Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪惠敏zh_TW
dc.contributor.advisorHui-Ming Hungen
dc.contributor.author陳峰zh_TW
dc.contributor.authorFeng Chenen
dc.date.accessioned2025-09-24T16:54:28Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citationAiken, A. C., DeCarlo, P. F., & Jimenez, J. L. (2007). Elemental analysis of organic species with electron ionization high-resolution mass spectrometry. Analytical Chemistry, 79(21), 8350-8358. doi:10.1021/ac071150w
Aiken, A. C., DeCarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., & Sueper, D. (2008). O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry. Environmental Science & Technology, 42(12), 4478-4485.
Alfarra, M. (2004). Insights into atmospheric organic aerosols using an aerosol mass spectrometer University of Manchester Manchester, UK.
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., & Roselle, S. J. (2013). Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0. Geoscientific Model Development, 6(4), 883-899. doi:10.5194/gmd-6-883-2013
Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., & Murphy, B. N. (2020). The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3. 1: System updates and evaluation. Geoscientific Model Development Discussions, 2020, 1-41.
Arya, S. P. (1999). Air pollution meteorology and dispersion (Vol. 310). Oxford University Press New York.
Brook, R. D., Rajagopalan, S., Pope III, C. A., Brook, J. R., Bhatnagar, A., Diez-Roux, A. V., Holguin, F., Hong, Y., Luepker, R. V., & Mittleman, M. A. (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21), 2331-2378.
Byun, D., & Schere, K. L. (2006). Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Applied mechanics reviews, 59(2), 51-77.
Carlton, A. G., Pye, H. O., Baker, K. R., & Hennigan, C. J. (2018). Additional benefits of federal air-quality rules: Model estimates of controllable biogenic secondary organic aerosol. Environmental Science & Technology, 52(16), 9254-9265.
Chang, Y., Feng, Y.-N., Cheng, L., Hu, J., Zhu, L., Tan, W., Zhong, H., Zhang, Y., Huang, R.-J., & Sun, Y. (2024). Trimethylamine from subtropical forests rival total farmland emissions in China. Environmental Science & Technology, 58(12), 5453-5460.
Chen, W.-N., Chen, Y.-C., Kuo, C.-Y., Chou, C.-H., Cheng, C.-H., Huang, C.-C., Chang, S.-Y., Raman, M. R., Shang, W.-L., & Chuang, T.-Y. (2014). The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of the total environment, 497, 219-228.
Cheng, Y. H., & Tsai, C. J. (1997). Evaporation loss of ammonium nitrate particles during filter sampling. Journal of Aerosol Science, 28(8), 1553-1567. doi:10.1016/s0021-8502(97)00033-5
Crippa, M., Canonaco, F., Lanz, V., Äijälä, M., Allan, J., Carbone, S., Capes, G., Ceburnis, D., Dall'Osto, M., & Day, D. (2014). Organic aerosol components derived from 25 AMS data sets across Europe using a consistent ME-2 based source apportionment approach. Atmospheric Chemistry and Physics, 14(12), 6159-6176.
Dall'Osto, M., & Harrison, R. M. (2012). Urban organic aerosols measured by single particle mass spectrometry in the megacity of London. Atmospheric Chemistry and Physics, 12(9), 4127-4142.
Das, A. K., Bhattacharya, D., Das, A., Nath, S., Bandyopadhyay, S., Nanda, P. K., & Gagaoua, M. (2023). Current innovative approaches in reducing polycyclic aromatic hydrocarbons (PAHs) in processed meat and meat products. Chemical and Biological Technologies in Agriculture, 10(1), Article 109. doi:10.1186/s40538-023-00483-8
Dinar, E., Taraniuk, I., Graber, E. R., Katsman, S., Moise, T., Anttila, T., Mentel, T. F., & Rudich, Y. (2006). Cloud condensation nuclei properties of model and atmospheric HULIS. Atmospheric Chemistry and Physics, 6, 2465-2481. doi:10.5194/acp-6-2465-2006
Donahue, N. M., Robinson, A., Stanier, C., & Pandis, S. (2006). Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environmental Science & Technology, 40(8), 2635-2643.
El Haddad, I., d'Anna, B., Temime-Roussel, B., Nicolas, M., Boreave, A., Favez, O., Voisin, D., Sciare, J., George, C., & Jaffrezo, J.-L. (2013). Towards a better understanding of the origins, chemical composition and aging of oxygenated organic aerosols: case study of a Mediterranean industrialized environment, Marseille. Atmospheric Chemistry and Physics, 13(15), 7875-7894.
Feng, T., Wang, Y., Hu, W., Zhu, M., Song, W., Chen, W., Sang, Y., Fang, Z., Deng, W., & Fang, H. (2023). Impact of aging on the sources, volatility, and viscosity of organic aerosols in Chinese outflows. Atmospheric Chemistry and Physics, 23(1), 611-636.
Fu, T. M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., & Henze, D. K. (2008). Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. Journal of Geophysical Research: Atmospheres, 113(D15).
Fujitani, Y., Takahashi, K., Saitoh, K., Fushimi, A., Hasegawa, S., Kondo, Y., Tanabe, K., Takami, A., & Kobayashi, S. (2021). Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environmental Advances, 5, 100101.
Gao, S., Ng, N. L., Keywood, M., Varutbangkul, V., Bahreini, R., Nenes, A., He, J., Yoo, K. Y., Beauchamp, J., & Hodyss, R. P. (2004). Particle phase acidity and oligomer formation in secondary organic aerosol. Environmental Science & Technology, 38(24), 6582-6589.
Graber, E. R., & Rudich, Y. (2006). Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmospheric Chemistry and Physics, 6, 729-753. doi:10.5194/acp-6-729-2006
Griffin, R. J., Cocker III, D. R., Flagan, R. C., & Seinfeld, J. H. (1999). Organic aerosol formation from the oxidation of biogenic hydrocarbons. Journal of Geophysical Research: Atmospheres, 104(D3), 3555-3567.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N., George, C., & Goldstein, A. (2009). The formation, properties and impact of secondary organic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics, 9(14), 5155-5236.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on pressure levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). doi:10.24381/cds.bd0915c6
Holt, M. (2012). Numerical methods in fluid dynamics. Springer Science & Business Media.
Hopke, P. K. (2000). A guide to positive matrix factorization. Workshop on UNMIX and PMF as Applied to PM2, 5(5), 600.
Hu, J., Chen, J., Ying, Q., & Zhang, H. (2016). One-year simulation of ozone and particulate matter in China using WRF/CMAQ modeling system. Atmospheric Chemistry and Physics, 16(16), 10333-10350.
Huang, P. C., Hung, H. M., Lai, H. C., & Chou, C. C. K. (2024). Assessing the effectiveness of SO2, NOx, and NH3 emission reductions in mitigating winter PM2.5 in Taiwan using CMAQ. Atmospheric Chemistry and Physics, 24(18), 10759-10772. doi:10.5194/acp-24-10759-2024
Iinuma, Y., Böge, O., Gnauk, T., & Herrmann, H. (2004). Aerosol-chamber study of the α-pinene/O3 reaction: influence of particle acidity on aerosol yields and products. Atmospheric Environment, 38(5), 761-773.
Jacob, D. J., & Winner, D. A. (2009). Effect of climate change on air quality. Atmospheric Environment, 43(1), 51-63.
Jang, M., Czoschke, N. M., Lee, S., & Kamens, R. M. (2002). Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 298(5594), 814-817.
Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., DeCarlo, P. F., Allan, J. D., Coe, H., Ng, N. L., Aiken, A. C., Docherty, K. S., Ulbrich, I. M., Grieshop, A. P., Robinson, A. L., Duplissy, J., Smith, J. D., Wilson, K. R., Lanz, V. A., Hueglin, C., Sun, Y. L., Tian, J., Laaksonen, A., Raatikainen, T., Rautiainen, J., Vaattovaara, P., Ehn, M., Kulmala, M., Tomlinson, J. M., Collins, D. R., Cubison, M. J., Dunlea, E. J., Huffman, J. A., Onasch, T. B., Alfarra, M. R., Williams, P. I., Bower, K., Kondo, Y., Schneider, J., Drewnick, F., Borrmann, S., Weimer, S., Demerjian, K., Salcedo, D., Cottrell, L., Griffin, R., Takami, A., Miyoshi, T., Hatakeyama, S., Shimono, A., Sun, J. Y., Zhang, Y. M., Dzepina, K., Kimmel, J. R., Sueper, D., Jayne, J. T., Herndon, S. C., Trimborn, A. M., Williams, L. R., Wood, E. C., Middlebrook, A. M., Kolb, C. E., Baltensperger, U., & Worsnop, D. R. (2009). Evolution of organic aerosols in the atmosphere. Science, 326(5959), 1525-1529. doi:10.1126/science.1180353
Koo, B., Knipping, E., & Yarwood, G. (2014). 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmospheric Environment, 95, 158-164.
Kumar, S., Sharma, S., Sharma, P., & Agarwal, S. (2024). Inverse modelling approach to assess air pollutant emission trends, and source contributions in highly polluted cities. Discover Atmosphere, 2(1), 13.
Lam, H. K., Kwong, K. C., Poon, H. Y., Davies, J. F., Zhang, Z., Gold, A., Surratt, J. D., & Chan, M. N. (2019). Heterogeneous oh oxidation of isoprene-epoxydiol-derived organosulfates: Kinetics, chemistry and formation of inorganic sulfate. Atmospheric Chemistry and Physics, 19(4), 2433-2440.
Lee, B. H., Mohr, C., Lopez-Hilfiker, F. D., Lutz, A., Hallquist, M., Lee, L., Romer, P., Cohen, R. C., Iyer, S., & Kurtén, T. (2016). Highly functionalized organic nitrates in the southeast United States: Contribution to secondary organic aerosol and reactive nitrogen budgets. Proceedings of the National Academy of Sciences, 113(6), 1516-1521.
Li, Y., Lee, B., Su, L., Fung, J., & Chan, C. (2015). Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmospheric Chemistry and Physics, 15(1), 37-53.
Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., Krechmer, J., Zhu, L., Kim, P. S., & Miller, C. C. (2016). Aqueous-phase mechanism for secondary organic aerosol formation from isoprene: Application to the southeast united states and co-benefit of SO2 emission controls. Atmospheric Chemistry and Physics, 16(3), 1603-1618.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., & Canagaratna, M. R. (2012). Evaluation of composition-dependent collection efficiencies for the Aerodyne aerosol mass spectrometer using field data. Aerosol Science and Technology, 46(3), 258-271. doi:10.1080/02786826.2011.620041
Mohr, C., Huffman, J. A., Cubison, M. J., Aiken, A. C., Docherty, K. S., Kimmel, J. R., Ulbrich, I. M., Hannigan, M., & Jimenez, J. L. (2009). Characterization of primary organic aerosol emissions from meat cooking, trash burning, and motor vehicles with high-resolution aerosol mass spectrometry and comparison with ambient and chamber observations. Environmental Science & Technology, 43(7), 2443-2449.
Mohr, M., Nybo, L., Grantham, J., & Racinais, S. (2012). Physiological responses and physical performance during football in the heat. PloS one, 7(6), e39202.
Murphy, B. N., Woody, M. C., Jimenez, J. L., Carlton, A. M. G., Hayes, P. L., Liu, S., Ng, N. L., Russell, L. M., Setyan, A., & Xu, L. (2017). Semivolatile POA and parameterized total combustion SOA in CMAQv5.2: impacts on source strength and partitioning. Atmospheric Chemistry and Physics, 17(18), 11107-11133.
Ng, N. L., Canagaratna, M. R., Zhang, Q., Jimenez, J. L., Tian, J., Ulbrich, I. M., Kroll, J. H., Docherty, K. S., Chhabra, P. S., Bahreini, R., Murphy, S. M., Seinfeld, J. H., Hildebrandt, L., Donahue, N. M., DeCarlo, P. F., Lanz, V. A., Prévôt, A. S. H., Dinar, E., Rudich, Y., & Worsnop, D. R. (2010). Organic aerosol components observed in Northern Hemispheric datasets from aerosol mass spectrometry. Atmospheric Chemistry and Physics, 10(10), 4625-4641. doi:10.5194/acp-10-4625-2010
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Zhang, Q., Ulbrich, I. M., & Worsnop, D. R. (2011). Real-time methods for estimating organic component mass concentrations from aerosol mass spectrometer data. Environmental Science & Technology, 45(3), 910-916. doi:10.1021/es102951k
Nuaaman, I., Li, S.-M., Hayden, K., Onasch, T., Massoli, P., Sueper, D., Worsnop, D., Bates, T., Quinn, P., & McLaren, R. (2015). Separating refractory and non-refractory particulate chloride and estimating chloride depletion by aerosol mass spectrometry in a marine environment. Atmospheric Chemistry and Physics Discussions, 15(2), 2085-2118.
Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37(1), 23-35. doi:10.1016/s0169-7439(96)00044-5
Paatero, P., & Hopke, P. K. (2003). Discarding or downweighting high-noise variables in factor analytic models. Analytica Chimica Acta, 490(1-2), 277-289. doi:10.1016/s0003-2670(02)01643-4
Park, H.-Y., Hong, S.-C., Lee, J.-B., & Cho, S.-Y. (2023). Modeling of organic aerosol in Seoul using CMAQ with AERO7. Atmosphere, 14(5), 874.
Pope III, C. A., & Dockery, D. W. (2006). Health effects of fine particulate air pollution: lines that connect. Journal of the Air & Waste Management Association, 56(6), 709-742.
Pye, H. O., & Seinfeld, J. H. (2010). A global perspective on aerosol from low-volatility organic compounds. Atmospheric Chemistry and Physics, 10(9), 4377-4401.
Pye, H. O., Luecken, D. J., Xu, L., Boyd, C. M., Ng, N. L., Baker, K. R., Ayres, B. R., Bash, J. O., Baumann, K., & Carter, W. P. (2015). Modeling the current and future roles of particulate organic nitrates in the southeastern United States. Environmental Science & Technology, 49(24), 14195-14203.
Pye, H. O., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr, J. L., Fahey, K. M., Hennigan, C. J., & Herrmann, H. (2020). The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 20(8), 4809-4888.
Quinn, P., Bates, T., Coffman, D., Onasch, T., Worsnop, D., Baynard, T., De Gouw, J., Goldan, P., Kuster, W., & Williams, E. (2006). Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine. Journal of Geophysical Research: Atmospheres, 111(D23).
Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air & Waste Management Association, 57(2), 146-154. doi:10.1080/10473289.2007.10465319
Roberts, J. D., & Caserio, M. C. (1965). Basic principles of organic chemistry.
Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., Lane, T. E., Pierce, J. R., & Pandis, S. N. (2007). Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science, 315(5816), 1259-1262.
Rolph, G., Stein, A., & Stunder, B. (2017). Real-time environmental applications and display system: READY. Environmental Modelling & Software, 95, 210-228. doi:10.1016/j.envsoft.2017.06.025
Salvador, C. M., Chou, C. C.-K., Ho, T.-T., Ku, I.-T., Tsai, C.-Y., Tsao, T.-M., Tsai, M.-J., & Su, T.-C. (2022). Extensive urban air pollution footprint evidenced by submicron organic aerosols molecular composition. npj Climate and Atmospheric Science, 5(1), 96.
Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., Sullivan, A. P., Campos, T., Reeves, J. M., Hills, A., Hornbrook, R. S., Blake, N. J., Scheuer, E., Guo, H., Fibiger, D. L., McDuffie, E. E., Hayes, P. L., Weber, R. J., Dibb, J. E., Apel, E. C., Jaeglé, L., Brown, S. S., Thornton, J. A., & Jimenez, J. L. (2018). Sources and secondary production of organic aerosols in the northeastern United States during winter. Journal of Geophysical Research-Atmospheres, 123(14), 7771-7796. doi:10.1029/2018jd028475
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X.-Y., Wang, W., & Powers, J. G. (2008). A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR. June 2008. Mesoscale and Microscale Meteorology Division. National Center for Atmospheric Research. Boulder, 475, 1. doi:10.5065/d68s4mvh
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA's HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12), 2059–2077. doi:10.1175/BAMS-D-14-00110.1
Sun, Y., Zhang, Q., Schwab, J., Chen, W.-N., Bae, M.-S., Hung, H.-M., Lin, Y.-C., Ng, N., Jayne, J., & Massoli, P. (2012). Characterization of near-highway submicron aerosols in New York City with a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 12(4), 2215-2227.
Surratt, J. D., Lewandowski, M., Offenberg, J. H., Jaoui, M., Kleindienst, T. E., Edney, E. O., & Seinfeld, J. H. (2007). Effect of acidity on secondary organic aerosol formation from isoprene. Environmental Science & Technology, 41(15), 5363-5369.
Surratt, J. D., Chan, A. W., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., & Seinfeld, J. H. (2010). Reactive intermediates revealed in secondary organic aerosol formation from isoprene. Proceedings of the National Academy of Sciences, 107(15), 6640-6645.
Takegawa, N., Miyakawa, T., Kawamura, K., & Kondo, Y. (2007). Contribution of selected dicarboxylic and ω-oxocarboxylic acids in ambient aerosol to the m/z 44 signal of an Aerodyne aerosol mass spectrometer. Aerosol Science and Technology, 41(4), 418-437.
Tolocka, M. P., Jang, M., Ginter, J. M., Cox, F. J., Kamens, R. M., & Johnston, M. V. (2004). Formation of oligomers in secondary organic aerosol. Environmental Science & Technology, 38(5), 1428-1434.
Tsai, C.-S., Huang, P.-C., Lai, H.-C., Lin, J. C., & Hung, H.-M. (2025). Addressing underestimated carbon monoxide emissions in Taiwan using CMAQ and impacts on local ozone concentration. Atmospheric Environment: X, 26, 100325.
Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., & Jimenez, J. L. (2009). Interpretation of organic components from Positive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9(9), 2891-2918. doi:10.5194/acp-9-2891-2009
Whited, G. M., Feher, F. J., Benko, D. A., Cervin, M. A., Chotani, G. K., McAuliffe, J. C., LaDuca, R. J., Ben-Shoshan, E. A., & Sanford, K. J. (2010). Technology update: Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Industrial Biotechnology, 6(3), 152-163.
Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., & Jimenez, J. L. (2005). Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry. Environmental Science & Technology, 39(13), 4938-4952.
Zhang, Q., Jimenez, J. L., Canagaratna, M., Allan, J. D., Coe, H., Ulbrich, I., Alfarra, M., Takami, A., Middlebrook, A., & Sun, Y. (2007a). Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically‐influenced Northern Hemisphere midlatitudes. Geophysical research letters, 34(13).
Zhang, Q., Jimenez, J. L., Worsnop, D. R., & Canagaratna, M. (2007b). A case study of urban particle acidity and its influence on secondary organic aerosol. Environmental Science & Technology, 41(9), 3213-3219.
Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Ulbrich, I. M., Ng, N. L., Worsnop, D. R., & Sun, Y. (2011). Understanding atmospheric organic aerosols via factor analysis of aerosol mass spectrometry: a review. Analytical and bioanalytical chemistry, 401(10), 3045-3067.
Zhang, X. Q., & McMurry, P. H. (1992). Evaporative losses of fine particulate nitrates during sampling. Atmospheric Environment Part a-General Topics, 26(18), 3305-3312. doi:10.1016/0960-1686(92)90347-n
Zhang, Y., Vijayaraghavan, K., Wen, X. Y., Snell, H. E., & Jacobson, M. Z. (2009). Probing into regional ozone and particulate matter pollution in the United States: 1. A 1 year CMAQ simulation and evaluation using surface and satellite data. Journal of Geophysical Research: Atmospheres, 114(D22).
Zhou, Y., Xue, L., Wang, T., Gao, X., Wang, Z., Wang, X., Zhang, J., Zhang, Q., & Wang, W. (2012). Characterization of aerosol acidity at a high mountain site in central eastern China. Atmospheric Environment, 51, 11-20.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100223-
dc.description.abstract有機氣膠(OA)是大氣細懸浮微粒(PM1)的主要成分之一,對於空氣品質、氣候輻射強迫以及人體健康皆具有重要的影響。本研究結合高時間解析度的實地觀測與空氣品質模式模擬,探討位於台灣台中市西屯區都市地區的有機氣膠之生成、組成與演變過程。此研究利用2023年11月觀測計畫資料,包含都市空氣汙染研究站(UAPRS)的即時mini compact time-of-flight aerosol mass spectrometer(mini-C-ToF-AMS)資料和以非即時之離子層析儀(IC)分析的濾紙採樣樣本進行的氣膠物質分析;而作為潛在二次有機氣膠(SOA)前驅物的揮發性有機氣體(VOCs)則利用台灣環境部運作的忠明光化觀測站監測資料。AMS分析結果顯示氣膠的組成與變化受通風條件與邊界層高度顯著地影響。在弱風場條件下,PM1會大量累積,且有機氣膠佔了約43%,為PM1主要成分。透過正矩陣分解法(PMF)分析,可以辨識出五種有機氣膠種類,分別為碳氫類有機氣膠(HOA)、老化碳氫類有機氣膠(aged HOA)、半揮發性氧化態有機氣膠(SVOOA)、低揮發性氧化態有機氣膠(LVOOA),以及背景有機氣膠(background OA)。此結果顯示出SOA為西屯地區之主導成分,占整體有機氣膠質量超過90%。
在模式研究使用社區多尺度空氣品質模式(CMAQ v5.3.1)結合cb6r3_ae7_aq化學機制模擬有機氣膠及其前驅物。模式結果顯示CMAQ結果與觀測之空氣污染物的整體時間變化趨勢相似,但夜間的一次有機氣膠(POA)與SOA濃度則有高估的情形。模式中POA濃度主要受排放強度與邊界層高度控制,而SOA生成則主要由人為排放源之前驅物所促進,並受大氣水平輻合條件影響其濃度的空間分布。這顯示出模式中針對排放、邊界層高度及風場的模擬誤差可能導致了POA和SOA在夜間的高估。生物源SOA主要由單萜(monoterpene)氧化生成,其主要產物包括來自單萜類有機硝酸鹽的有機假水解積聚產物(organic pseudo-hydrolysis accretion product from monoterpene organic nitrate,AMTHYD),以及乙二醛與甲基乙二醛在水相氣膠中生成的SOA(glyoxal and methylglyoxal SOA in aqueous aerosol material,AGLY)。然而,模式對土壤陽離子的高估造成氣膠酸度的中和程度偏高,進而對SOA形成的模擬造成不確定性,特別是酸催化反應途徑如異戊二烯環氧化二醇形成的SOA(acid-catalyzed isoprene epoxydiol SOA,AISO3)。本研究顯示都市地區有機氣膠生成過程的高度複雜性,並指出需進一步改善模式中針對氣膠酸度、前驅物排放量及大氣物理過程的模擬。此外,本研究也顯示高解析度觀測資料結合化學傳輸模式在掌握有機氣膠來源與生成機制方面的重要性。
zh_TW
dc.description.abstractOrganic aerosols (OA) are a major constituent of atmospheric fine particulate matter (PM1), significantly influencing air quality, climate forcing, and human health. This study investigates the formation, composition, and evolution of OA in the Xitun urban area of Taichung, Taiwan, by integrating high-resolution field observation data with air quality modeling analysis. The analysis focuses on data collected during a field campaign in November 2023, including real-time aerosol composition measurements using a mini compact time-of-flight aerosol mass spectrometer (mini-C-ToF-AMS) and offline filter analysis via ion chromatography (IC) at Urban Air Pollution Research Station (UAPRS). Volatile organic compounds (VOCs) concentrations from Chungming Photochemical Monitoring Station, operated by the Taiwan Ministry of Environment (MOENV), were applied as potential precursors for secondary organic aerosols (SOA) formation. The results show that aerosol composition and variability were strongly influenced by ventilation and local boundary layer dynamics. During periods of stagnant conditions, PM1 accumulated substantially, with OA emerging as the dominant component. Positive matrix factorization (PMF) identified five OA components: hydrocarbon-like OA (HOA), aged HOA, semi-volatile oxygenated OA (SVOOA), low-volatility oxygenated OA (LVOOA), and background OA, with SOA accounting for over 90% of total OA mass.
Simulations using the Community Multiscale Air Quality (CMAQ) v5.3.1 model with the cb6r3_ae7_aq mechanism reproduced general temporal patterns of air pollutants but overestimated both primary organic aerosols (POA) and SOA, particularly during nighttime. POA concentrations were primarily controlled by emission rates and boundary layer height, while SOA formation was driven by anthropogenic precursors and modulated by convergence patterns. Model biases in wind fields, emissions, and vertical mixing likely contribute to the nighttime overestimation. Biogenic SOA was predominantly from monoterpene oxidation, with major products including organic pseudo-hydrolysis accretion product from monoterpene organic nitrate (AMTHYD) and aqueous-phase glyoxal and methylglyoxal SOA (AGLY). However, uncertainties in modeled aerosol acidity, linked to overpredicted soil cations and excessive neutralization, likely have affected acid-catalyzed SOA pathways such as isoprene epoxydiol-derived SOA (AISO3). This study highlights the complexity of urban OA formation and the need for improved model representations of aerosol acidity, precursor emissions, and atmospheric processing. It also demonstrates the value of integrating high-resolution measurements with chemical transport models to better constrain OA sources and formation mechanisms.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:54:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:54:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF TABLES viii
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Basic Characteristics of Aerosol 1
1.2 Complexity of Organic Aerosol 2
1.3 Aerosol modeling 4
1.4 Motivation and Goals 6
Chapter 2 Methods 9
2.1 Experimental Setup 9
2.2 Aerosol Composition Monitoring 10
2.3 Model Settings 13
Chapter 3 Results and Discussion 16
3.1 AMS Observation Results and Characteristics 16
3.1.1 Overview of Meteorology 16
3.1.2 Aerosol Composition and Variation 18
3.1.3 Organic Aerosol Composition and Variation 19
3.2 CMAQ Simulation Results 23
3.2.1 CMAQ Performance 23
3.2.2 Simulation of Aerosol Composition and Acidity 25
3.2.3 Organic Aerosol Simulation 27
Chapter 4 Conclusions 32
Chapter 5 Future Works 34
REFERENCES 36
TABLES 43
FIGURES 48
-
dc.language.isoen-
dc.subject有機氣膠zh_TW
dc.subject氣膠質譜儀zh_TW
dc.subject社區多尺度空氣品質模式zh_TW
dc.subject都市空氣汙染zh_TW
dc.subjectAMSen
dc.subjectCMAQen
dc.subjectorganic aerosolsen
dc.subjecturban air pollutionen
dc.title台灣中部都市地區有機氣膠之生成及演變過程:以西屯為例zh_TW
dc.titleFormation and Evolution of Organic Aerosols in Xitun Urban Area, Central Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳正平;周崇光zh_TW
dc.contributor.oralexamcommitteeJen-Ping Chen;Chung-Kuang Chouen
dc.subject.keyword有機氣膠,氣膠質譜儀,社區多尺度空氣品質模式,都市空氣汙染,zh_TW
dc.subject.keywordorganic aerosols,AMS,CMAQ,urban air pollution,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202502144-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
dc.date.embargo-lift2028-08-01-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved