Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100236Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 林泰元 | zh_TW |
| dc.contributor.advisor | Thai-Yen Ling | en |
| dc.contributor.author | 謝亞妤 | zh_TW |
| dc.contributor.author | Ya-Yu Hsieh | en |
| dc.date.accessioned | 2025-09-30T16:07:01Z | - |
| dc.date.available | 2025-10-01 | - |
| dc.date.copyright | 2025-09-30 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | Agarwal, M., Goheen, M., Jia, S., Ling, S., White, E. S., & Kim, K. K. (2020). Type I collagen signaling regulates opposing fibrotic pathways through α2β1 integrin. American journal of respiratory cell and molecular biology, 63(5), 613-622.
Papavassiliou, K. A., Sofianidi, A. A., Spiliopoulos, F. G., Gogou, V. A., Gargalionis, A. N., & Papavassiliou, A. G. (2024). YAP/TAZ signaling in the pathobiology of pulmonary fibrosis. Cells, 13(18), 1519. Nho, R. S., Ballinger, M. N., Rojas, M. M., Ghadiali, S. N., & Horowitz, J. C. (2022). Biomechanical force and cellular stiffness in lung fibrosis. The American Journal of Pathology, 192(5), 750-761. Liu, F., Lagares, D., Choi, K. M., Stopfer, L., Marinković, A., Vrbanac, V., ... & Tschumperlin, D. J. (2015). Mechanosignaling through YAP and TAZ drives fibroblast activation and fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 308(4), L344-L357. Tang, W., Li, M., Yangzhong, X., Zhang, X., Zu, A., Hou, Y., ... & Sun, S. (2022). Hippo signaling pathway and respiratory diseases. Cell Death Discovery, 8(1), 213. Ishihara, S., Enomoto, A., Sakai, A., Iida, T., Tange, S., Kioka, N., ... & Haga, H. (2025). Stiff extracellular matrix activates the transcription factor ATF5 to promote the proliferation of cancer cells. Iscience, 28(3). Mugnaini, G., Gelli, R., Mori, L., & Bonini, M. (2023). How to cross-link gelatin: the effect of glutaraldehyde and glyceraldehyde on the hydrogel properties. ACS Applied Polymer Materials, 5(11), 9192-9202. Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials, 22(8), 763-768. Cao, H., Wang, J., Hao, Z., & Zhao, D. (2024). Gelatin-based biomaterials and gelatin as an additive for chronic wound repair. Frontiers in Pharmacology, 15, 1398939. Kabiri, M., Emami, S. H., Rafinia, M., & Tahriri, M. (2011). Preparation and characterization of absorbable hemostat crosslinked gelatin sponges for surgical applications. Current Applied Physics, 11(3), 457-461. Irfan, N. I., Zubir, A. Z. M., Suwandi, A., Haris, M. S., Jaswir, I., & Lestari, W. (2022). Gelatin-based hemostatic agents for medical and dental application at a glance: A narrative literature review. The Saudi Dental Journal, 34(8), 699-707. Catarino, M., Castro, F., Macedo, J. P., Lopes, O., Pereira, J., Lopes, P., & Fernandes, G. V. O. (2024). Mechanisms of degradation of collagen or gelatin materials (hemostatic sponges) in oral surgery: a systematic review. Surgeries, 5(3), 532-548. McKeen, L. W. (2018). The effect of sterilization on plastics and elastomers. William Andrew. Matsuda, S., Iwata, H., Se, N., & Ikada, Y. (1999). Bioadhesion of gelatin films crosslinked with glutaraldehyde. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 45(1), 20-27. Huang, X., Wei, B., Chen, L., Yang, L., Zheng, C., & Wang, Y. (2025). Degeneration mechanisms and advancements in optimization for preparation and crosslinking strategy of pericardium-based bioprosthetic heart valves. Acta Biomaterialia. Dual-crosslinked bioprosthetic heart valves prepared by glutaraldehyde crosslinked pericardium and poly-2-hydroxyethyl methacrylate exhibited improved antithrombogenicity and anticalcification properties Pharoun, J., Berro, J., Sobh, J., Abou-Younes, M. M., Nasr, L., Majed, A., ... & Faour, W. H. (2024). Mesenchymal stem cells biological and biotechnological advances: Implications for clinical applications. European Journal of Pharmacology, 977, 176719. Doherty, D. F., Roets, L. E., Dougan, C. M., Brown, R. R., Hawthorne, I. J., O’Kane, C., ... & Weldon, S. (2024). Mesenchymal stromal cells reduce inflammation and improve lung function in a mouse model of cystic fibrosis lung disease. Scientific Reports, 14(1), 30899. Shan, Y., Zhang, M., Tao, E., Wang, J., Wei, N., Lu, Y., ... & Wang, G. (2024). Pharmacokinetic characteristics of mesenchymal stem cells in translational challenges. Signal Transduction and Targeted Therapy, 9(1), 242. Silverstein, E., Richmann, M., Tyl, D., Fiaoni, A., Pfeifer, K., Moussa, H., ... & Barry, P. E. (2024). The Application of Mesenchymal Stem Cell Therapy in Treating Pulmonary Fibrosis: A Scoping Review. Cureus, 16(11). Hazrati, A., Mirarefin, S. M. J., Malekpour, K., Rahimi, A., Khosrojerdi, A., Rasouli, A., ... & Soudi, S. (2024). Mesenchymal stem cell application in pulmonary disease treatment with emphasis on their interaction with lung-resident immune cells. Frontiers in Immunology, 15, 1469696. Nie, Z., Fan, Q., Jiang, W., Wei, S., Luo, R., Hu, H., ... & Xie, S. (2024). Placental mesenchymal stem cells suppress inflammation and promote M2-like macrophage polarization through the IL-10/STAT3/NLRP3 axis in acute lung injury. Frontiers in Immunology, 15, 1422355. Yu, W., Lv, Y., Xuan, R., Han, P., Xu, H., & Ma, X. (2024). Human placental mesenchymal stem cells transplantation repairs the alveolar epithelial barrier to alleviate lipopolysaccharides-induced acute lung injury. Biochemical Pharmacology, 229, 116547. Zhou, M., Meng, L., He, Q., Ren, C., & Li, C. (2024). Valsartan attenuates LPS-induced ALI by modulating NF-κB and MAPK pathways. Frontiers in Pharmacology, 15, 1321095. Tsikis, S. T., Fligor, S. C., Hirsch, T. I., Pan, A., Yu, L. J., Kishikawa, H., ... & Puder, M. (2022). Lipopolysaccharide-induced murine lung injury results in long-term pulmonary changes and downregulation of angiogenic pathways. Scientific Reports, 12(1), 10245. Degryse, A. L., Tanjore, H., Xu, X. C., Polosukhin, V. V., Jones, B. R., McMahon, F. B., ... & Lawson, W. E. (2010). Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. American Journal of Physiology-Lung Cellular and Molecular Physiology, 299(4), L442-L452. Ionescu, L., Byrne, R. N., van Haaften, T., Vadivel, A., Alphonse, R. S., Rey-Parra, G. J., ... & Thébaud, B. (2012). Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303(11), L967-L977. Su, V. Y. F., Lin, C. S., Hung, S. C., & Yang, K. Y. (2019). Mesenchymal stem cell-conditioned medium induces neutrophil apoptosis associated with inhibition of the NF-κB pathway in endotoxin-induced acute lung injury. International Journal of Molecular Sciences, 20(9), 2208. Xiao, K., He, W., Guan, W., Hou, F., Yan, P., Xu, J., ... & Xie, L. (2020). Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell death & disease, 11(10), 863. Ratanavaraporn, J., Rangkupan, R., Jeeratawatchai, H., Kanokpanont, S., & Damrongsakkul, S. (2010). Influences of physical and chemical crosslinking techniques on electrospun type A and B gelatin fiber mats. International journal of biological macromolecules, 47(4), 431-438. Davidenko, N., Schuster, C. F., Bax, D. V., Farndale, R. W., Hamaia, S., Best, S. M., & Cameron, R. E. (2016). Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry. Journal of Materials Science: Materials in Medicine, 27(10), 148. McAndrews, K. M., Kim, M. J., Lam, T. Y., McGrail, D. J., & Dawson, M. R. (2014). Architectural and mechanical cues direct mesenchymal stem cell interactions with crosslinked gelatin scaffolds. Tissue Engineering Part A, 20(23-24), 3252-3260. Yang, G., Xiao, Z., Long, H., Ma, K., Zhang, J., Ren, X., & Zhang, J. (2018). Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Scientific reports, 8(1), 1616. Ishida, Y., Kuninaka, Y., Mukaida, N., & Kondo, T. (2023). Immune mechanisms of pulmonary fibrosis with bleomycin. International journal of molecular sciences, 24(4), 3149. Mai, K., Chen, X., Zhang, K., Gu, S., Wu, X., Gu, Z., ... & Chen, D. (2022). A juvenile murine model with chronic lung inflammation induced by repeated intratracheal instillation of lipopolysaccharides: a versatile and replicable model. Translational Pediatrics, 11(8), 1292. Li, H., Du, S., Yang, L., Chen, Y., Huang, W., Zhang, R., ... & Yao, Z. (2009). Rapid pulmonary fibrosis induced by acute lung injury via a lipopolysaccharide three-hit regimen. Innate immunity, 15(3), 143-154. Kurniawan, S. V., Louisa, M., Zaini, J., Surini, S., Soetikno, V., Wuyung, P. E., & Uli, R. C. T. (2023). Acute exacerbation of idiopathic pulmonary fibrosis model in the rats using bleomycin and lipopolysaccharides. Journal of Advanced Veterinary and Animal Research, 10(2), 196. Bordag, N., Biasin, V., Schnoegl, D., Valzano, F., Jandl, K., Nagy, B. M., ... & Marsh, L. M. (2020). Machine learning analysis of the bleomycin mouse model reveals the compartmental and temporal inflammatory pulmonary fingerprint. Iscience, 23(12). Wang, Y. Y., Li, X. Z., & Wang, L. B. (2013). Therapeutic implications of mesenchymal stem cells in acute lung injury/acute respiratory distress syndrome. Stem Cell Research & Therapy, 4(3), 45. Ionescu, L., Byrne, R. N., van Haaften, T., Vadivel, A., Alphonse, R. S., Rey-Parra, G. J., ... & Thébaud, B. (2012). Stem cell conditioned medium improves acute lung injury in mice: in vivo evidence for stem cell paracrine action. American Journal of Physiology-Lung Cellular and Molecular Physiology, 303(11), L967-L977. Yu, T., Cui, Y., Xin, S., Fu, Y., Ding, Y., Hao, L., & Nie, H. (2023). Mesenchymal stem cell conditioned medium alleviates acute lung injury through KGF-mediated regulation of epithelial sodium channels. Biomedicine & Pharmacotherapy, 169, 115896. Lan, Y. W., Choo, K. B., Chen, C. M., Hung, T. H., Chen, Y. B., Hsieh, C. H., ... & Chong, K. Y. (2015). Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem cell research & therapy, 6(1), 97. Zhao, Y., Yan, Z., Liu, Y., Zhang, Y., Shi, J., Li, J., & Ji, F. (2021). Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application. Stem cell research & therapy, 12(1), 470. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100236 | - |
| dc.description.abstract | 肺泡主要由第一型與第二型肺泡上皮細胞組成。其中,第一型肺泡上皮細胞(AT1)覆蓋約 95% 的肺泡表面面積,是肺部氣體交換的主要結構。儘管AT1細胞在肺部功能中扮演關鍵角色,但由於其在體外難以分離與培養,導致對其功能特性的研究仍十分有限。間質幹/間質基質細胞(mesenchymal stem/stromal cells, MSCs)因具備自我更新能力與多向分化潛能,近年來在再生醫學領域備受關注,並於多種疾病中展現出具前景的治療應用。
本研究使用本實驗室自行開發的專利技術,成功分離出肺部前驅細胞(mPSCs),並誘導其分化為AT1細胞。同時,我們探討不同培養基材對mPSCs形態與分化潛能的影響,發現在不同培養條件下,細胞展現出顯著差異的特性。此外,本研究也評估了mPSCs衍生之AT1細胞對脂多醣(lipopolysaccharide, LPS)刺激的反應,並進一步驗證由人類胎盤絨毛膜基底層來源的間質基質細胞(pcMSCs)對細胞損傷的修復潛力;此外,我們亦透過動物模式進行療效驗證。本研究突顯pcMSCs在肺部治療應用上的潛力,並證實以mPSCs衍生AT1細胞作為肺部相關研究模型的可行性。同時,我們的發現亦提供了關於培養條件如何影響mPSCs命運與功能的新見解,為未來肺部細胞模型的優化提供重要參考。 | zh_TW |
| dc.description.abstract | The alveoli are primarily composed of type I and type II alveolar epithelial cells. Type I alveolar epithelial cells (AT1) cover approximately 95% of the alveolar surface area and serve as the primary structure for gas exchange in the lungs. Despite their crucial role, AT1 cells are notoriously difficult to isolate and maintain in vitro, resulting in limited research on their functional characteristics.
Mesenchymal stem/stromal cells (MSCs) are well known for their self-renewal capacity and multi-lineage differentiation potential. In recent years, MSCs have garnered significant attention in regenerative medicine due to their promising therapeutic applications across various diseases. This study was conducted using a proprietary technique developed in our laboratory to isolate lung progenitor cells (mPSCs) and induce their differentiation into AT1 cells. Additionally, we investigated the effects of different culture substrates on mPSCs morphology and differentiation potential, revealing distinct cellular characteristics under varying culture conditions. We further examined the response of mPSCs-derived AT1 cells to lipopolysaccharide (LPS) stimulation and assessed the therapeutic potential of human placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) in mitigating cellular damage. Moreover, the efficacy of pcMSCs was validated using an in vivo animal model. The study underscores the therapeutic potential of pcMSCs and highlights the feasibility of utilizing mPSCs-derived AT1 cells as a valuable tool for future lung-related research. Additionally, our findings provide new insights into how culture conditions influence mPSCs fate and function, offering valuable guidance for optimizing in vitro lung cell models. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:07:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-30T16:07:01Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract iv Chapter 1 Introduction 1 1.1 Impact of Culture Materials on Lung Epithelial Cells 2 1.2 Crosslinking reaction of gelatin with glutaraldehyde. 4 1.3 An overview of mesenchymal stem cells (MSCs) 6 1.4 Placenta choriodecidual derived MSCs (pcMSCs) 8 1.5 LPS-induced lung injury 9 1.6 Aim of study 11 Chapter 2 Materials and methods 13 2.1 Animal 14 2.2 Primary culture of mouse Lung Stem/Progenitor Cells (mPSCs) 14 2.3 Isolation and differentiation of CAR+ mouse Lung Stem/Progenitor Cells (mPSCs CAR+) 15 2.4 Materials for Cell Culture 16 2.5 Immunofluorescence staining 17 2.6 Flow cytometry analysis 18 2.7 In vivo LPS-induced lung injury model 18 2.8 Bronchoalveolar lavage fluid (BALF) collection 19 2.9 Liu’s stain 20 2.10 BCA assay 21 2.11 Histological section, Hematoxylin-Eosin (H&E) and Masson Trichrome staining 21 2.11 In vitro LPS-induced Type 1 pneumocytes injury injury model 21 2.12 Western blot 22 2.13 RNA analysis by Agarose Gel Electrophoresis 23 2.14 Cell Counting Kit (CCK8) 24 2.15 TUNEL assay 24 2.16 Statistical analysis 25 Chapter 3 Results 27 3.1 Investigating Mouse Lung Stem/Progenitor Cells (mPSCs) colony forming and differentiation on different materials 28 3.1.1 Mouse Lung Stem/Progenitor Cells (mPSCs) isolation and differentiation 28 3.1.2 CAR+ colony forming on different percentage of gelatin crosslinking glutaraldehyde coating materials 29 3.1.3 CAR+ colony forming on different coating materials between collagen and gelatin 30 3.1.4 Initial cells attachment on gelatin- versus collagen-coated dishes 31 3.1.5 CAR+ Mouse Lung Stem/Progenitor Cells (mPSCs) differentiation on different coating materials between collagen and gelatin 31 3.1.6 Single-cell transcriptomics reveal material‐independent programs in CAR⁺ mPSCs but material-biased shifts in the CAR⁻ compartment 33 3.2 Therapeutic potential of pcMSCs in LPS-induced lung injury: evidence from in vivo and in vitro Models 35 3.2.1 Establishment of the LPS-Induced Lung Injury Model 35 3.2.2 Safety assessment of intratracheal pcMSCs and conditioned-medium delivery in healthy mice 36 3.2.3 Therapeutic efficacy of pcMSCs-conditioned medium in the acute-injury model 37 3.2.4 Anti-fibrotic efficacy of pcMSCs-conditioned medium in the chronic-injury model 38 3.2.5 pcMSCs Cell Therapy Attenuates Established Fibrosis in the Chronic-Injury Model 40 3.2.6 In-vitro confirmation of pcMSCs-secretome cytoprotection in mPSCsCAR+-derived-AT1 cells model 41 Chapter 4 Discussion and conclusions 43 4.1 Investigating Mouse Lung Stem/Progenitor Cells (mPSCs) colony forming and differentiation on different materials 44 4.1.1 Material identity: Type B gelatin versus Type A gelatin and collagen I 44 4.1.2 Effect of cross-linking: GA (+) versus GA (-) 44 4.1.3 Constant gelatin (0.026 % w/v), varying GA 45 4.1.4 Constant GA (0.25 %), varying gelatin 46 4.1.5 Lead formulation versus collagen I 46 4.1.6 Conclusion 47 4.2 Therapeutic potential of pcMSCs in LPS-induced lung injury: evidence from in vivo and in vitro Models 47 4.2.1 Key findings in the context of our experimental design 48 4.2.2 Choice of LPS versus bleomycin as an injury trigger 48 4.2.3 Time-resolved studies that corroborate our two-window strategy 49 4.2.4 MSC-based therapies in acute and fibrotic lung injury 50 4.2.5 Conclusion 50 Chapter 5 Figures and legends 52 Chapter 6 Supplementary Data 84 Chapter 7 Reference 87 | - |
| dc.language.iso | en | - |
| dc.subject | 第一型肺泡細胞 | zh_TW |
| dc.subject | 細胞培養材料 | zh_TW |
| dc.subject | 明膠 | zh_TW |
| dc.subject | 第一型膠原蛋白 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | 肺損傷 | zh_TW |
| dc.subject | 肺纖維化 | zh_TW |
| dc.subject | Culture materials | en |
| dc.subject | Lung fibrosis | en |
| dc.subject | Lung injury | en |
| dc.subject | Mesenchymal stem/stromal cells (MSCs) | en |
| dc.subject | Collagen type 1 | en |
| dc.subject | Gelatin | en |
| dc.subject | Type I alveolar epithelial cells | en |
| dc.title | 小鼠肺臟幹源細胞之疾病模型研究 | zh_TW |
| dc.title | The study of disease models in mouse pulmonary stem/progenitor cells (mPSCs) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林琬琬;曹伯年;黃國彥;劉彥良 | zh_TW |
| dc.contributor.oralexamcommittee | Wan-Wan Lin;Po-Nien Tsao;Kuo-Yen Huang;Yen-Liang Liu | en |
| dc.subject.keyword | 第一型肺泡細胞,細胞培養材料,明膠,第一型膠原蛋白,間質幹細胞,肺損傷,肺纖維化, | zh_TW |
| dc.subject.keyword | Type I alveolar epithelial cells,Culture materials,Gelatin,Collagen type 1,Mesenchymal stem/stromal cells (MSCs),Lung injury,Lung fibrosis, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202503574 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥理學研究所 | - |
| dc.date.embargo-lift | 2030-08-03 | - |
| Appears in Collections: | 藥理學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 4.14 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
