Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 毒理學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉興華
dc.contributor.authorLi-Ting Wangen
dc.contributor.author王麗婷zh_TW
dc.date.accessioned2021-05-20T20:56:06Z-
dc.date.available2013-10-07
dc.date.available2021-05-20T20:56:06Z-
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-07-29
dc.identifier.citationReferences
Abdel-Raheem IT, Abdel-Ghany AA, Mohamed GA (2009) Protective effect of quercetin against gentamicin-induced nephrotoxicity in rats. Biol Pharm Bull 32: 61-67
Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373: 545-549
Azad MB, Chen Y, Henson ES, Cizeau J, McMillan-Ward E, Israels SJ, Gibson SB (2008) Hypoxia induces autophagic cell death in apoptosis-competent cells through a mechanism involving BNIP3. Autophagy 4: 195-204
Baehrecke EH (2005) Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol 6: 505-510
Behling EB, Sendao MC, Francescato HD, Antunes LM, Costa RS, Bianchi Mde L (2006) Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol Rep 58: 526-532
Bolster DR, Crozier SJ, Kimball SR, Jefferson LS (2002) AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem 277: 23977-23980
Bonventre JV, Weinberg JM (2003) Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol 14: 2199-2210
Brodsky SV, Yamamoto T, Tada T, Kim B, Chen J, Kajiya F, Goligorsky MS (2002) Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 282: F1140-1149
Bucki R, Pastore JJ, Giraud F, Sulpice JC, Janmey PA (2003) Flavonoid inhibition of platelet procoagulant activity and phosphoinositide synthesis. J Thromb Haemost 1: 1820-1828
Cammisotto PG, Londono I, Gingras D, Bendayan M (2008) Control of glycogen synthase through ADIPOR1-AMPK pathway in renal distal tubules of normal and diabetic rats. Am J Physiol Renal Physiol 294: F881-889
Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR (2005) Epithelial sodium channel inhibition by AMP-activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 280: 17608-17616
Carling D (2004) The AMP-activated protein kinase cascade--a unifying system for energy control. Trends Biochem Sci 29: 18-24
Carrera AC (2004) TOR signaling in mammals. J Cell Sci 117: 4615-4616
Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, Feuerstein D, Kaskel FJ, Tellis V, Devarajan P (2003) Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation 76: 50-54
Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15: 171-182
Chertow GM, Soroko SH, Paganini EP, Cho KC, Himmelfarb J, Ikizler TA, Mehta RL (2006) Mortality after acute renal failure: models for prognostic stratification and risk adjustment. Kidney Int 70: 1120-1126
Conger JD, Weil JV (1995) Abnormal vascular function following ischemia-reperfusion injury. J Investig Med 43: 431-442
Cushnie TP, Lamb AJ (2005) Antimicrobial activity of flavonoids. Int J Antimicrob Agents 26: 343-356
Davies SJ, Reichardt-Pascal SY, Vaughan D, Russell GI (1995) Differential effect of ischaemia-reperfusion injury on anti-oxidant enzyme activity in the rat kidney. Exp Nephrol 3: 348-354
Day AJ, Canada FJ, Diaz JC, Kroon PA, McLauchlan R, Faulds CB, Plumb GW, Morgan MR, Williamson G (2000) Dietary flavonoid and isoflavone glycosides are hydrolysed by the lactase site of lactase phlorizin hydrolase. FEBS Lett 468: 166-170
Devarajan P (2006) Update on mechanisms of ischemic acute kidney injury. J Am Soc Nephrol 17: 1503-1520
Eefting F, Rensing B, Wigman J, Pannekoek WJ, Liu WM, Cramer MJ, Lips DJ, Doevendans PA (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61: 414-426
Erdogan H, Fadillioglu E, Yagmurca M, Ucar M, Irmak MK (2006) Protein oxidation and lipid peroxidation after renal ischemia-reperfusion injury: protective effects of erdosteine and N-acetylcysteine. Urol Res 34: 41-46
Fermin DR, Barac A, Lee S, Polster SP, Hannenhalli S, Bergemann TL, Grindle S, Dyke DB, Pagani F, Miller LW, Tan S, Dos Remedios C, Cappola TP, Margulies KB, Hall JL (2008) Sex and age dimorphism of myocardial gene expression in nonischemic human heart failure. Circ Cardiovasc Genet 1: 117-125
Fisslthaler B, Fleming I (2009) Activation and signaling by the AMP-activated protein kinase in endothelial cells. Circ Res 105: 114-127
Friedewald JJ, Rabb H (2004) Inflammatory cells in ischemic acute renal failure. Kidney Int 66: 486-491
Geraets L, Moonen HJ, Brauers K, Wouters EF, Bast A, Hageman GJ (2007) Dietary flavones and flavonoles are inhibitors of poly(ADP-ribose)polymerase-1 in pulmonary epithelial cells. J Nutr 137: 2190-2195
Giaccia AJ, Simon MC, Johnson R (2004) The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev 18: 2183-2194
Gozuacik D, Kimchi A (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23: 2891-2906
Gulati N, Laudet B, Zohrabian VM, Murali R, Jhanwar-Uniyal M (2006) The antiproliferative effect of Quercetin in cancer cells is mediated via inhibition of the PI3K-Akt/PKB pathway. Anticancer Res 26: 1177-1181
Hamacher-Brady A, Brady NR, Gottlieb RA (2006) The interplay between pro-death and pro-survival signaling pathways in myocardial ischemia/reperfusion injury: apoptosis meets autophagy. Cardiovasc Drugs Ther 20: 445-462
Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 16: 845-850
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441: 885-889
Hardie DG (2004) The AMP-activated protein kinase pathway--new players upstream and downstream. J Cell Sci 117: 5479-5487
Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG (1995) 5'-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270: 27186-27191
Herrero-Martin G, Hoyer-Hansen M, Garcia-Garcia C, Fumarola C, Farkas T, Lopez-Rivas A, Jaattela M (2009) TAK1 activates AMPK-dependent cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J 28: 677-685
Hollman PC, Katan MB (1997) Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother 51: 305-310
Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10: R73
Hoyer-Hansen M, Bastholm L, Szyniarowski P, Campanella M, Szabadkai G, Farkas T, Bianchi K, Fehrenbacher N, Elling F, Rizzuto R, Mathiasen IS, Jaattela M (2007) Control of macroautophagy by calcium, calmodulin-dependent kinase kinase-beta, and Bcl-2. Mol Cell 25: 193-205
Hoyer-Hansen M, Jaattela M (2007) Connecting endoplasmic reticulum stress to autophagy by unfolded protein response and calcium. Cell Death Differ 14: 1576-1582
Inal M, Altinisik M, Bilgin MD (2002) The effect of quercetin on renal ischemia and reperfusion injury in the rat. Cell Biochem Funct 20: 291-296
Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577-590
Ishikawa Y, Kitamura M (2000) Anti-apoptotic effect of quercetin: intervention in the JNK- and ERK-mediated apoptotic pathways. Kidney Int 58: 1078-1087
Jiang M, Liu K, Luo J, Dong Z (2010) Autophagy is a renoprotective mechanism during in vitro hypoxia and in vivo ischemia-reperfusion injury. Am J Pathol 176: 1181-1192
Jin Q, Jhun BS, Lee SH, Lee J, Pi Y, Cho YH, Baik HH, Kang I (2004) Differential regulation of phosphatidylinositol 3-kinase/Akt, mitogen-activated protein kinase, and AMP-activated protein kinase pathways during menadione-induced oxidative stress in the kidney of young and old rats. Biochem Biophys Res Commun 315: 555-561
Jung JH, Lee JO, Kim JH, Lee SK, You GY, Park SH, Park JM, Kim EK, Suh PG, An JK, Kim HS (2010) Quercetin suppresses HeLa cell viability via AMPK-induced HSP70 and EGFR down-regulation. J Cell Physiol 223: 408-414
Kawakami T, Inagi R, Takano H, Sato S, Ingelfinger JR, Fujita T, Nangaku M (2009) Endoplasmic reticulum stress induces autophagy in renal proximal tubular cells. Nephrol Dial Transplant 24: 2665-2672
Klotz LO, Sies H (2003) Defenses against peroxynitrite: selenocompounds and flavonoids. Toxicol Lett 140-141: 125-132
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441: 880-884
Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726-734
Kosieradzki M, Rowinski W (2008) Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc 40: 3279-3288
Kwon O, Nelson WJ, Sibley R, Huie P, Scandling JD, Dafoe D, Alfrey E, Myers BD (1998) Backleak, tight junctions, and cell- cell adhesion in postischemic injury to the renal allograft. J Clin Invest 101: 2054-2064
Kwon O, Phillips CL, Molitoris BA (2002) Ischemia induces alterations in actin filaments in renal vascular smooth muscle cells. Am J Physiol Renal Physiol 282: F1012-1019
Lamson DW, Brignall MS (2000) Antioxidants and cancer, part 3: quercetin. Altern Med Rev 5: 196-208
Lee ES, Lee HE, Shin JY, Yoon S, Moon JO (2003) The flavonoid quercetin inhibits dimethylnitrosamine-induced liver damage in rats. J Pharm Pharmacol 55: 1169-1174
Lee MJ, Feliers D, Mariappan MM, Sataranatarajan K, Mahimainathan L, Musi N, Foretz M, Viollet B, Weinberg JM, Choudhury GG, Kasinath BS (2007) A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. Am J Physiol Renal Physiol 292: F617-627
Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6: 463-477
Li QX, Yu DH, Liu G, Ke N, McKelvy J, Wong-Staal F (2008) Selective anticancer strategies via intervention of the death pathways relevant to cell transformation. Cell Death Differ 15: 1197-1210
Liang J, Shao SH, Xu ZX, Hennessy B, Ding Z, Larrea M, Kondo S, Dumont DJ, Gutterman JU, Walker CL, Slingerland JM, Mills GB (2007) The energy sensing LKB1-AMPK pathway regulates p27(kip1) phosphorylation mediating the decision to enter autophagy or apoptosis. Nat Cell Biol 9: 218-224
Long YC, Zierath JR (2006) AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 116: 1776-1783
Lu CY, Penfield JG, Kielar ML, Vazquez MA, Jeyarajah DR (1999) Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int 55: 2157-2168
Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237-248
McCarty MF, Barroso-Aranda J, Contreras F (2009) Activation of AMP-activated kinase as a strategy for managing autosomal dominant polycystic kidney disease. Med Hypotheses 73: 1008-1010
Meier-Kriesche HU, Ojo AO, Hanson JA, Kaplan B (2001) Exponentially increased risk of infectious death in older renal transplant recipients. Kidney Int 59: 1539-1543
Meley D, Bauvy C, Houben-Weerts JH, Dubbelhuis PF, Helmond MT, Codogno P, Meijer AJ (2006) AMP-activated protein kinase and the regulation of autophagic proteolysis. J Biol Chem 281: 34870-34879
Mishra D, Flora SJ (2008) Quercetin administration during chelation therapy protects arsenic-induced oxidative stress in mice. Biol Trace Elem Res 122: 137-147
Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3: 542-545
Molitoris BA (2004) Actin cytoskeleton in ischemic acute renal failure. Kidney Int 66: 871-883
Montagna G, Hofer CG, Torres AM (1998) Impairment of cellular redox status and membrane protein activities in kidneys from rats with ischemic acute renal failure. Biochim Biophys Acta 1407: 99-108
Morales AI, Vicente-Sanchez C, Sandoval JM, Egido J, Mayoral P, Arevalo MA, Fernandez-Tagarro M, Lopez-Novoa JM, Perez-Barriocanal F (2006) Protective effect of quercetin on experimental chronic cadmium nephrotoxicity in rats is based on its antioxidant properties. Food Chem Toxicol 44: 2092-2100
Moridani MY, Pourahmad J, Bui H, Siraki A, O'Brien PJ (2003) Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radic Biol Med 34: 243-253
Mount PF, Hill RE, Fraser SA, Levidiotis V, Katsis F, Kemp BE, Power DA (2005) Acute renal ischemia rapidly activates the energy sensor AMPK but does not increase phosphorylation of eNOS-Ser1177. Am J Physiol Renal Physiol 289: F1103-1115
Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114: 3619-3629
Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, Nishida K, Hori M, Mizushima N, Otsu K (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13: 619-624
Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M, Tanii I, Yoshinaga K, Shiosaka S, Hammarback JA, Urano F, Imaizumi K (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26: 9220-9231
Okusa MD (2002) A(2A) adenosine receptor: a novel therapeutic target in renal disease. Am J Physiol Renal Physiol 282: F10-18
Orsolic N, Knezevic AH, Sver L, Terzic S, Basic I (2004) Immunomodulatory and antimetastatic action of propolis and related polyphenolic compounds. J Ethnopharmacol 94: 307-315
Park KM, Kramers C, Vayssier-Taussat M, Chen A, Bonventre JV (2002) Prevention of kidney ischemia/reperfusion-induced functional injury, MAPK and MAPK kinase activation, and inflammation by remote transient ureteral obstruction. J Biol Chem 277: 2040-2049
Paschen W (2001) Dependence of vital cell function on endoplasmic reticulum calcium levels: implications for the mechanisms underlying neuronal cell injury in different pathological states. Cell Calcium 29: 1-11
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90: 313-323
Peairs A, Radjavi A, Davis S, Li L, Ahmed A, Giri S, Reilly CM (2009) Activation of AMPK inhibits inflammation in MRL/lpr mouse mesangial cells. Clin Exp Immunol 156: 542-551
Perez-Vizcaino F, Bishop-Bailley D, Lodi F, Duarte J, Cogolludo A, Moreno L, Bosca L, Mitchell JA, Warner TD (2006) The flavonoid quercetin induces apoptosis and inhibits JNK activation in intimal vascular smooth muscle cells. Biochem Biophys Res Commun 346: 919-925
Perico N, Cattaneo D, Sayegh MH, Remuzzi G (2004) Delayed graft function in kidney transplantation. Lancet 364: 1814-1827
Periyasamy-Thandavan S, Jiang M, Schoenlein P, Dong Z (2009) Autophagy: molecular machinery, regulation, and implications for renal pathophysiology. Am J Physiol Renal Physiol 297: F244-256
Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63: 1035-1042
Psahoulia FH, Moumtzi S, Roberts ML, Sasazuki T, Shirasawa S, Pintzas A (2007) Quercetin mediates preferential degradation of oncogenic Ras and causes autophagy in Ha-RAS-transformed human colon cells. Carcinogenesis 28: 1021-1031
Renugadevi J, Prabu SM (2010) Quercetin protects against oxidative stress-related renal dysfunction by cadmium in rats. Exp Toxicol Pathol 62: 471-481
Sato T, Toyoshima A, Hiraki T, Ohta Y, Katayama K, Arai T, Tazaki H (2011) Effects of metformin on plasma concentrations of glucose and mannose, G6Pase and PEPCK activity, and mRNA expression in the liver and kidney of chickens. Br Poult Sci 52: 273-277
Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114: 5-14
Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci U S A 79: 1889-1892
Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ (2008) Adiponectin regulates albuminuria and podocyte function in mice. J Clin Invest 118: 1645-1656
Singh D, Chander V, Chopra K (2004) The effect of quercetin, a bioflavonoid on ischemia/reperfusion induced renal injury in rats. Arch Med Res 35: 484-494
Skibola CF, Smith MT (2000) Potential health impacts of excessive flavonoid intake. Free Radic Biol Med 29: 375-383
Solez K, Kramer EC, Fox JA, Heptinstall RH (1974) Medullary plasma flow and intravascular leukocyte accumulation in acute renal failure. Kidney Int 6: 24-37
Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ, Teh T, House CM, Fernandez CS, Cox T, Witters LA, Kemp BE (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271: 611-614
Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3: 405-407
Tilney NL, Guttmann RD (1997) Effects of initial ischemia/reperfusion injury on the transplanted kidney. Transplantation 64: 945-947
Venkatachalam MA, Jones DB, Rennke HG, Sandstrom D, Patel Y (1981) Mechanism of proximal tubule brush border loss and regeneration following mild renal ischemia. Lab Invest 45: 355-365
Wang K, Liu R, Li J, Mao J, Lei Y, Wu J, Zeng J, Zhang T, Wu H, Chen L, Huang C, Wei Y (2011) Quercetin induces protective autophagy in gastric cancer cells: Involvement of Akt-mTOR- and hypoxia-induced factor 1alpha-mediated signaling. Autophagy 7
Wang Y, Weiss LM, Orlofsky A (2009) Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth. J Biol Chem 284: 1694-1701
Weidemann MJ, Krebs HA (1969) The fuel of respiration of rat kidney cortex. Biochem J 112: 149-166
Weldin J, Jack R, Dugaw K, Kapur RP (2003) Quercetin, an over-the-counter supplement, causes neuroblastoma-like elevation of plasma homovanillic acid. Pediatr Dev Pathol 6: 547-551
Winder WW, Hardie DG (1996) Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. Am J Physiol 270: E299-304
Wolf G, Ziyadeh FN, Thaiss F, Tomaszewski J, Caron RJ, Wenzel U, Zahner G, Helmchen U, Stahl RA (1997) Angiotensin II stimulates expression of the chemokine RANTES in rat glomerular endothelial cells. Role of the angiotensin type 2 receptor. J Clin Invest 100: 1047-1058
Woroniecki R, Ferdinand JR, Morrow JS, Devarajan P (2003) Dissociation of spectrin-ankyrin complex as a basis for loss of Na-K-ATPase polarity after ischemia. Am J Physiol Renal Physiol 284: F358-364
Wouters BG, Koritzinsky M (2008) Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer 8: 851-864
Xue JL, Daniels F, Star RA, Kimmel PL, Eggers PW, Molitoris BA, Himmelfarb J, Collins AJ (2006) Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J Am Soc Nephrol 17: 1135-1142
Yao P, Nussler A, Liu L, Hao L, Song F, Schirmeier A, Nussler N (2007) Quercetin protects human hepatocytes from ethanol-derived oxidative stress by inducing heme oxygenase-1 via the MAPK/Nrf2 pathways. J Hepatol 47: 253-261
Zhang H, Bosch-Marce M, Shimoda LA, Tan YS, Baek JH, Wesley JB, Gonzalez FJ, Semenza GL (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J Biol Chem 283: 10892-10903
Zhu C, Xu F, Wang X, Shibata M, Uchiyama Y, Blomgren K, Hagberg H (2006) Different apoptotic mechanisms are activated in male and female brains after neonatal hypoxia-ischaemia. J Neurochem 96: 1016-1027
Zhu H, Tannous P, Johnstone JL, Kong Y, Shelton JM, Richardson JA, Le V, Levine B, Rothermel BA, Hill JA (2007) Cardiac autophagy is a maladaptive response to hemodynamic stress. J Clin Invest 117: 1782-1793
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10018-
dc.description.abstract腎臟缺血再灌流 (ischemia/reperfusion, I/R)為常見造成急性腎衰竭的原因,其造成的傷害常發生於腎臟移植、腎臟動脈血管狹窄或是其他原因所導致。過去文獻指出,腎臟I/R會造成內皮細胞功能異常、引發嚴重的發炎反應、活化細胞死亡相關的蛋白及造成氧化壓力增加等而導致腎臟傷害。腎臟I/R所產生大量的過氧化物 (reactive oxygen species, ROS)被認為是造成腎臟傷害的主要原因,這些ROS會經由蛋白質氧化、脂質過氧化、DNA的傷害而導致腎臟急性傷害以及細胞凋亡等。許多抗氧化劑像是N-乙醯半胱胺酸 (N-acetyl-L-cysteine)、超氧化物歧化酶 (superoxide dismutase)等能藉由抑制ROS生成而對急性I/R腎傷害具有保護的作用。近期研究指出I/R會誘發細胞產生自噬作用 (autophagy),而細胞可能會透過此機制走向死亡或存活。然而,I/R引起腎臟細胞傷害的分子機制並不完全清楚,有進一步研究的必要。在本研究中,我們以模擬的I/R細胞模式探討腎臟近曲小管細胞受到傷害時所牽涉到的分子調控機制。我們將豬腎臟近曲小管上皮細胞株 (LLC-PK1)處理1.5個小時的抗黴素A (antimycin A)及二去氧2-去氧-D-葡萄糖 (2-deoxy-D-glucose),並分別以干擾粒線體呼吸傳遞鏈及抑制糖解作用方式,模擬細胞化學性缺氧的情形,之後移除藥物模擬細胞再灌流情形。實驗結果顯示,細胞在缺氧時並不會發生嚴重損傷,但隨著再灌流時間延長會造成細胞凋亡。此外,由西方墨點法實驗結果發現,細胞處理化學性缺氧藥物時,會活化與能量調控相關的蛋白-腺苷單磷酸活化蛋白質激酶 (adenosine monophosphate-activated protein kinase, AMPK)磷酸化的表現,並且隨著再灌流時間延長,藉由monodansylcadaverine染色及轉染標記LC3綠螢光蛋白 (green fluorescent protein-labeled LC3)實驗都證實I/R會誘發腎臟細胞自噬作用的情形。在流式細胞儀實驗中,我們以細胞自噬作用專一性抑制劑-3-methylamphetamine抑制細胞自噬作用的表現,觀察到細胞於處理I/R後24小時凋亡情形明顯增加。接著,為了確認AMPK在I/R中扮演之角色,我們利用干擾性核醣核酸抑制細胞AMPK的表現,結果顯示細胞於I/R處理後mTOR蛋白磷酸化情形增加、細胞自噬作用表現受抑制,並令細胞凋亡情形更嚴重;而處理AMPK專一性抑制劑-compound C於細胞中也有相同結果。另外,利用mTOR專一性抑制劑-RAD001抑制細胞mTOR磷酸化表現,我們發現細胞在I/R處理後會明顯活化細胞自噬作用的表現,並且能保護細胞不走向凋亡。接著,我們探討抗氧化劑-槲黃素 (quercetin)是否能減緩腎臟細胞所受到I/R之傷害,並探討其中分子調控機制。我們將細胞處理於化學性缺氧的過程同時合併給予quercetin,觀察控制組與加藥組之間的不同。實驗結果發現,處理quercetin的細胞會造成AMPK蛋白磷酸化表現增加、mTOR蛋白磷酸化表現下降、細胞自噬作用活化,並減低I/R誘發的細胞凋亡;利用干擾性核醣核酸抑制細胞AMPK的表現,我們發現quercetin能恢復原先受抑制的細胞自噬作用。綜合以上實驗結果,顯示AMPK能透過負調控mTOR以誘發細胞自噬作用來保護I/R引起腎臟細胞凋亡之傷害,而quercetin可能經由此調控機制來保護腎臟細胞在I/R時所造成的傷害。希望藉由此研究確認細胞自噬作用在腎臟I/R所扮演的角色與其分子調控機制,未來可望開發為藥物治療之新方向。zh_TW
dc.description.abstractRenal ischemia/reperfusion (I/R) injury is the most common cause of acute kidney injury. Renal I/R injury occurs in many clinical conditions such as hypovolemic shock, thromboembolism, and renal transplantation. Several mechanisms participate in renal I/R injury including deleterious inflammatory responses, endothelial dysfunction, nitric oxide dysregulation, oxidative stress, and caspase activation. Among of them, oxidative stress is considered a major event. Moreover, the increasing lines of evidence also suggest that autophagy may participate in I/R injury, and will lead cell to death or survival. However, the detail molecular mechanisms of I/R injury on renal tubular cells still remain to be clarified. Therefore, the aim of study is to investigate the molecular mechanisms of I/R injury on renal proximal tubule epithelial cells. To mimic renal I/R injury in vivo, LLC-PK1 cells were incubated with antimycin A and 2-deoxy-D-glucose for 1.5 h to induce ischemia injury, which could disturb mitochondrial respiratory chain and inhibit energy generation via blocking glycolysis. The reperfusion was achieved by replacing the ischemic medium by a glucose-replete complete growth medium. We demonstrated I/R induced tubular cell apoptosis in a reperfusion time-dependent manner at first. By using western blotting analysis, transfection green fluorescent protein (GFP)-labeled LC3, and stainings of monodansylcadaverine, I/R induced the LC3-II forms protein expression and autophagosome formations in LLC-PK1 cells, which were obvious after 6 h of reperfusion. Analysed by flow cytometry, it revealed that inhibit autophagy by 3-methyladenine significantly enhanced I/R-induced renal tubular cell apoptosis. In addition, the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) was also increased by I/R treatment in LLC-PK1 cells. Inhibition of AMPK by shRNA for AMPKα1 or compound C increased the phosphorylation of mammalian target of rapamycin (mTOR) protein and decreased induction of autophagy, and then enhanced I/R-induced renal tubular cell apoptosis. Moreover, RAD001, a mTOR inhibitor, could increase the autophagy activation and attenuate I/R-induced renal tubular cell apoptosis. On the other hand, we investigated the protective effect of antioxidant quercetin on I/R injury in renal tubular cells. We observed that quercetin significantly up-regulated the AMPK phosphorylation, down-regulated the mTOR phosphorylation, activated the autophagy, and decreased the I/R-induced renal cell apoptosis. In I/R-treated renal tubular cells, quercetin could also reverse the shRNA of AMPKα1-reduced renal tubular cells autophagy. Taken together, these findings suggest that autophagy protects renal tubular cells from I/R injury through an AMPK-regulated mTOR pathway. Quercetin may reduce the I/R-induced renal tubular cell injury by AMPK-regulated autophagy induction. These findings suggested that induction of autophagy by AMPK phosphorylation and mTOR reduction in renal tubular cells as a potential target for intervention renal I/R injury. Besides, quercetin may be as a potential treatment for I/R-induced renal cell injury.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:56:06Z (GMT). No. of bitstreams: 1
ntu-100-R98447003-1.pdf: 3112403 bytes, checksum: d7050f831b2c297bac161d2fafde1682 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsCONTENTS
中文摘要……………………………………………………………...…………………............….IV
Abstract.…………………………………………………………………………....................…….VI
Abbreviations…………………………………………………………………...………………..VIII
CHAPTER I Introduction…………………………………………………...........................….1-12
Renal ischemia/reperfusion (I/R) injury…………………………………....…………..….…...…1
Adenosine monophosphate-activated protein kinase (AMPK) ……………..…….…..……….....4
Autophagy………………………………………………………………..…............................…..7
Quercetin ………………………………………………………………………..…..….…..…....10
Hypothesis and aims………………………………………………..……..….……...…….....….12
CHAPTER II Materials and Methods…………………………………………………......…13-18
Cell culture and chemical treatment………………………...……………………………..…….13
I/R treatment of LLC-PK1…………………………………………………...……………...……13
Sub-G1 analysis for fragmental DNA…………………………………………….………...…………14
Annexin V and PI assays for apoptosis detection………………………………………...…...…14
Analysis of autophagy by GFP-LC3 distribution and MDC staining………………………....…15
Western blotting analysis…………………………….……………………………………......…16
Lentivirus infection of shRNA……………………..……………………………………...…...…17
Statistical analysis………………………………………………………………………….....…18
CHAPTER III Results……………………………………………………….................................19
CHAPTER IV Discussion…………………………………………………………………......…..27
CHAPTER V Conclusion……………………………………………………………………….....33
References………………………...……………………………...………………………………...34
Figures and Figure Legends………………………………………………...............................50-70
Figure 1. Effects of renal I/R on cell viability………………………………………………........50
Figure 2. Induction of autophagy by I/R treatment in LLC-PK1 cells………………………..….53
Figure 3. Autophagy protected renal cells from I/R‐induced apoptosis…………..……………...57
Figure 4. I/R increased the phosphorylation of AMPKα and decreased the phosphorylation of mTOR in LLC-PK1 cells………………...…………………………………………..…58
Figure 5. AMPK negatively regulated the phosphorylation of mTOR and activated autophagy on
renal I/R injury…………..………………………………………………………….…59
Figure 6. AMPK protected renal cells from I/R-induced apoptosis.………………………..…....62
Figure 7. Inhibition of mTOR could activate autophagy and protect renal cells from I/R-induced apoptosis.....................................................................................................................…63
Figure 8. Quercetin increased the phosphorylation of AMPK and activated autophagy on renal I/R injury rather than NAC……...…………...…………….………………………......65
Figure 9. Quercetin increased the phosphorylation of AMPK, decreased the phosphorylation of mTOR, and activated autophagy on renal I/R injury.…………………………..….......66
Figure 10. Quercetin protected renal cells from I/R-induced apoptosis………………….…..…68
Figure 11. Quercetin recovered cells from downregulation of AMPK-induced mTOR
phosphorylation, autophagy inactivation, and cell apoptosis on renal I/R injury.......69
dc.language.isoen
dc.subject腺&#33527zh_TW
dc.subject槲黃素zh_TW
dc.subject缺血再灌流zh_TW
dc.subject細胞凋亡zh_TW
dc.subject細胞自噬zh_TW
dc.subject單磷酸活化蛋白質激&#37238zh_TW
dc.title腺苷單磷酸活化蛋白質激酶誘發細胞自噬以保護缺血再灌流所引起之腎小管細胞凋亡zh_TW
dc.titleAMP-Activated Protein Kinase-Evoked Autophagy Protects Ischemia/Reperfusion-Induced Renal Tubular Cell Apoptosisen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蕭水銀,楊榮森,姜至剛
dc.subject.keyword缺血再灌流,腺&#33527,單磷酸活化蛋白質激&#37238,細胞自噬,細胞凋亡,槲黃素,zh_TW
dc.subject.keywordischemia/reperfusion,monophosphate-activated protein kinase,autophagy,cell apoptosis,quercetin,en
dc.relation.page70
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-07-29
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept毒理學研究所zh_TW
顯示於系所單位:毒理學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf3.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved