Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃宣銘zh_TW
dc.contributor.advisorHsuan-Ming Huangen
dc.contributor.author李中藝zh_TW
dc.contributor.authorZhong-Yi Lien
dc.date.accessioned2025-09-30T16:06:30Z-
dc.date.available2025-10-01-
dc.date.copyright2025-09-30-
dc.date.issued2025-
dc.date.submitted2025-07-02-
dc.identifier.citation1. Edelman, R. R. and Warach, S., Magnetic resonance imaging. N Engl J Med, 1993. 328: p. 708-16.
2. Shellock, F. G. and Crues, J. V., MR procedures: biologic effects, safety, and patient care. Radiology, 2004. 232: p. 635-52.
3. Ogawa, S., et al., Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A, 1990. 87: p. 9868-72.
4. Kim, R. J., et al., The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med, 2000. 343: p. 1445-53.
5. Padhani, A. R. and Miles, K. A., Multiparametric imaging of tumor response to therapy. Radiology, 2010. 256: p. 348-64.
6. Hricak, H. and Williams, R. D., Magnetic resonance imaging and its application in urology. Urology, 1984. 23: p. 442-54.
7. Hricak, H., et al., Complex adnexal masses: detection and characterization with MR imaging--multivariate analysis. Radiology, 2000. 214: p. 39-46.
8. Lauterbur, P. C., Image formation by induced local interactions - examples employing nuclear magnetic-resonance. Nature, 1973. 242: p. 190-1.
9. Jin, J. Electromagnetic analysis and design in magnetic resonance imaging. 1998.
10. Abragam, A. and Carr, H. Y., The principles of nuclear magnetism. Physics Today, 1961.
11. Gaeta, M., et al., Magnetism of materials: theory and practice in magnetic resonance imaging. Insights Imaging, 2021. 12: p. 1-18.
12. Brown, R. W., et al., Magnetic resonance imaging. 2014.
13. Edelstein, W. A., et al., Spin warp NMR imaging and applications to human whole-body imaging. Phys Med Biol, 1980. 25: p. 751-6.
14. Barbieri, S., et al., Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn Reson Med, 2016. 75: p. 2175-84.
15. Tofts, P. S., et al., Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging, 1999. 10: p. 223-32.
16. Detre, J. A., et al., Perfusion imaging. Magn Reson Med, 1992. 23: p. 37-45.
17. Jahng, G. H., et al., Perfusion magnetic resonance imaging: a comprehensive update on principles and techniques. Korean J Radiol, 2014. 15: p. 554-77.
18. Chalela, J. A., et al., Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke, 2000. 31: p. 680-7.
19. Wolf, R. L., et al., Grading of CNS neoplasms using continuous arterial spin labeled perfusion MR imaging at 3 Tesla. J Magn Reson Imaging, 2005. 22: p. 475-82.
20. Yankeelov, T. E., et al., Quantitative pharmacokinetic analysis of DCE-MRI data without an arterial input function: a reference region model. Magn Reson Imaging, 2005. 23: p. 519-29.
21. Khalifa, F., et al., Models and methods for analyzing DCE-MRI: a review. Med Phys, 2014. 41: p. 124301-33.
22. Lee, F. K., et al., Dynamic contrast enhancement magnetic resonance imaging (DCE-MRI) for differential diagnosis in head and neck cancers. Eur J Radiol, 2012. 81: p. 784-8.
23. Wang, C. H., et al., Review of treatment assessment using DCE-MRI in breast cancer radiation therapy. World J Methodol, 2014. 4: p. 46-58.
24. Moseley, M. E., et al., Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology, 1990. 176: p. 439-45.
25. Baliyan, V., et al., Diffusion weighted imaging: technique and applications. World J Radiol, 2016. 8: p. 785-98.
26. Freiman, M., et al., Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med Image Anal, 2013. 17: p. 325-36.
27. Padhani, A. R., et al., Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia, 2009. 11: p. 102-25.
28. Koh, D. M. and Collins, D. J., Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol, 2007. 188: p. 1622-35.
29. De Luca, A., Bertoldo, A., and Froeling, M., Effects of perfusion on DTI and DKI estimates in the skeletal muscle. Magn Reson Med, 2017. 78: p. 233-46.
30. Rosenkrantz, A. B., et al., Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging, 2015. 42: p. 1190-202.
31. Jensen, J. H., et al., Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med, 2005. 53: p. 1432-40.
32. Paydar, A., Diffusional kurtosis imaging: a promising technique for detecting microstructural changes in neural development and regeneration. Neural Regen Res, 2014. 9: p. 1108-9.
33. Fieremans, E., Jensen, J. H., and Helpern, J. A., White matter characterization with diffusional kurtosis imaging. Neuroimage, 2011. 58: p. 177-88.
34. Le Bihan, D., et al., Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging, 2001. 13: p. 534-46.
35. Basser, P. J., Mattiello, J., and LeBihan, D., MR diffusion tensor spectroscopy and imaging. Biophys J, 1994. 66: p. 259-67.
36. Le Bihan, D., et al., MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 1986. 161: p. 401-7.
37. Juchem, C. and de Graaf, R. A., B(0) magnetic field homogeneity and shimming for in vivo magnetic resonance spectroscopy. Anal Biochem, 2017. 529: p. 17-29.
38. Liu, C., et al., Intravoxel incoherent motion (IVIM) in evaluation of breast lesions: comparison with conventional DWI. Eur J Radiol, 2013. 82: p. e782-9.
39. Federau, C., et al., Measuring brain perfusion with intravoxel incoherent motion (IVIM): initial clinical experience. J Magn Reson Imaging, 2014. 39: p. 624-32.
40. Spinner, G. R., Federau, C., and Kozerke, S., Bayesian inference using hierarchical and spatial priors for intravoxel incoherent motion MR imaging in the brain: Analysis of cancer and acute stroke. Med Image Anal, 2021. 73: p. 102144.
41. Neil, J. J., Bosch, C. S., and Ackerman, J. J., An evaluation of the sensitivity of the intravoxel incoherent motion (IVIM) method of blood flow measurement to changes in cerebral blood flow. Magn Reson Med, 1994. 32: p. 60-5.
42. Redpath, T. W., Signal-to-noise ratio in MRI. Br J Radiol, 1998. 71: p. 704-7.
43. Gudbjartsson, H. and Patz, S., The Rician distribution of noisy MRI data. Magn Reson Med, 1995. 34: p. 910-4.
44. Luciani, A., et al., Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study. Radiology, 2008. 249: p. 891-9.
45. Huang, H. M., An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters. Phys Med Biol, 2022. 67: p. 215018.
46. Freiman, M., et al., In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging. Med Phys, 2012. 39: p. 4832-9.
47. Ogura, A., et al., Imaging parameter effects in apparent diffusion coefficient determination of magnetic resonance imaging. Eur J Radiol, 2011. 77: p. 185-8.
48. Coupe, P., et al., An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images. IEEE Trans Med Imaging, 2008. 27: p. 425-41.
49. Manjon, J. V., et al., Diffusion weighted image denoising using overcomplete local PCA. PLoS One, 2013. 8: p. e73021.
50. Lam, F., et al., Denoising diffusion-weighted magnitude MR images using rank and edge constraints. Magn Reson Med, 2014. 71: p. 1272-84.
51. Lin, C., Liu, C. C., and Huang, H. M., A general-threshold filtering method for improving intravoxel incoherent motion parameter estimates. Phys Med Biol, 2018. 63: p. 175008.
52. Huang, H. M. and Lin, C., A kernel-based image denoising method for improving parametric image generation. Med Image Anal, 2019. 55: p. 41-8.
53. Lin, Y. C. and Huang, H. M., Denoising of multi b-value diffusion-weighted MR images using deep image prior. Phys Med Biol, 2020. 65: p. 105003.
54. Gurney-Champion, O. J., et al., Principal component analysis fosr fast and model-free denoising of multi b-value diffusion-weighted MR images. Phys Med Biol, 2019. 64: p. 105015.
55. Branch, M. A., Coleman, T. F., and Li, Y. Y., A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems. Siam Journal on Scientific Computing, 1999. 21: p. 1-23.
56. Byrd, R. H., Schnabel, R. B., and Shultz, G. A., Approximate solution of the trust region problem by minimization over two-dimensional subspaces. Mathematical Programming, 1988. 40: p. 247-63.
57. Fusco, R., Sansone, M., and Petrillo, A., The Use of the Levenberg Marquardt and Variable Projection Curve-Fitting Algorithm in Intravoxel Incoherent Motion Method for DW-MRI Data Analysis. Applied Magnetic Resonance, 2015. 46: p. 551-8.
58. Nielsen, H. B., Damping parameter in Marquardt's method. 1999.
59. Curtis, F. E., Robinson, D. P., and Samadi, M., A trust region algorithm with a worst-case iteration complexity of O (ϵ^-3/2) O (ϵ-3/2) for nonconvex optimization. Mathematical Programming, 2016. 162: p. 1-32.
60. Orton, M. R., et al., Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn Reson Med, 2014. 71: p. 411-20.
61. Marin, J. M., et al., Approximate Bayesian computational methods. Statistics and Computing, 2012. 22: p. 1167-80.
62. Bertleff, M., et al., Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR Biomed, 2017. 30: p. e3833.
63. Lee, W., Kim, B., and Park, H., Quantification of intravoxel incoherent motion with optimized b-values using deep neural network. Magn Reson Med, 2021. 86: p. 230-44.
64. Mastropietro, A., et al., A supervised deep neural network approach with standardized targets for enhanced accuracy of IVIM parameter estimation from multi-SNR images. NMR Biomed, 2022. 35: p. e4774.
65. Barbieri, S., et al., Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magn Reson Med, 2020. 83: p. 312-21.
66. Kaandorp, M. P. T., et al., Improved unsupervised physics-informed deep learning for intravoxel incoherent motion modeling and evaluation in pancreatic cancer patients. Magn Reson Med, 2021. 86: p. 2250-65.
67. Summers, C. and Dinneen, M. J. Nondeterminism and instability in neural network optimization. in International Conference on Machine Learning. 2021.
68. Ozaki, Y., Yano, M., and Onishi, M., Effective hyperparameter optimization using Nelder-Mead method in deep learning. IPSJ Transactions on Computer Vision and Applications, 2017. 9: p. 1-12.
69. Vasylechko, S. D., et al., Self-supervised IVIM DWI parameter estimation with a physics based forward model. Magn Reson Med, 2022. 87: p. 904-14.
70. Zhao, B. D., et al., Convolutional neural networks for time series classification. Journal of Systems Engineering and Electronics, 2017. 28: p. 162-9.
71. Isaksson, L. J., et al., High-performance prediction models for prostate cancer radiomics. Informatics in Medicine Unlocked, 2023.
72. Hochreiter, S. and Schmidhuber, J., Long short-term memory. Neural Comput, 1997. 9: p. 1735-80.
73. Siami-Namini, S., Tavakoli, N., and Namin, A. S. The performance of LSTM and BiLSTM in forecasting time series. in 2019 IEEE International Conference on Big Data (Big Data). 2019.
74. Graves, A. and Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM networks. in Proceedings. 2005 IEEE International Joint Conference on Neural Networks. 2005.
75. Vaswani, A., Attention is all you need. Advances in Neural Information Processing Systems, 2017. 30.
76. Devlin, J., et al. BERT: pre-training of deep bidirectional transformers for language understanding. in North American Chapter of the Association for Computational Linguistics. 2019.
77. Pekar, J., Moonen, C. T., and van Zijl, P. C., On the precision of diffusion/perfusion imaging by gradient sensitization. Magn Reson Med, 1992. 23: p. 122-9.
78. Wetscherek, A., Stieltjes, B., and Laun, F. B., Flow-compensated intravoxel incoherent motion diffusion imaging. Magn Reson Med, 2015. 74: p. 410-9.
79. Sigmund, E. E., et al., Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges. Radiology, 2012. 263: p. 758-69.
80. Kang, K. M., et al., Intravoxel incoherent motion diffusion-weighted MR imaging for characterization of focal pancreatic lesions. Radiology, 2014. 270: p. 444-53.
81. Taimouri, V., et al., Spatially constrained incoherent motion method improves diffusion-weighted MRI signal decay analysis in the liver and spleen. Med Phys, 2015. 42: p. 1895-903.
82. Luong, M.-T., Effective approaches to attention-based neural machine translation. arXiv preprint arXiv:1508.04025, 2015.
83. Aja-Fernandez, S., Alberola-Lopez, C., and Westin, C. F., Noise and signal estimation in magnitude MRI and Rician distributed images: a LMMSE approach. IEEE Trans Image Process, 2008. 17: p. 1383-98.
84. Garyfallidis, E., et al., Dipy, a library for the analysis of diffusion MRI data. Front Neuroinform, 2014. 8: p. 8.
85. Koay, C. G. and Basser, P. J., Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. J Magn Reson, 2006. 179: p. 317-22.
86. Ashby, S. F., et al., The role of the inner product in stopping criteria for conjugate gradient iterations. Bit, 2001. 41: p. 26-52.
87. Rydhog, A. S., et al., Intravoxel incoherent motion (IVIM) imaging at different magnetic field strengths: what is feasible? Magn Reson Imaging, 2014. 32: p. 1247-58.
88. Kingma, D. P., Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
89. Jeffreys, H., An invariant form for the prior probability in estimation problems. Proc R Soc Lond A Math Phys Sci, 1946. 186: p. 453-61.
90. Roberts, G. O., Gelman, A., and Gilks, W. R., Weak convergence and optimal scaling of random Walk Metropolis algorithms. Annals of Applied Probability, 1997. 7: p. 110-20.
91. Paschoal, A. M., et al., Contrast optimization in arterial spin labeling with multiple post-labeling delays for cerebrovascular assessment. MAGMA, 2021. 34: p. 119-31.
92. Vieni, C., et al., Effect of intravoxel incoherent motion on diffusion parameters in normal brain. Neuroimage, 2020. 204: p. 116228.
93. Wu, W. C., et al., Caveat of measuring perfusion indexes using intravoxel incoherent motion magnetic resonance imaging in the human brain. Eur Radiol, 2015. 25: p. 2485-92.
94. Tanaka, H. and Kunin, D., Noether’s learning dynamics: role of symmetry breaking in neural networks. Advances in Neural Information Processing Systems, 2021. 34: p. 25646-60.
95. Glorot, X. and Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. in Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.
96. Dodge, S. and Karam, L. Understanding how image quality affects deep neural networks. in 2016 eighth international conference on quality of multimedia experience (QoMEX). 2016.
97. Zhang, Q., et al., An joint end-to-end framework for learning with noisy labels. Applied Soft Computing, 2021. 108: p. 107426.
98. Manzano Patron, J. P., et al., Denoising diffusion MRI: considerations and implications for analysis. Imaging Neuroscience, 2024. 2: p. 1-29.
99. Shi, Z. L., et al., On measuring and controlling the spectral bias of the deep image prior. International Journal of Computer Vision, 2022. 130: p. 885-908.
100. Prechelt, L., Early stopping-but when? 2002, Springer. p. 55-69.
101. Hussein, B. M. and Shareef, S. M. An empirical study on the correlation between early stopping patience and epochs in deep learning. in ITM Web of Conferences. 2024.
102. Baltzer, P., et al., Diffusion-weighted imaging of the breast-a consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur Radiol, 2020. 30: p. 1436-50.
103. Rudin, L. I., Osher, S., and Fatemi, E., Nonlinear total variation based noise removal algorithms. Physica D, 1992. 60: p. 259-68.
104. Perona, P. and Malik, J., Scale-space and edge-detection using anisotropic diffusion. Ieee Transactions on Pattern Analysis and Machine Intelligence, 1990. 12: p. 629-39.
105. Tian, C., et al. Deep learning for image denoising: a survey. in Genetic and Evolutionary Computing: Proceedings of the Twelfth International Conference on Genetic and Evolutionary Computing. 2019.
106. Zhang, K., et al., Beyond a Gaussian denoiser: residual Learning of deep CNN for image denoising. IEEE Trans Image Process, 2017. 26: p. 3142-55.
107. Le Bihan, D., et al., Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 1988. 168: p. 497-505.
108. Cho, G. Y., et al., Comparison of fitting methods and b-value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med, 2015. 74: p. 1077-85.
109. Li, Y. T., et al., Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: a comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant Imaging Med Surg, 2017. 7: p. 59-78.
110. Faulkner, J. R. and Minin, V. N., Locally adaptive smoothing with Markov random fields and Shrinkage priors. Bayesian Anal, 2018. 13: p. 225-52.
111. Nadolska, K., et al., Analysis of IVIM perfusion fraction improves detection of pancreatic ductal adenocarcinoma. Diagnostics (Basel), 2024. 14: p. 571.
112. Lu, P. X., et al., Decreases in molecular diffusion, perfusion fraction and perfusion-related diffusion in fibrotic livers: a prospective clinical intravoxel incoherent motion MR imaging study. PLoS One, 2014. 9: p. e113846.
113. van Baalen, S., et al., Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit. J Magn Reson Imaging, 2017. 46: p. 228-39.
114. Gurney-Champion, O. J., et al., Comparison of six fit algorithms for the intra-voxel incoherent motion model of diffusion-weighted magnetic resonance imaging data of pancreatic cancer patients. PLoS One, 2018. 13: p. e0194590.
115. Klaassen, R., et al., Evaluation of six diffusion-weighted MRI models for assessing effects of neoadjuvant chemoradiation in pancreatic cancer patients. Int J Radiat Oncol Biol Phys, 2018. 102: p. 1052-62.
116. Yang, R. K., et al., Optimizing abdominal MR imaging: approaches to common problems. Radiographics, 2010. 30: p. 185-99.
117. Tax, C. M. W., et al., What's new and what's next in diffusion MRI preprocessing. Neuroimage, 2022. 249: p. 118830.
118. Landman, B. A., et al., Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T. Neuroimage, 2007. 36: p. 1123-38.
119. Ma, X., et al. Dimensionality-driven learning with noisy labels. in International Conference on Machine Learning. 2018.
120. Zhang, C., et al., Understanding deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530, 2016.
121. While, P. T., A comparative simulation study of bayesian fitting approaches to intravoxel incoherent motion modeling in diffusion-weighted MRI. Magn Reson Med, 2017. 78: p. 2373-87.
122. Ye, C., et al., Estimation of intravoxel incoherent motion parameters using low b-values. PLoS One, 2019. 14: p. e0211911.
123. Crombe, A., et al., High B-value diffusion tensor imaging for early detection of hippocampal microstructural alteration in a mouse model of multiple sclerosis. Sci Rep, 2022. 12: p. 12008.
124. Wang, H., et al., Early stopping for deep image prior. arXiv preprint arXiv:2112.06074, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100234-
dc.description.abstract體內非相干運動 (IVIM) 成像是一種先進的擴散磁振造影 (MRI) 技術,廣泛應用於定量分析組織微結構中的灌注與擴散情況。然而,傳統的逐像素擬合方法在計算過程中往往會因為受到高雜訊的影響而導致參數的估計結果不佳。為解決此問題,本研究提出了一種結合了一維卷積神經網絡、雙向長短時記憶網絡和多頭注意力機制的無監督學習框架。該模型在模擬和真實擴散加權 MRI 資料上進行了評估,並將其結果與使用信任區域反射 (TRR)、深度神經網路 (DNN) 和貝葉斯-瑪律科夫隨機場 (Bayesian-MRF) 方法獲得的結果進行了比較。模擬結果表明,在大多數情況下,所提出的方法比其他三種方法能達到更可靠的參數估計。即使在高信噪比 (即 100) 的條件下,所提出的方法仍能達到比 TRR 方法和DNN方法更低的均方根誤差值,且其結果與Bayesian-MRF方法的結果相當。在真實腹部資料集實驗中,相較於其他三種方法,所提出的方法得出的IVIM參數估計值也接近文獻報導的值。對於真實腦部資料集,建議的方法和 Bayesian-MRF方法的表現都優於其他方法,並且前者在所有IVIM參數上都達到最佳的對比訊噪比。這些研究結果表明,我們所提出的方法是一種很有前途的IVIM參數估計方法。zh_TW
dc.description.abstractIntravoxel incoherent motion (IVIM) imaging, an advanced diffusion magnetic resonance imaging (MRI) technique, is widely used to quantify perfusion and diffusion in tissue microstructure. However, the traditional pixel-by-pixel fitting method is easily affected by high-level noise, leading to unreliable parameter estimation. To address this limitation, an unsupervised learning framework combining with a one-dimensional convolutional neural network, a bidirectional long short-term memory network, and a multi-head attention mechanism was proposed. The model was evaluated on both simulated and real diffusion-weighted MRI data. The results were compared with those obtained using the trust region reflective (TRR) method, the unsupervised deep neural network (DNN), and the Bayesian-Markov random fields (Bayesian-MRF) method. Simulation results indicate that the proposed method could provide more reliable parameter estimation than the other methods under most cases. Even at high signal-to-noise ratios levels (i.e., 100), the proposed method achieved lower root mean square error values than the TRR method and the DNN method, and performed comparably to the Bayesian-MRF method. For the abdominal datasets, the proposed method yielded IVIM parameter estimates generally closer to the literature reported values compared to those derived from the other three methods. For the brain dataset, both the proposed method and the Bayesian-MRF method outperformed the other methods, with the former achieving better contrast-to-noise ratios for all IVIM parameters. These findings suggest that our proposed method is a promising approach for IVIM parameter estimation.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:06:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-30T16:06:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES vi
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Method 14
2.1. Unsupervised 1D-CNN-BiLSTM-MHAM method 14
2.2. Simulation study 18
2.3. Real DW-MRI data acquisition and pre-processing 21
2.4. Data analysis 22
Chapter 3 Results 28
3.1. Simulation phantoms 28
3.2. Real datasets 39
Chapter 4 Discussion 50
4.1. Simulation phantoms 50
4.2. Real datasets 58
Chapter 5 Conclusion 66
REFERENCE 67
APPENDIX 73
-
dc.language.isoen-
dc.subject擴散磁振造影zh_TW
dc.subject體內非相干運動zh_TW
dc.subject參數估計zh_TW
dc.subject無監督學習zh_TW
dc.subject卷積神經網路zh_TW
dc.subjectconvolutional neural networken
dc.subjectunsupervised learningen
dc.subjectparameter estimationen
dc.subjectdiffusion MRIen
dc.subjectintravoxel incoherent motion imagingen
dc.title用於生成體內非相干運動成像的無監督一維卷積神經網路、雙向長短期記憶網路和多頭注意力模型zh_TW
dc.titleUnsupervised 1D CNN, BiLSTM, and multi-head attention model for generating intravoxel incoherent motion imagingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee盧家鋒;翁駿程;蔡炳煇zh_TW
dc.contributor.oralexamcommitteeChia-Feng Lu;Jun-Cheng Weng;Ping-Huei Tsaien
dc.subject.keyword體內非相干運動,擴散磁振造影,卷積神經網路,無監督學習,參數估計,zh_TW
dc.subject.keywordintravoxel incoherent motion imaging,diffusion MRI,convolutional neural network,unsupervised learning,parameter estimation,en
dc.relation.page74-
dc.identifier.doi10.6342/NTU202501297-
dc.rights.note未授權-
dc.date.accepted2025-07-03-
dc.contributor.author-college醫學院-
dc.contributor.author-dept醫療器材與醫學影像研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
8.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved