Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100189
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳琪芳zh_TW
dc.contributor.advisorChi-Fang Chenen
dc.contributor.author劉睿丞zh_TW
dc.contributor.authorJuei-Cheng Liuen
dc.date.accessioned2025-09-24T16:47:38Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] 行政院。(2019)。重要政策-推動風力發電4年計畫—潔淨能源 乘風而起。https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/ef93b5c1-85ea-4b5f-ac55-f460d9204258
[2] 4Coffshore. (2020). Global Offshore Wind Speeds Rankings. https://www.4coffshore.com/windfarms/windspeeds.aspx
[3] 經濟部能源局。(2015)。離岸風力發電區開發場址規劃申請作業要點 (能技字第 10404015571 號)。
[4] 海洋委員會海洋保育署。(2020)。中華白海豚野生動物重要棲息環境之類別及範圍 (海保字第10900069941號 公告)。
[5] Tougaard, J., Hermannsen, L., & Madsen, P. T. (2020). How loud is the underwater noise from operating offshore wind turbines? The Journal of the Acoustical Society of America, 148(5), 2885–2893.
[6] Mooney, T. A., Andersson, M. H., & Stanley, J. (2020). Acoustic impacts of offshore wind energy on fishery resources. Oceanography, 33(4), 82–95.
[7] Pijanowski, B. C., Villanueva-Rivera, L. J., Dumyahn, S. L., Farina, A., Krause, B. L., Napoletano, B. M., Gage, S. H., & Pieretti, N. (2011). Soundscape ecology: The science of sound in the landscape. BioScience, 61(3), 203–216.
[8] International Organization for Standardization. (2017). ISO 18405:2017 Underwater acoustics—Terminology.
[9] 胡惟鈞(2023)。臺灣西部近岸海域水下聲景研究〔博士論文,國立台灣大學工程科學及海洋工程學系〕。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/r2cc83
[10] Hovem, J. M. (2007). Underwater acoustics: Propagation, devices and systems urnal of Electroceramics, 19, 339–347.
[11] Pieretti, N., & Danovaro, R. (2020). Acoustic indexes for marine biodiversity trends and ecosystem health. Philosophical Transactions of the Royal Society B, 375(1814), 20190447.
[12] Salisbury, D. P., Clark, C. W., & Rice, A. N. (2016). Right whale occurrence in the coastal waters of Virginia, USA: Endangered species presence in a rapidly developing energy market. Marine Mammal Science, 32(2), 508–519.
[13] Davis, G. E., Baumgartner, M. F., Bonnell, J. M., Bell, J., Berchok, C., Bort Thornton, J., Brault, S., Buchanan, G., Charif, R. A., Cholewiak, D., Clark, C. W., Corkeron, P., Delarue, J., Dudzinski, K., Hatch, L., Hildebrand, J., Hodge, L., Klinck, H., Kraus, S., Martin, B., Mellinger, D. K., Moors-Murphy, H., Nieukirk, S., Nowacek, D. P., Parks, S., Read, A. J., Rice, A. N., Risch, D., Širović, A., Soldevilla, M., Stafford, K., Stanistreet, J. E., Summers, E., Todd, S., Warde, A., & Van Parijs, S. M. (2017). Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014. Scientific Reports, 7(1), 13460.
[14] Lammers, M. O., Fisher-Pool, P. I., Au, W. W. L., Meyer, C. G., Wong, K. B., & Brainard, R. E. (2011). Humpback whale Megaptera novaeangliae song reveals wintering activity in the Northwestern Hawaiian Islands. Marine Ecology Progress Series, 423, 261–268.
[15] Picciulin, M., Kéver, L., Parmentier, E., & Bolgan, M. (2019). Listening to the unseen: Passive acoustic monitoring reveals the presence of a cryptic fish species. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(2), 202–210.
[16] Luczkovich, J. J., Pullinger, R. C., Johnson, S. E., & Sprague, M. W. (2008). Identifying sciaenid critical spawning habitats by the use of passive acoustics. Transactions of the American Fisheries Society, 137(2), 576-605.
[17] Wall, C. C., Lembke, C., & Mann, D. A. (2012). Shelf-scale mapping of sound production by fishes in the eastern Gulf of Mexico, using autonomous glider technology. Marine Ecology Progress Series, 449, 55–64.
[18] Versluis, M., Schmitz, B., von der Heydt, A., & Lohse, D. (2000). How snapping shrimp snap: Through cavitating bubbles. Science, 289(5487), 2114–2117.
[19] Kaji, T., Anker, A., Wirkner, C. S., & Palmer, A. R. (2018). Parallel saltational evolution of ultrafast movements in snapping shrimp claws. Current Biology, 28(1), 106–113.e4
[20] Coquereau, L., Lossent, J., Grall, J., & Chauvaud, L. (2017). Marine soundscape shaped by fishing activity. Royal Society open science, 4(1), 160606.
[21] Haver, S. M., Gedamke, J., Hatch, L. T., Dziak, R. P., Van Parijs, S., McKenna, M. F., Barlow, J., Berchok, C., DiDonato, E., Hanson, B., Haxel, J., Holt, M., Lipski, D., Matsumoto, H., Meinig, C., Mellinger, D. K., Moore, S. E., Oleson, E. M., Soldevilla, M. S., & Klinck, H. (2018). Monitoring long-term soundscape trends in US waters: The NOAA/NPS Ocean Noise Reference Station Network. Marine Policy, 90, 6–13.
[22] Herzing, D. L. (2014). Clicks, whistles and pulses: Passive and active signal use in dolphin communication. Acta Astronautica, 105(2), 534–537.
[23] Lammers, M. O., Schotten, M., & Au, W. W. L. (2006). The spatial context of free-ranging Hawaiian spinner dolphins (Stenella longirostris) producing acoustic signals. The Journal of the Acoustical Society of America, 119(2), 1244–1250.
[24] Lilly, J. C., & Miller, A. M. (1961). Sounds emitted by the bottlenose dolphin: The audible emissions of captive dolphins under water or in air are remarkably complex and varied. Science, 133(3465), 1689–1693.
[25] Caldwell, M. C., & Caldwell, D. K. (1965). Individualized whistle contours in bottle-nosed dolphins (Tursiops truncatus). Nature, 207(4995), 434–435.
[26] Tyack, P. (1986). Whistle repertoires of two bottlenosed dolphins, Tursiops truncatus: Mimicry of signature whistles? Behavioral Ecology and Sociobiology, 18(4), 251–257.
[27] Janik, V. M., Todt, D., & Dehnhardt, G. (1994). Signature whistle variations in a bottlenosed dolphin, Tursiops truncatus. Behavioral Ecology and Sociobiology, 35(4), 243–248.
[28] Erbe, C., Marley, S. A., Schoeman, R. P., Smith, J. N., Trigg, L. E., & Embling, C. B. (2019). The effects of ship noise on marine mammals—A review. Frontiers in Marine Science, 6, 606.
[29] Lindseth, A. V., & Lobel, P. S. (2018). Underwater soundscape monitoring and fish bioacoustics: A review. Fishes, 3(3), 36.
[30] Gerrodette, T., Taylor, B. L., Swift, R., Rankin, S., Jaramillo-Legorreta, A. M., & Rojas-Bracho, L. (2011). A combined visual and acoustic estimate of 2008 abundance, and change in abundance since 1997, for the vaquita, Phocoena sinus. Marine Mammal Science, 27(2), E79–E100.
[31] Barlow, J., & Taylor, B. L. (2005). Estimates of sperm whale abundance in the northeastern temperate Pacific from a combined acoustic and visual survey. Marine Mammal Science, 21(3), 429–445.
[32] Sigourney, D. B., DeAngelis, A., Cholewiak, D., & Palka, D. (2023). Combining passive acoustic data from a towed hydrophone array with visual line transect data to estimate abundance and availability bias of sperm whales (Physeter macrocephalus). PeerJ, 11, e15850.
[33] Marques, T. A., Thomas, L., Martin, S. W., Mellinger, D. K., Ward, J. A., Moretti, D. J., Harris, D., & Tyack, P. L. (2013). Estimating animal population density using passive acoustics. Biological Reviews, 88(2), 287–309.
[34] Akamatsu, T., Ura, T., Sugimatsu, H., Bahl, R., Behera, S., Panda, S., Khan, M., Kar, S. K., Kar, C. S., Kimura, S., & Sasaki-Yamamoto, Y. (2013). A multimodal detection model of dolphins to estimate abundance validated by field experiments. The Journal of the Acoustical Society of America, 134(3), 2418–2426.
[35] Marques, T. A., Thomas, L., Ward, J., DiMarzio, N., & Tyack, P. L. (2009). Estimating cetacean population density using fixed passive acoustic sensors: An example with Blainville’s beaked whales. The Journal of the Acoustical Society of America, 125(4), 1982–1994.
[36] 周蓮香。(2007)。臺灣周邊海域鯨豚數量評估及生態環境之研究。
[37] 海洋委員會海洋保育署。(2022)。111年度臺灣鯨豚族群調查計畫。
[38] 周蓮香。(1997)。鯨類擱淺及意外死亡標本處理及研究(行政院農業委員會 84-86年度整合報告)。
[39] 海洋委員會海洋保育署。國內鯨豚、海龜擱淺事件統計。https://www.oca.gov.tw/ch/home.jsp?id=495&parentpath=0,299,396
[40] 經濟部能源局。(2021)。離岸風力發電區開發場址規劃申請作業要點(經能字第 11004602920 號).
[41] 海洋委員會海洋保育署。(2019)。108年度臺灣周邊鯨豚族群調查計畫。
[42] 海洋委員會海洋保育署。(2024)。鯨豚保育計畫。
[43] Wang, J. Y., Yang, S. C., & Hung, S. K. (2015). Diagnosability and description of a new subspecies of Indo-Pacific humpback dolphin, Sousa chinensis (Osbeck, 1765), from the Taiwan Strait. Zoological Studies, 54, 1–15.
[44] Wang, J. Y., & Araújo-Wang, C. (2018). Sousa chinensis ssp. taiwanensis (amended version of 2017 assessment). The IUCN Red List of Threatened Species,2018:e.T133710A122515524. https://dx.doi.org/10.2305/IUCN.UK.2017-3.RLTS.T133710A122515524.en. Accessed on 10 September 2024.
[45] 海洋委員會保育署。(2021)。臺灣白海豚保育計畫。
[46] 海洋委員會海洋保育署。臺灣海域白海豚保育專區。https://www.oca.gov.tw/ch/home.jsp?id=279&parentpath=0,6,178
[47] Urick, R. J. (2010). Principles of underwater sound (3rd ed., pp. 210, 383, 388). Westport, CT: Peninsula Publishing.
[48] Zykov, M. M., & Martin, S. B. (2024). Range versus frequency averaging of underwater propagation loss for soundscape modeling. The Journal of the Acoustical Society of America, 156(5), 3439–3445.
[49] Harrison, C., & Harrison, J. (1995). A simple relationship between frequency and range averages for broadband sonar. The Journal of the Acoustical Society of America, 97(2), 1314–1317.
[50] Wang, Z.-T., Au, W. W. L., Rendell, L., Wang, K.-X., Wu, H.-P., Wu, Y.-P., Liu, J.-C., Duan, G.-Q., Cao, H.-J., & Wang, D. (2016). Apparent source levels and active communication space of whistles of free-ranging Indo-Pacific humpback dolphins (Sousa chinensis) in the Pearl River Estuary and Beibu Gulf, China. PeerJ, 4, e1695.
[51] 林子皓(2013)。應用被動式聲學監測台灣西海岸中華白海豚行為生態與棲地利用〔博士論文,國立臺灣大學生態學與演化生物學研究所〕。臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/h68j92
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100189-
dc.description.abstract在全球能源轉型與淨零碳排的趨勢下,臺灣積極推動離岸風力發電,然而部分臺灣西部海域作為離岸風電的開發區域鄰近中華白海豚(Sousa Chinensis)的重要棲息環境,如何在推動綠色能源發展的同時兼顧海洋生態保育,成為一項關鍵議題。本研究旨在應用被動式聲學監測(Passive Acoustic Monitoring, PAM)技術,利用佈放於彰化外海的聲學測站資料,計算該區域的鯨豚聲訊密度(Acoustic Density),並深入分析影響其變化的關鍵參數,為未來制定精確的鯨豚保育策略提供科學依據。
本研究利用了兩筆水下聲學數據,第一筆來自於2019年至2021年雲林麥寮港附近裝設的二個被動式水下聲學測站,並結合目視團隊的目視調查紀錄,計算後續分析所使用的鯨豚哨叫聲平均發聲率(r ̂);第二筆資料為聲訊密度的主要計算資料,分析彰化外海2023年5月17日至5月30日期間,五個被動式聲學測站(UN1~UN5)共336小時的連續監測資料。透過密度估計公式,計算了各彰化外海測站每小時的聲訊密度值。結果顯示,聲訊密度在時空分佈上呈現顯著差異。例如,UN1測站於2023年5月17日5時的密度值達到1023.23隻/平方公里,而相近時段UN4測站偵測到多達801聲哨叫聲,其密度值卻僅為147.97隻/平方公里。此一結果顯示,哨叫聲數量並非影響聲訊密度值的唯一因素。
對聲訊密度的計算參數進行分析,在單一測站的聲訊密度變化中,哨叫聲數量是主要的影響參數,其對密度值具顯著正相關性,在跨測站比較時,偵測範圍的差異也成為影響聲訊密度值的重要參數。這種差異主要源於各測站所在環境因子的不同,包括噪音強度和音傳損耗。在五個測站間,噪音強度的差異不多,音傳損耗的計算頻率差異也不大,但UN1測站因其周圍海域噪音強度較高且底質為泥,可能因此導致其音傳損耗增加,偵測範圍小於其他測站,從而使其聲訊密度值被放大。此外,研究亦發現,哨叫聲發聲率的微小變動,會對聲訊密度計算結果產生巨大影響,凸顯了獲取準確本土化發聲率的重要性。
本研究提供了利用PAM資料計算聲訊密度的方法,其結果在時間與空間上均具備獨特的參考價值,此方法對海洋哺乳類動物監測與保育工作提供了初步的科學依據,未來若能擴大監測網絡、針對不同的時間與地點建立聲學資料庫,並結合目視調查資料進行驗證,將有助於提高聲訊密度估算的準確性,為實現經濟發展與生態永續的雙贏局面提供堅實的科學基礎。
zh_TW
dc.description.abstractIn response to global energy transition and net-zero carbon emissions, Taiwan is actively promoting offshore wind power. However, development in the western Taiwan Strait encroaches upon the critical habitats of the Indo-Pacific humpback dolphin (Sousa Chinensis). This study addresses the challenge of balancing green energy with marine conservation by applying Passive Acoustic Monitoring (PAM) technology. We utilized data from acoustic stations off the coast of Changhua to calculate cetacean Acoustic Density and analyze key influencing parameters, providing a scientific basis for conservation strategies.
The research uses two underwater acoustic datasets. The first, collected from 2019 to 2021 near Yunlin's Mailiao Port, combined with visual survey records, was used to calculate the average dolphin whistle production rate. The second, and primary, dataset consists of 336 hours of continuous monitoring from five PAM stations (UN1-UN5) off the coast of Changhua from May 17 to May 30, 2023. Using a density estimation formula, we calculated the hourly acoustic density for each station. Results revealed significant spatiotemporal variations. For example, UN1's density reached 1023.23 individuals/km² at 5:00 on May 17, 2023, while UN4, with 801 detected whistles in a similar period, yielded only 147.97 individuals/km². This indicates that the number of detected whistles is not the sole factor influencing acoustic density.
Our in-depth analysis of the density calculation parameters reveals that while whistle count is the primary influencing factor within a single station, the detection area is the dominant factor in cross-station comparisons. This is due to local environmental variables, such as ambient noise and seabed composition, which affect transmission loss. Specifically, station UN1's detection area was smaller than others, likely due to higher ambient noise and a muddy seabed, which increased acoustic transmission loss and inflated the calculated density. The study also highlights that even minor variations in the whistle production rate can significantly impact the density results, underscoring the need for accurate, localized data.
In conclusion, this research provides a robust method for calculating acoustic density using PAM data, offering valuable spatiotemporal insights for marine mammal conservation. Future efforts should focus on expanding the monitoring network and establishing a localized acoustic database to improve estimation accuracy and achieve a sustainable balance between development and preservation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:47:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:47:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 viii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.3 論文架構 7
第二章 研究方法 8
2.1 數據資料 8
2.1.1 彰化外海底碇式聲學資料 8
2.1.2 雲林沿海底碇式聲學資料 10
2.2 聲納方程式 10
2.3 偵測機率 12
2.4 距離平均(Range Average) 13
2.5 聲訊密度估算公式(Acoustic Density Estimation ) 14
第三章 結果與分析 16
3.1 哨叫聲數量n 16
3.2 哨叫聲發聲率r ̂ 18
3.3 偵測時間T 19
3.4 偵測範圍 a 19
3.3.1 聲源強度 20
3.3.2 噪音強度 20
3.3.3 音傳損耗 20
3.3.4 聲納效能指數及偵測範圍 22
3.5 偵測機率P ̂ 26
3.6 聲訊密度結果 27
3.7 偵測範圍分析 35
3.8 哨叫聲發聲率分析 40
第四章 結論與建議 42
4.1 結論 42
4.2 建議與未來展望 43
參考文獻 44
附錄A 鯨豚哨叫聲數量(n) 48
附錄B 偵測範圍(a) 49
附錄C 聲訊密度(D ̂) 50
-
dc.language.isozh_TW-
dc.subject被動式水下聲學監測zh_TW
dc.subject聲訊密度zh_TW
dc.subject鯨豚保育zh_TW
dc.subject中華白海豚zh_TW
dc.subjectPassive Acoustic Monitoring(PAM)en
dc.subjectSousa Chinensisen
dc.subjectIndo-Pacific humpback dolphinen
dc.subjectCetacean Conservationen
dc.subjectAcoustic Densityen
dc.title鯨豚聲訊密度估算法探討-以臺灣西部海域白海豚為例zh_TW
dc.titleAcoustic Density Estimation of Cetaceans - A Case Study of Sousa Chinensis off Western Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃維信;周蓮香;胡惟鈞zh_TW
dc.contributor.oralexamcommitteeWei-Shien Hwang;Lien-Siang Chou;Wei-Chun Huen
dc.subject.keyword被動式水下聲學監測,聲訊密度,鯨豚保育,中華白海豚,zh_TW
dc.subject.keywordPassive Acoustic Monitoring(PAM),Acoustic Density,Cetacean Conservation,Indo-Pacific humpback dolphin,Sousa Chinensis,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202504378-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2030-08-10-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-10
4.26 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved