Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100188
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳琪芳zh_TW
dc.contributor.advisorChi-Fang Chenen
dc.contributor.author許立雙zh_TW
dc.contributor.authorLi-Shuang Hsuen
dc.date.accessioned2025-09-24T16:47:26Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation1. O. Hoegh-Guldberg, P. J. Mumby, A. J. Hooten, R. S. Steneck, P. Greenfield, E. Gomez, C. D. Harvell, P. F. Sale, A. J. Edwards, K. Caldeira, N. Knowlton, C. M. Eakin, R. Iglesias-Prieto, N. Muthiga, R. H. Bradbury, A. Dubi, and M. E. Hatziolos, "Coral reefs under rapid climate change and ocean acidification," Science 318, 1737–1742 (2007).
2. K. J. Kroeker, R. L. Kordas, R. Crim, I. E. Hendriks, L. Ramajo, G. S. Singh, C. M. Duarte, and J.-P. Gattuso, "Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming," Global Change Biology 19, 1884–1896 (2013).
3. M. Fujiwara and H. Caswell, "Demography of the endangered North Atlantic right whale," Nature 414, 537–541 (2001).
4. NOAA Fisheries, North Atlantic right whale, https://www.fisheries.noaa.gov/species/north-atlantic-right-whale/overview, accessed August 1, 2025.
5. J. G. Cooke, "Eubalaena glacialis (errata version published in 2020)," The IUCN Red List of Threatened Species 2020: e.T41712A178589687 (2020).
6. D. W. Laist, A. R. Knowlton, J. G. Mead, A. S. Collet, and M. Podesta, "Collisions between ships and whales," Marine Mammal Science 17, 35–75 (2001).
7. S. D. Kraus, M. W. Brown, H. Caswell, C. W. Clark, M. Fujiwara, P. K. Hamilton, R. D. Kenney, A. R. Knowlton, S. Landry, C. A. Mayo, W. A. McLellan, M. J. Moore, D. P. Nowacek, D. A. Pabst, A. J. Read, and R. M. Rolland, "North Atlantic right whales in crisis," Science 309, 561–562 (2005).
8. R. S. Sousa-Lima, T. F. Norris, J. N. Oswald, and D. P. Fernandes, A review and inventory of fixed autonomous recorders for R. S. Sousa-Lima, T. F. Norris, J. N. Oswald, and D. P. Fernandes, "A review and inventory of fixed autonomous recorders for passive acoustic monitoring of marine mammals," Aquatic Mammals 39, 23–53 (2013).
9. W. M. Zimmer, Passive acoustic monitoring of cetaceans (Cambridge University Press, 2011).
10. M. Picciulin, L. Kéver, E. Parmentier, and M. Bolgan, "Listening to the unseen: passive acoustic monitoring reveals the presence of a cryptic fish species," Aquatic Conservation: Marine and Freshwater Ecosystems 29, 202–210 (2019).
11. S. D. Kraus and R. M. Rolland, The urban whale: North Atlantic right whales at the crossroads (Harvard University Press, 2009).
12. W. Perrin, Encyclopedia of marine mammals (Academic Press, 2009).
13. Wikipedia, North Atlantic right whale, https://en.wikipedia.org/wiki/North_Atlantic_right_whale, accessed August 1, 2025.
14. E. M. Oleson, J. Baker, J. Barlow, J. E. Moore, and P. Wade, North Atlantic right whale monitoring and surveillance: report and recommendations of the national marine fisheries service’s expert working group (2020).
15. K. T. Davies and S. W. Brillant, "Mass human-caused mortality spurs federal action to protect endangered North Atlantic right whales in Canada," Marine Policy 104, 157–162 (2019).
16. S. E. Parks and P. L. Tyack, "Sound production by North Atlantic right whales (Eubalaena glacialis) in surface active groups," The Journal of the Acoustical Society of America 117, 3297–3306 (2005).
17. S. E. Parks, C. W. Clark, P. L. Tyack, and S. L. Mayo, "The gunshot sound produced by male North Atlantic right whales (Eubalaena glacialis) and its potential function in reproductive advertisement," Marine Mammal Science 21, 458–475 (2005).
18. C. W. Clark, Acoustic communication and behavior of the southern right whale (1982).
19. J. Matthews, M. L. Parks, and S. E. Parks, "Vocalisation rates of the North Atlantic right whale (Eubalaena glacialis)," Journal of Cetacean Research and Management 3, 271–282 (2001).
20. S. D. Kraus and J. Hatch, "Mating strategies in the North Atlantic right whale (Eubalaena glacialis)," Journal of Cetacean Research and Management 2, 237–244 (2001).
21. L. P. Matthews and S. E. Parks, "An overview of North Atlantic right whale acoustic behavior, hearing capabilities, and responses to sound," Marine Pollution Bulletin 173, 113043 (2021).
22. M. P. Johnson and P. L. Tyack, "A digital acoustic recording tag for measuring the response of wild marine mammals to sound," IEEE Journal of Oceanic Engineering 28, 3–12 (2003).
23. V. M. Janik and L. S. Sayigh, "Communication in bottlenose dolphins: 50 years of signature whistle research," Journal of Comparative Physiology A 199, 479–489 (2013).
24. G. M. Wenz, "Acoustic ambient noise in the ocean: spectra and sources," The Journal of the Acoustical Society of America 34, 1936–1956 (1962).
25. P. T. Arveson and D. J. Vendittis, "Radiated noise characteristics of a modern cargo ship," The Journal of the Acoustical Society of America 107, 118–129 (2000).
26. M. Raimbault and D. Dubois, "Urban soundscapes: Experiences and knowledge," Cities 22, 339–350 (2005).
27. B. C. Pijanowski, A. J. Farina, A. G. Gage, S. H. Dumyahn, and B. L. Krause, "What is soundscape ecology? An introduction and overview of an emerging new science," Landscape Ecology 26, 1213–1232 (2011).
28. C. M. Duarte, S. Kaplan, S. J. Chu, D. Paulsen, M. E. Dobson, S. B. Hines, R. L. Vance, R. A. Aguilar, C. E. Benítez-Nelson, and B. R. S. De Monte, "The soundscape of the Anthropocene ocean," Science 371, eaba4658 (2021).
29. J. Sueur and A. Farina, "Ecoacoustics: the ecological investigation and interpretation of environmental sound," Biosemiotics 8, 493–502 (2015).
30. I. F. Welfare, Understanding sources ocean noise pollution (n.d.).
31. N. Pieretti, G. Farina, and S. Morri, "Marine soundscape as an additional biodiversity monitoring tool: a case study from the Adriatic Sea (Mediterranean Sea)," Ecological Indicators 83, 13–20 (2017).
32. D. Gillespie, M. Caillat, J. Gordon, and P. White, "Automatic detection and classification of odontocete whistles," The Journal of the Acoustical Society of America 134, 2427–2437 (2013).
33. S. Datta and C. Sturtivant, "Dolphin whistle classification for determining group identities," Signal Processing 82, 251–258 (2002).
34. K. M. Stafford, C. G. Fox, and D. S. Clark, "Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean," The Journal of the Acoustical Society of America 104, 3616–3625 (1998).
35. T. A. Marques, L. Thomas, S. W. Martin, D. K. Mellinger, J. A. Ward, D. J. Moretti, D. Harris, and P. L. Tyack, "Estimating animal population density using passive acoustics," Biological Reviews 88, 287–309 (2013).
36. T. Akamatsu, T. Ura, H. Sugimatsu, R. Bahl, S. Behera, S. Panda, M. Khan, S. K. Kar, C. S. Kar, S. Kimura, and Y. Sasaki-Yamamoto, "A multimodal detection model of dolphins to estimate abundance validated by field experiments," The Journal of the Acoustical Society of America 134, 2418–2426 (2013).
37. J. Luo, Y. Han, and L. Fan, "Underwater acoustic target tracking: A review," Sensors 18, 112 (2018).
38. X. Su, I. Ullah, X. Liu, and D. Choi, "A review of underwater localization techniques, algorithms, and challenges," Journal of Sensors 2020, 6403161 (2020).
39. V. Krishnaveni, T. Kesavamurthy, and B. Aparna, "Beamforming for direction-of-arrival (DOA) estimation—a survey," International Journal of Computer Applications 61, 11 (2013).
40. P. J. Miller and P. L. Tyack, "A small towed beamforming array to identify vocalizing resident killer whales (Orcinus orca) concurrent with focal behavioral observations," Deep Sea Research Part II: Topical Studies in Oceanography 45, 1389–1405 (1998).
41. C. Gervaise, Y. Simard, F. Aulanier, and N. Roy, "Optimizing passive acoustic systems for marine mammal detection and localization: Application to real-time monitoring north Atlantic right whales in Gulf of St. Lawrence," Applied Acoustics 178, 107949 (2021).
42. M. H. Laurinolli, A. E. Hay, F. Desharnais, and C. T. Taggart, "Localization of North Atlantic right whale sounds in the Bay of Fundy using a sonobuoy array," Marine Mammal Science 19, 708–723 (2003).
43. P. Giraudet and H. Glotin, "Real-time 3D tracking of whales by echo-robust precise TDOA estimates with a widely-spaced hydrophone array," Applied Acoustics 67, 1106–1117 (2006).
44. 李威倫。海豚哨叫聲偵測之研究(碩士論文,國立臺灣大學工程科學及海洋工程研究所)。臺灣博碩士論文知識加值系統(2018)。
45. 朱韋諺。中華白海豚哨叫聲偵測、模擬與定位之研究(碩士論文,國立臺灣大學工程科學及海洋工程研究所)。臺灣博碩士論文知識加值系統(2020)。
46. C.-T. Hung, W.-Y. Chu, W.-L. Li, Y.-H. Huang, W.-C. Hu, and C.-F. Chen, "A case study of whistle detection and localization for humpback dolphins in Taiwan," J. Mar. Sci. Eng. 9, 725 (2021).
47. P. Lourenço, P. Batista, P. Oliveira, C. Silvestre, and P. Chen, "A received signal strength indication-based localization system," in 21st Mediterranean Conference on Control and Automation, 25-28 June 2013.
48. M. I. Jais, P. Ehkan, R. B. Ahmad, I. Ismail, T. Sabapathy, and M. Jusoh, "Review of angle of arrival (AOA) estimations through received signal strength indication (RSSI) for wireless sensors network (WSN)," in 2015 International Conference on Computer, Communications, and Control Technology (I4CT), 21-23 April 2015.
49. 陳昶志。海洋聲源偵測與定位研究(碩士論文,國立臺灣大學工程科學及海洋工程研究所)。臺灣博碩士論文知識加值系統(2022)。
50. E. Nosal and L. Frazer, "Delays between direct and reflected arrivals used to track a single sperm whale," Appl. Acoust. 62, 1187–1201 (2006).
51. DCLDE 2013, https://soi.st-andrews.ac.uk/dclde2013/, accessed August 1, 2025.
52. DCLDE 2015, https://www.cetus.ucsd.edu/dclde/, accessed August 1, 2025.
53. DCLDE 2018, https://sabiod.lis-lab.fr/dclde/, accessed August 1, 2025.
54. DCLDE 2022, https://www.soest.hawaii.edu/ore/dclde/, accessed August 1, 2025.
55. Nederlandse Organisatie voor Toegepast Natuurwetenschappelijk Onderzoek(TNO). DCLDE 2024, https://dclde2024.com/, accessed August 1, 2025.
56. Ultra Maritime, Directional Frequency Analysis Recorder AN/SSQ-53F DIFAR Sonobuoy.
57. Ultra Maritime, Passive Directional Sonobuoy AN/SSQ-53D(3).
58. B. H. Maranda, Calibration Factors for DIFAR Processing, National Defence Canada, Defence R&D Canada (2001).
59. The Coastal Environmental Observation Technology and Research(CEOTR). Coastal Environmental Observation Technology and Research glider operations and deployments. http://ceotr.ocean.dal.ca/gliders/, accessed August 13, 2020.
60. K. V. Mackenzie, "Nine‐term equation for sound speed in the oceans," J. Acoust. Soc. Am. 70, 807–812 (1981).
61. Y. T. Chan and K. C. Ho, "A simple and efficient estimator for hyperbolic location," IEEE Trans. Signal Process. 42, 1905–1915 (1994).
62. F. Gustafsson and F. Gunnarsson, "Positioning using time-difference of arrival measurements," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) (2003).
63. R. Kaune, "Accuracy studies for TDOA and TOA localization," in Proc. 15th Int. Conf. Information Fusion, (2012).
64. A. M. Thode, T. S. J. Mellinger, S. Rankin, M. S. Soldevilla, B. Martin, and K. H. Kim, "Displaying bioacoustic directional information from sonobuoys using 'azigrams'," J. Acoust. Soc. Am. 146, 95–102 (2019).
65. J. B. Allen and L. R. Rabiner, "A unified approach to short-time Fourier analysis and synthesis," Proc. IEEE 65, 1558–1564 (1977).
66. J. A. Mann III, J. Tichy, and A. J. Romano, "Instantaneous and time‐averaged energy transfer in acoustic fields," J. Acoust. Soc. Am. 82, 17–30 (1987).
67. F. Fahy, Sound Intensity (CRC Press, 2017).
68. National Centers for Environmental Information (NCEI), Magnetic Declination Estimated Value, https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml, accessed August 1, 2025.
69. Wikipedia, Magnetic declination, https://en.wikipedia.org/wiki/Magnetic_declination, accessed August 1, 2025..
70. Z. I. Botev, J. F. Grotowski, and D. P. Kroese, "Kernel density estimation via diffusion," Ann. Stat. 38, 2916–2957 (2010).
71. Wikipedia, Kernel density estimation, https://en.wikipedia.org/wiki/Kernel_density_estimation, accessed August 1, 2025.
72. R. McGill, J. W. Tukey, and W. A. Larsen, "Variations of box plots," Am. Stat. 32, 12–16 (1978).
73. D. Doyle, David's Statistics - Notched Box Plots, https://sites.google.com/site/davidsstatistics/graphical-methods/notched-box-plots?authuser=0, accessed August 1, 2025.
74. M. B. Porter, The Bellhop Manual and User’s Guide: Preliminary Draft, Heat, Light, and Sound Research, Inc., La Jolla, CA, USA, Tech. Rep. 260 (2011).
75. National Oceanic and Atmospheric Administration (NOAA), ETOPO Global Relief Model 2022, NOAA, https://www.ncei.noaa.gov/products/etopo-global-relief-model, accessed August 10, 2025.
76. J. H. Hain, J. D. Hampp, S. A. McKenney, J. A. Albert, and R. D. Kenney, "Swim speed, behavior, and movement of North Atlantic right whales (Eubalaena glacialis) in coastal waters of northeastern Florida, USA," PLoS ONE 8, e54340 (2013).
77. S. D. Kraus and J. J. Hatch, "Mating strategies in the North Atlantic right whale (Eubalaena glacialis)," J. Cetacean Res. Manage. 2, 237–244 (2001).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100188-
dc.description.abstract本研究基於 2024 年海洋哺乳動物的偵測、分類、定位和密度估計研討會(The Detection, Classification, Localization and Density Estimation of marine mammals workshop, DCLDE)提供的聖羅倫斯灣北大西洋露脊鯨聲學數據集,分析了兩種聲源定位演算法:到達時間差法(Time Difference of Arrival, TDOA)與到達方向法(Direction of Arrival , DOA)。
在研究方法部分,TDOA 法利用接收訊號的時間差,結合地圖網格統計,計算各網格點的理論到達時間差與實際接收時間差的差異,再透過高斯擴散來推估聲源位置。而 DOA 法則整合了聲納浮標中全向性(omni-channel)與指向性(DIFAR channel)的資料,計算「方位圖(Azigram)」獲得時間與方位角之關係後,透過核密度估計計算方位角之機率。將多組機率結果疊加後,機率最高處即被認定為聲源位置。
為驗證TDOA定位方法的可行性,先進行了聲源模擬,並以此聲源進行定位驗證。模擬聲源之定位結果顯示,最佳定位誤差可達 42.56 公尺,整體定位誤差約為 189 公尺。在確認模擬實驗的有效性後,本研究將 TDOA 與 DOA 方法應用於 DCLDE的數據集進行比較分析。結果顯示,兩種方法均能有效推估北大西洋露脊鯨的可能移動趨勢,並且此方法具備初步辨識群次數量的能力。
本研究證明被動聲學監測技術是一種高效且具成本效益的工具,可用於輔助鯨豚目視調查與長期生態追蹤。
zh_TW
dc.description.abstractThis study is based on an acoustic dataset of North Atlantic right whales in the Gulf of St. Lawrence, provided by 2024 The Detection, Classification, Localization and Density Estimation of marine mammals workshop. Two sound source localization algorithms were analyzed: the Time Difference of Arrival (TDOA) method and the Direction of Arrival (DOA) method.
In the TDOA approach, time differences between received signals were compared with theoretical values across a map grid. These differences were used to estimate the sound source location by applying a Gaussian distribution to highlight the most probable area. The DOA approach utilized both omni-channel and DIFAR channel data collected from the sonobuoy. By constructing an “Azigram” to examine the relationship between time and bearing, kernel density estimation was applied to calculate the probability distribution of bearing angles. The probability results from multiple sonobuoys were combined, and the location with the highest overall likelihood was identified as the estimated sound source position.
To validate the TDOA method, a simulated sound source was created, and localization accuracy was assessed. The best-case localization error reached 42.56 meters, with an overall average of approximately 189 meters. After confirming the effectiveness of the simulation, both TDOA and DOA methods were applied to the actual DCLDE dataset for comparative analysis. The results showed that both methods could effectively infer the likely movement patterns of North Atlantic right whales and demonstrated potential in providing preliminary insights into group number estimation.
This study highlights passive acoustic monitoring as an effective and cost-efficient tool for supporting visual surveys and long-term ecological monitoring of marine mammals.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:47:26Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:47:26Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
謝誌 ii
摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 ix
符號表 x
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 北大西洋露脊鯨 2
1.2.2 被動聲學監測 6
1.2.3 水下定位 7
1.3 論文架構 10
第二章 DCLDE數據集 11
2.1 實驗儀器與佈放 13
2.2 鳴音標記資料 17
2.3 聲速資料 17
第三章 研究方法 19
3.1 到達時間差定位法(Time Different of Arrival, TDOA) 19
3.2 到達方向定位法(Direction of Arrival, DOA) 24
第四章 模擬實驗與分析 30
4.1 Bellhop聲線模型 30
4.2 模擬參數設定 32
4.3 模擬結果與分析 34
第五章 數據集定位結果與討論 37
5.1 DAY1定位結果與討論 37
5.2 DAY2 定位結果與討論 40
5.3 TDOA與DOA結果比較與誤差來源分析 46
第六章 結論與建議 49
6.1 結論 49
6.2 建議 50
參考文獻 51
附錄A 盒鬚圖 57
附錄B TDOA與DOA定位結果誤差 59
-
dc.language.isozh_TW-
dc.subject水下定位zh_TW
dc.subject到達時間差zh_TW
dc.subject到達方向zh_TW
dc.subject被動聲學監測zh_TW
dc.subject水下聲學zh_TW
dc.subjectUnderwater acousticen
dc.subjectUnderwater localizationen
dc.subjectTime difference of arrivalen
dc.subjectDirection of arrivalen
dc.subjectPassive acoustic monitoringen
dc.title聖羅倫斯灣北大西洋露脊鯨水下音響定位研究zh_TW
dc.titleStudy of Underwater Acoustic Localization of Northern Atlantic Right Whale in Gulf of Saint Lawrenceen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃維信;方銀營;洪靖唐zh_TW
dc.contributor.oralexamcommitteeWei-Shien Hwang;Yin-Ying Fang;Ching-Tang Hungen
dc.subject.keyword水下定位,到達時間差,到達方向,被動聲學監測,水下聲學,zh_TW
dc.subject.keywordUnderwater localization,Time difference of arrival,Direction of arrival,Passive acoustic monitoring,Underwater acoustic,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU202504246-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-lift2030-08-10-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-10
7.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved