Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 職能治療學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100232
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛慧芬zh_TW
dc.contributor.advisorHui-Fen Maoen
dc.contributor.author彭晞童zh_TW
dc.contributor.authorHei Tong Pangen
dc.date.accessioned2025-09-30T16:06:06Z-
dc.date.available2025-10-01-
dc.date.copyright2025-09-30-
dc.date.issued2025-
dc.date.submitted2025-04-09-
dc.identifier.citation台灣失智症協會(2023)。 失智人口知多少。 http://www.tada2002.org.tw/About/IsntDementia
任純慧, 陳學志, 練竑初, & 卓淑玲(2004)。創造力測量的輔助工具:中文遠距聯想量表的發展。應用心理研究(21), 195-217。
國家發展委員會(2022)。 中華民國人口推估(2022年至2070年)。https://www.ndc.gov.tw/nc_14813_36128
郭曉燕(2009)。臺灣正常中老年人彩色路徑描繪測驗之常模研究。 https://doi.org/doi.org/10.6342/NTU.2009.10290
傅錦坤(2022)。主動推理導向之「動手樂活動」促進社區長者認知彈性之效益:事件相關電位研究。未出版碩士論文,國立臺灣大學職能治療研究所。
蔡沛均(2007)。魏氏記憶量表第三版 (中文版) 於精神分裂症病人之驗證性因素分析. https://doi.org/10.6832/KMU.2007.00134
Adrover-Roig, D., & Barceló, F. (2010). Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching. Cortex, 46(4), 434-450. https://doi.org/10.1016/j.cortex.2009.09.012
Allport, A., & Wylie, G. (1999). Task-switching: Positive and negative priming of task-set. In Attention, space, and action: Studies in cognitive neuroscience. (pp. 273-296). Oxford University Press. https://api.semanticscholar.org/CorpusID:141134108
Appelbaum, L. G., Wade, A. R., Vildavski, V. Y., Pettet, M. W., & Norcia, A. M. (2006). Cue-invariant networks for figure and background processing in human visual cortex. Journal of Neuroscience, 26(45), 11695-11708. https://www.jneurosci.org/content/jneuro/26/45/11695.full.pdf
Basak, C., Qin, S., & O'Connell, M. A. (2020). Differential effects of cognitive training modules in healthy aging and mild cognitive impairment: A comprehensive meta-analysis of randomized controlled trials. Psychol Aging, 35(2), 220-249. https://doi.org/10.1037/pag0000442
Bevan, B., Gutwill, J. P., Petrich, M., & Wilkinson, K. (2015). Learning Through STEM-Rich Tinkering: Findings From a Jointly Negotiated Research Project Taken Up in Practice. Science Education, 99(1), 98-120. https://doi.org/10.1002/sce.21151
Buitenweg, J. I. V., van de Ven, R. M., Prinssen, S., Murre, J. M. J., & Ridderinkhof, K. R. (2017). Cognitive Flexibility Training: A Large-Scale Multimodal Adaptive Active-Control Intervention Study in Healthy Older Adults. Front Hum Neurosci, 11, 529. https://doi.org/10.3389/fnhum.2017.00529
Cheng, S. T. (2016). Cognitive Reserve and the Prevention of Dementia: the Role of Physical and Cognitive Activities. Curr Psychiatry Rep, 18(9), 85. https://doi.org/10.1007/s11920-016-0721-2
Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Academic press. https://doi.org/10.4324/9780203771587
D'Elia, L., Satz, P., Uchiyama, C. L., & White, T. (1996). Color trails test. PAR Odessa, FL.
Dajani, D. R., & Uddin, L. Q. (2015). Demystifying cognitive flexibility: Implications for clinical and developmental neuroscience. Trends Neurosci, 38(9), 571-578. https://doi.org/10.1016/j.tins.2015.07.003
de Wit, S., van de Vijver, I., & Ridderinkhof, K. R. (2014). Impaired acquisition of goal-directed action in healthy aging. Cogn Affect Behav Neurosci, 14(2), 647-658. https://doi.org/10.3758/s13415-014-0288-5
Deane, G. (2021). Consciousness in active inference: Deep self-models, other minds, and the challenge of psychedelic-induced ego-dissolution. Neuroscience of Consciousness, 2021(2). https://doi.org/10.1093/nc/niab024
Deary, I. J., Penke, L., & Johnson, W. (2010). The neuroscience of human intelligence differences. Nat Rev Neurosci, 11(3), 201-211. https://doi.org/10.1038/nrn2793
Delorme, A., & Makeig, S. (2004). an open-source toolbox for analysis of single-trial EEG dynamics. Journal of Neuroscience Methods.
Denburg, N. L., Cole, C. A., Hernandez, M., Yamada, T. H., Tranel, D., Bechara, A., & Wallace, R. B. (2007). The orbitofrontal cortex, real-world decision making, and normal aging. Ann N Y Acad Sci, 1121, 480-498. https://doi.org/10.1196/annals.1401.031
Diamond, A. (2013). Executive functions. Annu Rev Psychol, 64, 135-168. https://doi.org/10.1146/annurev-psych-113011-143750
Doherty, T. A., Barker, L. A., Denniss, R., Jalil, A., & Beer, M. D. (2015). The cooking task: making a meal of executive functions. Front Behav Neurosci, 9, 22. https://doi.org/10.3389/fnbeh.2015.00022
Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312-325. https://doi.org/10.1016/j.neuron.2013.09.007
Eppinger, B., Walter, M., Heekeren, H. R., & Li, S. C. (2013). Of goals and habits: age-related and individual differences in goal-directed decision-making [Original Research]. Front Neurosci, 7, 253. https://doi.org/10.3389/fnins.2013.00253
Falkenstein, M., Hoormann, J., Christ, S., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biol Psychol, 51(2-3), 87-107. https://doi.org/10.1016/s0301-0511(99)00031-9
Ferguson, H. J., Brunsdon, V. E. A., & Bradford, E. E. F. (2021). The developmental trajectories of executive function from adolescence to old age. Sci Rep, 11(1), 1382. https://doi.org/10.1038/s41598-020-80866-1
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: a review. Psychophysiology, 45(1), 152-170. https://doi.org/10.1111/j.1469-8986.2007.00602.x
Friedman, D., Nessler, D., Johnson, R., Jr., Ritter, W., & Bersick, M. (2008). Age-related changes in executive function: an event-related potential (ERP) investigation of task-switching. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn, 15(1), 95-128. https://doi.org/10.1080/13825580701533769
Friston, K. (2010). The free-energy principle: a unified brain theory? Nat Rev Neurosci, 11(2), 127-138. https://doi.org/10.1038/nrn2787
Friston, K., FitzGerald, T., Rigoli, F., Schwartenbeck, P., J, O. D., & Pezzulo, G. (2016). Active inference and learning. Neurosci Biobehav Rev, 68, 862-879. https://doi.org/10.1016/j.neubiorev.2016.06.022
Gajewski, P. D., & Falkenstein, M. (2011). Diversity of the P3 in the task-switching paradigm. Brain research, 1411, 87-97. https://www.sciencedirect.com/science/article/pii/S0006899311012686?via%3Dihub
Gajewski, P. D., & Falkenstein, M. (2012). Training-induced improvement of response selection and error detection in aging assessed by task switching: effects of cognitive, physical, and relaxation training. Front Hum Neurosci, 6, 130. https://doi.org/10.3389/fnhum.2012.00130
Gajewski, P. D., & Falkenstein, M. (2015). Lifelong physical activity and executive functions in older age assessed by memory based task switching. Neuropsychologia, 73, 195-207. https://doi.org/10.1016/j.neuropsychologia.2015.04.031.
Gajewski, P. D., Ferdinand, N. K., Kray, J., & Falkenstein, M. (2018). Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neurosci Biobehav Rev, 92, 255-275. https://doi.org/10.1016/j.neubiorev.2018.05.029
Gajewski, P. D., Freude, G., & Falkenstein, M. (2017). Cognitive Training Sustainably Improves Executive Functioning in Middle-Aged Industry Workers Assessed by Task Switching: A Randomized Controlled ERP Study [Original Research]. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00081
Gajewski, P. D., Stoerig, P., & Falkenstein, M. (2008). ERP--correlates of response selection in a response conflict paradigm. Brain Res, 1189, 127-134. https://doi.org/10.1016/j.brainres.2007.10.076
Gajewski, P. D., Wild-Wall, N., Schapkin, S. A., Erdmann, U., Freude, G., & Falkenstein, M. (2010). Effects of aging and job demands on cognitive flexibility assessed by task switching. Biol Psychol, 85(2), 187-199. https://doi.org/10.1016/j.biopsycho.2010.06.009
Gaál, Z. A., & Czigler, I. (2015). Age-related processing strategies and go-nogo effects in task-switching: an ERP study. Front Hum Neurosci, 9, 177. https://doi.org/10.3389/fnhum.2015.00177
Gevins, A., Smith, M. E., McEvoy, L. K., Leong, H., & Le, J. (1999). Electroencephalographic imaging of higher brain function. Philos Trans R Soc Lond B Biol Sci, 354(1387), 1125-1133. https://doi.org/10.1098/rstb.1999.0468
Goghari, V. M., & Lawlor-Savage, L. (2017). Comparison of Cognitive Change after Working Memory Training and Logic and Planning Training in Healthy Older Adults. Front Aging Neurosci, 9, 39. https://doi.org/10.3389/fnagi.2017.00039
Gomar, J. J., Harvey, P. D., Bobes-Bascaran, M. T., Davies, P., & Goldberg, T. E. (2011). Development and cross-validation of the UPSA short form for the performance-based functional assessment of patients with mild cognitive impairment and Alzheimer disease. Am J Geriatr Psychiatry, 19(11), 915-922. https://doi.org/10.1097/JGP.0b013e3182011846
Grigsby, J., Kaye, K., & Robbins, L. J. (1995). Behavioral disturbance and impairment of executive functions among the elderly. Arch Gerontol Geriatr, 21(2), 167-177. https://doi.org/10.1016/0167-4943(95)00636-y
Guilford, J. P., Dunham, J. L., & Hoepfner, R. (1967). Roles of intellectual abilities in the learning of concepts. Proc Natl Acad Sci U S A, 58(4), 1812-1817. https://doi.org/10.1073/pnas.58.4.1812
Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30-39. https://doi.org/10.1016/j.ijpsycho.2005.04.009.
Hsu, W. C., Huang, N. C., Li, D. C., & Hu, S. C. (2023). The long-term effects of dual caregiving on the caregivers' well-being among middle-aged and older adults in Taiwan. Aging Ment Health, 27(6), 1190-1197. https://doi.org/10.1080/13607863.2022.2076205
Huang, P.-S., Chen, H.-C., & Liu, C. H. (2012). The development of Chinese word remote associates test for college students. Psychological Testing, 59, 581-607.
Huynh Cong, S., & Kerzel, D. (2021). Allocation of resources in working memory: Theoretical and empirical implications for visual search. Psychon Bull Rev, 28(4), 1093-1111. https://doi.org/10.3758/s13423-021-01881-5
Idowu, M. I., & Szameitat, A. J. (2023). Executive function abilities in cognitively healthy young and older adults-A cross-sectional study. Front Aging Neurosci, 15, 976915. https://doi.org/10.3389/fnagi.2023.976915
Küper, K., Gajewski, P. D., Frieg, C., & Falkenstein, M. (2017). A Randomized Controlled ERP Study on the Effects of Multi-Domain Cognitive Training and Task Difficulty on Task Switching Performance in Older Adults. Front Hum Neurosci, 11, 184. https://doi.org/10.3389/fnhum.2017.00184
Karayanidis, F., Whitson, L. R., Heathcote, A., & Michie, P. T. (2011). Variability in Proactive and Reactive Cognitive Control Processes Across the Adult Lifespan [Original Research]. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00318
Karayanidis, F., Whitson, L. R., Heathcote, A., & Michie, P. T. (2011). Variability in proactive and reactive cognitive control processes across the adult lifespan. Front Psychol, 2, 318. https://doi.org/10.3389/fpsyg.2011.00318
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X., & Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: a subgroup with preserved mental status and numerous neocortical plaques. Ann Neurol, 23(2), 138-144. https://doi.org/10.1002/ana.410230206
Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev, 15, 28-43. https://doi.org/10.1016/j.arr.2014.02.004
Kessler, Y. (2017). The Role of Working Memory Gating in Task Switching: A Procedural Version of the Reference-Back Paradigm [Original Research]. Frontiers in Psychology, 8. https://doi.org/10.3389/fpsyg.2017.02260
Kieffaber, P. D., & Hetrick, W. P. (2005). Event‐related potential correlates of task switching and switch costs. Psychophysiology, 42(1), 56-71.
Kopp, B., Mattler, U., Goertz, R., & Rist, F. (1996). N2, P3 and the lateralized readiness potential in a nogo task involving selective response priming. Electroencephalography and clinical Neurophysiology, 99(1), 19-27.
Kray, J., Ferdinand, N. K., & Stenger, K. (2020). Training and Transfer of Cue Updating in Older Adults Is Limited: Evidence From Behavioral and Neuronal Data. Front Hum Neurosci, 14, 565927. https://doi.org/10.3389/fnhum.2020.565927
Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychol Aging, 15(1), 126-147. https://doi.org/10.1037//0882-7974.15.1.126
Lawton, M. P., & Brody, E. M. (1969). Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9(3), 179-186. https://www.ncbi.nlm.nih.gov/pubmed/5349366
Levine, B., Robertson, I. H., Clare, L., Carter, G., Hong, J., Wilson, B. A., Duncan, J., & Stuss, D. T. (2000). Rehabilitation of executive functioning: an experimental-clinical validation of goal management training. J Int Neuropsychol Soc, 6(3), 299-312. https://doi.org/10.1017/s1355617700633052
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., . . . Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet, 396(10248), 413-446. https://doi.org/10.1016/s0140-6736(20)30367-6
Mecklinger, A., & Ullsperger, P. (1993). P3 varies with stimulus categorization rather than probability. Electroencephalogr Clin Neurophysiol, 86(6), 395-407. https://doi.org/10.1016/0013-4694(93)90135-i
Mednick, S. A. (1962). The associative basis of the creative process. Psychol Rev, 69, 220-232. https://doi.org/10.1037/h0048850
Mekari, S., Neyedli, H. F., Fraser, S., O'Brien, M. W., Martins, R., Evans, K., Earle, M., Aucoin, R., Chiekwe, J., Hollohan, Q., Kimmerly, D. S., & Dupuy, O. (2020). High-Intensity Interval Training Improves Cognitive Flexibility in Older Adults. Brain Sci, 10(11). https://doi.org/10.3390/brainsci10110796
Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nat Rev Neurosci, 1(1), 59-65. https://doi.org/10.1038/35036228
Moreau, D., & Conway, A. R. (2014). The case for an ecological approach to cognitive training. Trends Cogn Sci, 18(7), 334-336. https://doi.org/10.1016/j.tics.2014.03.009
Mowszowski, L., Batchelor, J., & Naismith, S. L. (2010). Early intervention for cognitive decline: can cognitive training be used as a selective prevention technique? Int Psychogeriatr, 22(4), 537-548. https://doi.org/10.1017/S1041610209991748
Nweze, T., & Nwani, W. (2020). Contributions of Working Memory and Inhibition to Cognitive Flexibility in Nigerian Adolescents. Dev Neuropsychol, 45(3), 118-128. https://doi.org/10.1080/87565641.2020.1765169
Olyaei, G., Khanmohammadi, R., Talebian, S., Hadian, M. R., Bagheri, H., & Najafi, M. (2022). The effect of exergaming on cognition and brain activity in older adults: A motor- related cortical potential study. Physiology & Behavior, 255, 113941. https://doi.org/10.1016/j.physbeh.2022.113941
Overdorp, E. J., Kessels, R. P., Claassen, J. A., & Oosterman, J. M. (2016). The Combined Effect of Neuropsychological and Neuropathological Deficits on Instrumental Activities of Daily Living in Older Adults: a Systematic Review. Neuropsychol Rev, 26(1), 92-106. https://doi.org/10.1007/s11065-015-9312-y
Parr, T., & Friston, K. J. (2017). Working memory, attention, and salience in active inference. Scientific Reports, 7(1), 14678. https://doi.org/10.1038/s41598-017-15249-0
Parr, T., Holmes, E., Friston, K. J., & Pezzulo, G. (2023). Cognitive effort and active inference. Neuropsychologia, 184, 108562. https://doi.org/https://doi.org/10.1016/j.neuropsychologia.2023.108562
Pinto, T. C. C., Santos, M. S. P., Machado, L., Bulgacov, T. M., Rodrigues-Junior, A. L., Silva, G. A., Costa, M. L. G., Ximenes, R. C. C., & Sougey, E. B. (2019). Optimal Cutoff Scores for Dementia and Mild Cognitive Impairment in the Brazilian Version of the Montreal Cognitive Assessment among the Elderly. Dement Geriatr Cogn Dis Extra, 9(1), 44-52. https://doi.org/10.1159/000495562
Pires, L., Leitão, J., Guerrini, C., & Simões, M. R. (2014). Event-related brain potentials in the study of inhibition: cognitive control, source localization and age-related modulations. Neuropsychol Rev, 24(4), 461-490. https://doi.org/10.1007/s11065-014-9275-4
Polich, J. (1996). Meta‐analysis of P300 normative aging studies. Psychophysiology, 33(4), 334-353. https://doi.org/10.1111/j.1469-8986.1996.tb01058.x.
Rebok, G. W., Langbaum, J. B., Jones, R. N., Gross, A. L., Parisi, J. M., Spira, A. P., Kueider, A. M., Petras, H., & Brandt, J. (2013). Memory training in the ACTIVE study: how much is needed and who benefits? J Aging Health, 25(8 Suppl), 21S-42S. https://doi.org/10.1177/0898264312461937
Rushworth, M. F., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. J Cogn Neurosci, 14(8), 1139-1150. https://doi.org/10.1162/089892902760807159
Salthouse, T. A., Fristoe, N., McGuthry, K. E., & Hambrick, D. Z. (1998). Relation of task switching to speed, age, and fluid intelligence. Psychol Aging, 13(3), 445-461. https://doi.org/10.1037/0882-7974.13.3.445
Schapkin, S. A., Gajewski, P. D., & Freude, G. (2014). Age differences in memory-based task switching with and without cues. Journal of Psychophysiology. https://doi.org/https://doi.org/10.1027/0269-8803/a000125
Schreiber, M., & Schneider, R. (2007). Cognitive plasticity in people at risk for dementia: optimising the testing-the-limits-approach. Aging Ment Health, 11(1), 75-81. https://doi.org/10.1080/13607860600735887
Schwöbel, S., Markovic, D., Smolka, M. N., & Kiebel, S. J. (2020). Balancing control: a Bayesian interpretation of habitual and goal-directed behavior. bioRxiv, 836106. https://doi.org/10.1101/836106
Seger, C. A., & Spiering, B. J. (2011). A critical review of habit learning and the Basal Ganglia. Front Syst Neurosci, 5, 66. https://doi.org/10.3389/fnsys.2011.00066
Smith, C. A., & Konik, J. (2021). Who is satisfied with life? Personality, cognitive flexibility, and life satisfaction. Current Psychology, 41(12), 9019-9026. https://doi.org/10.1007/s12144-021-01359-6
Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., & Koeppe, R. A. (2001). The neural basis of task-switching in working memory: effects of performance and aging. Proc Natl Acad Sci U S A, 98(4), 2095-2100. https://doi.org/10.1073/pnas.98.4.2095
Specka, M., Weimar, C., Stang, A., Jöckel, K. H., Scherbaum, N., Hoffmann, S. S., Kowall, B., & Jokisch, M. (2022). Trail Making Test Normative Data for the German Older Population. Arch Clin Neuropsychol, 37(1), 186-198. https://doi.org/10.1093/arclin/acab027
Stephan, K. E., Penny, W. D., Daunizeau, J., Moran, R. J., & Friston, K. J. (2009). Bayesian model selection for group studies. Neuroimage, 46(4), 1004-1017. https://doi.org/10.1016/j.neuroimage.2009.03.025
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47(10), 2015-2028. https://doi.org/10.1016/j.neuropsychologia.2009.03.004
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: a field experiment. Psychol Aging, 23(4), 778-786. https://doi.org/10.1037/a0014341
The MathWorks, I. (2022). MATLAB. In (Version version: 9.13.0 (R2022b)) The MathWorks Inc. https://www.mathworks.com
Thomann, A. E., Berres, M., Goettel, N., Steiner, L. A., & Monsch, A. U. (2020). Enhanced diagnostic accuracy for neurocognitive disorders: a revised cut-off approach for the Montreal Cognitive Assessment. Alzheimer's Research & Therapy, 12(1), 39. https://doi.org/10.1186/s13195-020-00603-8
Tsai, C. L., & Wang, W. L. (2015). Exercise-mode-related changes in task-switching performance in the elderly. Front Behav Neurosci, 9, 56. https://doi.org/10.3389/fnbeh.2015.00056
Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychol Aging, 25(2), 343-355. https://doi.org/10.1037/a0017729
Wang, Y., Zhou, X., Peng, X., & Hu, X. (2022). Task switching involves working memory: Evidence from neural representation [Original Research]. Front Psychol, 13, 1003298. https://doi.org/10.3389/fpsyg.2022.1003298
Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and task switching: a meta-analysis. Psychol Aging, 26(1), 15-20. https://doi.org/10.1037/a0020912
Waters, G. S., & Caplan, D. (2003). The reliability and stability of verbal working memory measures. Behavior Research Methods, Instruments, & Computers, 35(4), 550-564. https://doi.org/10.3758/BF03195534
Wilson, C. G., Nusbaum, A. T., Whitney, P., & Hinson, J. M. (2018). Age-differences in cognitive flexibility when overcoming a preexisting bias through feedback. J Clin Exp Neuropsychol, 40(6), 586-594. https://doi.org/10.1080/13803395.2017.1398311
Yeo, P. S., Nguyen, T. N., Ng, M. P. E., Choo, R. W. M., Yap, P. L. K., Ng, T. P., & Wee, S. L. (2021). Evaluation of the Implementation and Effectiveness of Community-Based Brain-Computer Interface Cognitive Group Training in Healthy Community-Dwelling Older Adults: Randomized Controlled Implementation Trial. JMIR Form Res, 5(4), e25462. https://doi.org/10.2196/25462
Yun, S., & Ryu, S. (2022). The Effects of Cognitive-Based Interventions in Older Adults: A Systematic Review and Meta-Analysis. Iran J Public Health, 51(1), 1-11. https://doi.org/10.18502/ijph.v51i1.8286
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100232-
dc.description.abstract背景:隨著台灣邁入超高齡社會,失智症防治已成為重要議題。近年來,認知介入被證實在維持健康長者的認知與日常生活功能及預防失智症方面發揮關鍵作用。然而,過往針對認知彈性的介入研究中,鮮少結合腦電圖技術探討介入後的神經機制,使得介入成效仍待釐清。本研究結合事件相關電位(ERP)技術,探討社區健康長者參與以主動推理(Active Inference)為基礎的「動手樂活動」後,對認知彈性與相關認知歷程之成效,並與傳統按部就班式教學的「控制動手樂活動組」進行比較。此外,研究亦納入多項認知與日常生活功能行為測驗,以檢視兩組在轉移效應上的差異。

方法:本研究採隨機對照試驗,共招募65名健康長者,篩選後納入48名受試者。分為兩梯次,每梯次隨機分配24人至動手樂活動組及控制動手樂活動組。兩組分別參與為期12週、每週2小時的活動,並於介入前後進行評估。主要成效指標為結合事件相關電位(ERP)(包括target-locked P2、N2及P3b)之交替任務測驗,以評估認知彈性。次要成效指標包括遠距聯想測驗(聚合性思考)、用途替代測驗(發散性思考)、彩色路徑測驗(注意力與執行功能)、魏氏空間與氏數字記憶廣度測驗(視覺與聽覺工作記憶)及操作型日常生活技巧評估-簡短版。本研究假設,參與動手樂活動的健康長者將比參與控制動手樂活動的長者在認知彈性及相關認知歷程上有更顯著的提升,並產生更廣泛的認知功能轉移效應。

結果:共41位完成行為評估後測(動手樂活動組22位,控制組19位),其中37位完成ERP後測(動手樂組19位,控制組18位)。兩組基線特徵中,控制組年齡顯著較高 (p = .020)。
在主要成效指標方面,動手樂活動組在特定轉換成本(Specific Switch Cost, p = .014,d = 0.33)與轉換後成本(Post Switch Cost, p = .002,d = 0.73)均呈現顯著下降,顯示其在規則轉換任務(switch trials)相對於轉換前任務(pre-switch trials)、以及轉換後任務(post-switch trials)相對於轉換前任務(pre-switch trials)的反應時間皆有明顯改善。而控制動手樂活動組則在轉換後成本(p = .029, d = 0.54)與規則切換任務錯誤率(switch trials error rate)上呈現顯著下降(p = .045, d = 0.72)。然而,兩組在主要成效指標的組間變化未達顯著差異。
在事件相關電位(ERP)分析方面,動手樂組於P2轉換效應(Switch Effect)峰值振幅差在Fz (p = .011, d = 0.75)、FCz (p = .027, d = 0.61) 與Cz (p = .034, d = 0.63)顯著減少,可能表示任務激活之認知歷程得到改善。此外,動手樂組在P3b的Fz: Pz對稱性顯著降低 (p = .006, d = 0.76),可能反映對前額葉資源依賴性下降,工作記憶資源之神經分佈模式趨近年輕化。控制組則於P3b異質性重複任務(Heterogeneous Trials)中,Pz電極峰值潛值顯著提前 (p = .030, d = 0.47),可能反映異質性區塊之重複任務中,更早啟動工作記憶資源分配歷程。
在組間比較方面,相較於控制動手樂活動組,動手樂活動組在Fz、FCz與Cz電極的P2轉換效應峰值振幅差呈現顯著較大的下降 (Fz: p = .008, d = 0.96;FCz: p = .022, d = 0.81;Cz: p = .044, d = 0.71),以及在Fz: Pz對稱性亦呈現顯著較大的降低 (p = .034, d = 0.75)。可能反映動手樂組在任務激活的表現較佳,且對額葉區域在工作記憶資源分配上的依賴顯著降低。而控制動手樂組在P3b異質性重複任務(Heterogeneous Trials, p = .016, d = 0.86)與轉換前任務 (Pre-switch trials, p = .047, d = 0.76)的峰值潛值縮短顯著優於動手樂組,可能反映其在異質性區塊之重複任務中,能較早啟動工作記憶資源的分配歷程。
次要成效指標方面,動手樂活動組在視覺工作記憶(p = .034, d = .57)、發散性思考(p < .001, d = .52)及執行功能(p = .035, d = .20)方面呈現顯著的轉移效應;控制動手樂活動組則在發散性思考(p = .014, d = .31)、持續性注意力(p = .017, d = .46)及執行功能(p = .027, d = .49)表現出轉移效應。組間比較顯示,動手樂活動組在視覺工作記憶的轉移效果顯著優於控制動手樂活動組(p = .033, d = .70)。

結論:本研究初步結果顯示,主動推理導向之動手樂活動可能可以顯著提升健康長者之認知彈性,並改善與交替任務測驗有關之認知歷程,包括任務激活(P2),及減少工作記憶資源分配中對額葉之依賴(P3b Fz: Pz對稱性)。相對地,控制組在P3b峰值潛值顯著提前,可能反映在重複任務中能更早啟動工作記憶處理歷程。
兩組皆展現不同的認知功能轉移效應,其中動手樂活動組的轉移效應涵蓋視覺工作記憶、發散性思考及執行功能,而控制動手樂活動組則展現在注意力、發散性思考及執行功能。此結果強調,以認知彈性為核心的介入方式對提升健康長者的認知彈性及廣泛認知功能具潛在價值。未來研究應納入更多元樣本,如主觀認知衰退或輕度認知功能障礙的長者,以進一步驗證此介入模式的成效。

關鍵字:認知彈性、主動推理、認知活動、腦電圖、健康老人、事件相關電位
zh_TW
dc.description.abstractBackground: As Taiwan enters a super-aged society, dementia prevention has become a critical issue. Cognitive interventions have been shown to play a key role in maintaining cognitive and daily functioning in healthy older adults and in delaying the onset of dementia. However, few prior studies on cognitive flexibility interventions have incorporated electroencephalography (EEG) to examine post-intervention neural mechanisms, leaving the impact on cognitive processes unclear. This study employed event-related potentials (ERPs) to investigate the effects of active-inference-based “Tinkering” activity on cognitive flexibility and its underlying cognitive processes in healthy older adults, and compared these effects with a control condition using traditional step-by-step instructional Tinkering. Additionally, multiple cognitive and instrumental daily functioning assessments were included to examine transfer effects across both groups.

Methods: A randomized controlled trial was conducted with 65 older adults, of whom 17 were excluded after screening. A total of 48 participants were randomly assigned across two waves into either the Tinkering group or the Control-Tinkering group. Both groups participated in a 12-week program with two-hour sessions per week. Pre- and post-intervention assessments included EEG recordings and cognitive tests. The primary outcome was cognitive flexibility, assessed using a Task-Switching Paradigm with ERP components (target-locked P2, N2, and P3b). Secondary outcomes included the Remote Associates Test (convergent thinking), Alternate Uses Test (divergent thinking), Color Trails Test (attention and executive function), Wechsler Spatial and Digit Span Tests (visual and auditory working memory), and the Brief UCSD Performance-Based Skills Assessment (UPSA-B, Traditional Chinese version). We hypothesize that healthy older adults participating in Tinkering activity based on active inference theory will show significant improvements in cognitive flexibility and related cognitive processes, along with a broader enhancement in cognitive functions compared to those in the Control-Tinkering group.

Results: A total of 41 participants completed post-intervention behavioral assessments (Tinkering: n = 22; Control-Tinkering: n = 19), and 37 completed post-intervention ERP assessments (Tinkering: n = 19; Control-Tinkering: n = 18). The Control-Tinkering group was significantly older at baseline (p = .020).
In the primary outcome measures, the Tinkering group showed significant reductions in Specific Switch Cost (p = .014, d = .33) and Post-Switch Cost (p = .002, d = .73), indicating a decrease in response time for tasks requiring rule changes before and after the switch trials, respectively. In contrast, the Control-Tinkering group showed a significant reduction in Post-Switch Cost (p = .029, d = .54) and error rates during switch trials (p = .045, d = .72). with no significant between-group difference.
Regarding ERP analyses, within-group comparisons revealed that the Tinkering group exhibited a significant reduction in P2 switch effect amplitude at Fz (p = .011, d = 0.75), FCz (p = .027, d = 0.61), and Cz (p = .034, d = 0.63), which may reflect improvements in task-set activation processes. Additionally, a significant reduction in P3b Fz: Pz asymmetry was observed (p = .006, d = 0.76), possibly indicating decreased reliance on frontal regions and a shift toward a more parietal neural activation pattern, similar to that seen in younger adults. In the Control-Tinkering group, a significant shortening of P3b peak latency at the Pz electrode during heterogeneous trials was found (p = .030, d = 0.47), which could suggest earlier engagement of working memory resources during repeated tasks within heterogeneous blocks. Between-group comparisons showed that the Tinkering group had significantly greater reductions in P2 switch effect amplitude at Fz (p = .008, d = 0.96), FCz (p = .022, d = 0.81), and Cz (p = .044, d = 0.71), as well as a significantly greater reduction in P3b Fz: Pz asymmetry (p = .034, d = 0.75), which may suggest relatively enhanced task-set activation and reduced reliance on frontal-lobe resources for working memory allocation. In contrast, the Control-Tinkering group showed significantly greater shortening of P3b peak latency in both heterogeneous trials (p = .016, d = 0.86) and pre-switch trials (p = .047, d = 0.70) compared to the Tinkering group, which might reflect earlier initiation of working memory processing during repeated tasks.
In secondary outcome measures, the Tinkering group showed significant transfer effects in visual working memory (p = .034, d = .57), divergent thinking (p < .001, d = .52), and executive function (p = .035, d = .20). In contrast, the Control-Tinkering group demonstrated transfer effects in divergent thinking (p = .014, d = .31), sustained attention (p = .017, d = .46), and executive function (p = .027, d = .49). Between-group comparisons indicated that the Tinkering group demonstrated significantly greater transfer effects in visual working memory (p = .033, d = .70) compared to the Control-Tinkering group.

Conclusion: This study provides preliminary evidence that engaging in active-inference-based Tinkering activities may enhance cognitive flexibility and support improvements in task-related cognitive processes in healthy older adults. Specifically, these changes might include enhanced task activation (reflected by reduced P2 switch effect amplitude) and decreased reliance on frontal regions during working memory allocation (reflected by reduced P3b Fz: Pz asymmetry). Conversely, the Control-Tinkering group exhibited earlier P3b peak latencies during repeated trials in heterogeneous blocks, which might reflect faster engagement of working memory allocation processes during repeated trials in the heterogeneous blocks.
The intervention effects of both the Tinkering and Control-Tinkering groups transferred to different cognitive domains, with the Tinkering group showing transfer effects in visual working memory, divergent thinking, and executive functions. In contrast, the Control-Tinkering group showed effects in sustained attention, divergent thinking, and executive functions. These results emphasize the potential of interventions based on cognitive flexibility in improving cognitive flexibility and broader cognitive functions in healthy older adults. Future research should include a more diverse sample, such as individuals with subjective cognitive decline or mild cognitive impairment, to further validate the effectiveness of this intervention.

Keywords: Cognitive Flexibility, Active Inference, Cognitive Activities, Electroencephalography (EEG), Healthy Older Adults, Event-Related Potential (ERP)
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-30T16:06:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-30T16:06:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContents
口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents ix
List of Figures xii
List of Tables xiv
List of Appendix xv
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Cognitive Flexibility: A Crucial Executive Control Component and Its Implications for Independence 4
2.2 Cognitive Aging and Behavioral Flexibility: Explaining the Decline in Problem-Solving Ability through Active Inference Framework 5
2.3 Evaluating Interventions for Enhancing Cognitive Flexibility in Healthy Elderly Populations 10
2.4 Tinkering and Active Inference: Enhancing Cognitive Flexibility with Ecologically Valid Interventions 17
2.5 Assessing Cognitive Flexibility in Older Adults: An In-Depth Overview of the Task-Switching Paradigm 21
2.6 Analyzing ERP Components in Task-Switching: Implications and Aging Effects 26
2.6.1 Task-Set Activation: Target-locked P2 27
2.6.2 Conflict Processing: Target-locked Frontal N2 28
2.6.3 Working Memory Allocation: Target-locked Parietal P3b 30
2.6.4 Existing Cognitive Training Literature Utilizing Task-Switching Paradigm and EEG in Healthy Older Adults 33
2.7 Literature Review Summary 35
Chapter 3. Research Question 37
3.1 Study Aim 37
3.2 Behavioral Hypotheses 37
3.3 ERP Hypotheses 38
Chapter 4. Methods 39
4.1 Research Design 39
4.2 Participants 40
4.3 Interventions 40
4.3.1 Tinkering Activities 40
4.3.2 Control-Tinkering Activities 43
4.4 Outcome Measurements 44
4.4.1 Primary Outcome 44
4.4.2 Secondary Outcome 47
4.5 Procedure 51
4.6 Data Analysis of ERP Data 53
4.7 Statistical Analysis 55
Chapter 5. Results 56
5.1 Descriptive and Demographic Data 56
5.2 Primary Outcome: Task-Switching Paradigm 58
5.2.1 Behavioral Measures 58
5.2.2 ERP Measures 66
5.3 Secondary Outcome 96
Chapter 6. Discussion 101
6.1 Positive Impacts of Active-Inference-Based Tinkering Activities on Cognitive Flexibility: Evidence from the Task-Switching Paradigm Behavioral Results 101
6.2 Cognitive Mechanisms Underpinning Improvements in Cognitive Flexibility: Insights from ERP Components in the Task-Switching Paradigm 103
6.2.1 Enhanced Task-Set Activation Indicated by Improved P2 Amplitude in Task-Switching: Positive Explanation and Interpretation 103
6.2.2 Potential Improvements in Conflict Monitoring and Response Selection: Understanding Non-Significant N2 Findings in the Tinkering Group 105
6.2.3 Reduced Reliance on Frontal Lobe Resources Following 12-week Tinkering Training and Differential Changes in P3b Switch Effect Amplitude Across Groups 106
6.3 Active-inference-Based Tinkering Activities Demonstrate Transfer Effects in Higher-Order Cognitive Abilities such as Executive Functions and Working Memory 109
6.4 Research Limitations and Future Recommendations 111
Chapter 7. Conclusion 113
References 114
Appendix 121
-
dc.language.isoen-
dc.subject認知彈性zh_TW
dc.subject主動推理zh_TW
dc.subject認知活動zh_TW
dc.subject腦電圖zh_TW
dc.subject健康老人zh_TW
dc.subject事件相關電位zh_TW
dc.subjectActive Inferenceen
dc.subjectCognitive Flexibilityen
dc.subjectEvent-Related Potential (ERP)en
dc.subjectHealthy Older Adultsen
dc.subjectElectroencephalography (EEG)en
dc.subjectCognitive Activitiesen
dc.title以腦電圖為基礎探討十二週動手樂活動對於社區健康長者之成效zh_TW
dc.titleAn EEG-based Evaluation on the Effect of the 12-week Tinkering Activity Program in Older Adultsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳建德;李佳霖;吳恩賜zh_TW
dc.contributor.oralexamcommitteeChien-Te Wu;Chia-Lin Lee;Joshua O. Gohen
dc.subject.keyword認知彈性,主動推理,認知活動,腦電圖,健康老人,事件相關電位,zh_TW
dc.subject.keywordCognitive Flexibility,Active Inference,Cognitive Activities,Electroencephalography (EEG),Healthy Older Adults,Event-Related Potential (ERP),en
dc.relation.page129-
dc.identifier.doi10.6342/NTU202404322-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-04-10-
dc.contributor.author-college醫學院-
dc.contributor.author-dept職能治療學系-
dc.date.embargo-lift2030-01-01-
顯示於系所單位:職能治療學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved