請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100246完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧子彬 | zh_TW |
| dc.contributor.advisor | Tzu-Pin Lu | en |
| dc.contributor.author | 陳敬軒 | zh_TW |
| dc.contributor.author | Ching-Hsuan Chen | en |
| dc.date.accessioned | 2025-09-30T16:09:05Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2025-09-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | 1. Bray, F., et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
2. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 3. Cheang, M.C., et al., Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst, 2009. 101(10): p. 736-50. 4. Navrozoglou, I., et al., Breast cancer during pregnancy: a mini-review. Eur J Surg Oncol, 2008. 34(8): p. 837-843. 5. Gibson, J.M., Jr., Breast carcinoma associated with pregnancy or lactation. R I Med J, 1957. 40(3): p. 162-5. 6. Dalmartello, M., et al., Frequency of Pregnancy-Associated Cancer: A Systematic Review of Population-Based Studies. Cancers (Basel), 2020. 12(6). 7. Lundberg, F.E., et al., Risk factors for the increasing incidence of pregnancy-associated cancer in Sweden - a population-based study. Acta Obstet Gynecol Scand, 2024. 103(4): p. 669-683. 8. Osterman, M.J.K., et al., Births: Final Data for 2021. Natl Vital Stat Rep, 2023. 72(1): p. 1-53. 9. Shao, C., et al., Prognosis of pregnancy-associated breast cancer: a meta-analysis. BMC Cancer, 2020. 20(1): p. 746. 10. Park, S., et al., The Risk Factors, Incidence and Prognosis of Postpartum Breast Cancer: A Nationwide Study by the SMARTSHIP Group. Front Oncol, 2022. 12: p. 889433. 11. Johnson, H.M., et al., Outcomes of patients treated with chemotherapy for breast cancer during pregnancy compared with nonpregnant breast cancer patients treated with systemic therapy. Cancer, 2025. 131(1): p. e35619. 12. Martin Camean, M., et al., Survival in pregnancy-associated breast cancer patients compared to non-pregnant controls. Reprod Biol Endocrinol, 2024. 22(1): p. 34. 13. Gwak, H., et al., Survival of women with pregnancy-associated breast cancer according to clinical characteristics: A propensity score matching study. Medicine (Baltimore), 2022. 101(40): p. e30831. 14. Suelmann, B.B.M., et al., Pregnancy-associated breast cancer: nationwide Dutch study confirms a discriminatory aggressive histopathologic profile. Breast Cancer Res Treat, 2021. 186(3): p. 699-704. 15. Chuang, S.C., et al., Association of pregnancy and mortality in women diagnosed with breast cancer: A Nationwide Population-Based Study in Taiwan. Int J Cancer, 2018. 143(10): p. 2416-2424. 16. Tada, T., et al., Two distinct types of helper T cells involved in the secondary antibody response: independent and synergistic effects of Ia- and Ia+ helper T cells. J Exp Med, 1978. 147(2): p. 446-58. 17. Romagnani, S., Th1/Th2 cells. Inflamm Bowel Dis, 1999. 5(4): p. 285-94. 18. Reinhard, G., et al., Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem Biophys Res Commun, 1998. 245(3): p. 933-8. 19. Holets, L.M., J.S. Hunt, and M.G. Petroff, Trophoblast CD274 (B7-H1) is differentially expressed across gestation: influence of oxygen concentration. Biol Reprod, 2006. 74(2): p. 352-8. 20. Somerset, D.A., et al., Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology, 2004. 112(1): p. 38-43. 21. Verloes, R. and L. Kanarek, Tumour microenvironment studies open new perspectives for immunotherapy. Arch Int Physiol Biochim, 1976. 84(2): p. 420-2. 22. Chen, C.H., et al., Disparity in Tumor Immune Microenvironment of Breast Cancer and Prognostic Impact: Asian Versus Western Populations. Oncologist, 2020. 25(1): p. e16-e23. 23. Anderson, N.M. and M.C. Simon, The tumor microenvironment. Curr Biol, 2020. 30(16): p. R921-R925. 24. Becht, E., et al., Cancer immune contexture and immunotherapy. Curr Opin Immunol, 2016. 39: p. 7-13. 25. Glabman, R.A., P.L. Choyke, and N. Sato, Cancer-Associated Fibroblasts: Tumorigenicity and Targeting for Cancer Therapy. Cancers (Basel), 2022. 14(16). 26. Pardali, E., et al., TGF-beta-Induced Endothelial-Mesenchymal Transition in Fibrotic Diseases. Int J Mol Sci, 2017. 18(10). 27. Liotta, L.A., U.P. Thorgeirsson, and S. Garbisa, Role of collagenases in tumor cell invasion. Cancer Metastasis Rev, 1982. 1(4): p. 277-88. 28. Abdul-Rahman, T., et al., The paradoxical role of cytokines and chemokines at the tumor microenvironment: a comprehensive review. Eur J Med Res, 2024. 29(1): p. 124. 29. Sajjadi, E., et al., Breast Cancer during Pregnancy as a Special Type of Early-Onset Breast Cancer: Analysis of the Tumor Immune Microenvironment and Risk Profiles. Cells, 2022. 11(15). 30. Vohra, S.N., et al., Molecular and Clinical Characterization of Postpartum-Associated Breast Cancer in the Carolina Breast Cancer Study Phase I-III, 1993-2013. Cancer Epidemiol Biomarkers Prev, 2022. 31(3): p. 561-568. 31. Azim, H.A., Jr., et al., Tumour infiltrating lymphocytes (TILs) in breast cancer during pregnancy. Breast, 2015. 24(3): p. 290-3. 32. Lefrere, H., et al., Poor Outcome in Postpartum Breast Cancer Patients Is Associated with Distinct Molecular and Immunologic Features. Clin Cancer Res, 2023. 29(18): p. 3729-3743. 33. Pena-Enriquez, R., et al., Molecular characterization of pregnancy-associated breast cancer and insights on timing from GEICAM-EMBARCAM study. NPJ Breast Cancer, 2025. 11(1): p. 12. 34. Azim, H.A., Jr., et al., Biology of breast cancer during pregnancy using genomic profiling. Endocr Relat Cancer, 2014. 21(4): p. 545-54. 35. Harvell, D.M., et al., Genomic signatures of pregnancy-associated breast cancer epithelia and stroma and their regulation by estrogens and progesterone. Horm Cancer, 2013. 4(3): p. 140-53. 36. Newman, A.M., et al., Robust enumeration of cell subsets from tissue expression profiles. Nat Methods, 2015. 12(5): p. 453-7. 37. Gendoo, D.M., et al., Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer. Bioinformatics, 2016. 32(7): p. 1097-9. 38. Liu, X., et al., Unbiased and robust analysis of co-localization in super-resolution images. Stat Methods Med Res, 2022. 31(8): p. 1484-1499. 39. Phipson, B., et al., Robust Hyperparameter Estimation Protects against Hypervariable Genes and Improves Power to Detect Differential Expression. Ann Appl Stat, 2016. 10(2): p. 946-963. 40. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50. 41. Brummel, K., et al., Tumour-infiltrating lymphocytes: from prognosis to treatment selection. Br J Cancer, 2023. 128(3): p. 451-458. 42. Sun, Y.P., Y.L. Ke, and X. Li, Prognostic value of CD8(+) tumor-infiltrating T cells in patients with breast cancer: A systematic review and meta-analysis. Oncol Lett, 2023. 25(1): p. 39. 43. Stenstrom, J., I. Hedenfalk, and C. Hagerling, Regulatory T lymphocyte infiltration in metastatic breast cancer-an independent prognostic factor that changes with tumor progression. Breast Cancer Res, 2021. 23(1): p. 27. 44. Schedin, P., Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer, 2006. 6(4): p. 281-91. 45. O'Brien, J., et al., Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am J Pathol, 2010. 176(3): p. 1241-55. 46. Syrnioti, A., et al., Triple Negative Breast Cancer: Molecular Subtype-Specific Immune Landscapes with Therapeutic Implications. Cancers (Basel), 2024. 16(11). 47. (NCCN), N.C.C.N., NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®): Breast Cancer [v.4.2025]. 2025. 48. García-Teijido, P., et al., Tumor-Infiltrating Lymphocytes in Triple Negative Breast Cancer: The Future of Immune Targeting. Clin Med Insights Oncol, 2016. 10(Suppl 1): p. 31-9. 49. Abu-Raya, B., et al., Maternal Immunological Adaptation During Normal Pregnancy. Front Immunol, 2020. 11: p. 575197. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100246 | - |
| dc.description.abstract | 背景:
懷孕相關乳癌是指在懷孕期間或是生產後幾年內發現的乳癌。懷孕相關乳癌然相對罕見,並且與較差的預後相關。導致這種不良預後的潛在機制仍未得到充分理解。本研究旨在探討懷孕相關乳癌與腫瘤微環境的關係及影響。 方法: 本研究回顧性納入105名國立台灣大學醫院的乳癌患者。懷孕期間或是生產後五年內確診乳癌的患者定義為懷孕相關乳癌,以相同年齡範圍且未曾生育的乳癌患者作為對照組。腫瘤免疫微環境的評估採用蛋白質多重螢光染色Multiplex immunohistochemistry和基因表現量NanoString BC360 panel兩種分析方法。使用PAM50對乳癌進行分子型態分類。兩組的比較包含基因表現量及路徑分析、免疫細胞總量和分類的比較;同時使用Gene Expression Omnibus (GEO)資料庫進行外部驗證。存活分析的部分採用Kaplan-Meier曲線、Cox迴歸和中介分析,評估免疫細胞對懷孕相關乳癌預後的潛在影響。 結果: 與對照組相比,懷孕相關乳癌於免疫細胞量方面在兩種分析方法中均顯示升高的情形。基因表現差異分析顯示免疫刺激基因活化與免疫調節基因降低。懷孕相關乳癌有著較高的專一性免疫細胞浸潤。細胞毒性CD8+T細胞的浸潤與整體存活率相關。中介分析顯示細胞毒性細胞的中介角色。使用GEO資料庫進行的外部驗證也證實了生產後乳癌病例中免疫細胞的增加。 結論: 本研究顯示懷孕相關乳癌具有不同的免疫微環境。細胞毒性細胞的增加有助於懷孕相關乳癌的預後。待未來大型研究確認免疫細胞與懷孕相關乳癌預後的關係。 | zh_TW |
| dc.description.abstract | Background
Pregnancy-associated breast cancer (PABC) refers to breast cancer detected during gestation or within years following childbirth. While relatively uncommon, it is linked to a poor prognosis, and the underlying mechanisms contributing to this adverse illness remain inadequately comprehended. This study examined tumor microenvironment features linked to pregnancy or lactation to elucidate these mechanisms. Method A total of 105 breast cancer patients from National Taiwan University Hospital were retrospectively included in the current investigation. Patients with breast diagnosis within 5 years postpartum were defined as PABC. Nulliparous breast cancer (NPBC) patients with the same age range were selected as control group. The immune microenvironment was assessed by multiplex immunohistochemistry and NanoString BC360 transcript analysis. PAM50 classification approach was employed for breast cancer classification. Gene expressional difference analysis, immune cell comparison, and functional pathway analysis were done, with external validation conducted using the GEO database. Survival analysis was conducted with Kaplan-Meier curve, Cox proportional hazard model, and mediation analysis to assess the potential influence of immunological features on prognosis of PABC. Result PABC tumors exhibited elevated immune scores compared to NPBC in both IHC and transcriptome analyses. Differential expression analysis revealed upregulation of immune-active genes and downregulation of immune-regulatory genes. Increased infiltration of adaptive immune cells was noted in PABC. The elevation of infiltrating CD8+ T cells correlated with improved overall survival. Mediation analysis demonstrated that immune characteristics significantly influenced survival outcomes. External validation utilizing GEO databases corroborated the observation of elevated immune cell signatures in postpartum breast cancer cases. Conclusion This study revealed that PABC exhibit distinct tumor immune microenvironments. The increased cytotoxic cell mediates the favorable prognosis in the PABC group. Additional large-scale study is required to confirm the prognostic significance of immune cells in PABC. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:09:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-30T16:09:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Content vi Figure viii Table xi 1. Introduction 1 1.1 Overview of Breast Cancer 1 1.2 Overview of Pregnancy-Associated Breast Cancer 2 1.3 Immunology Change associated with Pregnancy 5 1.4 The Tumor Microenvironment 5 1.5 Studies on Tumor Microenvironment of Pregnancy-Associated Breast Cancer 8 2. Study Objectives 11 3. Study Flow Chart 13 4. Materials & Methods 14 4.1 Study Population 14 4.2 Sample preparation 14 4.3 Validation Cohort 15 4.4 Statistical Analysis 16 5. Results 18 5.1 Patient Characteristic 18 5.2 Gene expression and pathway analysis 20 5.3 Immune cell analysis 27 5.4 Survival analysis and Mediation analysis 41 5.5 External validation 56 5.6 PABC subgroup analysis 65 6. Discussion 74 7. Conclusion 80 Reference 82 Appendix 86 Appendix 1 Genelist of immune cells and pathways in NanoString Breast Cancer 360 panel 86 Appendix 2 DEGs between NPBC and PABC 89 | - |
| dc.language.iso | en | - |
| dc.subject | 免疫組織染色 | zh_TW |
| dc.subject | 懷孕相關乳癌 | zh_TW |
| dc.subject | 生存中介分析 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | 基因表現分析 | zh_TW |
| dc.subject | Pregnancy associated breast cancer | en |
| dc.subject | Immunohistochemistry | en |
| dc.subject | Survival mediation analysis | en |
| dc.subject | Tumor microenvironment | en |
| dc.subject | Transcriptomic analysis | en |
| dc.title | 懷孕相關乳癌組織之腫瘤微環境探討 | zh_TW |
| dc.title | Tumor microenvironment in pregnancy associated breast cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 林季宏 | zh_TW |
| dc.contributor.coadvisor | Ching-Hung Lin | en |
| dc.contributor.oralexamcommittee | 盧彥伸;黃其晟;王彥雯;賴亮全 | zh_TW |
| dc.contributor.oralexamcommittee | Yen-Shen Lu;Chi-Shen Huang;Charlotte Wang;Liang-Chuan Lai | en |
| dc.subject.keyword | 懷孕相關乳癌,免疫組織染色,基因表現分析,腫瘤微環境,生存中介分析, | zh_TW |
| dc.subject.keyword | Pregnancy associated breast cancer,Immunohistochemistry,Transcriptomic analysis,Tumor microenvironment,Survival mediation analysis, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202502642 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2027-07-31 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-07-31 | 2.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
