請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100196完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪一薰 | zh_TW |
| dc.contributor.advisor | I-Hsuan Hong | en |
| dc.contributor.author | 王耀諏 | zh_TW |
| dc.contributor.author | Yao-Zou Wang | en |
| dc.date.accessioned | 2025-09-24T16:49:02Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | 台灣電力公司. (2025). 今日預估尖峰備轉容量率.https://www.taipower.com.tw/d006/loadGraph/loadGraph/load_reserve_.html
Alhumaid, Y., Khan, K., Alismail, F., & Khalid, M. (2021b). Multi-Input Nonlinear Programming Based Deterministic Optimization Framework for Evaluating Microgrids with Optimal Renewable-Storage Energy Mix. Sustainability, 13(11). https://doi.org/10.3390/su13115878 Alhumaid, Y. K., Khalid Abdullah, Abdulgalil, M. A., & Khalid, M. (2021a). Two-Stage Stochastic Optimization of Sodium-Sulfur Energy Storage Technology in Hybrid Renewable Power Systems. IEEE Access, 9, 162962-162972. https://doi.org/10.1109/access.2021.3133261 Ansari, J., & Malekshah, S. (2019). A joint energy and reserve scheduling framework based on network reliability using smart grids applications. International Transactions on Electrical Energy Systems, 29(11). https://doi.org/10.1002/2050-7038.12096 Bitaraf, H., & Rahman, S. (2018). Reducing Curtailed Wind Energy Through Energy Storage and Demand Response. IEEE Transactions on Sustainable Energy, 9(1), 228-236. https://doi.org/10.1109/tste.2017.2724546 Chen, J. J., Wu, Q. H., Zhang, L. L., & Wu, P. Z. (2017). Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties. European Journal of Operational Research, 263(2), 719-732. https://doi.org/10.1016/j.ejor.2017.06.018 Conejo, J. M. M. A. J., Pinson, H. M. P., & Zugno, M. (2014). Integrating Renewables in Electricity Markets. https://doi.org/10.1007/978-1-4614-9411-9 Feng, Y., Wei, W., Tian, Y., & Mei, S. (2024). Integrating Day-ahead unit commitment and real-time dispatch for a bulk renewable-thermal-storage generation base. Journal of Energy Storage, 93. https://doi.org/10.1016/j.est.2024.112074 Gong, N., Luo, X., & Chen, D. (2018). Bi‐level two‐stage stochastic SCUC for ISO day‐ahead scheduling considering uncertain wind power and demand response. The Journal of Engineering, 2017(13), 2549-2554. https://doi.org/10.1049/joe.2017.0787 Hamdy, M., Elshahed, M., Khalil, D., & El-zahab, E. E.-d. A. (2018). Stochastic Unit Commitment Incorporating Demand Side Management and Optimal Storage Capacity. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 43(S1), 559-571. https://doi.org/10.1007/s40998-018-0152-7 Han, X., Zhou, M., Li, G., & Lee, K. (2017). Stochastic Unit Commitment of Wind-Integrated Power System Considering Air-Conditioning Loads for Demand Response. Applied Sciences, 7(11). https://doi.org/10.3390/app7111154 Hashish, M. S., Hasanien, H. M., Ji, H., Alkuhayli, A., Alharbi, M., Akmaral, T., Turky, R. A., Jurado, F., & Badr, A. O. (2023). Monte Carlo Simulation and a Clustering Technique for Solving the Probabilistic Optimal Power Flow Problem for Hybrid Renewable Energy Systems. Sustainability, 15(1). https://doi.org/10.3390/su15010783 International Energy Agency, I. (2024). Renewables 2024: Analysis and forecast to 2030. Paris: IEA. https://www.iea.org/reports/renewables-2024 International Renewable Energy Agency, I. (2020). Electricity storage valuation framework: Assessing system value and ensuring project viability. https://www.irena.org/publications/2020/Mar/Electricity-storage-valuation-framework International Renewable Energy Agency, I. (2024). Renewable Energy Capacity Statistics 2024. https://www.irena.org/Publications Kou, P., Gao, F., & Guan, X. (2015). Stochastic predictive control of battery energy storage for wind farm dispatching: Using probabilistic wind power forecasts. Renewable Energy, 80, 286-300. https://doi.org/10.1016/j.renene.2015.02.001 Lund, P. D., Lindgren, J., Mikkola, J., & Salpakari, J. (2015). Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 45, 785-807. https://doi.org/10.1016/j.rser.2015.01.057 Moreira, A., Fanzeres, B., Silva, P., Heleno, M., & Marcato, A. L. M. (2024). On the role of Battery Energy Storage Systems in the day-ahead Contingency-Constrained Unit Commitment problem under renewable penetration. Electric Power Systems Research, 235. https://doi.org/10.1016/j.epsr.2024.110856 Motta, V. N., Anjos, M. F., & Gendreau, M. (2024). Survey of optimization models for power system operation and expansion planning with demand response. European Journal of Operational Research, 312(2), 401-412. https://doi.org/10.1016/j.ejor.2023.01.019 Nikoukar, J. (2018). Unit commitment considering the emergency demand response programs and interruptible/curtailable loads. Turkish Journal of Electrical Engineering & Computer Sciences, 26(2), 1069-1080. https://doi.org/10.3906/elk-1706-66 Ordoudis, C. P., Pierre; Morales González, Juan Miguel; Zugno, Marco. (2016). An Updated Version of the IEEE RTS 24-Bus System for Electricity Market and Power System Operation Studies. Technical University of Denmark. https://orbit.dtu.dk/en/publications/an-updated-version-of-the-ieee-rts-24-bus-system-for-electricity- Sahebi, M. M. R., & Hosseini, S. H. (2014). Stochastic security constrained unit commitment incorporating demand side reserve. International Journal of Electrical Power & Energy Systems, 56, 175-184. https://doi.org/10.1016/j.ijepes.2013.11.017 Sheng, S., & Gu, Q. (2019). A Day-ahead and Day-in Decision Model Considering the Uncertainty of Multiple Kinds of Demand Response. Energies, 12(9). https://doi.org/10.3390/en12091711 Son, Y., Woo, H., Noh, J., Dehghanian, P., Zhang, X., & Choi, S. (2024). Optimization of energy storage scheduling considering variable-type minimum SOC for enhanced disaster preparedness. Journal of Energy Storage, 93. https://doi.org/10.1016/j.est.2024.112366 Tang, Z., Liu, Y., Wu, L., Liu, J., & Gao, H. (2021). Reserve Model of Energy Storage in Day-Ahead Joint Energy and Reserve Markets: A Stochastic UC Solution. IEEE Transactions on Smart Grid, 12(1), 372-382. https://doi.org/10.1109/tsg.2020.3009114 Tavakkoli, M., Fattaheian-Dehkordi, S., Pourakbari-Kasmaei, M., Liski, M., & Lehtonen, M. (2022). Strategic Biddings of a Consumer demand in both DA and Balancing Markets in Response to Renewable Energy Integration. Electric Power Systems Research, 210. https://doi.org/10.1016/j.epsr.2022.108132 Wang, B., Liu, X., Zhu, F., Hu, X., Ji, W., Yang, S., Wang, K., & Feng, S. (2015). Unit Commitment Model Considering Flexible Scheduling of Demand Response for High Wind Integration. Energies, 8(12), 13688-13709. https://doi.org/10.3390/en81212390 Weitzel, T., & Glock, C. H. (2018). Energy management for stationary electric energy storage systems: A systematic literature review. European Journal of Operational Research, 264(2), 582-606. https://doi.org/10.1016/j.ejor.2017.06.052 Wu, X., Wang, X., Wang, J., Qu, C., Liu, C., & Duan, J. (2015). Schedule and operate combined system of wind farm and battery energy storage system considering the cycling limits. International Transactions on Electrical Energy Systems, 25(11), 3017-3031. https://doi.org/10.1002/etep.2019 Zhou, Y., Cheng, L., Ci, S., Yang, Y., & Ma, S. (2019). A User-Oriented Pricing Design for Demand Response in Smart Grid. Wireless Communications and Mobile Computing, 2019, 1-12. https://doi.org/10.1155/2019/8694016 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100196 | - |
| dc.description.abstract | 隨著可再生能源滲透率快速攀升,風力與太陽能等間歇性電源對傳統電力系統造成供需失衡與調度成本上升等挑戰。為解決此問題,本研究建立一個整合可再生能源、電池儲能系統(Battery Energy Storage System, BESS)、補充備轉容量(Supplemental Reserves)與需量反應(Demand Response, DR)的兩階段隨機機組組合最佳化模型(Two-Stage Stochastic Unit Commitment)。在日前階段,模型於可再生能源不確定性下決定機組啟停與輔助服務配置決策,在即時階段則針對多情境進行最佳化調度。本研究以 IEEE 24 匯流排可靠性測試系統進行模擬分析,並透過隨機抽樣生成風速與日照情境。模擬結果顯示,納入 BESS 與輔助服務可有效降低營運成本與可控式機台升降功率頻率、減少可再生能源棄電並提升系統穩定性。此外,模型亦能提供不同可再生能源滲透率下最佳 BESS 容量的決策。綜上所述,本研究所提出之模型可作為未來電力市場中可再生能源與需求端資源協同調度的實用工具。 | zh_TW |
| dc.description.abstract | With the rapid increase in renewable energy penetration, intermittent sources such as wind and solar power pose significant challenges to traditional power systems, including supply–demand imbalances and rising dispatch costs. To address these issues, this study develops a two-stage stochastic unit commitment optimization model that integrates renewable energy, battery energy storage systems (BESS), supplemental reserves, and demand response (DR). In the day-ahead stage, the model determines unit commitment and ancillary service allocation under renewable generation uncertainty; in the real-time stage, it performs optimal dispatch across multiple scenarios. Case studies based on the IEEE 24-bus Reliability Test System are conducted, with wind speed and solar irradiance scenarios generated through stochastic sampling. The simulation results show that incorporating BESS and ancillary services can effectively reduce operating costs and the ramping frequency of controllable units, mitigate renewable curtailment, and improve system stability. Furthermore, the model provides decision support for determining the optimal BESS capacity under different levels of renewable penetration. Overall, the proposed model offers a practical tool for the coordinated dispatch of renewable and demand-side resources in future electricity markets. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:49:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:49:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ........................................................................................................................... i
中文摘要 .................................................................................................................. ii ABSTRACT ............................................................................................................ iii 目次 ......................................................................................................................... iv 圖次 ........................................................................................................................... v 表次 ......................................................................................................................... vi 第一章 緒論 ................................................................................................... 1 第二章 問題描述與模型 ............................................................................... 6 2.1 兩階段隨機機組組合問題 ........................................................................ 6 2.2 目標式 ...................................................................................................... 11 2.3 日前限制式 .............................................................................................. 12 2.4 即時限制式 .............................................................................................. 15 第三章 電網模擬系統與可再生能源抽樣 ................................................ 19 3.1 IEEE 24 匯流排 ...................................................................................... 19 3.2 可再生能源抽樣 ...................................................................................... 21 3.3 可再生能源發電機參數設定 .................................................................. 23 第四章 模擬結果分析 ................................................................................. 25 4.1 參數設定 .................................................................................................. 25 4.2 電池儲能系統及需量反應之影響 .......................................................... 27 4.3 不同滲透率下儲能系統容量 .................................................................. 30 第五章 結論 ................................................................................................. 33 參考文獻 ................................................................................................................. 34 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 可再生能源 | zh_TW |
| dc.subject | 隨機機組組合最佳化 | zh_TW |
| dc.subject | 補充備轉容量 | zh_TW |
| dc.subject | 需量反應 | zh_TW |
| dc.subject | 電池儲能系統 | zh_TW |
| dc.subject | battery energy storage systems | en |
| dc.subject | demand response | en |
| dc.subject | supplemental reserves | en |
| dc.subject | renewable energy | en |
| dc.subject | stochastic unit commitment optimization | en |
| dc.title | 可再生能源與儲能系統整合之機組組合最佳化問題 | zh_TW |
| dc.title | Optimization of Unit Commitment with Renewable Energy and Energy Storage Systems Integration | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃道宏;陳奕旭 | zh_TW |
| dc.contributor.oralexamcommittee | Dow-Hon Huang;Yi-hsu Chen | en |
| dc.subject.keyword | 隨機機組組合最佳化,可再生能源,電池儲能系統,需量反應,補充備轉容量, | zh_TW |
| dc.subject.keyword | stochastic unit commitment optimization,renewable energy,battery energy storage systems,demand response,supplemental reserves, | en |
| dc.relation.page | 36 | - |
| dc.identifier.doi | 10.6342/NTU202503595 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
