請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100201完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 沈偉強 | zh_TW |
| dc.contributor.advisor | Wei-Chiang Shen | en |
| dc.contributor.author | 李百昂 | zh_TW |
| dc.contributor.author | Bai-Ang Li | en |
| dc.date.accessioned | 2025-09-24T16:50:02Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | References
An, B., Hou, X., Guo, Y., Zhao, S., Luo, H., He, C., and Wang, Q. 2019. The effector SIX8 is required for virulence of Fusarium oxysporum f. sp. cubense tropical race 4 to Cavendish banana. Fungal Biol. 123:423-430. Almagro Armenteros, J. J., Tsirigos, K. D., Sønderby, C. K., Petersen, T. N., Winther, O., Brunak, S., von Heijne, G., and Nielsen, H. 2019. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37:420-423. Armenteros, J. J. A., Salvatore, M., Emanuelsson, O., Winther, O., Von Heijne, G., Elofsson, A., and Nielsen, H. 2019. Detecting sequence signals in targeting peptides using deep learning. Life Sci. Alliance 2. Armitage, A. D., Taylor, A., Sobczyk, M. K., Baxter, L., Greenfield, B. P., Bates, H. J., Wilson, F., Jackson, A. C., Ott, S., and Harrison, R. J. 2018. Characterisation of pathogen-specific regions and novel effector candidates in Fusarium oxysporum f. sp. cepae. Sci. Rep. 8:13530. Asai, S., and Shirasu, K. 2015. Plant cells under siege: plant immune system versus pathogen effectors. Curr. Opin. Plant Biol. 28:1-8. Akagi, Y., Akamatsu, H., Otani, H., and Kodama, M. 2009. Horizontal chromosome transfer, a mechanism for the evolution and differentiation of a plant-pathogenic fungus. Eukaryot. Cell 8:1732-1738. Alfano, J. R., Charkowski, A. O., Deng, W.-L., Badel, J. L., Petnicki-Ocwieja, T., Van Dijk, K., and Collmer, A. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA. 97:4856-4861. Bi, K., Scalschi, L., Jaiswal, N., Mengiste, T., Fried, R., Sanz, A. B., Arroyo, J., Zhu, W., Masrati, G., and Sharon, A. 2021. The Botrytis cinerea Crh1 transglycosylase is a cytoplasmic effector triggering plant cell death and defense response. Nat. Commun 12:2166. Bell, B. P., and Khabbaz, R. F. 2013. Responding to the outbreak of invasive fungal infections: the value of public health to Americans. JAMA 309:883-884. Butler, D. 2013. Fungus threatens top banana: fears rise for Latin American industry as devastating disease hits leading variety in Africa and Middle East. Nature 504:195-197. Burgess, L., and Bryden, W. 2012. Fusarium: A ubiquitous fungus of global significance. Microbiol. Aust. 33:22-25. Bendtsen, J. D., Jensen, L. J., Blom, N., Von Heijne, G., and Brunak, S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng. Des. Sel. 17:349-356. Bentley, S., Pegg, K. G., and Dale, J. L. 1995. Genetic variation among a world-wide collection of isolates of Fusarium oxysporum f. sp. cubense analysed by RAPD-PCR fingerprinting. Mycol. Res. 99:1378-1384. Bancroft, J. 1876. Report of the board appointed to enquire into the cause of disease affecting livestock and plants. Votes Proc 3:1011-1038. Cong, Z., Ma, Y., Zeng, L., Wu, Y., Chen, Y., Liang, L., Zhu, J., Li, H., Nie, Y., and Li, Y. 2025. A Novel Effector FoUpe9 Enhances the Virulence of Fusarium oxysporum f. sp. cubense Tropical Race 4 by Inhibiting Plant Immunity. J. Fungi 11:308. Chen, D., Ju, M., Xie, J., Chen, X.-L., and Peng, J. 2024. Current progress on pathogenicity-related genes in Fusarium oxysporum f. sp. cubense tropical race 4. Phytopathol. Res. 6:53. Czislowski, E., Fraser‐Smith, S., Zander, M., O'Neill, W. T., Meldrum, R. A., Tran‐Nguyen, L. T., Batley, J., and Aitken, E. A. 2018. Investigation of the diversity of effector genes in the banana pathogen, Fusarium oxysporum f. sp. cubense, reveals evidence of horizontal gene transfer. Mol. Plant Pathol. 19:1155-1171. Croll, D., and McDonald, B. A. 2012. The accessory genome as a cradle for adaptive evolution in pathogens. PLoS Pathog. 8:e1002608. Coll, N. S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J. L., and Epple, P. 2010. Arabidopsis type I metacaspases control cell death. Science 330:1393-1397. Coleman, J. J., Rounsley, S. D., Rodriguez-Carres, M., Kuo, A., Wasmann, C. C., Grimwood, J., Schmutz, J., Taga, M., White, G. J., and Zhou, S. 2009. The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet. 5:e1000618. Christin, P.-A., Besnard, G., Samaritani, E., Duvall, M. R., Hodkinson, T. R., Savolainen, V., and Salamin, N. 2008. Oligocene CO2 decline promoted C4 photosynthesis in grasses. Curr. Biol. 18:37-43. Covert, S. F. 1998. Supernumerary chromosomes in filamentous fungi. Curr. Genet. 33:311-319. Dulal, N., and Wilson, R. A. 2024. Paths of least resistance: Unconventional effector secretion by fungal and oomycete plant pathogens. Mol. Plant. Microbe. Interact. 37:653-661. Ding, Z., Lin, H., Liu, L., Lu, T., Xu, Y., Peng, J., Ren, Y., Peng, J., Xu, T., and Zhang, X. 2024. Transcription factor FoAce2 regulates virulence, vegetative growth, conidiation, and cell wall homeostasis in Fusarium oxysporum f. sp. cubense. Fungal Biol. Ding, Z., Xu, T., Zhu, W., Li, L., and Fu, Q. 2020. A MADS-box transcription factor FoRlm1 regulates aerial hyphal growth, oxidative stress, cell wall biosynthesis and virulence in Fusarium oxysporum f. sp. cubense. Fungal Biol. 124:183-193. Dita, M., Barquero, M., Heck, D., Mizubuti, E. S., and Staver, C. P. 2018. Fusarium wilt of banana: current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 9:1468. Ding, Z., Yang, L., Wang, G., Guo, L., Liu, L., Wang, J., and Huang, J. 2018. Fusaric acid is a virulence factor of Fusarium oxysporum f. sp. cubense on banana plantlets. Trop. Plant Pathol. 43:297-305. Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., and Ellis, J. 2012. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414-430. Dong, X., Ling, N., Wang, M., Shen, Q., and Guo, S. 2012. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiol. Biochem. 60:171-179. Dowell, R. D., Ryan, O., Jansen, A., Cheung, D., Agarwala, S., Danford, T., Bernstein, D. A., Rolfe, P. A., Heisler, L. E., and Chin, B. 2010. Genotype to phenotype: a complex problem. Science 328:469-469. Davis, J. C., and Petrov, D. A. 2004. Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol. 2:e55. Ekwomadu, T. I., and Mwanza, M. 2023. Fusarium fungi pathogens, identification, adverse effects, disease management, and global food security: A review of the latest research. Agriculture 13:1810. Fang, Z., Zhao, Q., Yang, S., Cai, Y., Fang, W., Abubakar, Y. S., Lin, Y., Yun, Y., and Zheng, W. 2024. Two distinct SNARE complexes mediate vesicle fusion with the plasma membrane to ensure effective development and pathogenesis of Fusarium oxysporum f. sp. cubense. Mol. Plant Pathol. 25:e13443. FAOSTAT 2023. Food and agricultural organization of the United Nations. Available at: https://www.fao.org/faostat/en/#home [Accessed 3 October 2024]. Farnell, E., Rousseau, K., Thornton, D. J., Bowyer, P., and Herrick, S. E. 2012. Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates. Fungal Biol. 116:1003-1012. Fourie, G., Steenkamp, E. T., Ploetz, R. C., Gordon, T., and Viljoen, A. 2011. Current status of the taxonomic position of Fusarium oxysporum formae specialis cubense within the Fusarium oxysporum complex. Infect. Genet. Evol. 11:533-542. Fourie, G., Steenkamp, E., Gordon, T., and Viljoen, A. 2009. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Appl. Environ. Microbiol. 75:4770-4781. Fischer‐Parton, S., Parton, R., Hickey, P., Dijksterhuis, J., Atkinson, H., and Read, N. 2000. Confocal microscopy of FM4‐64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae. J. Microsc. 198:246-259. Guo, L., Wang, J., Liang, C., Yang, L., Zhou, Y., Liu, L., and Huang, J. 2022. Fosp9, a novel secreted protein, is essential for the full virulence of Fusarium oxysporum f. sp. cubense on banana (Musa spp.). Appl. Environ. Microbiol. 88:e00604-00621. Ghag, S. B., Shekhawat, U. K., and Ganapathi, T. R. 2015. Fusarium wilt of banana: biology, epidemiology and management. Int. J. Pest Manag. 61:250-263. Gawehns, F., Houterman, P., Ichou, F. A., Michielse, C., Hijdra, M., Cornelissen, B., Rep, M., and Takken, F. 2014. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death. Mol. Plant Microbe Interact. 27:336-348. Galán, J. E., Lara-Tejero, M., Marlovits, T. C., and Wagner, S. 2014. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu. Rev. Microbiol. 68:415-438. Giraldo, M. C., and Valent, B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol 11:800-814. Gordon, T., and Martyn, R. 1997. The evolutionary biology of Fusarium oxysporum. Annu. Rev. Phytopathol. 35:111-128. Gordon, T., and Okamoto, D. 1992. Population structure and the relationship between pathogenic and nonpathogenic strains of Fusarium oxysporum. Phytopathology 82:73-77. Huo, Y.-l., Liu, S.-w., Huang, H.-q., Li, Z.-y., Ahmad, M., Zhuo, M.-x., Chen, W.-j., Li, C.-y., Liu, B., and Li, Y.-d. 2025. Transcriptome analysis provides insights into the role of TLP16 in Musa acuminata Resistance to Fusarium oxysporum f. sp. cubense wilt. BMC Plant Biol. 25:1-14. He, Y., Li, P., Zhou, X., Ali, S., Zhu, J., Ma, Y., Li, J., Zhang, N., Li, H., and Li, Y. 2024. A ribonuclease T2 protein FocRnt2 contributes to the virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Mol. Plant Pathol. 25:e13502. Health, E. P. o. P., Bragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J. A., Justesen, A. F., MacLeod, A., and Magnusson, C. S. 2022. Pest categorisation of Fusarium oxysporum f. sp. cubense Tropical Race 4. EFSA J. 20:e07092. He, Y., Zhou, X., Li, J., Li, H., Li, Y., and Nie, Y. 2021. In vitro secretome analysis suggests differential pathogenic mechanisms between Fusarium oxysporum f. sp. cubense race 1 and race 4. Biomolecules 11:1353. Hogenhout, S. A., Van der Hoorn, R. A., Terauchi, R., and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22:115-122. Houterman, P. M., Ma, L., Van Ooijen, G., De Vroomen, M. J., Cornelissen, B. J., Takken, F. L., and Rep, M. 2009. The effector protein Avr2 of the xylem‐colonizing fungus Fusarium oxysporum activates the tomato resistance protein I‐2 intracellularly. Plant J. 58:970-978. Heslop-Harrison, J. S., and Schwarzacher, T. 2007. Domestication, genomics and the future for banana. Ann. Bot. 100:1073-1084. Houterman, P. M., Speijer, D., Dekker, H. L., de Koster, C. G., Cornelissen, B. J., and Rep, M. 2007. The mixed xylem sap proteome of Fusarium oxysporum‐infected tomato plants. Mol. Plant Pathol. 8:215-221. Hwang, S.-C., and Ko, W.-H. 2004. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Dis. 88:580-588. Hatta, R., Ito, K., Hosaki, Y., Tanaka, T., Tanaka, A., Yamamoto, M., Akimitsu, K., and Tsuge, T. 2002. A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59-70. Hart, L., and Endo, R. 1981. The effect of time of exposure to inoculum, plant age, root development, and root wounding on Fusarium yellows of celery. Phytopathology 71:77-79. Guo, L., Wang, J., Liang, C., Yang, L., Zhou, Y., Liu, L., and Huang, J. 2022. Fosp9, a novel secreted protein, is essential for the full virulence of Fusarium oxysporum f. sp. cubense on banana (Musa spp.). Appl. Environ. Microbiol. 88:e00604-00621. Ibrasheva, L., Obukhova, N., Bystrenina, I., Malova, N., and Puchkova, O. 2023. The main exported fresh fruits and vegetables in the world. Int. J. Agric 3:838-879. Ismaila, A. A., Ahmad, K., Siddique, Y., Wahab, M. A. A., Kutawa, A. B., Abdullahi, A., Zobir, S. A. M., Abdu, A., and Abdullah, S. N. A. 2023. Fusarium wilt of banana: Current update and sustainable disease control using classical and essential oils approaches. Hortic. Plant J. 9:1-28. Islands, C., and Province, M. 1988. Vegetative compatibility among races of Fusarium oxysporum f. sp. cubense. Plant Dis. 72:325-328. Jangir, P., Mehra, N., Sharma, K., Singh, N., Rani, M., and Kapoor, R. 2021. Secreted in xylem genes: Drivers of host adaptation in Fusarium oxysporum. Front. Plant Sci. 12:628611. Janowska-Sejda, E. I. 2018. Network approaches for exploring predicted proteins of unknown function in the sequenced genome of plant pathogenic fungi. King's College London. Josefsen, L., Droce, A., Sondergaard, T. E., Sørensen, J. L., Bormann, J., Schäfer, W., Giese, H., and Olsson, S. 2012. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum. Autophagy 8:326-337. Kema, G. H., Drenth, A., Dita, M., Jansen, K., Vellema, S., and Stoorvogel, J. J. 2021. Fusarium wilt of banana, a recurring threat to global banana production. Front. Plant Sci. 11:628888. Krombach, S., Reissmann, S., Kreibich, S., Bochen, F., and Kahmann, R. 2018. Virulence function of the Ustilago maydis sterol carrier protein 2. New Phytol. 220:553-566. Kershaw, M. J., and Talbot, N. J. 2009. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc. Natl. Acad. Sci. U.S. A. 106:15967-15972. Krogh, A., Larsson, B., Von Heijne, G., and Sonnhammer, E. L. 2001. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305:567-580. Kim, J., Scott, S. V., and Klionsky, D. J. 2000. Alternative protein sorting pathways. Int. Rev. Cytol. 198:153-201. Koenig, R., Ploetz, R., and Kistler, H. 1997. Fusarium oxysporum f. sp. cubense consists of a small number of divergent and globally distributed clonal lineages. Phytopathology 87:915-923. Kamoun, S., Klucher, K. M., Coffey, M. D., and Tyler, B. M. 1993. A gene encoding a host-specific elicitor protein of Phytophthora parasitica. Mol. Plant. Microbe. Interact. 6:573-573. Kraft, J., and Haglund, W. 1978. A reappraisal of the race classification of Fusarium oxysporum f. sp. pisi. Phytopathology 68:273-275. Liu, S., Wu, J., Sun, Y., Xu, Y., Zhou, S., Luo, P., Wang, Z., Chen, D., Liang, X., and Kang, Z. 2025. A novel key virulence factor, FoSSP71, inhibits plant immunity and promotes pathogenesis in Fusarium oxysporum f. sp. cubense. Microbiol. Spectr. 13:e02940-02924. Li, G., Newman, M., Yu, H., Rashidzade, M., Martínez-Soto, D., Caicedo, A., Allen, K. S., and Ma, L.-J. 2024. Fungal effectors: past, present, and future. Curr. Opin. Microbiol. 81:102526. Lin, Y., Pan, G., Qi, Y., Wang, B., Jin, C., and Fang, W. 2024. A novel hypovirulence-associated Hadaka virus 1 (HadV1-LA6) in Fusarium oxysporum f. sp. cubense. Msphere 9:e00428-00424. Lai, H.-Y., Yu, Y.-H., Jhou, Y.-T., Liao, C.-W., and Leu, J.-Y. 2023. Multiple intermolecular interactions facilitate rapid evolution of essential genes. Nat. Ecol. Evol 7:745-755. Lübeck, M., and Lübeck, P. S. 2022. Fungal cell factories for efficient and sustainable production of proteins and peptides. Microorganisms 10:753. Li, M., Xie, L., Wang, M., Lin, Y., Zhong, J., Zhang, Y., Zeng, J., Kong, G., Xi, P., and Li, H. 2022. FoQDE2-dependent milRNA promotes Fusarium oxysporum f. sp. cubense virulence by silencing a glycosyl hydrolase coding gene expression. PLoS Pathog. 18:e1010157. Liu, S., Li, J., Zhang, Y., Liu, N., Viljoen, A., Mostert, D., Zuo, C., Hu, C., Bi, F., and Gao, H. 2020. Fusaric acid instigates the invasion of banana by Fusarium oxysporum f. sp. cubense TR4. New Phytol. 225:913-929. Li, B., Gao, Y., Mao, H. Y., Borkovich, K. A., and Ouyang, S. Q. 2019. The SNARE protein FolVam7 mediates intracellular trafficking to regulate conidiogenesis and pathogenicity in Fusarium oxysporum f. sp. lycopersici. Environ. Microbiol. 21:2696-2706. Liu, S., Wu, B., Yang, J., Bi, F., Dong, T., Yang, Q., Hu, C., Xiang, D., Chen, H., and Huang, H. 2019. A cerato-platanin family protein FocCP1 is essential for the penetration and virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Int. J. Mol. Sci. 20:3785. Li, X., Gao, C., Li, L., Liu, M., Yin, Z., Zhang, H., Zheng, X., Wang, P., and Zhang, Z. 2017. MoEnd3 regulates appressorium formation and virulence through mediating endocytosis in rice blast fungus Magnaporthe oryzae. PLoS Pathog. 13:e1006449. Li, B., Liu, L., Li, Y., Dong, X., Zhang, H., Chen, H., Zheng, X., and Zhang, Z. 2017. The FgVps39-FgVam7-FgSso1 complex mediates vesicle trafficking and is important for the development and virulence of Fusarium graminearum. MPMI. 30:410-422. Lv, W., Wang, C., Yang, N., Que, Y., Talbot, N. J., and Wang, Z. 2017. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Sci. Rep. 7:11062. Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., and Kahmann, R. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513-545. Liu, T., Song, T., Zhang, X., Yuan, H., Su, L., Li, W., Xu, J., Liu, S., Chen, L., and Chen, T. 2014. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat. Commun. 5:4686. Li, C., Zuo, C., Deng, G., Kuang, R., Yang, Q., Hu, C., Sheng, O., Zhang, S., Ma, L., and Wei, Y. 2013. Contamination of bananas with beauvericin and fusaric acid produced by Fusarium oxysporum f. sp. cubense. PLoS One 8:e70226. Laurence, M. H., Burgess, L. W., Summerell, B. A., and Liew, E. C. 2012. High levels of diversity in Fusarium oxysporum from non-cultivated ecosystems in Australia. Fungal Biol. 116:289-297. Li, C., Chen, S., Zuo, C., Sun, Q., Ye, Q., Yi, G., and Huang, B. 2011. The use of GFP-transformed isolates to study infection of banana with Fusarium oxysporum f. sp. cubense race 4. Eur. J. Plant Pathol. 131:327-340. Leslie, J. F., and Summerell, B. A. 2008. The Fusarium laboratory manual. John Wiley & Sons. Li, M. H., Xi, P. G., Jiang, Z. D., and Qi, P. K. 2007. R identification of Fusarium oxysporum f. sp. cubense, the causal agent of banana Fusarium wilt in Guangdong Province. J. South China Agric. Univ. 28:38-41. Leslie, J., and Summerell, B. 2006. Fusarium laboratory workshops—A recent history. Mycotoxin Res. 22:73-74. Levine, B., and Klionsky, D. J. 2004. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev. Cell. 6:463-477. Lemmon, S. K., and Traub, L. M. 2000. Sorting in the endosomal system in yeast and animal cells. Curr. Opin. Cell Biol. 12:457-466. Litwin, C. M., and Byrne, B. L. 1998. Cloning and characterization of an outer membrane protein of Vibrio vulnificus required for heme utilization: regulation of expression and determination of the gene sequence. Infect. Immun. 66:3134-3141. Mistry, J., Chuguransky, S., Williams, L., Qureshi, M., Salazar, G. A., Sonnhammer, E. L., Tosatto, S. C., Paladin, L., Raj, S., and Richardson, L. J. 2021. Pfam: The protein families database in 2021. Nucleic Acids Res. 49:D412-D419. Maymon, M., Sela, N., Shpatz, U., Galpaz, N., and Freeman, S. 2020. The origin and current situation of Fusarium oxysporum f. sp. cubense tropical race 4 in Israel and the Middle East. Sci. Rep. 10:1590. Maryani, N., Lombard, L., Poerba, Y., Subandiyah, S., Crous, P., and Kema, G. 2019. Phylogeny and genetic diversity of the banana Fusarium wilt pathogen Fusarium oxysporum f. sp. cubense in the Indonesian centre of origin. Stud. Mycol. 92:155-194. Mitchum, M. G., Hussey, R. S., Baum, T. J., Wang, X., Elling, A. A., Wubben, M., and Davis, E. L. 2013. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol. 199:879-894. Ma, L.-J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O'Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., and Kazan, K. 2013. Fusarium pathogenomics. Annu. Rev. Microbiol. 67:399-416. McDermott, J. E., Corrigan, A., Peterson, E., Oehmen, C., Niemann, G., Cambronne, E. D., Sharp, D., Adkins, J. N., Samudrala, R., and Heffron, F. 2011. Computational prediction of type III and IV secreted effectors in gram-negative bacteria. Infect. Immun. 79:23-32. Ma, L.-J., Van Der Does, H. C., Borkovich, K. A., Coleman, J. J., Daboussi, M.-J., Di Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., and Henrissat, B. 2010. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367-373. Masai, K., Maruyama, J.-i., Nakajima, H., and Kitamoto, K. 2003. In vivo visualization of the distribution of a secretory protein in Aspergillus oryzae hyphae using the RntA-EGFP fusion protein. Biosci. Biotechnol. Biochem. 67:455-459. Mohamed, A. A., Mak, C., and Liew, K. W. 2001. Early evaluation of banana planta at nursery stage for Fusarium wilts tolerance. In: Molina AB, Masdek NK, Liew KW. Banana Fusarium wilt management: towards sustainable cultivation. Getting Highlands Resort Malaysia. Proc. Int. Workshop of the Banana Fusarium wilt disease. McCabe, P. M., and Van Alfen, N. K. 1999. Secretion of cryparin, a fungal hydrophobin. Appl. Environ. Microbiol. 65:5431-5435. Oliveira-Garcia, E., Tamang, T. M., Park, J., Dalby, M., Martin-Urdiroz, M., Rodriguez Herrero, C., Vu, A. H., Park, S., Talbot, N. J., and Valent, B. 2023. Clathrin-mediated endocytosis facilitates the internalization of Magnaporthe oryzae effectors into rice cells. The Plant Cell 35:2527-2551. Ordoñez, N., García-Bastidas, F., Laghari, H., Akkary, M., Harfouche, E., Al Awar, B., and Kema, G. 2016. First report of Fusarium oxysporum f. sp. cubense tropical race 4 causing Panama disease in Cavendish bananas in Pakistan and Lebanon. Plant Disease 100:209. O’Donnell, K., Gueidan, C., Sink, S., Johnston, P. R., Crous, P. W., Glenn, A., Riley, R., Zitomer, N. C., Colyer, P., and Waalwijk, C. 2009. A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet. Biol. 46:936-948. O’Donnell, K., Kistler, H. C., Cigelnik, E., and Ploetz, R. C. 1998. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proc. Natl. Acad. Sci. 95:2044-2049. Priya, U., Kushwaha, C., Ansar, M., Bhagat, A., Srivastava, J., Suman, K., Kumar, N., Vishwakarma, R., and Sinha, S. 2025. In vitro assessment of pathogenicity through detached leaf assay in banana for Fusarium oxysporum f. sp. cubense: A comparative study. In vitro 56. Ploetz, R. C. 2015. Fusarium wilt of banana. Phytopathology 105:1512-1521. Presti, L. L., and Kahmann, R. 2017. How filamentous plant pathogen effectors are translocated to host cells. Curr. Opin. Plant Biol. 38:19-24. Petre, B., and Kamoun, S. 2014. How do filamentous pathogens deliver effector proteins into plant cells? PLoS Biol. 12:e1001801. Powell, A. J., Conant, G. C., Brown, D. E., Carbone, I., and Dean, R. A. 2008. Altered patterns of gene duplication and differential gene gain and loss in fungal pathogens. BMC genomics 9:1-15. Ploetz, R. C. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96:653-656. Puhalla, J. E. 1985. Classification of strains of Fusarium oxysporum on the basis of vegetative compatibility. Canad. J. Bot. 63:179-183. Qian, H., Wang, L., Wang, B., and Liang, W. 2022. The secreted ribonuclease T2 protein FoRnt2 contributes to Fusarium oxysporum virulence. Mol. Plant Pathol. 23:1346-1360. Qi, X., Guo, L., Yang, L., and Huang, J. 2013. Foatf1, a bZIP transcription factor of Fusarium oxysporum f. sp. cubense, is involved in pathogenesis by regulating the oxidative stress responses of Cavendish banana (Musa spp.). Physiol. Mol. Plant Pathol. 84:76-85. Qi, Y., Zhang, X., Pu, J., Xie, Y., Zhang, H., and Huang, S. 2008. Race 4 identification of Fusarium oxysporum f. sp. cubense from Cavendish cultivars in Hainan province, China. Australas. Plant Dis. Notes 3:46-47. Raimondeau, P., Bianconi, M. E., Pereira, L., Parisod, C., Christin, P. A., and Dunning, L. T. 2023. Lateral gene transfer generates accessory genes that accumulate at different rates within a grass lineage. New Phytol. 240:2072-2084. Raffaele, S., and Kamoun, S. 2012. Genome evolution in filamentous plant pathogens: why bigger can be better. Nat. Rev. Microbiol 10:417-430. Rep, M., Meijer, M., Houterman, P., Van Der Does, H., and Cornelissen, B. 2005. Fusarium oxysporum evades I-3-mediated resistance without altering the matching avirulence gene. Mol. Plant Microbe Interact. 18:15-23. Rep, M., Van Der Does, H. C., Meijer, M., Van Wijk, R., Houterman, P. M., Dekker, H. L., De Koster, C. G., and Cornelissen, B. J. 2004. A small, cysteine‐rich protein secreted by Fusarium oxysporum during colonization of xylem vessels is required for I‐3‐mediated resistance in tomato. Mol. Microbiol. 53:1373-1383. Sakane, K., Akiyama, M., Jogaiah, S., Ito, S.-i., and Sasaki, K. 2024. Pathogenicity chromosome of Fusarium oxysporum f. sp. cepae. Fungal Genet. Biol. 170:103860. Stalder, L., Oggenfuss, U., Mohd‐Assaad, N., and Croll, D. 2023. The population genetics of adaptation through copy number variation in a fungal plant pathogen. Mol. Ecol. 32:2443-2460. Sperschneider, J., and Dodds, P. N. 2022. EffectorP 3.0: prediction of apoplastic and cytoplasmic effectors in fungi and oomycetes. MPMI. 35:146-156. Staver, C., Pemsl, D. E., Scheerer, L., Perez Vicente, L., and Dita, M. 2020. Ex ante assessment of returns on research investments to address the impact of Fusarium wilt tropical race 4 on global banana production. Front. Plant Sci. 11:844. Summerell, B. A. 2019. Resolving Fusarium: Current status of the genus. Annu. Rev. Phytopathol. 57:323-339. Sperschneider, J., Catanzariti, A.-M., DeBoer, K., Petre, B., Gardiner, D. M., Singh, K. B., Dodds, P. N., and Taylor, J. M. 2017. LOCALIZER: subcellular localization prediction of both plant and effector proteins in the plant cell. Sci. Rep. 7:44598. Smith, R. M., Schaefer, M. K., Kainer, M. A., Wise, M., Finks, J., Duwve, J., Fontaine, E., Chu, A., Carothers, B., and Reilly, A. 2013. Fungal infections associated with contaminated methylprednisolone injections. N. Engl. J. Med. 369:1598-1609. Stukenbrock, E. H., Jørgensen, F. G., Zala, M., Hansen, T. T., McDonald, B. A., and Schierup, M. H. 2010. Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola PLoS Genet. 6:e1001189. Stenmark, H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513-525. Shoji, J.-y., Arioka, M., and Kitamoto, K. 2006. Vacuolar membrane dynamics in the filamentous fungus Aspergillus oryzae. Eukaryot. Cell 5:411-421. Stover, R., and Buddenhagen, I. 1986. Banana breeding: polyploidy, disease resistance and productivity. Fruits 41:175-191. Stover, R. 1956. Studies on Fusarium wilt of bananas: I. The behavior of F. oxysporum f. cubense in different soils. Canad. J. Bot. 34:927-942. Tariqjaveed, M., Mateen, A., Wang, S., Qiu, S., Zheng, X., Zhang, J., Bhadauria, V., and Sun, W. 2021. Versatile effectors of phytopathogenic fungi target host immunity. J. Integr. Plant Biol. 63:1856-1873. Taylor, A., Vágány, V., Jackson, A. C., Harrison, R. J., Rainoni, A., and Clarkson, J. P. 2016. Identification of pathogenicity‐related genes in Fusarium oxysporum f. sp. cepae. Mol. Plant Pathol. 17:1032-1047. Toruño, T. Y., Stergiopoulos, I., and Coaker, G. 2016. Plant-pathogen effectors: cellular probes interfering with plant defenses in spatial and temporal manners. Annu. Rev. Phytopathol. 54:419-441. Takeshita, N. 2016. Coordinated process of polarized growth in filamentous fungi. Biosci. Biotechnol. Biochem. 80:1693-1699. Taylor, J., Jacobson, D., and Fisher, M. 1999. The evolution of asexual fungi: reproduction, speciation and classification. Annu. Rev. Phytopathol. 37:197-246. Talbot, N. J., Ebbole, D. J., and Hamer, J. E. 1993. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575-1590. Urban, M., Cuzick, A., Seager, J., Wood, V., Rutherford, K., Venkatesh, S. Y., De Silva, N., Martinez, M. C., Pedro, H., and Yates, A. D. 2020. PHI-base: the pathogen–host interactions database. Nucleic Acids Res. 48:D613-D620. Voora, V., Bermúdez, S., Farrell, J. J., Larrea, C., and Luna, E. 2022. Banana prices and sustainability. International Institute for Sustainable Development (IISD). Vincent, D., Rafiqi, M., and Job, D. 2020. The multiple facets of plant–fungal interactions revealed through plant and fungal secretomics. Front. Plant Sci. 10:1626. Van Dam, P., Fokkens, L., Ayukawa, Y., Van der Gragt, M., Ter Horst, A., Brankovics, B., Houterman, P. M., Arie, T., and Rep, M. 2017. A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species. Sci. Rep. 7:9042. Vlaardingerbroek, I., Beerens, B., Rose, L., Fokkens, L., Cornelissen, B. J., and Rep, M. 2016a. Exchange of core chromosomes and horizontal transfer of lineage‐specific chromosomes in Fusarium oxysporum. Environ. Microbiol. 18:3702-3713. Vlaardingerbroek, I., Beerens, B., Schmidt, S. M., Cornelissen, B. J., and Rep, M. 2016b. Dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici. Mol. Plant Pathol. 17:1455-1466. Voigt, O., and Pöggeler, S. 2013. Self-eating to grow and kill: autophagy in filamentous ascomycetes. Appl. Microbiol. Biotechnol. 97:9277-9290. Veses, V., Richards, A., and Gow, N. A. 2008. Vacuoles and fungal biology. Curr. Opin. Microbiol. 11:503-510. Van Der Does, H. C., Lievens, B., Claes, L., Houterman, P. M., Cornelissen, B. J., and Rep, M. 2008. The presence of a virulence locus discriminates Fusarium oxysporum isolates causing tomato wilt from other isolates. Environ. Microbiol. 10:1475-1485. Van der Does, H. C., and Rep, M. 2007. Virulence genes and the evolution of host specificity in plant-pathogenic fungi. Mol. plant-microb. interact. 20:1175-1182. Wang, W., Wan, W., Chen, Q., Wei, T., and Zhang, H. 2024. Banana bunchy top virus movement protein induces resistance in banana against Fusarium wilt. Phytopathol. Res.6:25. Wang, H., Wang, S., Wang, W., Xu, L., Welsh, L. R., Gierlinski, M., Whisson, S. C., Hemsley, P. A., Boevink, P. C., and Birch, P. R. 2023. Uptake of oomycete RXLR effectors into host cells by clathrin-mediated endocytosis. The Plant Cell 35:2504-2526. Wang, Y., Zhang, X., Wang, T., Zhou, S., Liang, X., Xie, C., Kang, Z., Chen, D., and Zheng, L. 2022. The small secreted protein FoSsp1 elicits plant defenses and negatively regulates pathogenesis in Fusarium oxysporum f. sp. cubense (Foc4). Front. Plant Sci. 13:873451. Witte, T. E., Villeneuve, N., Boddy, C. N., and Overy, D. P. 2021. Accessory chromosome-acquired secondary metabolism in plant pathogenic fungi: the evolution of biotrophs into host-specific pathogens. Front. Microbiol. 12:664276. Wang, Y., Wu, J., Park, Z. Y., Kim, S. G., Rakwal, R., Agrawal, G. K., Kim, S. T., and Kang, K. Y. 2011. Comparative secretome investigation of Magnaporthe oryzae proteins responsive to nitrogen starvation. Front. Plant Sci. 10:3136-3148. Widinugraheni, S., Niño-Sánchez, J., Van Der Does, H., Van Dam, P., García-Bastidas, F., Subandiyah, S., Meijer, H., Kistler, H., Kema, G., and Rep, M. 2018. A SIX1 homolog in Fusarium oxysporum f. sp. cubense tropical race 4 contributes to virulence towards Cavendish banana. PLoS One 13:e0205896. Wang, X., Chung, K. P., Lin, W., and Jiang, L. 2018. Protein secretion in plants: conventional and unconventional pathways and new techniques. J. Exp. Bot. 69:21-37. Williams, A. H., Sharma, M., Thatcher, L. F., Azam, S., Hane, J. K., Sperschneider, J., Kidd, B. N., Anderson, J. P., Ghosh, R., and Garg, G. 2016. Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genom. 17:1-24. Wang, Q., Han, C., Ferreira, A. O., Yu, X., Ye, W., Tripathy, S., Kale, S. D., Gu, B., Sheng, Y., and Sui, Y. 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23:2064-2086. Wang, C.-W., Stromhaug, P. E., Shima, J., and Klionsky, D. J. 2002. The Ccz1-Mon1 protein complex is required for the late step of multiple vacuole delivery pathways. J. Biol. Chem. 277:47917-47927. Wedlich‐Söldner, R., Bölker, M., Kahmann, R., and Steinberg, G. 2000. A putative endosomal t‐SNARE links exo‐and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J. 19, 1974–1986. Waite, B. 1963. Wilt of Heliconia spp. caused by Fusarium oxysporum f. cubense race 3. Trop. Agric. 40:299–305. Waite, B., and Stover, R. H. 1960. Studies on Fusarium wilt of Bananas: VI. Variability and the cultivar concept in Fusarium oxysporum f. cubense. Canad. J. Bot. 38:985-994. Zhang, Y., Liu, S., Mostert, D., Yu, H., Zhuo, M., Li, G., Zuo, C., Haridas, S., Webster, K., and Li, M. 2024. Virulence of banana wilt-causing fungal pathogen Fusarium oxysporum tropical race 4 is mediated by nitric oxide biosynthesis and accessory genes. Nat. Microbiol 9:2232-2243. Zhang, X., Huang, H., Wu, B., Xie, J., Viljoen, A., Wang, W., Mostert, D., Xie, Y., Fu, G., and Xiang, D. 2021. The M35 metalloprotease effector FocM35_1 is required for full virulence of Fusarium oxysporum f. sp. cubense tropical race 4. Pathogens 10:670. Zhao, L., Poschmann, G., Waldera-Lupa, D., Rafiee, N., Kollmann, M., and Stühler, K. 2019. OutCyte: a novel tool for predicting unconventional protein secretion. Sci. Rep. 9:19448. Zheng, S.-J., García-Bastidas, F. A., Li, X., Zeng, L., Bai, T., Xu, S., Yin, K., Li, H., Fu, G., and Yu, Y. 2018. New geographical insights of the latest expansion of Fusarium oxysporum f. sp. cubense tropical race 4 into the greater Mekong subregion. Front. Plant Sci.:457. Zhu, X. M., Liang, S., Shi, H. B., Lu, J. P., Dong, B., Liao, Q. S., Lin, F. C., and Liu, X. H. 2018. VPS9 domain‐containing proteins are essential for autophagy and endocytosis in Pyricularia oryzae. Environ. Microbiol. 20:1516-1530. Zuo, C., Deng, G., Li, B., Huo, H., Li, C., Hu, C., Kuang, R., Yang, Q., Dong, T., and Sheng, O. 2018. Germplasm screening of Musa spp. for resistance to Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4). Eur. J. Plant Pathol. 151:723-734. Zhang, S., and Xu, J.-R. 2014. Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathog. 10:e1003826. Zhou, X., Lin, Z., and Ma, H. 2010. Phylogenetic detection of numerous gene duplications shared by animals, fungi and plants. Genome Biol. 11:1-13. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100201 | - |
| dc.description.abstract | 香蕉黃葉病為土壤傳播性病原真菌 Fusarium oxysporum f. sp. cubense(Foc)所引起之重要病害,廣泛分布於全球香蕉產區。該病害對東亞、東南亞、非洲及拉丁美洲的香蕉產業造成嚴重威脅,已成為全球香蕉種植之主要限制因子。然而目前尚無有效殺菌劑或其他防治手段可有效控制此病害,對香蕉產業構成長期挑戰。Foc依其對不同香蕉品種的致病性分為四個生理小種(race),其中熱帶第四型生理小種(Tropical Race 4; TR4)目前已迅速擴散、並對全球香蕉主要產區的所有商業品種最具毀滅性。近年來,隨著對尖鐮孢菌(Fusarium oxysporum)的基因體學與分子生物學的深入研究,發現其基因體中存在譜系專一性染色體(lineage-specific chromosome; LS chromosomes)。這些染色體富含轉座子,並攜帶具特殊演化特徵且與致病力相關之基因,參與決定病原菌的寄主專一性及與寄主植物之交互作用,且可透過水平基因轉移於不同菌株間傳播。而實驗也證明,其中包含SIX (Secreted in Xylem)效應蛋白基因的LS染色體,在尖鐮孢菌菌株間的轉移,可將非致病菌株轉化為病原菌,有助於感染寄主,因此可知LS染色體對病原菌演化之重要性。實驗室先前研究利用自臺灣分離之TR4與Race 1(R1)菌株,進行基因體定序及比較基因體分析。結果顯示於TR4第3號染色體上具一段LS區域,該區域含有一群僅存在於TR4、而在R1缺失的基因。本研究進一步選取其中三個TR4特有基因(TR4_1128950、TR4_1129000與TR4_1129050),進行功能驗證與演化分析,而TR4_1128950與TR4_1129000預測為細胞質效應子(cytoplasmic effectors)。序列比對與親緣分析顯示目標基因於多種尖鐮孢菌群(Fusarium oxysporum species complex, FOSC)中高度保守,並以多重拷貝形式分佈於不同LS染色體上。為探討這些基因的功能,構建目標基因之TR4過量表現轉殖株,致病接種試驗顯示,過量表現株在感病品種北蕉(Pei-Chiao)與抗病品種台蕉7號(Tai-Chiao No. 7, TC7)的致病能力均略高於野生株;此外,為釐清這些LS基因對寄主專一性之影響,將包含上述TR4特有基因之8.5 kb LS區段導入R1菌株中,接種結果顯示R1轉殖株可感染北蕉,惟致病程度有限,顯示該LS區域為致病所需,但尚不足以引起典型病徵。進一步利用表現eGFP標記之特有基因融合蛋白菌株,在不同培養條件下,透過共軛焦顯微鏡觀察目標蛋白於細胞之定位,結果顯示目標蛋白主要分布於液泡或囊泡結構。綜上所述,本研究揭示Foc TR4基因體LS區域中的特異性基因,在致病力、寄主專一性及演化過程中扮演重要的角色,可做為未來發展香蕉黃葉病防治策略的基礎。 | zh_TW |
| dc.description.abstract | Fusarium wilt of banana is an important banana disease which is caused by the soil-borne fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) and also widely distributed across global banana-producing regions. The disease poses a severe threat to banana industries in East and Southeast Asia, Africa, and Latin America, and is considered one of the most significant constraints to banana cultivation worldwide. To date, no effective fungicides or other control strategies are available to efficiently manage this disease, presenting a long-term challenge for global banana production. Foc is classified into four physiological races. Among them, Tropical Race 4 (TR4) has rapidly spread and is currently the most devastating to all commercial banana varieties in major banana-producing regions worldwide. In recent years, advances in genomics and molecular biology of Fusarium oxysporum have revealed the presence of lineage-specific (LS) chromosomes within their genomes. These LS chromosomes are enriched with transposable elements and harbor genes with unique evolutionary characteristics that are associated with pathogenicity. They play critical roles in determining host specificity and mediating pathogen–host interactions, and can be horizontally transferred between strains. Experimental evidence has demonstrated that LS chromosomes carrying SIX (Secreted in Xylem) effector genes can transform non-pathogenic strains into pathogen, highlighting their importance in the evolution of virulence in F. oxysporum. Previous studies in the lab, Foc TR4 and Race 1 (R1) strains isolated from Taiwan were subjected to genome sequencing and comparative genomic analyses. Results revealed an LS region located on chromosome 3 of TR4 genome, comprising a cluster of genes that are present only in TR4 and absent in R1. In this study, three TR4-specific genes within this region, TR4_1128950, TR4_1129000, and TR4_1129050, were selected for functional characterization and evolutionary analysis. Among them, TR4_1128950 and TR4_1129000 were predicted as cytoplasmic effectors. Sequence alignment and phylogenetic analyses revealed that these genes are highly conserved across Fusarium oxysporum species complex (FOSC), and are distributed as multiple copies on their distinct LS chromosomes. To functionally characterize these genes. TR4 transformants overexpressing these target genes were generated. Pathogenicity assays demonstrated that overexpression transformants exhibited enhanced virulence compared to the wild-type strain on both susceptible ‘Pei-Chiao (PC)’ and resistant ‘Tai-Chiao No.7 (TC7)’ varieties. To further assess their role in host specificity, an 8.5 kb fragment containing three TR4-specific genes was introduced into R1 genome. Pathogenicity assays revealed that R1 transformants were capable of infecting PC, although the extent of infection was limited, suggesting an 8.5 kb LS region was required but is not solely sufficient to cause typical symptom. Subcellular localization study using eGFP-tagged candidate proteins revealed their accumulation in vacuoles/vesicle-localization under different cultural conditions. In summary, this study highlights critical roles of TR4-specific genes on a LS regions in Foc virulence, host specificity, and evolution, and may provide the foundation, for the development of future disease control strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:50:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:50:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書………………………………………………………………………i
Acknowledgement…………………………………………………………………….ii 摘要…………………………………………………………………………..…….....iii Abstract…………………………………………………………….....….……..……..v Contents…………………………………………………………..……..………......viii Chapter 1 Introduction…………………………………………...………………….....1 1.1 The importance of bananas and different cultivars……………………………..1 1.2 Impacts of the genus Fusarium…………………………………………………3 1.3 lineage-specific (LS) chromosomes in Fusarium oxysporum…………………..5 1.4 Disease cycle and the genetic diversity, classification and distribution of Fusarium oxysporum f. sp. cubense………..………...………………………..7 1.5 Pathogenicity factor of Fusarium oxysporum f. sp. cubense…………...……..10 1.6 Evolution of Fusarium oxysporum f. sp. cubense…………..…...…………….12 1.7 Research background and motivation………….….…………………………..15 ChapterⅡ Materials and Methods…………………………………………………..19 2.1 Plant materials and Foc strains……………………….……………...……..….19 2.2 Culture conditions…………………………………………...………………...20 2.3 Banana planting……………………………………………..……………...….21 2.4 Bioinformatic analysis……………………………………….………………...22 2.5 Phylogenetic analysis………………………………….….……………..…….22 2.6 Transformation………………………………………………………………...23 2.6-1 Biolistic transformation…………..…………………………….…...……23 2.6-2 Protoplast preparation…………………….………..………….....……….24 2.7 Transform TR4 8.5 kb lineage specific region to Race 1….……………..……26 2.8 Generation of TR4-specific genes overexpression Foc TR4 transformant…....28 2.9 Reisolation of infected plants with R1-8.5 transformant and the progression of pathogen invasion sites………..…………………...…..……………….…….29 2.10 knockout 4.4 kb lineage specific region of Foc TR4……………………...…30 2.11 Agroinfiltration: transient gene expression in N. Benthamiana……….....…. 32 2.12 Microscopic investigation……………………………………………………33 2.13 Vacuole and vacuole membrane staining…………………………………….35 2.14 RNA extraction and real-time quantitative reverse transcription PCR analysis…………………………………………………...…………………..37 2.15 Fungal biomass evaluation……….…………………….……………….……38 2.16 Pathogenicity assay………………………………………………………..…38 2.16-1 Wound root-dipping inoculation…………….…………………………..38 2.16-2 Detached banana leaf inoculation……………….…….…..…………….39 2.17 Morphology, vegetative growth and conidiation assays……..…………..…..40 2.18 Secretion assay and western Blotting…………………..…………………….40 2.19 Statistics analysis…………………………….………….…………………....41 ChapterⅢ Results……………………………………………………………….…..43 3.1 Characterization and phylogenetic analysis of Foc TR4-specific genes……....43 3.2 Three TR4-specific genes are conserved among different FOSC strains…......45 3.3 Transform Foc TR4 8.5 kb LS region to Foc Race 1…………...…..…………47 3.4 Colony morphology, radial growth and conidiation………………….……….48 3.5 Overexpression of target genes…………………….………………………….49 3.6 Overexpressed transformants enhance pathogenicity…..……………..………50 3.7 Disease progression and colonization of banana root tissues by overexpressed transformants…………………………………………….………………..….51 3.8 4.4 kb lineage specific region deletion from Foc TR4………………….…..…52 3.9 Confirmation of hypersensitive response of TR4_1129000 through transient expression in N. Benthamiana……………………………..…………….…...53 3.10 Subcellular localization and expression of GFP-TR4_1128950, GFP-TR4_1129000 in Foc TR4 under different culture conditions…………..…...54 3.11 Evaluation of disease severity in Foc Race 1 transformants carrying TR4 lineage-specific region………….……...……………………….…...……….56 3.12 Protein secretion assay and western blotting……..……………….…….……57 Chapter Ⅳ Discussion………………………………………………………………..60 References……………………………………………………………………………75 Tables……………………………………………………..……………………...…103 Table 1. Feature assessment of three Foc TR4-specific genes in the LS region using predictions by several machine-learning models…………………...…………103 Table 2. Three TR4-specific genes share multiple copies orthologous genes in other species of Fusarium oxysporum species complex……...……………………..104 Table 3. PCR primers used in this study…………………………………………....105 Table 4. Foc strains used in this study………………….……………….………….107 Figures………………………………………………………………………………108 Fig. 1. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1128950 and orthologous proteins in other FOSC ……………….……..108 Fig. 2. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1128950 and multiple copies of its homologous genes in FOSC……….110 Fig. 3. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1129000 and orthologous proteins in other species……………………..112 Fig. 4. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1129000 and multiple copies of its homologous genes in FOSC…….…114 Fig. 5. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1129050 and orthologous proteins in other species……….…………….116 Fig. 6. Multiple alignment and phylogenetic analysis of amino acid sequences of TR4_1129050 and multiple copies of its homologous genes in FOSC……….118 Fig. 7. PCR confirmation of the presence of TR4-specific genes in R1, Fo47, and different Foc TR4 strains isolated from Taiwan………………………………120 Fig. 8. PCR screening result for R1-8.5 transformants..………...………………….121 Fig. 9. Colony morphology of Foc R1 and R1-8.5-1, R1-8.5-5, R1-8.5-11………..122 Fig. 10. Leaves symptom and longitudinal sections of rhizome infected by R1-8.5 transformant showed increased pathogenicity compared with R1 WT………..123 Fig. 11. Race 1 carrying the TR4-lineage specific fragment exhibit increased infectivity towards Pei-Chiao banana………………………………….………124 Fig. 12. Upward colonization from the root toward the rhizome in ‘Pei-Chiao’ banana plants inoculated with the R1-8.5 transformant……………………………….125 Fig. 13. The aggressiveness and virulence of the R1-8.5 transformants are not strong enough to infect banana leaves……………………………………….………..125 Fig. 14. Reisolation from R1-8.5 transformant infected root screening result.......…126 Fig. 15. Schematic representation of expression cassette used for fungal transformation and PCR diagnosis of OE-GFP-85 transformants…………….127 Fig. 16. Schematic representation of expression cassette used for fungal transformation and PCR diagnosis of OE85 transformants.………...………...128 Fig. 17. Schematic representation of expression cassette used for fungal transformation and PCR diagnosis of OE-GFP-86 transformants.………...….129 Fig. 18. Schematic representation of expression cassette used for fungal transformation and PCR diagnosis of OE86 transformants…………………...130 Fig. 19. Expression level of TR4_1128950 and TR4_1129000 in different transformants…………………………………………………………………..131 Fig. 20. Characterization and vegetative growth of the overexpressed OE transformants and the wild type (WT) strain on PDA medium.………………132 Fig. 21. Growth rate and conidiation assays of the overexpression strain of TR4_1128950 and TR4_1129000………..…………………………………....133 Fig. 22. Overexpression of TR4_1128950 gene can slightly enhance pathogenicity toward Pei Chiao bananas…………………………………………...………...134 Fig. 23. Overexpression of TR4_1128950 gene can slightly enhance pathogenicity toward Tai-Chiao 7 bananas.…………………………………………………..135 Fig. 24. Overexpression of TR4_1129000 gene enhances the virulence of Foc to Pei-Chiao banana leaves…….……………………………………………….…….136 Fig. 25. Overexpression of TR4_1129000 gene enhances the virulence of F. oxysporum f. sp. cubense to Tai-Chiao 7 banana leaves….…….……………..137 Fig. 26. Overexpression of TR4_1129000 gene can slightly enhance pathogenicity toward Pei Chaio bananas……………………………………..........................138 Fig. 27. Overexpression of TR4_1129000 gene can slightly enhance pathogenicity toward Tai-Chiao 7 bananas……….…………………………..……………...139 Fig. 28. Expression level of TR4_1129000 gene in different time point (6, 15, 40 dpi) after inoculation on banana……………………………………………………140 Fig. 29. TR4_1129000 was transiently expressed in the N. benthamiana by A. tumefaciens-mediated transformation………………………..………………..141 Fig. 30. Light microscopic images of longitudinal sections of banana roots by OE-GFP-86 and Foc TR4 WT at different stages of infection in the susceptible banana cultivar Pei-Chiao.…………………………………………………….142 Fig. 31. Light microscopic images of longitudinal sections of banana roots by OE-GFP-86 and Foc TR4 WT at different stages of infection in the resistant banana cultivar Tai-Chiao-7.…………………………………………………………..143 Fig. 32. Light microscopic images of longitudinal sections of banana roots by Foc OE-GFP-85 and Foc TR4 WT at 40 dpi in the susceptible banana cultivar Pei-Chiao and resistance cultivar Tai-Chiao 7.……………………………………145 Fig. 33. qPCR analysis of the distribution of Fusarium oxysporum f. sp. cubense in banana roots………………………………………………….…………..…….146 Fig. 34. OE-GFP-85 fusion protein localizes in the vacuole, with CMAC used for vacuole staining and FM4-64 used for membrane staining…………………...147 Fig. 35. OE-GFP-85 hyphae of different ages exhibit distinct GFP localization patterns on different medium..………………………………………………...148 Fig. 36. Expression and subcellular localization of the GFP-TR4_1129000 fusion protein in the vegetative stage of OE-GFP-86 transformants at different hyphal ages.……………………………………….………………………………..….150 Fig. 37. Expression and subcellular localization of the GFP-TR4_1129000 fusion protein in the vegetative stage of OE-GFP-86 grown on different medium.….152 Fig. 38. Expression and subcellular localization of GFP-TR4_1129000 in OE-GFP-86 during vegetative growth at different hyphal ages grown in PDA medium.…..154 Fig. 39. Expression and subcellular localization of GFP-TR4_1129000 in OE-GFP-86 during vegetative growth at different hyphal ages grown in nutrient-rich medium (CM) medium………………………………………………………………….156 Fig. 40. Expression and subcellular localization of GFP-TR4_1129000 in OE-GFP-86 during vegetative growth at different hyphal ages grown in MM medium.…..158 Fig. 41. Expression and subcellular localization of GFP-TR4_1129000 in OE-GFP-86 during vegetative growth at different hyphal ages grown in MM-N (Nitrogen starvation) medium.…………………………………………………………....160 Fig. 42. Protein banding pattern in intracellular and extracellular proteome of Foc WT and different overexpressed isolates after SDS-PAGE………………………..162 Fig. 43. Western blot analysis of expression of GFP-TR4_1129000, GFP-TR4_1128950 in intracellular and extracellular proteome of overexpression transformants.………………………………………………………………….163 Fig. 44. Diagram of split marker approach for 4.4 kb lineage specific region deletion…………………………………………………………...……………164 Fig. 45. Confocal microscopy observation of OE-GFP-86-331-5 in the rhizome of infected PC banana at 45 dpi.………………………………………………….164 Appendix Table 1. Rating scale for assessing external and internal disease severity of banana infected by Fusarium oxysporum f. sp. cubense………………………165 Appendix Fig. 1. Effector translocation pathways in filamentous plant pathogens...166 Appendix Fig. 2. pCB1004 plasmid used for 8.5 kb lineage specific region transformation.........................................................................................167 | - |
| dc.language.iso | en | - |
| dc.subject | 香蕉黃葉病 | zh_TW |
| dc.subject | 香蕉黃葉病菌 | zh_TW |
| dc.subject | 熱帶第四型生理小種 | zh_TW |
| dc.subject | 譜系專一性染色體 | zh_TW |
| dc.subject | 特異性基因 | zh_TW |
| dc.subject | 演化角色 | zh_TW |
| dc.subject | tropical race 4 | en |
| dc.subject | Fusarium wilt of banana | en |
| dc.subject | evolutionary role | en |
| dc.subject | unique gene | en |
| dc.subject | lineage specific chromosome | en |
| dc.subject | Fusarium oxysporum f. sp. cubense | en |
| dc.title | 香蕉黃葉病菌熱帶第四型生理小種特異性基因之親緣及功能性分析 | zh_TW |
| dc.title | Phylogenetic and Functional Analysis of TR4-Specific Genes in Fusarium oxysporum f. sp. cubense Causing Fusarium Wilt of Banana | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鍾嘉綾;馬麗珊;陳禮弘 | zh_TW |
| dc.contributor.oralexamcommittee | Chia-Lin Chung;Lay-Sun Ma;Li-Hung Chen | en |
| dc.subject.keyword | 香蕉黃葉病,香蕉黃葉病菌,熱帶第四型生理小種,譜系專一性染色體,特異性基因,演化角色, | zh_TW |
| dc.subject.keyword | Fusarium wilt of banana,Fusarium oxysporum f. sp. cubense,tropical race 4,lineage specific chromosome,unique gene,evolutionary role, | en |
| dc.relation.page | 167 | - |
| dc.identifier.doi | 10.6342/NTU202503724 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
