請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100242完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張榮珍 | zh_TW |
| dc.contributor.advisor | Jung-Chen Chang | en |
| dc.contributor.author | 董欣慈 | zh_TW |
| dc.contributor.author | Hsing-Tzu Tung | en |
| dc.date.accessioned | 2025-09-30T16:08:16Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2025-09-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Andrews, N., Stowe, J., Kirsebom, F., Toffa, S., Rickeard, T., Gallagher, E., Gower, C., Kall, M., Groves, N., O'Connell, A. M., Simons, D., Blomquist, P. B., Zaidi, A., Nash, S., Iwani Binti Abdul Aziz, N., Thelwall, S., Dabrera, G., Myers, R., Amirthalingam, G.,…Lopez Bernal, J. (2022). Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N Engl J Med, 386(16), 1532-1546. https://doi.org/10.1056/NEJMoa2119451
Baden, L. R., El Sahly, H. M., Essink, B., Kotloff, K., Frey, S., Novak, R., Diemert, D., Spector, S. A., Rouphael, N., Creech, C. B., McGettigan, J., Khetan, S., Segall, N., Solis, J., Brosz, A., Fierro, C., Schwartz, H., Neuzil, K., Corey, L.,…Zaks, T. (2021). Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med, 384(5), 403-416. https://doi.org/10.1056/NEJMoa2035389 Bell, S., & Hill, J. E. (2023). Diagnostic accuracy of early warning system scores in the prehospital setting. J Paramed Pract, 15(12), 516-519. https://doi.org/10.12968/jpar.2023.15.12.516 Castioni, P., Gómez, S., Granell, C., & Arenas, A. (2024). Rebound in epidemic control: how misaligned vaccination timing amplifies infection peaks. npj Complexity, 1(1), 20. https://doi.org/10.1038/s44260-024-00020-0 Cerqueira-Silva, T., Katikireddi, S. V., de Araujo Oliveira, V., Flores-Ortiz, R., Júnior, J. B., Paixão, E. S., Robertson, C., Penna, G. O., Werneck, G. L., Barreto, M. L., Pearce, N., Sheikh, A., Barral-Netto, M., & Boaventura, V. S. (2022). Vaccine effectiveness of heterologous CoronaVac plus BNT162b2 in Brazil. Nature Medicine, 28(4), 838-843. https://doi.org/10.1038/s41591-022-01701-w Chemaitelly, H., Tang, P., Hasan, M. R., AlMukdad, S., Yassine, H. M., Benslimane, F. M., Al Khatib, H. A., Coyle, P., Ayoub, H. H., Al Kanaani, Z., Al Kuwari, E., Jeremijenko, A., Kaleeckal, A. H., Latif, A. N., Shaik, R. M., Abdul Rahim, H. F., Nasrallah, G. K., Al Kuwari, M. G., Al Romaihi, H. E.,…Abu-Raddad, L. J. (2021). Waning of BNT162b2 Vaccine Protection against SARS-CoV-2 Infection in Qatar. N Engl J Med, 385(24), e83. https://doi.org/10.1056/NEJMoa2114114 Chou, S. H., Tsai, C. Y., Hsu, W. H., Chung, C. L., Li, H. Y., Chen, Z., Chien, R., & Cheng, W. H. (2024). Predicting Survival Status in COVID-19 Patients: Machine Learning Models Development with Ventilator-Related and Biochemical Parameters from Early Stages: A Pilot Study. J Clin Med, 13(20). https://doi.org/10.3390/jcm13206190 Collett, D. (2014). Modelling Survival Data in Medical Research (3rd ed.). Chapman and Hall/CRC. https://doi.org/https://doi.org/10.1201/b18041 Dagan, N., Barda, N., Kepten, E., Miron, O., Perchik, S., Katz, M. A., Hernán, M. A., Lipsitch, M., Reis, B., & Balicer, R. D. (2021). BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med, 384(15), 1412-1423. https://doi.org/10.1056/NEJMoa2101765 Dahl, J., Tapia, G., Bøås, H., Landsjøåsen Bakken, I. J., & Løvdal Gulseth, H. (2024). COVID-19 mRNA-vaccination and all-cause mortality in the adult population in Norway during 2021-2023: a population-based cohort study. medRxiv, 2024.2012. 2015.24319058. Dean, N. E., Hogan, J. W., & Schnitzer, M. E. (2021). Covid-19 Vaccine Effectiveness and the Test-Negative Design. N Engl J Med, 385(15), 1431-1433. https://doi.org/10.1056/NEJMe2113151 Falahi, S., & Kenarkoohi, A. (2022). Host factors and vaccine efficacy: Implications for COVID-19 vaccines. J Med Virol, 94(4), 1330-1335. https://doi.org/10.1002/jmv.27485 Glasser, S. P., & Howard, G. (2006). Clinical trial design issues: at least 10 things you should look for in clinical trials. J Clin Pharmacol, 46(10), 1106-1115. https://doi.org/10.1177/0091270006290336 Gutiérrez‐Zarate, D., Rosas‐Sánchez, K., Flores‐Carrillo, J. C., Medrano‐Ahumada, S., & Martínez‐Franco, M. (2020). Early management of critically ill patients with COVID‐19. JACEP Open, 1(6), 1418-1426. https://doi.org/https://doi.org/10.1002/emp2.12294 Haas, E. J., Angulo, F. J., McLaughlin, J. M., Anis, E., Singer, S. R., Khan, F., Brooks, N., Smaja, M., Mircus, G., Pan, K., Southern, J., Swerdlow, D. L., Jodar, L., Levy, Y., & Alroy-Preis, S. (2021). Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data. Lancet, 397(10287), 1819-1829. https://doi.org/10.1016/s0140-6736(21)00947-8 Hariton, E., & Locascio, J. J. (2018). Randomised controlled trials - the gold standard for effectiveness research: Study design: randomised controlled trials. Bjog, 125(13), 1716. https://doi.org/10.1111/1471-0528.15199 Hernán, M. A., & Robins, J. M. (2016). Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available. Am J Epidemiol, 183(8), 758-764. https://doi.org/10.1093/aje/kwv254 Hernández Guillamet, G., Morancho Pallaruelo, A. N., Miró Mezquita, L., Miralles, R., Mas, M., Ulldemolins Papaseit, M. J., Estrada Cuxart, O., & López Seguí, F. (2023). Machine Learning Model for Predicting Mortality Risk in Patients With Complex Chronic Conditions: Retrospective Analysis. Online J Public Health Inform, 15, e52782. https://doi.org/10.2196/52782 Hsu, C. Y., Chang, J. C., Chen, S. L., Chang, H. H., Lin, A. T., Yen, A. M., & Chen, H. H. (2023). Primary and booster vaccination in reducing severe clinical outcomes associated with Omicron Naïve infection. J Infect Public Health, 16(1), 55-63. https://doi.org/10.1016/j.jiph.2022.11.028 Hu, L., Sun, J., Wang, Y., Tan, D., Cao, Z., Gao, L., Guan, Y., Jia, X., & Mao, J. (2023). A Review of Inactivated COVID-19 Vaccine Development in China: Focusing on Safety and Efficacy in Special Populations. Vaccines (Basel), 11(6). https://doi.org/10.3390/vaccines11061045 Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer, M. S. (2008). Random survival forests. Jung, S.-W., Jeon, J. J., Kim, Y. H., Choe, S. J., & Lee, S. (2024). Long-term risk of autoimmune diseases after mRNA-based SARS-CoV2 vaccination in a Korean, nationwide, population-based cohort study. Nature Communications, 15(1), 6181. https://doi.org/10.1038/s41467-024-50656-8 Klein, N. P., Lewis, N., Goddard, K., Fireman, B., Zerbo, O., Hanson, K. E., Donahue, J. G., Kharbanda, E. O., Naleway, A., Nelson, J. C., Xu, S., Yih, W. K., Glanz, J. M., Williams, J. T. B., Hambidge, S. J., Lewin, B. J., Shimabukuro, T. T., DeStefano, F., & Weintraub, E. S. (2021). Surveillance for Adverse Events After COVID-19 mRNA Vaccination. Jama, 326(14), 1390-1399. https://doi.org/10.1001/jama.2021.15072 Kvamme, H., Borgan, Ø., & Scheel, I. (2019). "Time-to-event prediction with neural networks and Cox regression.". ournal of Machine Learning Research, 20(129), 1-30. Lam, I. C. H., Zhang, R., Man, K. K. C., Wong, C. K. H., Chui, C. S. L., Lai, F. T. T., Li, X., Chan, E. W. Y., Lau, C. S., & Wong, I. C. K. (2024). Persistence in risk and effect of COVID-19 vaccination on long-term health consequences after SARS-CoV-2 infection. Nature Communications, 15(1), 1716. Lee, C. Y., Kuo, H. W., Liu, Y. L., Chuang, J. H., & Chou, J. H. (2024). Population-Based Evaluation of Vaccine Effectiveness against SARS-CoV-2 Infection, Severe Illness, and Death, Taiwan. Emerg Infect Dis, 30(3), 478-489. https://doi.org/10.3201/eid3003.230893 Lewnard, J. A., B, C. M., Kang, G., & Laxminarayan, R. (2023). Attributed causes of excess mortality during the COVID-19 pandemic in a south Indian city. Nat Commun, 14(1), 3563. https://doi.org/10.1038/s41467-023-39322-7 Lin, H., & Zelterman, D. (2002). Modeling survival data: extending the Cox model. In: Taylor & Francis. Lin, T. Y., Hsu, C. Y., Yen, A. M., Chen, S. L., & Chen, T. H. (2024). Assessing Excess Mortality of Baby Boomers from the COVID-19 Pandemic: Taiwan Omicron-naïve Cohort. J Epidemiol Glob Health, 14(3), 1113-1121. https://doi.org/10.1007/s44197-024-00262-0 Link-Gelles, R. (2025). Interim estimates of 2024–2025 COVID-19 vaccine effectiveness. Centers for Disease Control and Prevention. Magazzino, C., Mele, M., & Coccia, M. (2022). A machine learning algorithm to analyse the effects of vaccination on COVID-19 mortality. Epidemiol Infect, 150, e168. https://doi.org/10.1017/s0950268822001418 Nordström, P., Ballin, M., & Nordström, A. (2021). Effectiveness of heterologous ChAdOx1 nCoV-19 and mRNA prime-boost vaccination against symptomatic Covid-19 infection in Sweden: A nationwide cohort study. The Lancet Regional Health – Europe, 11. https://doi.org/10.1016/j.lanepe.2021.100249 Ostrowski, S. R., Søgaard, O. S., Tolstrup, M., Stærke, N. B., Lundgren, J., Østergaard, L., & Hvas, A. M. (2021). Inflammation and Platelet Activation After COVID-19 Vaccines - Possible Mechanisms Behind Vaccine-Induced Immune Thrombocytopenia and Thrombosis. Front Immunol, 12, 779453. https://doi.org/10.3389/fimmu.2021.779453 Park, M. B., & Sim, B. (2023). Vaccine effectiveness of COVID-19 and rebound in the real world. Clin Exp Med, 23(8), 4975-4983. https://doi.org/10.1007/s10238-023-01204-z Polack, F. P., Thomas, S. J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., Perez, J. L., Pérez Marc, G., Moreira, E. D., Zerbini, C., Bailey, R., Swanson, K. A., Roychoudhury, S., Koury, K., Li, P., Kalina, W. V., Cooper, D., Frenck, R. W., Jr., Hammitt, L. L.,…Gruber, W. C. (2020). Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med, 383(27), 2603-2615. https://doi.org/10.1056/NEJMoa2034577 Reina Reina, A., Barrera, J. M., Valdivieso, B., Gas, M. E., Maté, A., & Trujillo, J. C. (2022). Machine learning model from a Spanish cohort for prediction of SARS-COV-2 mortality risk and critical patients. Sci Rep, 12(1), 5723. https://doi.org/10.1038/s41598-022-09613-y Sherman, R. E., Anderson, S. A., Dal Pan, G. J., Gray, G. W., Gross, T., Hunter, N. L., LaVange, L., Marinac-Dabic, D., Marks, P. W., Robb, M. A., Shuren, J., Temple, R., Woodcock, J., Yue, L. Q., & Califf, R. M. (2016). Real-World Evidence - What Is It and What Can It Tell Us? N Engl J Med, 375(23), 2293-2297. https://doi.org/10.1056/NEJMsb1609216 Uemura, K., Ono, S., Michihata, N., Yamana, H., & Yasunaga, H. (2024). Duration of effectiveness of the COVID-19 vaccine in Japan: a retrospective cohort study using large-scale population-based registry data. BMC Infect Dis, 24(1), 648. https://doi.org/10.1186/s12879-024-09488-6 Wang, H., & Li, G. (2017). A Selective Review on Random Survival Forests for High Dimensional Data. Quant Biosci, 36(2), 85-96. https://doi.org/10.22283/qbs.2017.36.2.85 Wang, S. C., Rai, C. I., & Chen, Y. C. (2023). Challenges and Recent Advancements in COVID-19 Vaccines. Microorganisms, 11(3). https://doi.org/10.3390/microorganisms11030787 WHO. (2020). WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 WHO. (2025). Vaccine efficacy, effectiveness and protection. Retrieved 2 June from https://www.who.int/news-room/feature-stories/detail/vaccine-efficacy-effectiveness-and-protection Yazdani, A., Erfannia, L., Farzaneh, A., & Ali, O. (2024). Survival analysis of patients with COVID-19 using deep neural network and random forest techniques. Survival, 13, 186. Yoon, J. G., Sohn, J. W., Choi, W. S., Wie, S. H., Lee, J., Lee, J. S., Jeong, H. W., Eom, J. S., Seong, H., Nham, E., Choi, Y. J., Noh, J. Y., Song, J. Y., Cheong, H. J., & Kim, W. J. (2024). Effectiveness of Bivalent mRNA Booster Vaccine Against COVID-19 in Korea. J Korean Med Sci, 39(3), e15. https://doi.org/10.3346/jkms.2024.39.e15 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100242 | - |
| dc.description.abstract | 背景:COVID-19疫情自2020年起對全球健康造成重大衝擊,疫苗接種被視為減少重症與死亡的關鍵策略。然而,關於疫苗在中重症族群中對於中長期死亡風險的影響,尤其是在真實世界資料下之實證仍相對稀少。本研究旨在運用時間依賴Cox模型與隨機生存森林模型(Random Survival Forest, RSF),探討COVID-19疫苗接種劑數與臨床特徵對中重症患者全因死亡風險的影響,並比較兩種模型預測效能。
方法:本研究採回溯性世代研究(retrospective cohort study),以台灣某縣市公共衛生資料庫為資料來源,納入自2021年3月22日至2023年3月31日期間通報之COVID-19中重症個案。探討的影響變項包含疫苗接種劑數、加護病房住院紀錄、臨床嚴重度分級等。分析方法包括時間依賴Cox比例風險模型與機器學習隨機生存森林模型,並比較其一致性指數(C-index)與準確性分數(Brier Score)之表現。 結果:本研究共收納通報期間之2,997位COVID-19中重症個案,並集合其疫苗接種狀態,透過時間依賴Cox模型顯示,接種共3劑與共4劑COVID-19疫苗者相較未接種者具較低之死亡風險(Hazard Ratio, HR < 1),但共1劑與共2劑疫苗接種組別與未接種組存活率相近。另一方面,隨機生存森林模型中,「中症」與「入住加護病房」為最重要全死因相關因子,顯示早期識別並介入之個體具有較佳預後;相較之下,「重症」變項之預測能力較弱,可能反映病情快速惡化或延遲治療的高風險。隨機生存森林模型整體預測效能優於時間依賴Cox模型,能成功辨識出疫苗接種間隔、臨床分級等非線性關係對死亡風險的重要性。隨機生存森林模型效能,最佳表現為RSF_200_5,其一致性指標與準確性分數(C-index=0.747,Brier Score=0.153),均優於時間依賴Cox比例風險模型(C-index=0.700, Brier Score=0.282)。 結論:針對中重症個案,COVID-19疫苗追加劑接種與早期臨床介入有助於降低中長期死亡風險,中症族群應視為高優先辨識與介入措施及早提供對象。隨機生存森林模型展現處理真實世界高維資料之潛力,未來可作為臨床照護決策參考。 | zh_TW |
| dc.description.abstract | Background: Since 2020, the COVID-19 pandemic has exerted a profound global health impact. Vaccination has been recognized as a key strategy for reducing severe illness and mortality. However, evidence on the effect of vaccination on medium- to long-term mortality risk among patients with moderate-to-severe COVID-19, particularly from real-world data, remains limited. This study aimed to examine the association between the number of COVID-19 vaccine doses, clinical characteristics, and all-cause mortality risk in moderate-to-severe cases, using a time-dependent Cox proportional hazards model and a Random Survival Forest (RSF) model, and to compare the predictive performance of these two approaches.
Methods: This retrospective cohort study utilized a public health database from a county in Taiwan, including all reported moderate-to-severe COVID-19 cases between March 22, 2021, and March 31, 2023. Variables of interest included vaccination dose number, intensive care unit (ICU) admission, and clinical severity classification. Analyses were performed using a time-dependent Cox proportional hazards model and an RSF machine learning approach. Model performance was evaluated and compared using the concordance index (C-index) and Brier score. Results: A total of 2,997 moderate-to-severe COVID-19 cases reported during the study period were included. Using the time-dependent Cox model, receipt of three or four doses of COVID-19 vaccine was associated with a lower risk of all-cause mortality compared with no vaccination (hazard ratio [HR] < 1), whereas one- or two-dose recipients had survival rates comparable to the unvaccinated group. In the RSF model, moderate severity and ICU admission emerged as the most important predictors of mortality, suggesting that early identification and timely intervention may improve prognosis. In contrast, severe disease had weaker predictive power, possibly reflecting a high risk of rapid deterioration or delayed treatment. Overall, the RSF outperformed the time-dependent Cox model, successfully capturing nonlinear relationships between mortality risk and factors such as vaccination interval and clinical severity. The best-performing RSF configuration (RSF_200_5) achieved a C-index of 0.747 and a Brier score of 0.153, both superior to the Time-dependent Cox model (C-index = 0.700, Brier score = 0.282). Conclusion: Among patients with moderate-to-severe COVID-19, booster vaccination and early clinical intervention were associated with a reduced medium- to long-term risk of all-cause mortality. Moderate cases should be prioritized for early identification and timely care. The RSF model demonstrated strong potential for handling high-dimensional real-world data and may serve as a valuable tool to support clinical decision-making. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:08:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-30T16:08:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract v 目次 vii 圖次 ix 表次 x 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 第二章 文獻回顧 4 2.1 疫苗保護力評估指標 4 2.2 疫苗效益研究方法 8 2.3 存活分析模型與機器學習於疫苗效益預測之應用 14 2.4 小結 16 第三章 材料與方法 17 3.1 研究架構 17 3.2 研究資料來源 18 3.3 研究對象與篩選流程 19 3.4 變項操作定義 21 3.5 統計分析 24 3.6 研究倫理 29 第四章 研究結果 30 4.1 研究對象特徵 30 4.2 存活分析 38 4.3 Cox比例風險模型 43 4.4 時間依賴Cox模型 47 4.5 隨機生存森林 52 第五章 討論 57 5.1 研究發現 57 5.2 研究限制 61 第六章 結論 64 6.1 結論 64 6.2 政策建議 65 參考文獻 66 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生存分析 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 疫苗效益 | zh_TW |
| dc.subject | 隨機生存森林 | zh_TW |
| dc.subject | 時間依賴Cox模型 | zh_TW |
| dc.subject | COVID-19疫苗 | zh_TW |
| dc.subject | 真實世界資料 | zh_TW |
| dc.subject | machine learning | en |
| dc.subject | COVID-19 vaccine | en |
| dc.subject | real-world data | en |
| dc.subject | random survival forest | en |
| dc.subject | time-dependent Cox model | en |
| dc.subject | vaccine effectiveness | en |
| dc.subject | survival analysis | en |
| dc.title | COVID-19疫苗於中重症病人之效益評估 | zh_TW |
| dc.title | COVID-19 Vaccine Effectiveness among Hospitalized Patients with COVID-19 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳立昇;葉彥伯 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Sheng Chen;Yen-Po Yeh | en |
| dc.subject.keyword | COVID-19疫苗,生存分析,時間依賴Cox模型,隨機生存森林,真實世界資料,機器學習,疫苗效益, | zh_TW |
| dc.subject.keyword | COVID-19 vaccine,survival analysis,time-dependent Cox model,random survival forest,real-world data,machine learning,vaccine effectiveness, | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202502747 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 護理學研究所 | - |
| dc.date.embargo-lift | 2030-06-30 | - |
| 顯示於系所單位: | 護理學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.17 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
