請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100190完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡永傑 | zh_TW |
| dc.contributor.advisor | Wing-Kit Choi | en |
| dc.contributor.author | 賴奕霖 | zh_TW |
| dc.contributor.author | Yi-Lin Lai | en |
| dc.date.accessioned | 2025-09-24T16:47:50Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | [1] G. Vertogen, “Elastic constants and the continuum theory of liquid crystals,” Physica A: Stat. Mech. Appl., vol. 117, no. 1, pp. 227–231, Jan. 1983.
[2] S.-T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A, vol. 33, no. 2, pp. 1270–1274, Feb. 1986. [3] Y. Chen, F. Peng, T. Yamaguchi, X. Song, and S.-T. Wu, “High performance negative dielectric anisotropy liquid crystals for display applications,” Crystals, vol. 3, no. 3, pp. 483–503, Sep. 2013. [4] S.-T. Wu, “Design of a liquid crystal based tunable electrooptic filter,” Appl. Opt., vol. 28, no. 1, pp. 48–52, Jan. 1989. [5] H. Kim and J. H. Lee, “Fast falling time of fringe-field-switching negative dielectric anisotropy liquid crystal achieved by inserting vertical walls,” Appl. Opt., vol. 54, no. 5, pp. 1046–1050, Feb. 2015. [6] M. Schadt and W. Helfrich, “Voltage‐dependent optical activity of a twisted nematic liquid crystal,” Appl. Phys. Lett., vol. 18, no. 4, pp. 127–128, Feb. 1971. [7] M. Oh-E and K. Kondo, “Electro‐optical characteristics and switching behavior of the in‐plane switching mode,” Appl. Phys. Lett., vol. 67, no. 26, pp. 3895–3897, Dec. 1995. [8] M. Oh-E and K. Kondo, “Response mechanism of nematic liquid crystals using the in‐plane switching mode,” Appl. Phys. Lett., vol. 69, no. 5, pp. 623–625, Jul. 1996. [9] H. Hong, H. Shin, and I. Chung, “In-plane switching technology for liquid crystal display television,” J. Display Technol., vol. 3, no. 4, pp. 361–370, Dec. 2007. [10] J. I. Baek, K. H. Kim, J. C. Kim, T. H. Yoon, H. S. Woo, S. T. Shin, and J. H. Souk, “Fast in-plane switching of a liquid crystal cell triggered by a vertical electric field,” Jpn. J. Appl. Phys., vol. 48, no. 10R, p. 104505, Oct. 2009. [11] S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2881–2883, Nov. 1998. [12] S. H. Hong et al., “Electro-optic characteristic of fringe-field switching mode depending on rubbing direction,” Jpn. J. Appl. Phys., vol. 39, no. 6A, p. L527, Jun. 2000. [13] Y. J. Lim, E. Jeong, Y. S. Kim, Y. H. Jeong, W. G. Jang, and S. H. Lee, “Viewing angle switching in fringe-field switching liquid crystal display,” Mol. Cryst. Liq. Cryst., vol. 495, no. 1, pp. 186–538, 2008. [14] W. K. Choi and S.-T. Wu, “Fast response liquid crystal mode,” U.S. Patent 7,369,204, May 6, 2008. [15] W.-K. Choi et al., “Effects of electrode structure and dielectric anisotropy on the performance of VA-FFS LC mode,” Opt. Express, vol. 27, no. 23, pp. 34343–34358, Nov. 2019. [16] T. H. Choi, J. H. Woo, B. G. Jeon, J. Kim, M. Cha, and T. H. Yoon, “Fast fringe-field switching of vertically aligned liquid crystals between high-haze translucent and haze-free transparent states,” Liquid Crystals, vol. 45, no. 10, pp. 1419–1427, Oct. 2018. [17] F. Gou et al., “Submillisecond-response liquid crystal for high-resolution virtual reality displays,” Opt. Express, vol. 25, no. 7, pp. 7984–7997, Apr. 2017. [18] T. H. Choi, S. W. Oh, Y. J. Park, Y. Choi, and T. H. Yoon, “Fast fringe-field switching of a liquid crystal cell by two-dimensional confinement with virtual walls,” Scientific Reports, vol. 6, no. 1, p. 27936, Jun. 2016. [19] S. H. Lee, S. L. Lee, and H. Y. Kim, “Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching,” Appl. Phys. Lett., vol. 73, no. 20, pp. 2881–2883, Nov. 1998. [20] 謝易呈。三維電極結構之垂直配向邊緣場效驅動液晶顯示器元件模擬。國立臺灣大學光電工程學研究所碩士學位論文。2020。 [21] 楊忠睿。三階電極對垂直配向邊緣場效驅動之負型液晶的設計。國立臺灣大學光電工程學研究所碩士學位論文。2024。 [22] 陳俊廷。負型液晶用於新型電極結構的快速垂直配向邊緣場效驅動液晶顯示器模擬。國立臺灣大學光電工程學研究所碩士學位論文。2023。 [23] 楊丞佑。垂直配向邊緣場效驅動液晶顯示器的反應時間之研究。國立臺灣大學光電工程學研究所碩士學位論文。2020。 [24] 朱崴豪。改善垂直配向邊緣場效驅動液晶顯示器的虛擬牆穩定性之研究。國立臺灣大學光電工程學研究所碩士學位論文。2021。 [25] E. W. Zhong et al., “A transflective display using blue phase liquid crystal,” Journal of Display Technology, vol. 10, no. 5, pp. 357–361, May 2014. [26] L. H. Rao, Z. B. Ge, S. T. Wu, and S. H. Lee, “Low voltage blue-phase liquid crystal displays,” Appl. Phys. Lett., vol. 95, no. 23, pp. 231101-1–231101-3, Dec. 2009. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100190 | - |
| dc.description.abstract | 近年來,液晶顯示器對高速反應與高亮度的需求日益提升,其中三階電極之3D VA-FFS結構因具備優異的光穿透率與響應速度,其發展潛力可望成為未來液晶顯示技術的重要研究方向。本實驗室近年提出之挖洞式六邊形排列結構,雖可透過增加孔洞周圍的虛擬牆數量,有效提升液晶的反應速度,然而該結構在孔洞區域內易產生明顯暗區,影響整體顯示亮度,且在小尺寸電極條件下亦存在虛擬牆穩定性不足的問題,導致虛擬牆產生位移甚至破壞,進而造成元件操作異常,成為進一步發展的技術瓶頸。
為解決上述問題,本論文首先提出於像素電極所挖設之圓形孔洞內,在距離孔洞圓心一定距離處添加若干小面積電極的設計。藉由強化孔洞內部局部電場強度,可對液晶分子施加更大的相位延遲,進而提升其轉動角度。實驗結果顯示,此設計能有效降低孔洞區域的暗區面積,改善局部穿透率曲線中的凹陷現象,並提升整體亮度表現。雖此方法伴隨反應時間略有延長,惟其影響幅度極小,屬可接受範圍內,整體顯示效能仍具顯著改善。 此外,為解決挖洞式六邊形排列結構於小尺寸電極條件下,因虛擬牆穩定性不足所導致無法正常運作之問題,本研究進一步引入「反轉結構」設計。藉由其穩定的電場邊界特性,能有效抑制虛擬牆之位移現象,顯著提升結構於小尺寸條件下的操作穩定性,並實現相較於大尺寸電極更為快速的反應速度。但由於反轉結構電極面積較小,需施加較高操作電壓方能驅動液晶達到最大光穿透率,為此本論文透過同步下調電壓之方式,在不改變電極層間電壓差的前提下,成功將整體操作電壓降低至原先之一半,同時仍能維持與原設定相當之穿透率與反應時間表現。 | zh_TW |
| dc.description.abstract | In recent years, the demand for high-speed response and high brightness in liquid crystal displays has been steadily increasing. Among various technologies, the three-electrode 3D VA-FFS structure has emerged as a promising development due to its excellent optical transmittance and fast response characteristics.
Although previous studies have proposed a perforated hexagonal array structure that improves liquid crystal response speed by increasing the number of virtual walls around the holes, this design still suffers from noticeable dark areas within the hole region, degrading overall display brightness. Furthermore, under small electrode configurations, the virtual wall becomes unstable, leading to displacement or collapse, and ultimately causing operational failure. To address these issues, this thesis first proposes a novel design that incorporates several small-area electrodes within the circular holes of the pixel electrode, positioned at a certain distance from the hole center. By enhancing the local electric field strength inside the hole, the liquid crystal molecules experience greater phase retardation, thereby achieving larger rotation angles. Experimental results demonstrate that this design effectively reduces the dark areas in the hole region, improves local transmittance uniformity, and enhances overall brightness. Although a slight increase in response time is observed, its impact is minimal and within acceptable limits, resulting in a net improvement in display performance. In addition, to solve the operational instability of the perforated hexagonal structure under small electrode conditions, this study further introduces a "reversed structure" design. By leveraging its more stable electric field boundary characteristics, the proposed structure effectively suppresses virtual wall displacement and significantly enhances operational stability in small-size electrodes, while also achieving a faster response time compared to larger electrodes. However, due to the smaller electrode area in the reversed structure, a higher operating voltage is required to achieve maximum light transmittance. To mitigate this drawback, a “simultaneous voltage-downscaling” strategy is proposed. This method successfully reduces the overall operating voltage to half of the original value without altering the inter-electrode voltage difference, while still maintaining comparable transmittance and response time performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:47:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:47:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii 英文摘要 iii 目次 v 圖次 vii 表次 xi 第 1 章 簡介 1 1.1 液晶簡介 1 1.1.1 液晶的相態與形變 1 1.1.2 液晶的光學異向性 2 1.1.3 液晶的介電常數異向性 3 1.1.4 液晶的響應時間 4 1.2 液晶顯示器技術簡介 5 第 2 章 文獻回顧與研究動機 7 2.1 二維垂直配向邊緣場效驅動 7 2.2 三維垂直配向邊緣場效驅動 8 2.3 3D VA-FFS三階電極之方形孔洞與圓形孔洞差異 10 2.4 3D VA-FFS三階電極井字型排列與六邊形排列差異 12 2.5 研究動機 14 第 3 章 模擬軟體介紹與參數設定 15 3.1 TechWiz LCD 3D介紹 15 3.1.1 參數設定 17 3.1.2 TechWiz layout 18 3.1.3 網格設定 21 3.2 電壓設定 21 3.2.1 V-T圖 22 3.2.2 T-T圖 23 3.3 液晶配向參數 24 3.4 光學分析設定 24 第 4 章 結果與討論 26 4.1 三階3D VA-FFS之局部穿透率提升 26 4.1.1 三階3D VA-FFS結構之添加額外電極 26 4.1.2 添加額外電極結構之穿透率與電場分布 28 4.1.3 額外電極位置參數與孔洞面積 32 4.1.4 離孔洞圓心0.25r處添加額外電極 34 4.1.5 離孔洞圓心0.5r處添加額外電極 42 4.1.6 離孔洞圓心0.57r處添加額外電極 49 4.1.7 不同位置與額外電極數量之綜合性能探討 53 4.1.8 添加額外電極之面積影響 54 4.2 反轉三階電極結構以改善響應時間 57 4.2.1 反轉電極間距G與電極寬度W 57 4.2.2 新舊結構之一致性與差異性 58 4.2.3 反轉結構之高操作電壓下調改善 62 4.2.4 像素電極不同尺寸之比較 65 4.2.5 小尺寸電極之穩定性改善 67 第 5 章 結論與未來展望 73 參考資料 74 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 三階電極 | zh_TW |
| dc.subject | 三維電極結構 | zh_TW |
| dc.subject | 垂直配向邊緣場驅動 | zh_TW |
| dc.subject | 高穿透率 | zh_TW |
| dc.subject | 虛擬牆 | zh_TW |
| dc.subject | 操作電壓 | zh_TW |
| dc.subject | 快速反應時間 | zh_TW |
| dc.subject | three-dimensional electrode structure | en |
| dc.subject | fast response time | en |
| dc.subject | operating voltage | en |
| dc.subject | virtual walls | en |
| dc.subject | high transmittance | en |
| dc.subject | vertical alignment fringe field switching | en |
| dc.subject | three-level electrode | en |
| dc.title | 新型電極結構於提升負型液晶垂直配向邊緣場效驅動性能之研究 | zh_TW |
| dc.title | Novel Electrode Structures for Enhancing Fringe-Field Switching Performance in Vertically Aligned Negative Liquid Crystals | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林晃巖;黃定洧;黃念祖 | zh_TW |
| dc.contributor.oralexamcommittee | Hoang-Yan Lin;Ding-wei Huang;Nien-Tsu Huang | en |
| dc.subject.keyword | 三階電極,三維電極結構,垂直配向邊緣場驅動,高穿透率,虛擬牆,操作電壓,快速反應時間, | zh_TW |
| dc.subject.keyword | three-level electrode,three-dimensional electrode structure,vertical alignment fringe field switching,high transmittance,virtual walls,operating voltage,fast response time, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202504028 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.82 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
