, Taylor JR. Age changes in lumbar vertebrae and intervertebral discs. Clin Orthop Relat Res 1987:97-104.
79. Urban JP, Smith S, Fairbank JC. Nutrition of the intervertebral disc. Spine (Phila Pa 1976) 2004;29:2700-9.
80. Wagner DR, Reiser KM, Lotz JC. Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. J Biomech 2006;39:1021-9.
81. Wang JL, Wu TK, Lin TC, et al. Rest cannot always recover the dynamic properties of fatigue-loaded intervertebral disc. Spine (Phila Pa 1976) 2008;33:1863-9.
82. Wang P, Yang L, Hsieh AH. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress. Ann Biomed Eng 2011;39:1101-11.
83. Yao H, Justiz MA, Flagler D, et al. Effects of swelling pressure and hydraulic permeability on dynamic compressive behavior of lumbar annulus fibrosus. Ann Biomed Eng 2002;30:1234-41.
84. Yu CY, Tsai KH, Hu WP, et al. Geometric and morphological changes of the intervertebral disc under fatigue testing. Clin Biomech (Bristol, Avon) 2003;18:S3-9.
85. Yu J, Winlove PC, Roberts S, et al. Elastic fibre organization in the intervertebral discs of the bovine tail. J Anat 2002;201:465-75.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10037-
dc.description.abstract目的:利用體外椎間盤培養系統探討外生性交聯療法對於不同退化程度椎間盤之療效。
背景簡介:一般中老年人常見的脊椎退化性病徵為下背痛,許多文獻指出下背痛可能源自於椎間盤退化,而椎間盤退化是由許多影響因子共同調控的結果,其機制目前尚未完全明瞭,為了針對退化性椎間盤作全面性的治療,完整模擬椎間盤退化即為首要課題。現今研究中,用於治療椎間盤退化的藥物之一為天然胜肽交聯劑-梔子素,其生化作用機制為增加蛋白質或膠原蛋白之間的胺基鍵結,用以增加椎間盤整體結構穩定度、提高動態強度與緩衝能力,然而,尚未有研究對於梔子素於不同退化程度之椎間盤治療成效作詳細探討與比較。
材料與方法:實驗使用六個月大的年輕豬隻,試樣取用為胸椎骨第一到第六節(T1~T6)之間的椎間盤,為確保試樣新鮮將於豬隻屠宰後四個小時內進行實驗。本研究使用胰蛋白酶(trypsin)模擬椎間盤退化早期蛋白質變性的過程,模擬退化組中每個試樣於第一天處理完畢後打入0.5 ml, 0.25%的胰蛋白酶,模擬椎間盤晚期嚴重退化的組別將於第二天施加高強度之疲勞負載(平均力量420N, 負載頻率2.5Hz, 負載時間4hours, 負載次數約36000 cycles),而治療組則進一步於第二天打入1 ml, 0.33%的梔子素(genipin)作治療,各組試樣均放置於生物培養系統中,並於培養一週後作力學測試及生化測試。
結果: 模擬早期退化之蛋白質變性椎間盤,其靜態及動態力學性質皆有顯著性降低,染色切片結果顯示椎間盤組織結構鬆散、排列不一致;模擬晚期退化之蛋白質變性加破壞椎間盤,其聚合模數及勁度上升但衝擊緩衝能力及滲透度下降,染色切片結果顯示其組織破壞損傷嚴重、失去結構完整性,因此無法維持原本高度被壓得更緊緻。加入梔子素治療後,蛋白質變性椎間盤的椎間盤高度、聚合模數、循環負載後勁度值、循環負載前阻尼係數及椎間核水份含量,相對於治療前皆有顯著性回復;然而,梔子素治療對於蛋白質變性加破壞的椎間盤,其內部組織缺損破壞無法修復,但治療後組織強度仍然有回復的趨勢,而椎間核含水量大幅增加,可推測其相比於破壞嚴重的退化組有較好的緩衝能力,因此阻尼係數於循環負載前後皆有顯著地回復。
結論:天然胜肽交聯劑-梔子素可用於治療早期退化性椎間盤,並回復其生物力學性質;若椎間盤退化嚴重且伴隨組織缺損,則梔子素可以回復椎間盤喪失之部分動態力學性質,但無法完全修復缺損的組織,而這些組織破壞可能導致椎間盤退化持續進行。
zh_TW
dc.description.abstractObjective: To investigate the efficacy of exogenous cross-linking therapy in treating the degenerated intervertebral disc by using ex vivo whole disc culture system.
Summary of background data: Disc degeneration induced low back pain syndrome is observed in elderly human. The disc degeneration can be induced by factors such as protein denaturation and micro-defect within disc fiber. A disc degeneration model can be effectively used for the screening of clinical strategy for disc degeneration treatment. The treatment based on this model can be studied to find the physiological effect. In recent studies, exogenous cross-linking therapy has been shown to enhance stability and dynamic properties of disc by increasing protein cross-linking. Nevertheless, the mechanical and biological effects of peptide cross-linking reagent on different degrees of disc degeneration shall be concerned to further assess the feasibility of exogenous cross-linking therapy.
Methods: Total 40 porcine thoracic discs (T1~T6) were dissected from 6-month-old juvenile pigs within 4 hours after sacrifice. After specimen preparation, discs were equally assigned to five groups (n=8 for each group), and all specimens were incubated for 1 week before test. Groups were divided as follows: intact group, early degenerated group, early degenerated with treatment group, severely degenerated group, severely degenerated with treatment group. For all groups except intact group, 0.5 ml 0.25% trypsin solution was injected into specimen on Day 1 to produce protein denaturation, which is the simulation for early degenerated disc, and high strength fatigue loading (Frms= 420 N, frequency= 2.5 Hz, loading period= 4 hours) was given to produce micro-defects within disc fiber to resembling the severe disc degeneration on Day 2. For groups with treatment, specimens were injected with 1 ml 0.33% genipin solution after simulation of disc degeneration. Mechanical test and biological detection were performed after one week incubation.
Result: In group of early degenerated disc, the results showed that the mechanical property of disc significantly decreased both in static and dynamic test, and also the disorganization of the laminate structure was found in histological stain. If the disc is damaged by fatigue loading after protein denaturation, the aggregate modulus and stiffness increase with height loss, but damping coefficient, permeability and water content decrease because of structural defects. This defect was also found in histological stain. After taking exogenous cross-linking therapy, the degenerated disc recover its mechanical property and restores the water content to normal condition, but the structural defects which occur in severely degenerated disc cannot be repair by cross-linker.
Conclusion: Genipin-treated discs show the recovery of mechanical properties after protein denaturation which presumes to be process of early disc degeneration, and the efficacy maintains for at least one week; however, mechanical defects which occur in severely degenerated disc cannot be treated by protein cross-linking.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:57:23Z (GMT). No. of bitstreams: 1
ntu-100-R98548018-1.pdf: 8579797 bytes, checksum: 12fdcb03183b3673c1ac54615ba6b1e0 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents口委審定書 i
誌謝 ii
中文摘要 iv
Abstract vi
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 椎間盤的基本生理構造及功能介紹 1
1.2 椎間盤的力學性質 3
1.2.1 靜態力學性質 3
1.2.2 動態力學性質 4
1.3 退化性椎間盤 5
1.3.1 病理特徵 5
1.3.2 模擬退化模型 6
1.3.3 臨床治療方法 7
1.4 體外椎間盤培養系統 8
1.5 研究動機與實驗目的 9
1.6 實驗假說 10
第二章 實驗設備 11
2.1 全椎間盤培養系統(Whole Disc Culture System) 11
2.1.1 生物培養器 12
2.1.2 循環系統 13
2.1.3 負載系統 14
2.1.4 動力系統 16
2.2 潛變測試機台(Creep Testing Apparatus) 18
2.3 連續式衝擊測試平台(Continuous Impact Testing Apparatus) 19
第三章 材料與方法 20
3.1 試樣準備 20
3.2 實驗流程 21
3.3 實驗方法 22
3.4 數學模型 24
3.4.1 流變性質 24
3.4.2 動態力學性質 25
3.5 統計分析方法 26
第四章 實驗結果 27
4.1 力學性質測試結果 27
4.1.1椎間盤高度 27
4.1.2 流變性質測試 28
4.1.3 動態性質測試 30
4.2 生化測試結果 34
4.2.1 水份含量 34
4.2.2 染色切片 35
第五章 綜合討論 38
5.1 椎間盤退化模型討論 38
5.2 外生性交聯治療退化性椎間盤討論 39
5.3 實驗限制 41
第六章 結論與未來展望 42
6.1 結論 42
6.2 未來展望 42
第七章 參考文獻 43
dc.language.isozh-TW
dc.title使用全椎間盤培養系統之體外實驗探討外生性交聯療法對治療退化性椎間盤之可能性zh_TW
dc.titleAssessment of Exogenous Cross-Linking Therapy for Intervertebral Disc Degeneration - An ex vivo Study Using Whole Disc Culture Systemen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙本秀(Pen-Hsiu Chao),陳文斌(Weng-Pin Chen),蕭仲凱(Jong-Kai Hsiao)
dc.subject.keyword椎間盤,退化模型,外生性交聯,梔子素,體外椎間盤培養系統,zh_TW
dc.subject.keywordintervertebral disc,degeneration model,exogenous cross-linking,genipin,ex vivo whole disc culture system,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf8.38 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved