請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10036
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳誠亮 | |
dc.contributor.author | Chun-Yen Lin | en |
dc.contributor.author | 林均諺 | zh_TW |
dc.date.accessioned | 2021-05-20T20:57:19Z | - |
dc.date.available | 2011-08-02 | |
dc.date.available | 2021-05-20T20:57:19Z | - |
dc.date.copyright | 2011-08-02 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-28 | |
dc.identifier.citation | [1] BagajewiczM. A review of recent design procedures for water networks in refineries
and process plants. Computers and Chemical Engineering, 24:2093–2113, 2000. [2] Bandyopadhyay, S.; Ghanekar, M. D.; Pillai, H. K. Process water management. Ind. Eng. Chem. Res., 45(15):5287–5297, 2006. [3] Chen C.-L.,Hung S.-W. and Lee J.-Y. Design of inter-plant water network with central and decentralizedwatermains. Computers and Chemical Engineering, 34:1522– 1531, 2010. [4] Cheng, K.-F.; Chang, C.-T. Integrated water network designs for batch processes. Ind. Eng. Chem. Res., 46:1241–1253, 2007. [5] Chew, I. M. L.; Foo, D. C. Y. Automated targeting for inter-plant water integration. Chem. Eng. J., 153(1-3):23–36, 2009. [6] Chew, I. M. L.; Tan, R., Ng, D. K. S.; Foo, D. C. Y.; Majozi, T.; Gouwws, J. Synthesis of direct and indirect interplant water network. Ind. Eng. Chem. Res., 47(23):9485–9496, 2008. [7] Feng, X.; Seider, W. D. New structure and design methodology for water networks. Ind. Eng. Chem. Res, 40(26):6140–6146, 2001. [8] Foo, D. C. Y.; Manan, Z. A.; Tan, Y. L. Synthesis of maximum water recovery network for batch process systems. J. Clean. Prod., 13:1381–1394, 2005. [9] Gouws, J. F.; Majozi, T.; Foo, D. C. Y.; Chen, C.-L.; Lee, J.-Y. Water minimization techniques for batch processes. Ind. Eng. Chem. Res., 49:8877–8893, 2010. [10] Gunarantam, M., Alva-Argaez, A., Kokossis, A., Kim, J-K, and Smith, R. Automated design of total water systems. Ind. Eng. Chem. Res., 44:588, 2005. [11] Gunaratnam, M.; Alva-Argaez, A., Kokossis, A., Kim, J. K.; Smith, R. Automated design of total water systems. Ind. Eng. Chem. Res., 44(3):588–599, 2005. [12] Halim.l and Srinivasan R. Sequential methodology for simultaneous batch process scheduling and waste reuse optimization. Chemical Engineering Transactions, 21:727–732, 2010. [13] Kim, J. K.; Smith, R. Automated design of discontinuous water systems. Trans. IChemE., 82(3):238–248, 2004. [14] Kuo, W. C. J.; Smith R. Design of water-using systems involving regeneration. Trans. IChemE., 76(2):94–114, 1998. [15] Li, B.-H.; Chang, C.-T. A mathematical programming model for discontinuous water-reuse ststem design. Ind. Eng. Chem. Res, 45:5027–5036, 2006. [16] Liao, Z. W.; Wu, J. T.; Jiang, B. B.; Wang, J. D.; Yang, Y. R. Design methodology for flexible multiple plant water networks. Ind. Eng. Chem. Res., 46(14):4954–4963, 2008. [17] Lovelady, E. M.; El-Halwagi, M. M. Design and integration of eco-industrial parks for managing water resources. Env. Progress Sustainable Energy, 28(21):265–272, 2009. [18] Lovelady, E. M.; El-Halwagi, M. M. and Krishnagopalan,G.A. An integrated approach to the optimization of water usage and discharge in pulp and paper plants. International Journal of Environment and Pollution, 29:274–307, 2007. [19] C.J.; Buckley C. A. Majozi, T.; Brouckaert. A graphical technique for wastewater minimisation in batch processes. J. Environ Manage, 78:317–329, 2006. [20] Majozi, T. Wastewater minimisation using central reusable water storage in batch plants. Computers and Chemical Engineering, 29:1631, 2005. [21] Majozi, T. and Zhu, X. X. A novel continuous time milp gprmilation for multipurpose batch plants. 1. short-term scheduling. Industrian and Engineering Chemistry Research, 40(25):5935, 2001. [22] Manan, Z. A.; Tan, Y. L.; Foo, D. C. Y. Targeting the minimum water flowrate using water cascade analysis technique. AIChE J., 50(12):3169–3183, 2004. [23] Ng, D. K. S.; Foo, D. C. Y.; Tan, Y. L.; Tan, R. R. Ultimate flow rate targeting with regeneration placement. Trans. IChemE., 85(9):1253–1267, 2007. [24] Olesen, S. G.; Polley, G. T. Dealing with plant geography and piping constraints in water network design. Trans. IChemE., 74(4):273–276, 1996. [25] Takama, N., Kuriyama,T., Shiroko, K. and Umeda, T. Optimal water allocation in a petroleum refinery. Comp. Chem. Eng., 4:251, 1980. [26] Wang, Y. and Smith, R. Design of distributed effluent treatment system. Chem. Eng. Sci., 49:3127, 1994. [27] Wang, Y. and Smith, R. Wastewater minimization. Chem. Eng. Sci., 49:981, 1994. [28] Wang, Y. P.; R. Smith. Wastewater minimization with flowrate constraints. Chem. Eng. Res. Des. ( Trans. IChemE.), 73:889–904, 1995. [29] Zheng, X.; Feng, X.; Shen, R.; Seider, W. D. Design of optimal water-using networks with internal water mains. Ind. Eng. Chem. REs., 45(25):8413–8420, 2006. [30] Zhu, X. X. and Majozi, T. A novel continuous time milp gprmilation for multipurpose batch plants. 2. integrated. Industrian and Engineering Chemistry Research, 40(23):5621, 2001. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10036 | - |
dc.description.abstract | 本文針對跨廠區水網路,提出以數學規劃法的方式進行整體最適化的設計,在些許的廠區內同時擁有批式與連續式的製程。
此論文針對整合這兩種製程提出兩種情況進而討論之。第一種是針對連續式製程為主的廠區,提出兩階段的構想。 首先將所有批式單元視為連續式操作,設計最小新鮮水消耗量的跨廠區水網路系統。而後去計算批式單元儲存桶的儲存流量, 達到最小化儲存桶的大小;第二種情況則是以批式製程為主的廠區。將連續式單元視為批式單元之特例, 而操作的起始與結束時間點分割是根據批式單元為定。 本研究以超結構為基礎建立數學模式,並利用此數學模式分析兩種不同的目標函數最小化新鮮水消耗量以及最小化儲存桶大小。 本論文所提出之方法皆經由不同的例子去說明。 | zh_TW |
dc.description.abstract | This work presents a mathematical technique for the synthesis of inter-plant water network,
where some of the plants involve batch and continuous processes. To integrate both kinds of process units, two scenarios are investigated. Scenario one is for continuous units in majority, a two-phase approach is proposed for this scenario. First, all batch units are treated as operating in continuous mode, and the inter-plant water network is synthesized for minimum fresh water consumption. Policy of water storage for these batch units is then determined, on which they can be operated as continuous units with the aids of a pair of input/output storage tanks for each batch unit. The objective of the second phase is to minimize the capacity of storage tanks subject to determined water flow rates. Scenario two is for batch units in majority, where each continuous unit is divided into a series of batch operating sections according to the start and end times of existing batch units. A batch water network with or without storage tanks is synthesized accordingly. The model formulation is based on superstructures, and the system is designed according to two objectives including the minimization of fresh water consumption and the minimization of storage tank size. Illustrative examples are supplied to demonstrate the applicability of proposed schemes for inter-plant water network synthesis. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:57:19Z (GMT). No. of bitstreams: 1 ntu-100-R98524058-1.pdf: 1720676 bytes, checksum: 1b11c769a720fcb062e365f64d2ce46a (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 附圖目錄 xi 附表目錄 xv 1.緒論 1 1.1前言 1 1.2文獻回顧 2 1.3批式製程與連續式製程之不同 4 1.4研究動機與目的 5 1.5組織章節 7 2.跨廠區水網路最適化模式建構-用水單元以連續式為主製程 9 2.1模型建立之背景 9 2.2模型建立之基本假設條件 12 2.3模式建立之圖解說明 13 2.4模式之符號、集合、系統參數與系統變數( Indices, Sets, Parameters, and Variables ) 17 2.4.1 指標符號與集合說明 (Indices, Sets) 17 2.4.2 系統參數 (Parameters) 19 2.4.3系統變數 (Variables) 20 2.5問題描述(Problem Statement) 22 2.6階段1的限制式 23 2.6.1 製程用水單元中流量平衡與溶質平衡(Flow Rate Balance and Contaminant Balance for Water-using Unit) 23 2.6.2 Water main 流量平衡與溶質平衡(Flow Rate Balance and Contaminant Balance for Water Main) 24 2.6.3污水處理單元的流量平衡與溶質平衡(Flow Rate Balance and Contaminant Balance for Treatment Unit) 25 2.6.4污水收集桶的流量平衡與溶質平衡(Flow Rate Balance and Contaminant Balance for Receiving Tank) 27 2.6.5邏輯限制式(Logical Constraints) 28 2.7階段1的目標函數(Objective Function for Phase 1) 29 2.8 階段2的限制式(Constraints for Phase 2) 30 2.8.1儲存桶(Tank S)的儲存策略(Storage Policy for Tank s1) 30 2.9階段2的目標函數(Objective Function for Phase 2) 32 2.10水網路系統之情境模擬與結果分析-當用水單元以連續式為主製程 33 2.10.1最適化軟體 33 2.10.2跨廠區水網路的設計 34 2.10.3最小化新鮮水消耗量之模擬結果分析與討論 37 2.10.4最小化桶子大小之模擬結果分析與討論 38 3 跨廠區水網路最適化模式建構-用水單元以批式為主製程 41 3.1模型建立之背景 41 3.2模型建立之基本假設條件 42 3.3模式建立之圖解說明 44 3.4模式之符號、集合、系統參數與系統變數( Indices, Sets, Parameters, and Variables ) 46 3.4.1指標符號與集合說明 (Indices, Sets) 46 3.4.2系統參數 (Parameters) 47 3.4.3系統變數 (Variables) 47 3.5問題描述(Problem Statement) 49 3.6限制式(Constraints) 49 3.6.1製程用水單元中流量平衡 49 3.6.2製程用水單元中溶質平衡 51 3.6.3儲存桶中流量平衡 51 3.6.4儲存桶中溶質平衡 52 3.6.5邏輯限制式 53 3.7 目標函數 54 3.8水網路系統之情境模擬與結果分析-當製程用水單元以批式為主 56 3.8.1最適化軟體 56 3.8.2單一廠區水網路的設計-例子3.1 56 3.8.3單一廠區水網路的設計-例子3.2 68 3.8.4跨廠區水網路的設計-例子3.3 70 4.結論與未來展望 75 4.1結論 75 4.2未來展望 76 參考文獻 79 | |
dc.language.iso | zh-TW | |
dc.title | 應用數學規劃法設計含批式與連續式製程之跨廠區用水網路 | zh_TW |
dc.title | Synthesis of Inter-Plant Water Networks Involving Batch and Continuous Process | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 錢義隆,王子奇,鄭智成 | |
dc.subject.keyword | 跨廠區水網路,數學規劃法,程序整合,超結構,批式與連續式製程, | zh_TW |
dc.subject.keyword | Inter-plant water network,Mathematical optimization,Process integration,Superstructure,Batch and continuous process, | en |
dc.relation.page | 81 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-28 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 1.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。