請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100192完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳乃慧 | zh_TW |
| dc.contributor.advisor | Nai-Huei Wu | en |
| dc.contributor.author | 鄭伊文 | zh_TW |
| dc.contributor.author | Yi-Wen Cheng | en |
| dc.date.accessioned | 2025-09-24T16:48:14Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | Adams, M., Zerbini, F., French, R., Rabenstein, F., Stenger, D., & Valkonen, J. (2012). The Viruses: Potyviridae. In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses (pp. 1069-1089). Elsevier Academic Press.
Bai, J., Howes, K., Payne, L., & Skinner, M. A. (1995). Sequence of host-range determinants in the env gene of a full-length, infectious proviral clone of exogenous avian leukosis virus HPRS-103 confirms that it represents a new subgroup (designated J). Journal of general virology, 76(1), 181-187. Barnard, R., Elleder, D., & Young, J. (2006). Avian sarcoma and leukosis virus-receptor interactions: from classical genetics to novel insights into virus–cell membrane fusion. Virology, 344(1), 25-29. Barsov, E. V., Payne, W. S., & Hughes, S. H. (2001). Adaptation of chimeric retroviruses in vitro and in vivo: isolation of avian retroviral vectors with extended host range. Journal of virology, 75(11), 4973-4983. Bivas-Benita, M., Ottenhoff, T. H., Junginger, H. E., & Borchard, G. (2005). Pulmonary DNA vaccination: concepts, possibilities and perspectives. J Control Release, 107(1), 1-29. Borodin, A. M., Emanuilova, Z. V., Smolov, S. V., Ogneva, O. A., Konovalova, N. V., Terentyeva, E. V., Serova, N. Y., Efimov, D., Fisinin, V., & Greenberg, A. J. (2022). Eradication of avian leukosis virus subgroups J and K in broiler cross chickens by selection against infected birds using multilocus PCR. PloS One, 17(6), e0269525. Brojatsch, J. r., Naughton, J., Adkins, H. B., & Young, J. A. (2000). TVB receptors for cytopathic and noncytopathic subgroups of avian leukosis viruses are functional death receptors. Journal of virology, 74(24), 11490-11494. Brothwell, D. (2002). Ancient avian osteopetrosis: the current state of knowledge. Acta Zoologica Cracoviansia, 45(Spec Iss), 315-318. Brown, D., Blais, B., & Robinson, H. (1988). Long terminal repeat (LTR) sequences, env, and a region near the 5'LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. Journal of virology, 62(9), 3431-3437. Burmester, B., Walter, W., Gross, M. A., & Fontes, A. (1959). The oncogenic spectrum of two “pure” strains of avian leukosis. Journal of the National Cancer Institute, 23(2), 277-291. Caparini, U. (1896). Fegati leucemici nei polli. Clin Vet (Milan), 19, 433-435. Chameettachal, A., Mustafa, F., & Rizvi, T. A. (2023). Understanding retroviral life cycle and its genomic RNA packaging. Journal of molecular biology, 435(3), 167924. Chang, S. W., Hsu, M. F., & Wang, C. H. (2013). Gene detection, virus isolation, and sequence analysis of avian leukosis viruses in Taiwan country chickens. Avian Dis, 57(2), 172-177. Chen, J., Li, J., Dong, X., Liao, M., & Cao, W. (2022). The key amino acid sites 199–205, 269, 319, 321 and 324 of ALV-K env contribute to the weaker replication capacity of ALV-K than ALV-A. Retrovirology, 19(1), 19. Chen, J., Zhao, Z., Chen, Y., Zhang, J., Yan, L., Zheng, X., Liao, M., & Cao, W. (2018). Development and application of a SYBR green real-time PCR for detection of the emerging avian leukosis virus subgroup K. Poultry science, 97(7), 2568-2574. Chen, X., Wang, H., Fang, X., Gao, K., Fang, C., Gu, Y., Gao, Y., Wang, X., Huang, H., & Liang, X. (2020). Identification of a novel epitope specific for Gp85 protein of avian leukosis virus subgroup K. Veterinary Immunology and Immunopathology, 230, 110143. Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165(7), 1586-1597. Cui, N., Su, S., Chen, Z., Zhao, X., & Cui, Z. (2014). Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J Gen Virol, 95(Pt 11), 2512-2522. Davidson, I. (2009). The knowledge that human tumor virology can gain from studies on avian tumor viruses. Advances in Tumor Virology(1). Davidson, I., & Borenshtain, R. (2002). The feather tips of commercial chickens are a favorable source of DNA for the amplification of Marek's disease virus and avian leukosis virus, subgroup J. Avian pathology, 31(3), 237-240. De Boer, G., Gielkens, A., Hartog, L., & Boerrigter, H. (1983). The use of ELISA for detection of exogenous and endogenous avian leukosis viral antigens in basic breeding flocks. Avian pathology, 12(4), 447-459. Deng, Q., Li, Q., Li, M., Zhang, S., Wang, P., Fu, F., Zhu, W., Wei, T., Mo, M., & Huang, T. (2022). The emergence, diversification, and transmission of subgroup J avian Leukosis virus reveals that the live chicken trade plays a critical role in the adaption and Endemicity of viruses to the yellow-chickens. Journal of virology, 96(17), e00717-00722. Desfarges, S., & Ciuffi, A. (2010). Retroviral integration site selection. Viruses, 2(1), 111-131. Doms, R. W., & Moore, J. P. (2000). HIV-1 membrane fusion: targets of opportunity. The Journal of cell biology, 151(2), F9-F14. Dong, X., Zhao, P., Li, W., Chang, S., Li, J., Li, Y., Ju, S., Sun, P., Meng, F., & Liu, J. (2015). Diagnosis and sequence analysis of avian leukosis virus subgroup J isolated from Chinese Partridge Shank chickens. Poultry science, 94(4), 668-672. Dorner, A. J., Stoye, J. P., & Coffin, J. M. (1985). Molecular basis of host range variation in avian retroviruses. J Virol, 53(1), 32-39. Dou, J., Wang, Z., Li, L., Lu, Q., Jin, X., Ling, X., Cheng, Z., Zhang, T., Shao, H., & Zhai, X. (2023). A multiplex quantitative polymerase chain reaction for the rapid differential detection of subgroups a, B, J, and K Avian leukosis viruses. Viruses, 15(9), 1789. Ellermann, V., & Bang, O. (1909). Experimentelle leukämie bei hühnern. II. Zeitschrift für Hygiene und Infektionskrankheiten, 63(1), 231-272. Fandiño, S., Gomez-Lucia, E., Benítez, L., & Doménech, A. (2023). Avian leukosis: will we be able to get rid of it? Animals, 13(14), 2358. Feng, W., Meng, W., Cai, L., Cui, X., Pan, Z., Wang, G., & Cheng, Z. (2016). Avian leukosis virus subgroup J induces its receptor--chNHE1 up-regulation. Virol J, 13, 58. Feng, W., Zhou, D., Meng, W., Li, G., Zhuang, P., Pan, Z., Wang, G., & Cheng, Z. (2017). Growth retardation induced by avian leukosis virus subgroup J associated with down-regulated Wnt/β-catenin pathway. Microbial pathogenesis, 104, 48-55. Fenton, S. P., Reddy, M. R., & Bagust, T. J. (2005). Single and concurrent avian leukosis virus infections with avian leukosis virus-J and avian leukosis virus-A in Australian meat-type chickens. Avian pathology, 34(1), 48-54. Freed, E. O. (2015). HIV-1 assembly, release and maturation. Nature reviews microbiology, 13(8), 484-496. Freick, M., Schreiter, R., Weber, J., Vahlenkamp, T. W., & Heenemann, K. (2022). Avian leukosis virus (ALV) is highly prevalent in fancy-chicken flocks in Saxony. Archives of virology, 167(4), 1169-1174. Frossard, J. P. (2022). Retroviridae. Veterinary microbiology, 698-727. Gao, X., Sun, X., Yao, X., Wang, Y., Li, Y., Jiang, X., Han, Y., Zhong, L., Wang, L., & Song, H. (2022). Downregulation of the long noncoding RNA IALNCR targeting MAPK8/JNK1 promotes apoptosis and antagonizes bovine viral diarrhea virus replication in host cells. Journal of virology, 96(17), e01113-01122. Gao, Y., Yun, B., Qin, L., Pan, W., Qu, Y., Liu, Z., Wang, Y., Qi, X., Gao, H., & Wang, X. (2012). Molecular epidemiology of avian leukosis virus subgroup J in layer flocks in China. Journal of Clinical Microbiology, 50(3), 953-960. García-Fernández, R., Pérez-Martínez, C., Espinosa-Alvarez, J., Escudero-Diez, A., García-Marín, J., Núñez, A., & García-Iglesias, M. (2000). Lymphoid leukosis in an ostrich (Struthio camelus). The Veterinary Record, 146(23), 676-677. Gavora, J. (1987). Influences of avian leukosis virus infection on production and mortality and the role of genetic selection in the control of lymphoid leukosis. In Avian leukosis (pp. 241-260). Springer. Gopal, S., Manoharan, P., Kathaperumal, K., Chidambaram, B., & Divya, K. C. (2012). Differential detection of avian oncogenic viruses in poultry layer farms and turkeys by use of multiplex PCR. Journal of Clinical Microbiology, 50(8), 2668-2673. Greenhouse, J., Petropoulos, C., Crittenden, L., & Hughes, S. (1988). Helper-independent retrovirus vectors with Rous-associated virus type O long terminal repeats. Journal of virology, 62(12), 4809-4812. Guo, J., Deng, Q., Zhu, W., Fu, F., Liu, L., Wei, T., & Wei, P. (2023). The phylogenetic analysis of the new emerging ALV-K revealing the co-prevailing of multiple clades in chickens and a proposal for the classification of ALV-K. Front Vet Sci, 10, 1228109. Hayward, W. S., Neel, B. G., & Astrin, S. M. (1981). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature, 290(5806), 475-480. Himly, M., Foster, D. N., Bottoli, I., Iacovoni, J. S., & Vogt, P. K. (1998). The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology, 248(2), 295-304. Holmen, S. L., Melder, D. C., & Federspiel, M. J. (2001). Identification of key residues in subgroup A avian leukosis virus envelope determining receptor binding affinity and infectivity of cells expressing chicken or quail Tva receptor. Journal of virology, 75(2), 726-737. Hu, Y., Lou, J., Jin, Z., Yang, X., Shan, W., Du, Q., Liao, Q., Xu, J., & Xie, R. (2021). Advances in research on the regulatory mechanism of NHE1 in tumors. Oncology Letters, 21(4), 273. Hu, Y., Yang, R., Zhao, W., Liu, C., Tan, Y., Pu, D., Song, J., & Zhang, Y. (2021). circRNA expression patterns and circRNA-miRNA-mRNA networks during CV-A16 infection of SH-SY5Y cells. Archives of virology, 166(11), 3023-3035. Hughes, S. H. (2004). The RCAS vector system. FOLIA BIOLOGICA-PRAHA-, 50(3/4), 107-119. Hussain, A. I., Johnson, J. A., da Silva Freire, M., & Heneine, W. (2003). Identification and characterization of avian retroviruses in chicken embryo-derived yellow fever vaccines: investigation of transmission to vaccine recipients. Journal of virology, 77(2), 1105-1111. Ji, R., Liu, Y., Qin, A., Ding, J., Jin, W., Zhao, W., Cui, Z., Duan, S., Gao, H., & Han, F. (2001). Co-infection detection of the chicken infectious anemia virus and reticuloendotheliosis virus in the immunodepression flock. Chin. J. Vet. Drug, 35, 1-3. Jiang, D., Schaefer, N., & Chu, H. W. (2018). Air–liquid interface culture of human and mouse airway epithelial cells. Lung Innate Immunity and Inflammation: Methods and Protocols, 91-109. Jin, J., Sherer, N. M., Heidecker, G., Derse, D., & Mothes, W. (2009). Assembly of the murine leukemia virus is directed towards sites of cell-cell contact. PLoS Biol, 7(7), e1000163. Kung, H.-J., & Liu, J.-L. (1997). Retroviral oncogenesis. In Viral Pathogenesis (pp. 235-266). Lai, H., Zhang, H., Ning, Z., Chen, R., Zhang, W., Qing, A., Xin, C., Yu, K., Cao, W., & Liao, M. (2011). Isolation and characterization of emerging subgroup J avian leukosis virus associated with hemangioma in egg-type chickens. Veterinary microbiology, 151(3-4), 275-283. Landman, W., Post, J., Boonstra-Blom, A., Buyse, J., Elbers, A., & Koch, G. (2002). Effect of an in ovo infection with a Dutch avian leukosis virus subgroup J isolate on the growth and immunological performance of SPF broiler chickens. Avian pathology, 31(1), 59-72. Lee, H. J., Lee, K. Y., Park, Y. H., Choi, H. J., Yao, Y., Nair, V., & Han, J. Y. (2017). Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts. Veterinary Research, 48, 1-10. Li, H., Tan, M., Zhang, F., Ji, H., Zeng, Y., Yang, Q., Tan, J., Huang, J., Su, Q., & Huang, Y. (2021). Diversity of avian leukosis virus subgroup J in local chickens, Jiangxi, China. Scientific reports, 11(1), 4797. Li, T., Xie, J., Liang, G., Ren, D., Sun, S., Lv, L., Xie, Q., Shao, H., Gao, W., Qin, A., & Ye, J. (2019). Co-infection of vvMDV with multiple subgroups of avian leukosis viruses in indigenous chicken flocks in China. BMC Vet Res, 15(1), 288. Li, X., Lin, W., Chang, S., Zhao, P., Zhang, X., Liu, Y., Chen, W., Li, B., Shu, D., & Zhang, H. (2016). Isolation, identification and evolution analysis of a novel subgroup of avian leukosis virus isolated from a local Chinese yellow broiler in South China. Archives of virology, 161, 2717-2725. Li, X., Yu, Y., Ma, M., Chang, F., Muhammad, F., Yu, M., Ren, C., Bao, Y., Zhang, Z., & Liu, A. (2021). Molecular characteristic and pathogenicity analysis of a novel multiple recombinant ALV-K strain. Veterinary microbiology, 260, 109184. Liang, X., Gu, Y., Chen, X., Li, T., Gao, Y., Wang, X., Fang, C., Fang, S., & Yang, Y. (2019). Identification and characterization of a novel natural recombinant avian leucosis virus from Chinese indigenous chicken flock. Virus genes, 55, 726-733. Liao, L., Chen, W., Zhang, X., Zhang, H., Li, A., Yan, Y., Xie, Z., Li, H., Lin, W., & Ma, J. (2022). Semen extracellular vesicles mediate vertical transmission of subgroup J avian leukosis virus. Virologica Sinica, 37(2), 284-294. Liu, P., Li, L., Jiang, Z., Yu, Y., Chen, X., Xiang, Y., Chen, J., Li, Y., & Cao, W. (2021). Molecular characteristics of subgroup J avian leukosis virus isolated from yellow breeder chickens in Guangdong, China, during 2016–2019. Infection, Genetics and Evolution, 89, 104721. Lupiani, B., Williams, S. M., Silva, R. F., Hunt, H. D., & Fadly, A. M. (2003). Pathogenicity of two recombinant avian leukosis viruses. Avian diseases, 47(2), 425-432. Lv, L., Li, T., Hu, M., Deng, J., Liu, Y., Xie, Q., Shao, H., Ye, J., & Qin, A. (2019). A recombination efficiently increases the pathogenesis of the novel K subgroup of avian leukosis virus. Veterinary microbiology, 231, 214-217. Ma, L., Zhang, Y., Wang, J., Wang, Y., Chang, S., & Zhao, P. (2024). Synergistic pathogenicity of vertically transmitted chicken infectious anemia virus and avian leukosis virus subgroup J coinfection in chickens. Poult Sci, 103(7), 103835. Maletić, J., Kureljušić, B., Spalević, L., Vučićević, I., Veljović, L., Milovanović, B., & Milićević, V. (2022). Co-infection with Marek’s disease virus and avian leukosis virus in the banat naked neck hens. XIV Simpozij pereradarski dani 2022. s međunarodnim sudelovanjem/XIV Symposium poultry days 2022 With International Participation, Hrvatska, Poreć, 11.-14. svibnja 2022., Malhotra, S., Justice IV, J., Lee, N., Li, Y., Zavala, G., Ruano, M., Morgan, R., & Beemon, K. (2015). Complete genome sequence of an American avian leukosis virus subgroup J isolate that causes hemangiomas and myeloid leukosis. Genome announcements, 3(2), 10.1128/genomea. 01586-01514. Malkinson, M., Banet-Noach, C., Davidson, I., Fadly, A. M., & Witter, R. L. (2004). Comparison of serological and virological findings from subgroup J avian leukosis virus-infected neoplastic and non-neoplastic flocks in Israel. Avian pathology, 33(3), 281-287. Mason, A. S., Miedzinska, K., Kebede, A., Bamidele, O., Al-Jumaili, A. S., Dessie, T., Hanotte, O., & Smith, J. (2020). Diversity of endogenous avian leukosis virus subgroup E (ALVE) insertions in indigenous chickens. Genetics Selection Evolution, 52, 1-7. Mayr, C. (2019). What are 3′ UTRs doing? Cold Spring Harbor perspectives in biology, 11(10), a034728. McBride, A. A. (2017). The promise of proteomics in the study of oncogenic viruses. Molecular & Cellular Proteomics, 16(4), S65-S74. Meng, F., Li, X., Fang, J., Gao, Y., Zhu, L., Xing, G., Tian, F., Gao, Y., Dong, X., & Chang, S. (2016). Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken. Journal of veterinary science, 17(4), 497-503. Mingzhang, R., Zijun, Z., Lixia, Y., Jian, C., Min, F., Jie, Z., Ming, L., & Weisheng, C. (2018). The construction and application of a cell line resistant to novel subgroup avian leukosis virus (ALV-K) infection. Archives of virology, 163, 89-98. Mo, G., Wei, P., Hu, B., Nie, Q., & Zhang, X. (2022). Advances on genetic and genomic studies of ALV resistance. Journal of Animal Science and Biotechnology, 13(1), 123. Mothes, W., Boerger, A. L., Narayan, S., Cunningham, J. M., & Young, J. A. (2000). Retroviral entry mediated by receptor priming and low pH triggering of an envelope glycoprotein. Cell, 103(4), 679-689. Munguia, A., & Federspiel, M. J. (2008). Efficient subgroup C avian sarcoma and leukosis virus receptor activity requires the IgV domain of the Tvc receptor and proper display on the cell membrane. Journal of virology, 82(22), 11419-11428. Murata, S., Chang, K.-S., Lee, S.-I., Konnai, S., Onuma, M., & Ohashi, K. (2007). Development of a nested polymerase chain reaction method to detect oncogenic Marek's disease virus from feather tips. Journal of veterinary diagnostic investigation, 19(5), 471-478. Nair, V., & Fadly, A. (2013). Leukosis/sarcoma group. Diseases of poultry, 13, 553-592. Nakamura, S., Ochiai, K., Abe, A., Kishi, S., Takayama, K., & Sunden, Y. (2014). Astrocytic growth through the autocrine/paracrine production of IL-1β in the early infectious phase of fowl glioma-inducing virus. Avian pathology, 43(5), 437-442. Nakamura, S., Ochiai, K., Hatai, H., Ochi, A., Sunden, Y., & Umemura, T. (2011). Pathogenicity of avian leukosis viruses related to fowl glioma-inducing virus. Avian Pathol, 40(5), 499-505. Nehyba, J., Svoboda, J., Karakoz, I., Geryk, J., & Hejnar, J. (1990). Ducks: a new experimental host system for studying persistent infection with avian leukaemia retroviruses. Journal of general virology, 71(9), 1937-1945. Nemeth, S. P., Fox, L. G., DeMarco, M., & Brugge, J. S. (1989). Deletions within the amino-terminal half of the c-src gene product that alter the functional activity of the protein. Molecular and cellular biology, 9(3), 1109-1119. Nishiura, H., Kubota, I., Kondo, Y., Kachi, M., Hatai, H., Sasaki, J., Goryo, M., & Ochiai, K. (2020). Neuropathogenicity of newly isolated avian leukosis viruses from chickens with osteopetrosis and mesenchymal neoplasms. Avian pathology, 49(5), 440-447. Nishiura, H., Tsushima, A., Kato, A., Saito, S., Iwamoto, T., Kondo, Y., Hatai, H., & Ochiai, K. (2023). Avian retroviral cardiomyopathy induced by infectious molecular clones of avian leukosis viruses (fowl glioma-inducing virus variants). Avian pathology, 52(4), 264-276. Ochi, A., Ochiai, K., Kobara, A., Nakamura, S., Hatai, H., Handharyani, E., Tiemann, I., Tanaka, I. B., 3rd, Toyoda, T., Abe, A., Seok, S. H., Sunden, Y., Torralba, N. C., Park, J. H., Hafez, H. M., & Umemura, T. (2012). Epidemiological study of fowl glioma-inducing virus in chickens in Asia and Germany. Avian Pathol, 41(3), 299-309. Ogert, R. A., Lee, L. H., & Beemon, K. L. (1996). Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. Journal of virology, 70(6), 3834-3843. Orsulic, S. (2002). An RCAS-TVA-based approach to designer mouse models. Mammalian genome, 13(10). Pandiri, A. R., Reed, W. M., Mays, J. K., & Fadly, A. M. (2007). Influence of strain, dose of virus, and age at inoculation on subgroup J avian leukosis virus persistence, antibody response, and oncogenicity in commercial meat-type chickens. Avian diseases, 51(3), 725-732. Payne, L. (1987). Epizootiology of avian leukosis virus infections. In Avian leukosis (pp. 47-75). Springer. Payne, L., & Nair, V. (2012). The long view: 40 years of avian leukosis research. Avian pathology, 41(1), 11-19. Pedersen, F. S., & Mikkelsen, J. G. (2011). Retroviral replication. eLS, 2, 1-12. Petropoulos, C. J., & Hughes, S. H. (1991). Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. Journal of virology, 65(7), 3728-3737. Přikryl, D., Plachý, J., Kučerová, D., Koslová, A., Reinišová, M., Šenigl, F., & Hejnar, J. (2019). The novel avian leukosis virus subgroup K shares its cellular receptor with subgroup A. Journal of virology, 93(17). Purchase, H., Okazaki, W., Vogt, P., Hanafusa, H., Burmester, B., & Crittenden, L. (1977). Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infection and Immunity, 15(2), 423-428. Roloff, P. (1957). The avian leukosis complex-a review./Mag Ges Thierlkd; cited by Chubb, LG and RF Gordon.-№ 34: 190. 1868. Vet Rew Annot(32), 97-120. Ross, S. R., Schofield, J. J., Farr, C. J., & Bucan, M. (2002). Mouse transferrin receptor 1 is the cell entry receptor for mouse mammary tumor virus. Proceedings of the National Academy of Sciences, 99(19), 12386-12390. Rous, P. (1911). A sarcoma of the fowl transmissible by an agent separable from the tumor cells. The Journal of experimental medicine, 13(4), 397. Rubin, H., Fanshier, L., Cornelius, A., & Hughes, W. (1962). Tolerance and immunity in chickens after congenital and contact infection with an avian leukosis virus. Virology, 17(1), 143-156. Sabapaty, A., Lin, P. Y., & Dunn, J. C. (2024). Effect of air–liquid interface on cultured human intestinal epithelial cells. FASEB BioAdvances, 6(2), 41-52. Salter, D., Balander, R., & Crittenden, L. (1999). Evaluation of Japanese quail as a model system for avian transgenesis using avian leukosis viruses. Poultry science, 78(2), 230-234. Schaefer-Klein, J., Givol, I., Barsov, E. V., Whitcomb, J. M., VanBrocklin, M., Foster, D. N., Federspiel, M. J., & Hughes, S. H. (1998). The EV-O-derived cell line DF-1 supports the efficient replication of avian leukosis-sarcoma viruses and vectors. Virology, 248(2), 305-311. Selyutina, A., Persaud, M., Lee, K., KewalRamani, V., & Diaz-Griffero, F. (2020). Nuclear import of the HIV-1 core precedes reverse transcription and uncoating. Cell reports, 32(13). Shi, M., Tian, M., Liu, C., Zhao, Y., Lin, Y., Zou, N., Liu, P., & Huang, Y. (2011). Sequence analysis for the complete proviral genome of subgroup J Avian Leukosis virus associated with hemangioma: a special 11 bp deletion was observed in U3 region of 3'UTR. Virology Journal, 8, 1-8. Smith, D., Price, D. R., Faber, M. N., Chapuis, A. F., & McNeilly, T. N. (2022). Advancing animal health and disease research in the lab with three‐dimensional cell culture systems. Veterinary Record, 191(1), no-no. Smith, E. J., Williams, S. M., & Fadly, A. M. (1998). Detection of avian leukosis virus subgroup J using the polymerase chain reaction. Avian diseases, 375-380. Su, Q., Li, Y., Li, W., Cui, S., Tian, S., Cui, Z., Zhao, P., & Chang, S. (2018). Molecular characteristics of avian leukosis viruses isolated from indigenous chicken breeds in China. Poultry science, 97(8), 2917-2925. Sung, H. W., Kim, J. H., Reddy, S., & Fadly, A. (2002). Isolation of subgroup J avian leukosis virus in Korea. Journal of veterinary science, 3(2), 71-74. Swanstrom, R., Graham, W. D., & Zhou, S. (2017). Sequencing the biology of entry: the retroviral env gene. Viruses, Genes, and Cancer, 65-82. Swanstrom, R., & Wills, J. (2011). Synthesis, assembly, and processing of viral proteins. Tan, L., Li, J., Duan, Y., Liu, J., Zheng, S., Liang, X., Fang, C., Zuo, M., Tian, G., & Yang, Y. (2024). Current knowledge on the epidemiology and prevention of Avian leukosis virus in China. Poultry science, 104009. Tang, S., Li, J., Chang, Y.-F., & Lin, W. (2022). Avian leucosis virus-host interaction: the involvement of host factors in viral replication. Frontiers in Immunology, 13, 907287. Temin, H. M., & Rubin, H. (1958). Characteristics of an assay for Rous sarcoma virus and Rous sarcoma cells in tissue culture. Virology, 6(3), 669-688. Thu, W.-L., & Wang, C.-H. (2003). Phylogenetic analysis of subgroup J avian leucosis virus from broiler and native chickens in Taiwan during 2000-2002. Journal of veterinary medical science, 65(3), 325-328. Venugopal, K., Howes, K., Flannery, D., & Payne, L. (2000). Subgroup J avian leukosis virus infection in turkeys: induction of rapid onset tumours by acutely transforming virus strain 966. Avian pathology, 29(4), 319-325. Wang, L., Sandmeyer, A., Hübner, W., Li, H., Huser, T., & Chen, B. K. (2021). A replication-competent HIV clone carrying GFP-Env reveals rapid Env recycling at the HIV-1 T cell virological synapse. Viruses, 14(1), 38. Wang, P., Lin, L., Li, H., Yang, Y., Huang, T., & Wei, P. (2018). Diversity and evolution analysis of glycoprotein GP85 from avian leukosis virus subgroup J isolates from chickens of different genetic backgrounds during 1989-2016: coexistence of five extremely different clusters. Archives of virology, 163, 377-389. Wang, P., Wang, J., Wang, N., Xue, C., & Han, Z. (2024). The coinfection of ALVs causes severe pathogenicity in Three-Yellow chickens. BMC Vet Res, 20(1), 41. Wang, Q., Gao, Y., Wang, Y., Qin, L., Qi, X., Qu, Y., Gao, H., & Wang, X. (2012). A 205-nucleotide deletion in the 3′ untranslated region of avian leukosis virus subgroup J, currently emergent in China, contributes to its pathogenicity. Journal of virology, 86(23), 12849-12860. White, J. M., Delos, S. E., Brecher, M., & Schornberg, K. (2008). Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Critical reviews in biochemistry and molecular biology, 43(3), 189-219. Witter, R., & Fadly, A. (2001). Reduction of horizontal transmission of avian leukosis virus subgroup J in broiler breeder chickens hatched and reared in small groups. Avian pathology, 30(6), 641-654. Xu, B., Dong, W., Yu, C., He, Z., Lv, Y., Sun, Y., Feng, X., Li, N., F. Lee, L., & Li, M. (2004). Occurrence of avian leukosis virus subgroup J in commercial layer flocks in China. Avian pathology, 33(1), 13-17. Xue, J., Zhou, D., Zhou, J., Du, X., Zhang, X., Liu, X., Ding, L., & Cheng, Z. (2023). miR-155 facilitates the synergistic replication between avian leukosis virus subgroup J and reticuloendotheliosis virus by targeting a dual pathway. Journal of virology, 97(11), e00937-00923. Yu, M., Bao, Y., Wang, M., Zhu, H., Wang, X., Xing, L., Chang, F., Liu, Y., Farooque, M., & Wang, Y. (2019). Development and application of a colloidal gold test strip for detection of avian leukosis virus. Applied Microbiology and Biotechnology, 103, 427-435. Zander, D., Raymond, R., McClary, C., & Goodwin, K. (1975). Eradication of subgroups A and B lymphoid leukosis virus from commercial poultry breeding flocks. Avian diseases, 408-423. Zhang, F., Li, H., Lin, C., Wei, Y., Zhang, W., Wu, Y., & Kang, Z. (2024). Detection and genetic diversity of subgroup K avian leukosis virus in local chicken breeds in Jiangxi from 2021 to 2023. Front Microbiol, 15, 1341201. Zhang, J., Ma, L., Li, T., Li, L., Kan, Q., Yao, X., Xie, Q., Wan, Z., Shao, H., & Qin, A. (2021). Synergistic pathogenesis of chicken infectious anemia virus and J subgroup of avian leukosis virus. Poultry science, 100(11), 101468. Zhang, Y., Yu, M., Xing, L., Liu, P., Chen, Y., Chang, F., Wang, S., Bao, Y., Farooque, M., & Li, X. (2020). The bipartite sequence motif in the N and C termini of gp85 of subgroup J avian leukosis virus plays a crucial role in receptor binding and viral entry. Journal of virology, 94(22), 10.1128/jvi. 01232-01220. Zheng, L.-P., Teng, M., Li, G.-X., Zhang, W.-K., Wang, W.-D., Liu, J.-L., Li, L.-Y., Yao, Y., Nair, V., & Luo, J. (2022). Current epidemiology and co-infections of avian immunosuppressive and neoplastic diseases in chicken flocks in central China. Viruses, 14(12), 2599. Zhong, P., Agosto, L. M., Munro, J. B., & Mothes, W. (2013). Cell-to-cell transmission of viruses. Curr Opin Virol, 3(1), 44-50. Zhou, J., Zhao, G.-L., Wang, X.-M., Du, X.-S., Su, S., Li, C.-G., Nair, V., Yao, Y.-X., & Cheng, Z.-Q. (2018). Synergistic viral replication of Marek’s disease virus and avian leukosis virus subgroup J is responsible for the enhanced pathogenicity in the superinfection of chickens. Viruses, 10(5), 271. 吳承訓. (2024). 2021-2023 年間台灣家禽白血病病毒的分離與序列分析及利用 RCAS 重組本土病毒株研究傳播特性. 臺灣大學獸醫學系學位論文, 1-102. 張書維. (2010). 台灣土雞與蛋雞家禽白血病之病毒分離, 序列分析及流行病學調查. 臺灣大學獸醫學研究所學位論文, 1-96. 陳慧真. (2004). 台灣土雞家禽白血病 J 亞群之血清學調查與酵素連結免疫吸附分析 (ELISA) 之開發. 臺灣大學獸醫學研究所學位論文, 2004, 1-80. 許舒涵. (2023). 建立禽流感病毒於禽類呼吸道3D細胞培養之感染模式. 臺灣大學獸醫學研究所學位論文. 蔡宜蓓. (2023). 3D腸道類器官禽流感病毒感染模式之建立. 臺灣大學獸醫學研究所學位論文 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100192 | - |
| dc.description.abstract | 家禽白血病病毒(Avian Leukosis Virus, ALV)屬於反轉錄病毒科(family Retroviridae),可引發淋巴球性白血病與骨髓球性白血病,雞隻一旦感染,常伴隨嚴重免疫抑制、生產性能下降、腫瘤生成及高死亡率,對全球家禽產業造成重大損失。根據病毒封套蛋白(envelope, env)序列差異,ALV可分為11個亞群(A-K),ALV-A與ALV-J亞群病毒最常見於雞場。ALV依傳播途徑可分為外源性與內源性,兩者間在雞隻體內或雞場環境中可能發生重組,增加了診斷與根除的難度。近年新興的ALV-K被認為可能為外源性與內源性病毒重組之產物,其致病性與其他亞群間的交互作用目前尚未釐清,亦缺乏在台灣地區的流行病學研究。本研究針對近年台灣家禽場所分離到之ALV-A、ALV-J及ALV-K進行親緣關係分析,同時利用RCAS(Replication Competent ALV LTR with a Splice acceptor)載體系統構築帶有台灣ALV-J封套蛋白之重組病毒,進一步探討不同亞群的交互作用。RCAS為禽類反轉錄病毒載體,可攜帶ALV env基因並搭載EGFP或mCherry螢光標記,適用於追蹤無細胞病變效應之ALV感染路徑。本研究比較RCAS病毒於多種永生化細胞株、雞初代細胞及三維(3D)類器官模型中的感染表現,以模擬不同條件下之病毒傳播與交互作用。統計2023至2025年間的家禽腫瘤病例,ALV陽性樣本中以ALV-J最常見,且ALV-J與ALV-K共同感染的現象最頻繁。進一步分析序列發現台灣ALV-J病毒株在近20年間持續產生變異,而ALV-K則相對穩定。透過RCAS病毒感染實驗,發現ALV-A與ALV-J在細胞內呈現不同的傳播模式。此外當與ALV-K共同感染時,ALV-A的感染受到抑制,而ALV-J的感染則顯著增強,顯示不同亞群間存在不一樣的交互作用。我們進一步比較不同支系之ALV-J病毒於單獨感染以及與ALV-K共同感染之差異,結果呈現其感染能力與在共同感染下的反應亦有所不同。本研究闡明台灣ALV之演化趨勢與亞群間的交互作用,並透過RCAS系統提供可量化且可追蹤的ALV感染模型,為後續探討其致病機轉與疫病控制策略奠定基礎。 | zh_TW |
| dc.description.abstract | Avian Leukosis Virus(ALV), classified into Retroviridae family, is known to induce lymphoid leukosis and myeloid leukosis. Infected chickens often exhibit severe immunosuppression, reduced production performance, tumor formation, and high mortality rates, resulting in significant economic losses for the global poultry industry. Based on the envelope glycoprotein(env), ALV is classified into 11 subgroups(A-K), among which ALV-A and ALV-J are the most common subgroup infections in poultry farms. In addition, ALV can be further categorized as exogenous or endogenous depending on the transmission route. Recombination between exogenous and endogenous ALV is frequently observed in poultry farms, which further complicates pathogen detection and eradication. Recently, a novel subgroup, ALV-K, has been identified and is hypothesized to be a recombinant between exogenous and endogenous ALVs. Its pathogenicity and interactions with other ALV subgroups remain poorly understood, and its epidemiological status in Taiwan is largely uncharacterized. In this study, phylogenetic analyses were performed on ALV-A, ALV-J, and ALV-K isolates collected from Taiwanese poultry farms in recent years. To further investigate inter-subgroup interactions, we constructed recombinant viruses using the RCAS system, incorporating envelope proteins from field strains of ALV-J in Taiwan. RCAS(Replication Competent ALV LTR with a Splice acceptor), an avian retroviral vector, was engineered to carry ALV env genes tagged with EGFP or mCherry, allowing visualization of viral spread in the absence of cytopathic effects. We evaluated RCAS viral infection profiles in multiple immortalized cell lines, primary chicken cells, and three-dimensional(3D)models to simulate viral transmission and interaction under various conditions. Analysis of tumor cases in poultry from 2023 to 2025 revealed that ALV-J was the most frequently detected subgroup, with ALV-J/ALV-K coinfections being particularly common. Sequence analysis showed ongoing genetic variation in Taiwanese ALV-J strains over the past two decades, while ALV-K strains remained relatively stable. Functional assays using RCAS viruses revealed distinct transmission patterns for ALV-A and ALV-J in cells. Notably, in coinfection experiments, ALV-K suppressed ALV-A infection but significantly enhanced ALV-J infectivity, indicating subtype-specific interactions. Further comparisons among ALV-J clades showed differences in infectivity and responses under coinfection with ALV-K. This study elucidates the evolutionary trends of ALVs in Taiwan and highlights the complex interplay among different ALV subgroups. By applying the RCAS system, we established a quantifiable and traceable model for studying ALV infections, providing a foundation for future research on viral pathogenesis and control strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:48:14Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:48:14Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
中文摘要 II Abstract III 目次 IV 圖次 X 表次 XI 縮寫 XII 第一章 緒論 1 第一節 家禽白血病的簡介與歷史背景 1 第二節 病原學 2 1-2.1 病毒結構 2 1-2.1.1 病毒基因體 2 1-2.1.2 病毒蛋白質 3 1-2.2 病毒複製流程 4 1-2.2.1 病毒進入(virus entry) 4 1-2.2.2 反轉錄作用(reverse transcription) 5 1-2.2.3 嵌入宿主基因(integration) 5 1-2.2.4 轉譯、轉錄及蛋白質合成(transcription and translation) 6 1-2.2.5 病毒組裝與釋放(virus assembly and release) 6 1-2.3 病毒分類 6 1-2.3.1 病毒env亞群 6 1-2.3.2 腫瘤類型 7 第三節 流行病學 8 1-3.1 病毒傳播途徑 8 1-3.1.1 外源性病毒(exogenous virus) 8 1-3.1.2 內源性病毒(endogenous virus) 9 1-3.2 宿主與細胞受體 10 1-3.3 臨床症狀 11 1-3.4 不同亞群病毒重組 12 1-3.5 腫瘤性病原共同感染 13 1-3.6 世界流行現況 13 第四節 診斷方法 14 1-4.1 病毒分離 14 1-4.2 分子生物學診斷 15 1-4.3 血清學診斷 15 第五節 預防與控制 16 第六節 RCAS載體系統 17 1-6.1 簡介 17 1-6.2 RCAS載體之宿主範圍 18 1-6.3 RCAS載體序列插入之設計 18 1-6.4 RCAS衍生載體 19 1-6.5 RCAS載體之應用 19 第七節 三維(3D)細胞培養系統 20 1-7.1 簡介 20 1-7.2 類器官(organoid) 20 1-7.2 氣液界面系統(Air-Liquid Interface, ALI) 21 第八節 研究動機 21 第二章 材料與方法 23 第一節 病例收集與檢測 23 2-1.1 病例收集與樣本處理 23 2-1.1.1 臟器樣本處理 23 2-1.1.2 血液樣本處理 23 2-1.2 DNA核酸萃取 24 2-1.3 RNA核酸萃取 24 2-1.4 反轉錄(reverse transcription) 24 2-1.5 聚合酶鏈鎖反應(polymerase chain reaction, PCR) 25 第二節 ALV病毒分離 26 2-2.1 DF-1細胞培養 26 2-2.2 病毒分離與檢測 26 第三節 序列分析與比對 26 2-3.1 病毒基因體定序 27 2-3.1.1 TA cloning 27 2-3.1.1.1 env基因增幅與質體合成 27 2-3.1.1.2 轉型(Transformation) 27 2-3.1.1.3 Colony PCR 28 2-3.2 序列比對與親緣樹狀圖繪製 28 第四節 RCAS重組病毒 28 2-4.1 RCAS(J)21-01-EGFP重組病毒 28 2-4.1.1 RCAS(J)21-01-EGFP重組病毒增殖 29 2-4.1.1.1 解凍細胞 29 2-4.1.1.2 病毒增殖 29 2-4.1.1.3 病毒力價測定 29 2-4.2 RCAS(J)23-03-EGFP重組病毒 30 2-4.2.1 載體(Vector)增幅 30 2-4.2.1.1 質體限制酶酵素切割 30 2-4.2.1.2 Vector PCR 30 2-4.2.2 嵌入基因(Insert)增幅 30 2-4.2.2.1 限制酶酵素切割 30 2-4.2.2.2 AV23-03 env PCR 30 2-4.2.3 以NEBuilder® HiFi DNA Assembly重組質體 31 2-4.2.4 RCAS(J)23-03-EGFP質體增殖與定序 31 2-4.2.5 DF-1轉染(Transfection) 31 2-4.2.6 RCAS(J)23-03-EGFP病毒增殖 32 2-4.2.7 病毒力價測定 32 2-4.3 RCAS(A)-mCherry之重組 32 2-4.3.1 載體(vector)PCR增幅 32 2-4.3.2 嵌入基因(insert)mCherry片段PCR增幅 33 2-4.3.3 以NEBuilder® HiFi DNA Assembly重組質體 33 2-4.3.4 轉型(Transformation)與Colony PCR 33 2-4.3.5 質體萃取 34 2-4.3.6 DF-1轉染(Transfection) 34 2-4.3.7 病毒增殖 34 2-4.3.8 病毒力價測定 34 第五節 細胞培養 34 2-5.1 永生化細胞培養 35 2-5.2 雞初代細胞分離與3D culture培養 35 2-5.2.1 雞胚腎細胞(Chicken Embryo Kidney cell, CEK)分離與培養 36 2-5.2.2 雞氣管與腸道3D culture培養 36 第六節 RCAS病毒與ALV-K共同感染試驗 37 2-6.1 病毒來源與增殖 37 2-6.1.1 病毒來源 37 2-6.1.2 病毒增殖 37 2-6.1.3 病毒力價測定 38 2-6.2 共同感染試驗 38 2-6.2.1 單層細胞病毒感染試驗 38 2-6.2.2 RCAS(J)23-03-EGFP於DF-1細胞之共同感染試驗 38 2-6.2.3 3D culture感染試驗 39 2-6.2.3.1 ALI感染試驗 39 2-6.2.3.2 類器官感染試驗 39 2-6.2.4 免疫螢光分析法(IFA) 40 2-6.2.4.1 單層細胞 40 2-6.2.4.2 ALI 40 2-6.2.4.3 類器官 41 2-6.2.5 病毒力價測定 41 2-6.2.6 Foci面積大小之測定 42 第三章 結果 43 第一節 腫瘤病例檢測與ALV病毒分離 43 第二節 序列分析與比對 43 3-2.1 親緣樹圖繪製 43 3-2.1.1 ALV-A 43 3-2.1.2 ALV-J 44 3-2.1.3 ALV-K 45 3-2.2 env序列比對 45 3-2.2.1 ALV-A 45 3-2.2.2 ALV-J 46 3-2.2.3 ALV-K 47 第三節 RCAS重組病毒 47 3-3.1 RCAS(J)23-03-EGFP重組病毒 47 3-3.2 RCAS(A)-mCherry重組病毒 47 第四節RCAS病毒感染試驗 48 3-4.1 比較RCAS(A)-EGFP與RCAS(J)21-01-EGFP在DF-1中的感染模式 48 3-4.2 RCAS病毒與ALV-K之共同感染試驗 48 3-4.2.1 單層細胞之共同感染試驗 48 3-4.2.2 RCAS(J)21-01-EGFP於3D culture之共同感染試驗 51 3-4.2.2.1腸道類器官 51 3-4.2.2.2 氣管ALI培養 51 3-4.2.3 比較RCAS(J)21-01-EGFP與RCAS(J)23-03-EGFP在DF-1中的感染能力 52 第四章 討論 53 第五章 參考文獻 61 第六章 圖表 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 家禽白血病病毒 | zh_TW |
| dc.subject | 家禽疾病 | zh_TW |
| dc.subject | 3D細胞培養系統 | zh_TW |
| dc.subject | RCAS重組病毒 | zh_TW |
| dc.subject | 序列分析 | zh_TW |
| dc.subject | sequence analysis | en |
| dc.subject | Replication Competent ALV LTR with a Splice acceptor(RCAS)recombinant virus | en |
| dc.subject | 3D cell culture | en |
| dc.subject | Avian Leukosis Virus | en |
| dc.subject | poultry diseases | en |
| dc.title | 台灣家禽白血病J亞群病毒的演化及不同亞群共同感染之分析 | zh_TW |
| dc.title | Evolution of Avian Leukosis Virus Subgroup J and Characterization of Co-infection with Different Subgroups in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王金和;徐維莉;郭瑞琳 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Ho Wang;Wei-Li Hsu;Rei-Lin Kuo | en |
| dc.subject.keyword | 家禽疾病,家禽白血病病毒,序列分析,RCAS重組病毒,3D細胞培養系統, | zh_TW |
| dc.subject.keyword | poultry diseases,Avian Leukosis Virus,sequence analysis,Replication Competent ALV LTR with a Splice acceptor(RCAS)recombinant virus,3D cell culture, | en |
| dc.relation.page | 131 | - |
| dc.identifier.doi | 10.6342/NTU202503847 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 6.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
