請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100193完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳乃慧 | zh_TW |
| dc.contributor.advisor | Nai-Huei Wu | en |
| dc.contributor.author | 梁芝嘉 | zh_TW |
| dc.contributor.author | Chi-Chia Liang | en |
| dc.date.accessioned | 2025-09-24T16:48:25Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | Ahn, M., Anderson, D. E., Zhang, Q., Tan, C. W., Lim, B. L., Luko, K., . . . Wang, L. C. (2019). Dampened NLRP3-mediated inflammation in bats and implications for a special viral reservoir host. Nature microbiology, 4(5), 789-799.
Ahn, M., Cui, J., Irving, A. T., & Wang, L.-F. (2016). Unique loss of the PYHIN gene family in bats amongst mammals: implications for inflammasome sensing. Scientific reports, 6(1), 21722. Anthony, S. J., Gilardi, K., Menachery, V., Goldstein, T., Ssebide, B., Mbabazi, R., . . . Hicks, A. (2017). Further evidence for bats as the evolutionary source of Middle East respiratory syndrome coronavirus. MBio, 8(2), 10. Anthony, S. J., Johnson, C. K., Greig, D. J., Kramer, S., Che, X., Wells, H., . . . Daszak, P. (2017). Global patterns in coronavirus diversity. Virus evolution, 3(1), vex012. Baker, M., Schountz, T., & Wang, L. F. (2013). Antiviral immune responses of bats: a review. Zoonoses and public health, 60(1), 104-116. Baker, M. L., Tachedjian, M., & Wang, L.-F. (2010). Immunoglobulin heavy chain diversity in Pteropid bats: evidence for a diverse and highly specific antigen binding repertoire. Immunogenetics, 62, 173-184. Banerjee, A., Misra, V., Schountz, T., & Baker, M. L. (2018). Tools to study pathogen-host interactions in bats. Virus Res, 248, 5-12. Banerjee, A., Rapin, N., Bollinger, T., & Misra, V. (2017). Lack of inflammatory gene expression in bats: a unique role for a transcription repressor. Scientific reports, 7(1), 2232. Bhat, S., Bialy, D., Sealy, J. E., Sadeyen, J.-R., Chang, P., & Iqbal, M. (2020). A ligation and restriction enzyme independent cloning technique: an alternative to conventional methods for cloning hard-to-clone gene segments in the influenza reverse genetics system. Virology Journal, 17(1), 82. Bratsch, S., Wertz, N., Chaloner, K., Kunz, T. H., & Butler, J. E. (2011). The little brown bat, M. lucifugus, displays a highly diverse VH, DH and JH repertoire but little evidence of somatic hypermutation. Developmental & Comparative Immunology, 35(4), 421-430. Burgin, C. J., Colella, J. P., Kahn, P. L., & Upham, N. S. (2018). How many species of mammals are there? Journal of mammalogy, 99(1), 1-14. Burke, B., Rocha, S. M., Zhan, S., Eckley, M., Reasoner, C., Addetia, A., . . . Richt, J. A. (2023). Regulatory T cell-like response to SARS-CoV-2 in Jamaican fruit bats (Artibeus jamaicensis) transduced with human ACE2. PLoS pathogens, 19(10), e1011728. Burns, J. C., Friedmann, T., Driever, W., Burrascano, M., & Yee, J. K. (1993). Vesicular stomatitis virus G glycoprotein pseudotyped retroviral vectors: concentration to very high titer and efficient gene transfer into mammalian and nonmammalian cells. Proc Natl Acad Sci U S A, 90(17), 8033-8037. Canale, C. I., & Henry, P. Y. (2011). Energetic costs of the immune response and torpor use in a primate. Functional Ecology, 25(3), 557-565. Chan, L. L. Y., Gamage, A. M., Tan, C. W., Tan, K. S., Liu, J., Tay, D. J. W., . . . Wang, L. F. (2023). Generation of self-replicating airway organoids from the cave nectar bat Eonycteris spelaea as a model system for studying host-pathogen interactions in the bat airway epithelium. Emerg Microbes Infect, 12(1), e2148561. Chiok, K. R., Dahlan, N. A., Banerjee, A., & Dhar, N. (2024). Establishing Air-Liquid Interface (ALI) Airway Culture Models for Infectious Disease Research. Methods Mol Biol, 2813, 137-144. Cowled, C., Baker, M. L., Zhou, P., Tachedjian, M., & Wang, L.-F. (2012). Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto. Developmental & Comparative Immunology, 36(4), 657-664. de Souza, N. (2018). Organoids. Nature Methods, 15(1), 23-23. Dietrich, M., Mühldorfer, K., Tortosa, P., & Markotter, W. (2015). Leptospira and bats: story of an emerging friendship. PLoS pathogens, 11(11), e1005176. Drexler, J. F., Corman, V. M., Müller, M. A., Maganga, G. D., Vallo, P., Binger, T., . . . Yordanov, S. (2012). Bats host major mammalian paramyxoviruses. Nature communications, 3(1), 796. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., & Naldini, L. (1998). A Third-Generation Lentivirus Vector with a Conditional Packaging System. Journal of virology, 72(11), 8463-8471. Echeverri-De la Hoz, D., Martínez-Bravo, C., Gastelbondo-Pastrana, B., Rivero, R., López, Y., Bertel, V., . . . Arrieta, G. (2025). Genomics of novel influenza A virus (H18N12) in bats, Caribe Colombia. Scientific reports, 15(1), 6507. Elbadawy, M., Kato, Y., Saito, N., Hayashi, K., Abugomaa, A., Kobayashi, M., . . . Yamawaki, H. (2021). Establishment of intestinal organoid from rousettus leschenaultii and the susceptibility to bat-associated viruses, SARS-CoV-2 and pteropine orthoreovirus. International Journal of Molecular Sciences, 22(19), 10763. Fooks, A. R., Cliquet, F., Finke, S., Freuling, C., Hemachudha, T., Mani, R. S., . . . Banyard, A. C. (2017). Rabies. Nature Reviews Disease Primers, 3(1), 17091. Freidl, G. S., Binger, T., Müller, M. A., de Bruin, E., van Beek, J., Corman, V. M., . . . Oppong, S. K. (2015). Serological evidence of influenza A viruses in frugivorous bats from Africa. PloS one, 10(5), e0127035. Frick, W. F., Puechmaille, S. J., Hoyt, J. R., Nickel, B. A., Langwig, K. E., Foster, J. T., . . . Haarsma, A. J. (2015). Disease alters macroecological patterns of N orth A merican bats. Global Ecology and Biogeography, 24(7), 741-749. Fuchs, J., Hölzer, M., Schilling, M., Patzina, C., Schoen, A., Hoenen, T., . . . Müller, M. A. (2017). Evolution and antiviral specificities of interferon-induced Mx proteins of bats against Ebola, influenza, and other RNA viruses. Journal of virology, 91(15), 10. Fumagalli, M. R., Zapperi, S., & La Porta, C. A. (2021). Role of body temperature variations in bat immune response to viral infections. Journal of the Royal Society Interface, 18(180), 20210211. Geiser, F., & Stawski, C. (2011). Hibernation and torpor in tropical and subtropical bats in relation to energetics, extinctions, and the evolution of endothermy. Integrative and comparative biology, 51(3), 337-348. Giotis, E. S., Carnell, G., Young, E. F., Ghanny, S., Soteropoulos, P., Wang, L.-F., . . . Temperton, N. (2019). Entry of the bat influenza H17N10 virus into mammalian cells is enabled by the MHC class II HLA-DR receptor. Nature microbiology, 4(12), 2035-2038. Graziosi, G., Lupini, C., Catelli, E., & Carnaccini, S. (2024). Highly pathogenic avian influenza (HPAI) H5 clade 2.3. 4.4 b virus infection in birds and mammals. Animals, 14(9), 1372. Gutiérrez-Granados, G., Torres-Beltrán, U. C., Castellanos-Moguel, J., Rodríguez-Moreno, Á., & Sánchez-Cordero, V. (2024). Fungal and bat diversities along a landscape gradient in central Mexico. PloS one, 19(9), e0310235. Halwe, N. J., Gorka, M., Hoffmann, B., Rissmann, M., Breithaupt, A., Schwemmle, M., . . . Balkema-Buschmann, A. (2021). Egyptian Fruit Bats (Rousettus aegyptiacus) Were Resistant to Experimental Inoculation with Avian-Origin Influenza A Virus of Subtype H9N2, But Are Susceptible to Experimental Infection with Bat-Borne H9N2 Virus. Viruses, 13(4). Halwe, N. J., Hamberger, L., Sehl-Ewert, J., Mache, C., Schön, J., Ulrich, L., . . . Beer, M. (2024). Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets. Nat Commun, 15(1), 3450. Hashimi, M., Sebrell, T. A., Hedges, J. F., Snyder, D., Lyon, K. N., Byrum, S. D., . . . Skwarchuk, D. (2023). Antiviral responses in a Jamaican fruit bat intestinal organoid model of SARS-CoV-2 infection. Nature communications, 14(1), 6882. Hoffmann, E., Neumann, G., Kawaoka, Y., Hobom, G., & Webster, R. G. (2000). A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci U S A, 97(11), 6108-6113. Hoffmann, E., Stech, J., Guan, Y., Webster, R., & Perez, D. (2001). Universal primer set for the full-length amplification of all influenza A viruses. Archives of virology, 146(12), 2275-2289. Hoffmann, M., Krüger, N., Zmora, P., Wrensch, F., Herrler, G., & Pöhlmann, S. (2016). The Hemagglutinin of Bat-Associated Influenza Viruses Is Activated by TMPRSS2 for pH-Dependent Entry into Bat but Not Human Cells. PloS one, 11(3), e0152134. Hu, S.-C., Hsu, C.-L., Lee, M.-S., Tu, Y.-C., Chang, J.-C., Wu, C.-H., . . . Cheng, M.-C. (2018). Lyssavirus in Japanese Pipistrelle, Taiwan. Emerging infectious diseases, 24(4), 782. Irving, A. T., Ahn, M., Goh, G., Anderson, D. E., & Wang, L.-F. (2021). Lessons from the host defences of bats, a unique viral reservoir. Nature, 589(7842), 363-370. Irving, A. T., Zhang, Q., Kong, P.-S., Luko, K., Rozario, P., Wen, M., . . . Sobota, R. M. (2020). Interferon regulatory factors IRF1 and IRF7 directly regulate gene expression in bats in response to viral infection. Cell reports, 33(5). Islam, A., Mikolon, A., Mikoleit, M., Ahmed, D., Khan, S. U., Sharker, M. Y., . . . Zeidner, N. (2013). Isolation of Salmonella virchow from a fruit bat (Pteropus giganteus). EcoHealth, 10, 348-351. Jones, G., & Holderied, M. W. (2007). Bat echolocation calls: adaptation and convergent evolution. Proceedings of the Royal Society B: Biological Sciences, 274(1612), 905-912. Juozapaitis, M., Aguiar Moreira, É., Mena, I., Giese, S., Riegger, D., Pohlmann, A., . . . García-Sastre, A. (2014). An infectious bat-derived chimeric influenza virus harbouring the entry machinery of an influenza A virus. Nature communications, 5(1), 4448. Kandeil, A., Gomaa, M. R., Shehata, M. M., El Taweel, A. N., Mahmoud, S. H., Bagato, O., . . . Dawson, P. (2019). Isolation and characterization of a distinct influenza A virus from Egyptian bats. Journal of virology, 93(2), 10. Karakus, U., Thamamongood, T., Ciminski, K., Ran, W., Günther, S. C., Pohl, M. O., . . . Reiche, S. (2019). MHC class II proteins mediate cross-species entry of bat influenza viruses. Nature, 567(7746), 109-112. Kawai, T., & Akira, S. (2006). Innate immune recognition of viral infection. Nature immunology, 7(2), 131-137. Kellner, M. J., Monteil, V. M., Zelger, P., Pei, G., Jiao, J., Onji, M., . . . Penninger, J. M. (2025). Bat organoids reveal antiviral responses at epithelial surfaces. Nat Immunol, 26(6), 934-946. Kim, H., Heo, S. Y., Kim, Y. I., Park, D., Hwang, S., Lee, Y. K., . . . Choi, Y. K. (2025). Diverse bat organoids provide pathophysiological models for zoonotic viruses. Science, 388(6748), 756-762. Kumar, H., Kawai, T., & Akira, S. (2009). Toll-like receptors and innate immunity. Biochemical and biophysical research communications, 388(4), 621-625. Kunz, T. H. (2013). Ecology of bats: Springer Science & Business Media. La Cruz-Rivera, D., Pamela, C., Kanchwala, M., Liang, H., Kumar, A., Wang, L.-F., . . . Schoggins, J. W. (2018). The IFN response in bats displays distinctive IFN-stimulated gene expression kinetics with atypical RNASEL induction. The Journal of Immunology, 200(1), 209-217. Lee, D.-H., Torchetti, M. K., Winker, K., Ip, H. S., Song, C.-S., & Swayne, D. E. (2015). Intercontinental spread of Asian-origin H5N8 to North America through Beringia by migratory birds. Journal of virology, 89(12), 6521-6524. Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., . . . Zhang, H. (2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310(5748), 676-679. Mamerow, S. (2018). Development and evaluation of double-attenuated influenza A live vaccines in swine. lmu, Martínez Gómez, J. M., Periasamy, P., Dutertre, C.-A., Irving, A. T., Ng, J. H. J., Crameri, G., . . . Alonso, S. (2016). Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Scientific reports, 6(1), 37796. Maruyama, J., Nao, N., Miyamoto, H., Maeda, K., Ogawa, H., Yoshida, R., . . . Takada, A. (2016). Characterization of the glycoproteins of bat-derived influenza viruses. Virology, 488, 43-50. Miller, M. R., McMinn, R. J., Misra, V., Schountz, T., Müller, M. A., Kurth, A., & Munster, V. J. (2016). Broad and temperature independent replication potential of filoviruses on cells derived from old and new world bat species. The Journal of Infectious Diseases, 214(suppl_3), S297-S302. Moreira, É. A., Locher, S., Kolesnikova, L., Bolte, H., Aydillo, T., García-Sastre, A., . . . Zimmer, G. (2016). Synthetically derived bat influenza A-like viruses reveal a cell type-but not species-specific tropism. Proceedings of the National Academy of Sciences, 113(45), 12797-12802. Morrison, P., & McNAB, B. K. (1967). Temperature regulation in some Brazilian phyllostomid bats. Comparative biochemistry and physiology, 21(1), 207-221. Müller, M. A., Raj, V. S., Muth, D., Meyer, B., Kallies, S., Smits, S. L., . . . Drosten, C. (2012). Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. MBio, 3(6). Naffakh, N., Massin, P., Escriou, N., Crescenzo-Chaigne, B., & van der Werf, S. (2000). Genetic analysis of the compatibility between polymerase proteins from human and avian strains of influenza A viruses. J Gen Virol, 81(Pt 5), 1283-1291. Neumann, G., Watanabe, T., Ito, H., Watanabe, S., Goto, H., Gao, P., . . . Kawaoka, Y. (1999). Generation of influenza A viruses entirely from cloned cDNAs. Proceedings of the National Academy of Sciences, 96(16), 9345-9350. O'Mara, M. T., Wikelski, M., Voigt, C. C., Ter Maat, A., Pollock, H. S., Burness, G., . . . Dechmann, D. K. (2017). Cyclic bouts of extreme bradycardia counteract the high metabolism of frugivorous bats. elife, 6, e26686. O'Shea, T. J., Cryan, P. M., Cunningham, A. A., Fooks, A. R., Hayman, D. T., Luis, A. D., . . . Wood, J. L. (2014). Bat flight and zoonotic viruses. Emerg Infect Dis, 20(5), 741-745. Olival, K. J., Hosseini, P. R., Zambrana-Torrelio, C., Ross, N., Bogich, T. L., & Daszak, P. (2017). Host and viral traits predict zoonotic spillover from mammals. Nature, 546(7660), 646-650. Penn, R., Tregoning, J. S., Flight, K. E., Baillon, L., Frise, R., Goldhill, D. H., . . . Barclay, W. S. (2022). Levels of Influenza A Virus Defective Viral Genomes Determine Pathogenesis in the BALB/c Mouse Model. J Virol, 96(21), e0117822. Periasamy, P., Hutchinson, P. E., Chen, J., Bonne, I., Shahul Hameed, S. S., Selvam, P., . . . Dutertre, C.-A. (2019). Studies on B cells in the fruit-eating black flying fox (Pteropus alecto). Frontiers in immunology, 10, 489. Podlutsky, A. J., Khritankov, A. M., Ovodov, N. D., & Austad, S. N. (2005). A new field record for bat longevity. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(11), 1366-1368. Poole Daniel, S., Yú, S., Caì, Y., Dinis Jorge, M., Müller Marcel, A., Jordan, I., . . . Mehle, A. (2014). Influenza A Virus Polymerase Is a Site for Adaptive Changes during Experimental Evolution in Bat Cells. Journal of virology, 88(21), 12572-12585. Povolyaeva, O., Chalenko, Y., Kalinin, E., Kolbasova, O., Pivova, E., Kolbasov, D., . . . Ermolaeva, S. (2020). Listeria monocytogenes infection of bat Pipistrellus nathusii epithelial cells depends on the invasion factors InlA and InlB. Pathogens, 9(11), 867. Rogers, G. N., & D'Souza, B. L. (1989). Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 173(1), 317-322. Rogers, G. N., & Paulson, J. C. (1983). Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology, 127(2), 361-373. Rüdiger, A. T., Mayrhofer, P., Ma-Lauer, Y., Pohlentz, G., Müthing, J., von Brunn, A., & Schwegmann-Weßels, C. (2016). Tubulins interact with porcine and human S proteins of the genus Alphacoronavirus and support successful assembly and release of infectious viral particles. Virology, 497, 185-197. Schuh, A. J., Amman, B. R., Sealy, T. K., Kainulainen, M. H., Chakrabarti, A. K., Guerrero, L. W., . . . Towner, J. S. (2019). Antibody-mediated virus neutralization is not a universal mechanism of Marburg, Ebola, or Sosuga virus clearance in Egyptian rousette bats. The Journal of Infectious Diseases, 219(11), 1716-1721. Seppen, J., Bakker, C., de Jong, B., Kunne, C., van den Oever, K., Vandenberghe, K., . . . Bosma, P. (2006). Adeno-associated Virus Vector Serotypes Mediate Sustained Correction of Bilirubin UDP Glucuronosyltransferase Deficiency in Rats. Molecular Therapy, 13(6), 1085-1092. Simmons, N. B., & Cirranello, A. L. (2025). Bat Species of the World: A taxonomic and geographic database. Version 1.7. Accessed on 03/22/2025. Simone, R., Javad, F., Emmett, W., Wilkins, O. G., Almeida, F. L., Barahona-Torres, N., . . . de Silva, R. (2021). MIR-NATs repress MAPT translation and aid proteostasis in neurodegeneration. Nature, 594(7861), 117-123. Steffen, I., & Simmons, G. (2016). Pseudotyping Viral Vectors With Emerging Virus Envelope Proteins. Curr Gene Ther, 16(1), 47-55. Su, A., Yan, M., Pavasutthipaisit, S., Wicke, K. D., Grassl, G. A., Beineke, A., . . . Becher, P. (2023). Infection Studies with Airway Organoids from Carollia perspicillata Indicate That the Respiratory Epithelium Is Not a Barrier for Interspecies Transmission of Influenza Viruses. Microbiology spectrum, 11(2), e03098-03022. Swayne, D., & Suarez, D. (2000). Highly pathogenic avian influenza. Revue scientifique et technique-office international des epizooties, 19(2), 463-475. Swayne, D. E. (2009). Avian influenza: John Wiley & Sons. Tarigan, R., Katta, T., Takemae, H., Shimoda, H., Maeda, K., Iida, A., & Hondo, E. (2021). Distinct interferon response in bat and other mammalian cell lines infected with Pteropine orthoreovirus. Virus Genes, 57(6), 510-520. Taubenberger, J. K., & Kash, J. C. (2010). Influenza virus evolution, host adaptation, and pandemic formation. Cell host & microbe, 7(6), 440-451. Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'brien, S. J., & Murphy, W. J. (2005). A molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 307(5709), 580-584. Teng, Q., Xu, D., Shen, W., Liu, Q., Rong, G., Li, X., . . . Yu, H. (2016). A single mutation at position 190 in hemagglutinin enhances binding affinity for human type sialic acid receptor and replication of H9N2 avian influenza virus in mice. Journal of virology, 90(21), 9806-9825. Thomas, S. P. (1975). Metabolism during flight in two species of bats, Phyllostomus hastatus and Pteropus gouldii. Journal of Experimental Biology, 63(1), 273-293. Tong, S., Li, Y., Rivailler, P., Conrardy, C., Castillo, D. A. A., Chen, L.-M., . . . York, I. A. (2012). A distinct lineage of influenza A virus from bats. Proceedings of the National Academy of Sciences, 109(11), 4269-4274. Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., . . . Gomez, J. (2013). New world bats harbor diverse influenza A viruses. PLoS pathogens, 9(10), e1003657. Trombetta, E. S., & Mellman, I. (2005). Cell biology of antigen processing in vitro and in vivo. Annu Rev Immunol, 23, 975-1028. Tsukamoto, K., Ashizawa, H., Nakanishi, K., Kaji, N., Suzuki, K., Okamatsu, M., . . . Mase, M. (2008). Subtyping of avian influenza viruses H1 to H15 on the basis of hemagglutinin genes by PCR assay and molecular determination of pathogenic potential. J Clin Microbiol, 46(9), 3048-3055. Wang, J., Lin, Z., Liu, Q., Fu, F., Wang, Z., Ma, J., . . . Sun, J. (2022). Bat employs a conserved MDA5 gene to trigger antiviral innate immune responses. Frontiers in immunology, 13, 904481. Wang, Y., Zhou, Z., Wu, X., Li, T., Wu, J., Cai, M., . . . Cui, Z. (2023). Pseudotyped Viruses. Adv Exp Med Biol, 1407, 1-27. Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiological reviews, 56(1), 152-179. Wynne, J. W., Woon, A. P., Dudek, N. L., Croft, N. P., Ng, J. H., Baker, M. L., . . . Purcell, A. W. (2016). Characterization of the antigen processing machinery and endogenous peptide presentation of a bat MHC class I molecule. The Journal of Immunology, 196(11), 4468-4476. Xie, J., Li, Y., Shen, X., Goh, G., Zhu, Y., Cui, J., . . . Zhou, P. (2018). Dampened STING-dependent interferon activation in bats. Cell host & microbe, 23(3), 297-301. e294. Xie, R., Edwards, K. M., Wille, M., Wei, X., Wong, S.-S., Zanin, M., . . . Kayali, G. (2023). The episodic resurgence of highly pathogenic avian influenza H5 virus. Nature, 622(7984), 810-817. Xu, X., Subbarao, K., Cox, N. J., & Guo, Y. (1999). Genetic characterization of the pathogenic influenza A/Goose/Guangdong/1/96 (H5N1) virus: similarity of its hemagglutinin gene to those of H5N1 viruses from the 1997 outbreaks in Hong Kong. Virology, 261(1), 15-19. Yang, W., Punyadarsaniya, D., Lambertz, R. L. O., Lee, D. C. C., Liang, C. H., Höper, D., . . . Herrler, G. (2017). Mutations during the Adaptation of H9N2 Avian Influenza Virus to the Respiratory Epithelium of Pigs Enhance Sialic Acid Binding Activity and Virulence in Mice. J Virol, 91(8). Yang, W., Schountz, T., & Ma, W. (2021). Bat influenza viruses: Current status and perspective. Viruses, 13(4), 547. Yaxin, M., Lee-Sim, L., & Kit, N. S. (2024). A systematic review on current approaches in bat virus discovered between 2018-2022. Journal of Virological Methods, 115005. Yob, J. M., Field, H., Rashdi, A. M., Morrissy, C., van der Heide, B., Rota, P., . . . Jamaluddin, A. (2001). Nipah virus infection in bats (order Chiroptera) in peninsular Malaysia. Emerging infectious diseases, 7(3), 439. Young, P. L., Halpin, K., Selleck, P. W., Field, H., Gravel, J. L., Kelly, M. A., & Mackenzie, J. S. (1996). Serologic evidence for the presence in Pteropus bats of a paramyxovirus related to equine morbillivirus. Emerging infectious diseases, 2(3), 239. Yuen, K.-Y., Chan, P., Peiris, M., Tsang, D., Que, T., Shortridge, K., . . . Sung, R. (1998). Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. The Lancet, 351(9101), 467-471. Zhang, D., & Irving, A. T. (2023). Antiviral effects of interferon-stimulated genes in bats. Frontiers in Cellular and Infection Microbiology, 13, 1224532. Zhou, B., Ma, J., Liu, Q., Bawa, B., Wang, W., Shabman, R. S., . . . Cao, N. (2014). Characterization of uncultivable bat influenza virus using a replicative synthetic virus. PLoS pathogens, 10(10), e1004420. Zhou, H., Ji, J., Chen, X., Bi, Y., Li, J., Wang, Q., . . . Chen, Y. (2021). Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses. Cell, 184(17), 4380-4391. e4314. Zhou, P., Cowled, C., Wang, L.-F., & Baker, M. L. (2013). Bat Mx1 and Oas1, but not Pkr are highly induced by bat interferon and viral infection. Developmental & Comparative Immunology, 40(3-4), 240-247. Zhou, P., Tachedjian, M., Wynne, J. W., Boyd, V., Cui, J., Smith, I., . . . Michalski, W. P. (2016). Contraction of the type I IFN locus and unusual constitutive expression of IFN-α in bats. Proceedings of the National Academy of Sciences, 113(10), 2696-2701. Zhou, S., Liu, B., Han, Y., Wang, Y., Chen, L., Wu, Z., & Yang, J. (2022). ZOVER: the database of zoonotic and vector-borne viruses. Nucleic Acids Research, 50(D1), D943-D949. 社團法人臺灣蝙蝠協會. 台灣的蝙蝠. Retrieved from https://www.battw.org/index.php/2016-03-05-15-54-44/2016-01-31-12-03-30 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100193 | - |
| dc.description.abstract | 蝙蝠是許多新興傳染病與人畜共通疾病的重要保毒宿主,其與病毒之間的交互關係極具研究價值。蝙蝠已被發現可作為流感病毒(如H17、H18及H9亞型)的自然宿主;然而,由於H17與H18型病毒迄今尚未成功分離,且蝙蝠的研究模型相對缺乏,加上不同蝙蝠的物種差異性甚大,對病毒的感受性也存在差異,限制了蝙蝠與流感病毒研究的深入發展。本研究旨在建立臺灣常見蝙蝠東亞家蝠與東亞摺翅蝠之三維細胞培養模型,包括氣管與腸道類器官,以及氣管氣液介面(air-liquid interface, ALI)系統,以作為研究蝙蝠流感病毒的實驗平台;且運用反轉錄偽病毒研究H17與H9病毒進入宿主細胞的能力,進一步探討其感染潛力;同時使用與蝙蝠H9N2病毒序列高度相似之禽類H9N2病毒進行感染實驗,最後嘗試以反轉基因法生成蝙蝠H9N2病毒。本研究成功建立蝙蝠氣管與腸道的3D類器官及ALI系統;在偽病毒實驗中發現多數哺乳類細胞株對蝙蝠H9的感受性高於H17,且溫度提升或轉染CIITA都並未顯著增強感染能力。進一步以蝙蝠3D模型進行感染試驗,發現東亞家蝠之氣管類器官對H9N2禽流感病毒具明顯感受性,反之H9N2禽流感病毒無法在東亞家蝠腸道類器官複製;利用不同型態的類器官模擬病毒的傳播方式,根據結果推估H9N2禽流感病毒可能具備由蝙蝠呼吸道侵入、感染呼吸道上皮、進而藉呼吸道傳播之潛力。本研究成功建立臺灣常見蝙蝠東亞家蝠與東亞摺翅蝠之三維細胞培養系統,結合偽病毒與禽流感病毒實驗,初步揭示臺灣蝙蝠對H9N2流感病毒之感受性與傳播潛力,未來的研究將致力於產生蝙蝠來源H9N2病毒,利用本研究建立之模型,進一步探索蝙蝠作為流感病毒潛在宿主的可能性,以及其對病毒演化的影響。 | zh_TW |
| dc.description.abstract | Bats are important reservoir hosts for many emerging and zoonotic diseases, and their interactions with viruses are worthwhile for study. Bats have been identified as natural hosts for influenza virus subtypes, such as H17, H18, and H9. However, the study of bat-influenza virus interaction remains limited due to the inability to isolate H17 and H18 viruses, and the lack of a suitable bat-specific model. This study aimed to establish three-dimensional (3D) cell culture models, including tracheal and intestinal organoids, as well as air-liquid interface (ALI) tracheal systems, from two common bat species in Taiwan: Pipistrellus abramus (P. abramus) and Miniopterus fuliginosus (M. fuliginosus). These models served as experimental platforms for studying bat influenza viruses. We employed a retroviral pseudotyped system to investigate H17 and H9 entry. In addition, we used an avian H9N2 virus with high sequence similarity to bat-derived H9N2 to perform infection experiments, and we attempted to rescue the bat H9N2 virus using reverse genetics techniques. In the result, we successfully established 3D tracheal and intestinal organoids and ALI systems from bat tissues. In the pseudovirus experiments, most mammalian cell lines exhibited higher susceptibility to bat H9 than to H17. Moreover, neither elevated temperatures nor CIITA-transfected cells enhanced infection efficiency. In avian H9N2 infection assays using the 3D bat models, P. abramus tracheal organoids showed clear susceptibility, while the intestinal organoids did not. This study successfully established a 3D cell culture platform using two common Taiwanese bat species, providing a feasible model for studying bat–influenza virus interactions. The use of pseudotyped viruses offers a safer approach to studying bat influenza virus entry, while the infection experiments in bat 3D organoids provide insights into the susceptibility of bats to avian influenza viruses, especially for P. abramus and M. fuliginosus. In the future, we aim to successfully rescue the bat-derived H9N2 virus and continue using this platform to explore the potential of bats as influenza virus hosts and their role in viral evolution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:48:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:48:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目次 IV 圖次 IX 表次 X 第一章 緒論 1 第一節 蝙蝠背景介紹 1 1.1.1 生物學分類 1 1.1.2 生態特性 1 1.1.3 病原 2 1.1.4 免疫 3 1.1.4.1 蝙蝠作為特別的保毒宿主 3 1.1.4.2 先天免疫 4 1.1.4.3 後天免疫 5 第二節 流感病毒介紹 6 1.2.1 A型流感病毒 6 1.2.2 蝙蝠流感病毒 7 1.2.2.1 H17N10 7 1.2.2.2 H18N11 7 1.2.2.3 蝙蝠H9N2病毒 8 1.2.2.4 比較各蝙蝠流感病毒之相異 8 第三節 蝙蝠流感病毒研究方式 9 1.3.1 病毒來源 9 1.3.1.1 偽病毒系統(Pseudotyped virus system) 9 1.3.1.2 反轉基因學系統(Reverse genetics) 10 1.3.2 蝙蝠實驗模型 11 第四節 三維細胞培養系統(3D cell culture) 11 1.4.1 類器官(Organoids) 11 1.4.2 氣液介面系統(Air-liquid interface, ALI) 12 第五節 研究動機與目標 12 第二章 材料與方法 13 第一節 蝙蝠永生化細胞 13 2.1.1 細胞來源 13 2.1.2 細胞培養 13 2.1.3 凝集素(Lectin)染色 13 2.1.4 測試組織相容性複合體第二型(MHC II)表現量 14 2.1.4.1 質體來源 14 2.1.4.2 轉染(Transfection) 14 2.1.4.3 RT-qPCR 15 第二節 蝙蝠呼吸道初代細胞與3D細胞培養系統 16 2.2.1 氣管初代細胞分離與培養 16 2.2.1.1 細胞分離 16 2.2.1.2 繼代 16 2.2.2 氣管類器官 16 2.2.2.1 呼吸道培養液 16 2.2.2.2 細胞分離與培養 17 2.2.2.3 繼代 17 2.2.2.4 分化 17 2.2.2.4.1 Apical-out 18 2.2.2.4.2 Basal-out 18 2.2.3 氣管氣液介面系統(Air-liquid interface) 18 2.2.3.1 以初代細胞為來源 18 2.2.3.2 以類器官為來源 18 2.2.4 肺臟類器官 19 2.2.5 免疫螢光染色 19 2.2.5.1 類器官 19 2.2.5.1.1 Apical-out 19 2.2.5.1.2 Basal-out 20 2.2.5.2 氣液介面系統 20 第三節 蝙蝠腸道類器官培養系統 20 2.3.1 腸道培養液 20 2.3.2 細胞分離與培養 21 2.3.3 免疫螢光染色 21 第四節 偽病毒系統之蝙蝠流感病毒研究 21 2.4.1 蝙蝠流感偽病毒之生成 21 2.4.1.1 質體來源 21 2.4.1.2 細胞培養 21 2.4.1.3 轉染(Transfection) 22 2.4.1.4 病毒收集 22 2.4.2 細胞株感染試驗 22 2.4.2.1 不同物種細胞株感染試驗 22 2.4.2.2 不同溫度下之感染試驗 23 2.4.2.3 轉染CIITA質體之感染試驗 23 2.4.2.3.1 轉染(Transfection) 23 2.4.2.3.2 感染試驗 24 2.4.2.3 分析螢光訊號 24 2.4.3 蝙蝠氣管初代細胞感染試驗 24 第五節 應用蝙蝠類器官之禽類H9N2流感病毒研究 24 2.5.1 病毒來源 24 2.5.2 病毒增殖 24 2.5.3 病毒力價測定 25 2.5.4 感染試驗 25 2.5.4.1類器官感染 25 2.5.4.1.1 Apical-out 25 2.5.4.1.2 Basal-out 26 2.5.4.2氣管氣液介面系統感染 26 2.5.4.3免疫螢光染色 28 2.5.4.4 RT-qPCR 28 第六節 產生(rescue)蝙蝠H9N2流感病毒 29 2.6.1 質體來源 29 2.6.1.1 蝙蝠H9N2病毒質體構築 29 2.6.1.1.1 蝙蝠H9N2病毒重組質體之載體 29 2.6.1.1.2 蝙蝠H9N2病毒之插入片段(insert) 29 2.6.1.1.3 NEB assembly 29 2.6.2 化學轉染 30 2.6.3 增殖病毒 31 第三章 結果 32 第一節 蝙蝠細胞培養 32 3.1.1 永生化細胞 32 3.1.2 氣管初代細胞與3D細胞培養系統 32 3.1.2.1 氣液介面系統 33 3.1.2.2 氣管類器官 33 3.1.3 肺臟類器官 33 3.1.4 腸道類器官 33 第二節 蝙蝠流感偽病毒之感染試驗 34 3.2.1 細胞株感染 34 3.2.2 氣管初代細胞 35 第三節 蝙蝠3D culture之禽類H9N2病毒感染試驗 35 3.3.1 氣管類器官 35 3.3.2 腸道類器官 36 3.3.3 氣管氣液介面系統 36 第四節 產生蝙蝠H9N2病毒 37 第四章 討論 38 第五章 參考文獻 47 第六章 圖表 56 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 東亞家蝠 | zh_TW |
| dc.subject | 流感病毒 | zh_TW |
| dc.subject | 蝙蝠-流感病毒交互作用 | zh_TW |
| dc.subject | 類器官 | zh_TW |
| dc.subject | 三維細胞培養 | zh_TW |
| dc.subject | 3D cell culture | en |
| dc.subject | organoids | en |
| dc.subject | bat-virus interaction | en |
| dc.subject | Pipistrellus abramus | en |
| dc.subject | influenza viruses | en |
| dc.title | 東亞家蝠氣管與腸道類器官模型之建立與禽流感病毒感染潛力之探討 | zh_TW |
| dc.title | Development of Tracheal and Intestinal Organoids from Pipistrellus abramus to Explore Avian Influenza Virus Susceptibility | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王金和;郭瑞琳;徐維莉 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Ho Wang;Rei-Lin Kuo;Wei-Li Hsu | en |
| dc.subject.keyword | 流感病毒,東亞家蝠,三維細胞培養,類器官,蝙蝠-流感病毒交互作用, | zh_TW |
| dc.subject.keyword | influenza viruses,Pipistrellus abramus,3D cell culture,organoids,bat-virus interaction, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202503848 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
