請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10031
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王錦堂 | |
dc.contributor.author | Juan-Ting Huang | en |
dc.contributor.author | 黃絹婷 | zh_TW |
dc.date.accessioned | 2021-05-20T20:56:59Z | - |
dc.date.available | 2014-10-07 | |
dc.date.available | 2021-05-20T20:56:59Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-28 | |
dc.identifier.citation | 1. Marshall BJ, Warren JR (1984) Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 1311-1315.
2. Goodwin CS, McCulloch RK, Armstrong JA, Wee SH (1985) Unusual cellular fatty acids and distinctive ultrastructure in a new spiral bacterium (Campylobacter pyloridis) from the human gastric mucosa. J Med Microbiol 19: 257-267. 3. Goodwin CS, Armstrong JA (1990) Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 9: 1-13. 4. Falush D, Kraft C, Taylor NS, Correa P, Fox JG, et al. (2001) Recombination and mutation during long-term gastric colonization by Helicobacter pylori: estimates of clock rates, recombination size, and minimal age. Proc Natl Acad Sci U S A 98: 15056-15061. 5. Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH, et al. (1998) Free recombination within Helicobacter pylori. Proc Natl Acad Sci U S A 95: 12619-12624. 6. Mobley HL, Garner RM, Bauerfeind P (1995) Helicobacter pylori nickel-transport gene nixA: synthesis of catalytically active urease in Escherichia coli independent of growth conditions. Mol Microbiol 16: 97-109. 7. Eaton KA, Brooks CL, Morgan DR, Krakowka S (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect Immun 59: 2470-2475. 8. Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19: 449-490. 9. RA F, editor (2001) Epidemiologic observations and open questions about disease and infection caused by Helicobacter pylori. Wymondham, United Kingdom: Horizon Sicentific Press. 29-51 p. 10. Blaser MJ (1987) Gastric Campylobacter-like organisms, gastritis, and peptic ulcer disease. Gastroenterology 93: 371-383. 11. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, et al. (1991) Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 325: 1127-1131. 12. Forman D, Newell DG, Fullerton F, Yarnell JW, Stacey AR, et al. (1991) Association between infection with Helicobacter pylori and risk of gastric cancer: evidence from a prospective investigation. BMJ 302: 1302-1305. 13. Forman D (1991) Helicobacter pylori infection: a novel risk factor in the etiology of gastric cancer. J Natl Cancer Inst 83: 1702-1703. 14. Nomura A, Stemmermann GN, Chyou PH, Kato I, Perez-Perez GI, et al. (1991) Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N Engl J Med 325: 1132-1136. 15. Gerrits MM, van Vliet AH, Kuipers EJ, Kusters JG (2006) Helicobacter pylori and antimicrobial resistance: molecular mechanisms and clinical implications. Lancet Infect Dis 6: 699-709. 16. Nishizawa T, Suzuki H, Hibi T (2009) Quinolone-Based Third-Line Therapy for Helicobacter pylori Eradication. J Clin Biochem Nutr 44: 119-124. 17. Glocker E, Kist M (2004) Rapid detection of point mutations in the gyrA gene of Helicobacter pylori conferring resistance to ciprofloxacin by a fluorescence resonance energy transfer-based real-time PCR approach. J Clin Microbiol 42: 2241-2246. 18. Cattoir V, Nectoux J, Lascols C, Deforges L, Delchier JC, et al. (2007) Update on fluoroquinolone resistance in Helicobacter pylori: new mutations leading to resistance and first description of a gyrA polymorphism associated with hypersusceptibility. Int J Antimicrob Agents 29: 389-396. 19. Bogaerts P, Berhin C, Nizet H, Glupczynski Y (2006) Prevalence and mechanisms of resistance to fluoroquinolones in Helicobacter pylori strains from patients living in Belgium. Helicobacter 11: 441-445. 20. Cabrita J, Oleastro M, Matos R, Manhente A, Cabral J, et al. (2000) Features and trends in Helicobacter pylori antibiotic resistance in Lisbon area, Portugal (1990-1999). J Antimicrob Chemother 46: 1029-1031. 21. Miyachi H, Miki I, Aoyama N, Shirasaka D, Matsumoto Y, et al. (2006) Primary levofloxacin resistance and gyrA/B mutations among Helicobacter pylori in Japan. Helicobacter 11: 243-249. 22. Kim JM, Kim JS, Kim N, Jung HC, Song IS (2005) Distribution of fluoroquinolone MICs in Helicobacter pylori strains from Korean patients. J Antimicrob Chemother 56: 965-967. 23. Hung KH, Sheu BS, Chang WL, Wu HM, Liu CC, et al. (2009) Prevalence of primary fluoroquinolone resistance among clinical isolates of Helicobacter pylori at a University Hospital in Southern Taiwan. Helicobacter 14: 61-65. 24. Levine C, Hiasa H, Marians KJ (1998) DNA gyrase and topoisomerase IV: biochemical activities, physiological roles during chromosome replication, and drug sensitivities. Biochim Biophys Acta 1400: 29-43. 25. Mitscher LA (2005) Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem Rev 105: 559-592. 26. Michael A. Kohanski DJDaJJC (2010) How antibiotics kill bacteria: from targets to networks. Nature Reviews Microbiology 8: 423-435. 27. Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388: 539-547. 28. Reece RJ, Maxwell A (1991) DNA gyrase: structure and function. Crit Rev Biochem Mol Biol 26: 335-375. 29. Matsuzaki J, Suzuki H, Tsugawa H, Nishizawa T, Hibi T (2010) Homology model of the DNA gyrase enzyme of Helicobacter pylori, a target of quinolone-based eradication therapy. J Gastroenterol Hepatol 25 Suppl 1: S7-10. 30. Moore RA, Beckthold B, Wong S, Kureishi A, Bryan LE (1995) Nucleotide sequence of the gyrA gene and characterization of ciprofloxacin-resistant mutants of Helicobacter pylori. Antimicrob Agents Chemother 39: 107-111. 31. Tankovic J, Lascols C, Sculo Q, Petit JC, Soussy CJ (2003) Single and double mutations in gyrA but not in gyrB are associated with low- and high-level fluoroquinolone resistance in Helicobacter pylori. Antimicrob Agents Chemother 47: 3942-3944. 32. Hughes NJ, Clayton CL, Chalk PA, Kelly DJ (1998) Helicobacter pylori porCDAB and oorDABC genes encode distinct pyruvate:flavodoxin and 2-oxoglutarate:acceptor oxidoreductases which mediate electron transport to NADP. J Bacteriol 180: 1119-1128. 33. Garcia-Vallve S, Janssen PJ, Ouzounis CA (2002) Genetic variation between Helicobacter pylori strains: gene acquisition or loss? Trends Microbiol 10: 445-447. 34. Testa CA, Lherbet C, Pojer F, Noel JP, Poulter CD (2006) Cloning and expression of IspDF from Mesorhizobium loti. Characterization of a bifunctional protein that catalyzes non-consecutive steps in the methylerythritol phosphate pathway. Biochim Biophys Acta 1764: 85-96. 35. Wolfe AJ (2005) The acetate switch. Microbiol Mol Biol Rev 69: 12-50. 36. Pathak D, Ashley G, Ollis D (1991) Thiol protease-like active site found in the enzyme dienelactone hydrolase: localization using biochemical, genetic, and structural tools. Proteins 9: 267-279. 37. Bujnicki JM, Oudjama Y, Roovers M, Owczarek S, Caillet J, et al. (2004) Identification of a bifunctional enzyme MnmC involved in the biosynthesis of a hypermodified uridine in the wobble position of tRNA. RNA 10: 1236-1242. 38. Wadhams GH, Armitage JP (2004) Making sense of it all: bacterial chemotaxis. Nat Rev Mol Cell Biol 5: 1024-1037. 39. NRPGM蛋白質體暨醣質體分析核心設施 In-gel digestion 膠內水解實作 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10031 | - |
dc.description.abstract | 幽門螺旋桿菌 (Helicobacter pylori) 為外型呈螺旋狀、嗜微好氧環境的革蘭氏陰性桿菌。全世界約有50% 的受感染人口,此菌的感染也被發現與胃部癌症有顯著的相關性,因此世界衛生組織於1994年將幽門螺旋桿菌列為第一類致癌物質。目前隨著第一、二線藥物的菌株耐受性案例增加,臨床治療多選擇以喹諾酮類 (quinolone) 合併其他藥物做為第三線治療,但陸續有報導指出在歐亞地區的喹諾酮類抗藥菌株比例高達10-33%,並有逐年攀升的趨勢。先前研究發現此類抗藥菌株主要會在喹諾酮藥物的目標位置旋轉酶 (gyrase) 次單元- GyrA上的胺基酸67至106之間的區域有胺基酸的改變,致使藥物與旋轉酶間的親和力下降,藉此提高菌株的抗藥性,此區被定義為喹諾酮抗藥決定區域 (quinolone resistance-determining region, QRDR)。然而初步分析近年來於臺大醫院所收集的臨床抗藥菌株,發現約45%的喹諾酮類藥物-環丙沙星 (ciprofloxacin) 抗藥菌株並不具有GyrA QRDR的突變,這意味著可能存在其他的機制來調控菌株的抗藥能力。本實驗首先檢測台大醫院抗藥性菌株的最小抑菌濃度 (minimum inhibitory concentration, MIC),然後選擇NTUH-CIP3與11,最小抑菌濃度分別為8 μg/ml與2 μg/ml的抗藥性菌株,再分別定序gyrA與gyrB並利用自然轉型 (natural transformation) 的方法排除旋轉酶突變,最後選定一株NTUH-CIP3做為本實驗的主要研究材料。之後將主要研究菌株NTUH-CIP3之基因體進行部分酵解 (partial digestion),構築表現基因庫,保守估計此基因庫可達90%的涵蓋比例。之後以環丙沙星篩選基因庫,得到3個抗藥菌落,並定序此3株載體上的內插片段,皆涵蓋一段oorA的序列,之後為了評估oorA在抗藥機制上的重要性,利用自然轉型的方法將三株篩選自NTUH-CIP3的質體送入藥物感受性菌株HP26695當中,結果並沒有明顯提升感受性菌株的藥物耐受程度。因受限於表現基因庫本身的篩選限制,之後利用二維凝膠電泳分析臨床抗藥菌株,比較環丙沙星刺激前後的蛋白質體差異,挑選蛋白質表現差異4倍以上的蛋白質,以質譜分析後比對資料庫的結果,環丙沙星刺激下可能影響NTUH-CIP3的呼吸作用與異戊二烯 (isoprenoid) 類化合物的合成路徑。 | zh_TW |
dc.description.abstract | Helicobacter pylori is a spiral gram-negative, microaerophilic bacterium, which causes type B gastritis and is associated with peptic ulcer. Furthermore, some studies have reported the association between H. pylori infection and the development of gastric carcinoma and lymphoma. Currently, the failure rate of H. pylori eradication with first or second-line therapy accelerated worldwide mainly due to H. pylori resistance to antibiotics. For this reason, quinolone-based triple therapy is used to eradicate H. pylori infection. Several studies have shown that the mutation in region between amino acids 67 to 106 (also called quinolone resistance-determining region, QRDR) of GyrA which is one of the gyrase subunits resulted in the decreased affinity between antibiotic and gyrase and enhanced the drug resistance. Analysis of ciprofloxacin (CIPRO)-resistant strains collected from National Taiwan University Hospital showed that∼45% resistant strains did not have mutations in GyrA QRDR, implying that there could be other mechanisms involved in quinolone resistance. Two strains, NTUH-CIP3 and 11 which minimum inhibitory concentration of CIPRO were 8 μg/ml and 2 μg/ml respectively, without gyrase mutations confirmed by gyrA and gyrB sequencing and natural transformation of gyrA and gyrB to a CIPRO susceptible strain were adopted in this study. The expression library of NTUH-CIP3 strain was constructed and utilized for identification of CIPRO resistance genes. The coverage of this library was estimated to 90%. Three different clones were selected from the library by CIPRO selection. All three clones covered oorA, a 2-oxoglutarate:acceptor oxidoreductase. In order to confirm the role of oorA in resistance to CIPRO, we transformed the 3 selected plasmids into CIPRO susceptible strain HP26695. Nevertheless, there was no CIPRO-resistant transformed strain. Because of the limitation of expression library, we used 2D-PAGE to compare proteome differences between CIPRO treated and non-CIPRO treated NTUH-CIP3. Then, we selected 4 fold increasing and decreasing spots, analysed the protein ID by MALDI Q-TOF, and blasting to protein databases. The protein data implied that the stimulation of quinolone might affect NTUH-CIP3 isopenoid-synthesis pathway and TCA cycle. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:56:59Z (GMT). No. of bitstreams: 1 ntu-100-R98445111-1.pdf: 1966509 bytes, checksum: e2f146342c713a37a56b84c7b98fa297 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 論文口試委員審定書 I
致 謝 II 摘 要 III ABSTRACT V 第1章 導論 (INTRODUCTION) 1 第2章 材料與實驗方法 (MATERIALS AND METHODS) 5 2.1 材料 5 2.2 實驗方法 8 I. 幽門螺旋桿菌的培養 8 II. 抗生素感受性測試 (antimicrobial susceptibility testing) 8 III. 自然轉型作用 (natural transformation) 9 IV. 建構表現基因庫 (construction of a expression library) 10 V. 幽門螺旋桿菌的RNA萃取 (RNA extraction) 17 VI. qRT-PCR (quantitative real time polymerase chain reaction) 18 VII. 二維電泳 (two-dimensional polyacrylamide gel electrophoresis /2D-PAGE) 19 第3章 結果 (RESULTS) 22 3.1 挑選臺大醫院對環丙沙星 (ciprofloxacin) 耐受性之臨床菌株 22 3.2 4株臨床菌株之環丙沙星感受性試驗 (antimicrobial susceptibility testing) 22 3.3 臺大醫院臨床環丙沙星抗藥性菌株gyrA QRDR序列定序及自然轉型試驗 22 3.4 建構表現基因庫 (construction of a expression library) 24 3.4.1 基因體DNA的部分酵解與3-5 kb DNA片段回收 24 3.4.2 幽門螺旋桿菌表現基因庫的建構與其代表性 24 3.4.3 篩選表現基因庫 (screening the expression library) 25 3.4.4 篩選後菌株之再次轉型作用 (retransformation of selected strains) 26 3.4.5 DNA序列分析 (DNA sequencing analysis) 26 3.4.6 將攜帶oorA之pBK-CMV自然轉型作用送入quinolone感受型菌株Helicobacter pylori 26695 27 3.5 非GyrA QRDR突變之環丙沙星臨床抗藥菌株的GyrA RNA表現量 27 3.5.1 比對環丙沙星感受型菌株以及NTUH-CIP3的gyrA啟動子序列 27 3.5.2 利用反轉錄-定量PCR的方式,比較典型抗藥與非典型抗藥機制兩組臨床菌株gyrA RNA的表現差異 28 3.6 二維凝膠電泳分析臨床抗藥菌株的蛋白質體表現 (proteomic analysis of the resistant strain by two dimensional gel electrophoresis ) 28 第4章 討論 (DISCUSSION) 30 4.1 表現基因庫的基因涵蓋度與篩選 30 4.2 非QRDR突變之環丙沙星抗藥菌株的GYRA RNA表現量差異 31 4.3 二維凝膠電泳分析臨床抗藥菌株的蛋白質體 32 4.3.1 甲基丁四醇磷酸化路徑 (methylerythritol phosphate (MEP) pathway) 與代謝作用的調控 (metabolic regulation) 32 4.3.2甲基化作用 (methylation) 33 4.3.3 二維電泳與質譜儀分析及其限制性 34 4.4 結論 35 第5章 參考資料 (REFERENCE) 36 第6章 附 錄 39 表1 台大醫院所分離出15株臨床對環丙沙星具耐受性幽門螺旋桿菌菌株之初步檢測最小抑菌濃度與gyrA定序。 39 表2 利用自然轉型的方法,分別將帶有臨床菌株gyrA或gyrB的TA載體轉型至環丙沙星感受性菌株Helicobacter pylori 26695。 40 表3 臺大醫院臨床抗環丙沙星幽門螺旋桿菌菌株gyrA QRDR的序列比對結果。 41 表4 臺大醫院臨床幽門螺旋桿菌菌株對環丙沙星的感受性試驗。 41 表5 臺大醫院幽門螺旋桿菌臨床菌株利用自然轉型作用、序列定序以及環丙沙星的感受性試驗,所得到之再次確認結果。 42 表6 表現基因庫之大腸桿菌菌株的環丙沙星感受性試驗。 43 表7 利用環丙沙星篩選表現基因庫所得到最小抑菌濃度上升的大腸桿菌菌株。 44 表8 將攜帶oorA之pBK-CMV自然轉型作用送入quinolone感受型菌株Helicobacter pylori 26695,並檢測其CIPRO MIC以評估oorA於非典型抗quinolone機制中所扮演的角色。 45 表9 NTUH-CIP3經過1 μg/ml環丙沙星刺激之後,表現量上升4倍的蛋白質。 46 表10 NTUH-CIP3經過1 μg/ml環丙沙星刺激之後,表現量下降4倍的蛋白質。 46 圖1 環丙沙星藥物結構及大腸桿菌抗藥機制示意圖。 47 圖2 喹諾酮抗藥決定區域及幽門螺旋桿菌GyrA突變熱點位置。 48 圖3 Helicobacter pylori NTUH-CIP3 genomic DNA 以不同酵素濃度反應20分鐘後,跑電泳之結果。 49 圖4 Helicobacter pylori NTUH-CIP3 genomic DNA以稀釋10倍的Sau3AI做部分酵解後反應20分鐘,大量回收後跑電泳之結果。 50 圖5 MIC提升的3株質體,利用質體上的T3與T7 引子做聚合酵素連鎖反應,三株質體的內插片段大小確認。 51 圖6 經由表現基因庫所篩選出的3株質體內插片段與Helicobacter pylori 26695和J99比對後的基因位置圖。 52 圖7 比對環丙沙星感受型菌株與NTUH-CIP3 gyrA啟動子序列。 53 圖8 利用反轉錄-定量PCR (qRT-PCR) 偵測RNA的方式,比較典型抗藥機制與非典型抗藥機制兩組臨床菌株gyrA RNA的表現差異。 54 圖9 沒有經過環丙沙星作用的NTUH-CIP3 二維凝膠電泳圖。 55 圖10 經由1 μg/ml環丙沙星刺激後的NTUH-CIP3二維凝膠電泳圖。 55 圖11 環丙沙星刺激前後,蛋白質表現相差4倍以上之5種蛋白質,經比對主要參與在甲基丁四醇磷酸路徑與呼吸作用循環之示意圖。 56 | |
dc.language.iso | zh-TW | |
dc.title | 以表現基因庫選殖幽門螺旋桿菌環丙沙星相關抗藥機制 | zh_TW |
dc.title | Cloning and Characterization of Ciprofloxacin- Resistant Gene in Helicobacter pylori | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李財坤,董馨蓮,林稚容 | |
dc.subject.keyword | 幽門螺旋桿菌,喹,諾酮,環丙沙星, | zh_TW |
dc.subject.keyword | Helicobacter pylori,quinolone,ciprofloxacin, | en |
dc.relation.page | 56 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 1.92 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。