請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100182完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳縕儂 | zh_TW |
| dc.contributor.advisor | Yun-Nung Chen | en |
| dc.contributor.author | 林宗聖 | zh_TW |
| dc.contributor.author | Tzung-Sheng Lin | en |
| dc.date.accessioned | 2025-09-24T16:46:15Z | - |
| dc.date.available | 2025-09-25 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] G. Anderson, E. Hart, D. Gkatzia, and I. Beaver. An open intent discovery evaluation framework. In Proceedings of the 25th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 760–769, 2024.
[2] I. Casanueva, T. Temčinas, D. Gerz, M. Henderson, and I. Vulić. Efficient intent detection with dual sentence encoders. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 38–45, 2020. [3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, 2019. [4] T. Gao, X. Yao, and D. Chen. SimCSE: Simple contrastive learning of sentence embeddings. arXiv preprint arXiv:2104.08821, 2021. [5] M. Hong, Y. Song, D. Jiang, W. Ng, Y. Sun, and C. J. Zhang. Dial-in LLM: Human-aligned dialogue intent clustering with LLM-in-the-loop. arXiv preprint arXiv:2412.09049, 2024. [6] S. Larson, A. Mahendran, J. J. Peper, C. Clarke, A. Lee, P. Hill, J. K. Kummerfeld, K. Leach, M. A. Laurenzano, L. Tang, et al. An evaluation dataset for intent classification and out-of-scope prediction. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1311–1316, 2019. [7] H. Lin, L. Ma, J. Zhu, L. Xiang, Y. Zhou, J. Zhang, and C. Zong. CSDS: A fine-grained Chinese dataset for customer service dialogue summarization. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 4436–4451, 2021. [8] P. Liu, Y. Ning, K. K. Wu, K. Li, and H. Meng. Open intent discovery through unsupervised semantic clustering and dependency parsing. arXiv preprint arXiv:2104.12114, 2021. [9] J. MacQueen. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Statistics, volume 5, pages 281–298. University of California Press, 1967. [10] A. C. Müller and S. Guido. Introduction to Machine Learning with Python: A Guide for Data Scientists. O’Reilly Media, Inc., 2016. [11] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, 2014. [12] N. Reimers and I. Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, 2019. [13] X. Shen, Y. Sun, Y. Zhang, and M. Najmabadi. Semi-supervised intent discovery with contrastive learning. In Proceedings of the 3rd Workshop on Natural Language Processing for Conversational AI, pages 120–129, 2021. [14] H. Xu, B. Liu, L. Shu, and P. Yu. Open-world learning and application to product classification. In The World Wide Web Conference, pages 3413–3419, 2019. [15] J. Xu, P. Wang, G. Tian, B. Xu, J. Zhao, F. Wang, and H. Hao. Short text clustering via convolutional neural networks. In Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing, pages 62–69, 2015. [16] H. Zhang, H. Xu, T.-E. Lin, and R. Lyu. Discovering new intents with deep aligned clustering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages 14365–14373, 2021. [17] H. Zhang, H. Xu, X. Wang, F. Long, and K. Gao. A clustering framework for unsupervised and semi-supervised new intent discovery. IEEE Transactions on Knowledge and Data Engineering, 36(11):5468–5481, 2023. [18] S. Zhang, J. Yang, J. Bai, C. Yan, T. Li, Z. Yan, and Z. Li. New intent discovery with attracting and dispersing prototype. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 12193–12206, 2024. [19] Y. Zhang, H. Zhang, L.-M. Zhan, X.-M. Wu, and A. Lam. New intent discovery with pre-training and contrastive learning. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 256–269, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100182 | - |
| dc.description.abstract | 在開放世界的對話系統中,使用者輸入的語句可能包含訓練階段未曾出現的意圖,因此「新意圖探勘」成為一項關鍵任務。
本研究提出一套創新的新意圖探勘與命名架構,結合對比學習與凍結的大型語言模型嵌入向量,在保留預訓練模型泛化能力的同時,學得具辨識性的語意表示。我們設計的模組化流程將嵌入生成、語意表示學習與聚類三個階段明確分離,具備高度彈性,可因應未來大型語言模型嵌入向量或聚類技術的演進而彈性替換或擴充。為提升實務應用中的可解釋性,我們進一步引入自動命名機制,為新探勘出的意圖指派具可讀性的語意標籤。此一面向在過去文獻中常被忽略,或受限於固定命名模板,然而對於實際部署至關重要。 此外,我們亦提出一套基於命名的評估方法,量化模型所產生之意圖名稱與人工標註名稱的一致性,直接反映意圖探勘結果的語意品質。我們在多項標準資料集及一套具挑戰性的真實多輪對話語音轉文字之資料上進行實驗,驗證本方法在效能、泛化能力與穩健性上的優勢。 | zh_TW |
| dc.description.abstract | Open-world dialogue systems must address utterances with evolving intents not seen during training, making new intent discovery (NID) essential.
This paper proposes a novel NID framework that combines contrastive learning with frozen large language model (LLM) embeddings to generate discriminative representations without compromising pretrained generalization. Our modular pipeline explicitly separates embedding generation, representation learning, and clustering, enabling flexible integration of future advances in LLMs and clustering techniques. To improve practical interpretability, we introduce an automated naming mechanism that assigns human-readable labels to newly discovered intents, which is often an overlooked but critical component in real-world deployment. We further present a naming-based evaluation framework to directly assess the quality of intent discovery by measuring alignment between system-generated and human-annotated intent names. Experiments on benchmarks and a challenging in-house dataset of multi-turn ASR transcripts demonstrate the effectiveness, generalizability, and robustness of our approach. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:46:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:46:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 Introduction 1 Chapter 2 TENN (Tracking Evolving Needs and Naming) 5 2.1 TENN (Tracking Evolving Needs and Naming) 5 2.1.1 Problem Definition 5 2.1.2 Proposed Framework 6 2.1.3 Training – Contrastive Learning for Utterance Projection 7 2.1.4 Testing – Projection and Clustering 8 2.1.5 Testing – Seen Intent Assignment 9 2.1.6 Testing – Unseen Intent Discovery and Naming 9 Chapter 3 Experiments 11 3.1 Experiments 11 3.1.1 Datasets 11 3.1.1.1 BANKING77 11 3.1.1.2 CSDS 12 3.1.1.3 IN-HOUSE BANKCALL 12 3.1.2 Experimental Setup 13 3.1.3 Baselines 13 3.1.4 Metrics 16 3.1.5 New Intent Discovery Results 17 3.1.6 New Intent Discovery and Naming Results 19 Chapter 4 Conclusion 22 4.1 Conclusion 22 References 23 | - |
| dc.language.iso | en | - |
| dc.subject | 意圖命名 | zh_TW |
| dc.subject | 對比學習 | zh_TW |
| dc.subject | 新意圖探勘 | zh_TW |
| dc.subject | 對話系統 | zh_TW |
| dc.subject | 大型語言模型 | zh_TW |
| dc.subject | Dialogue Systems | en |
| dc.subject | Intent Naming | en |
| dc.subject | Large Language Models | en |
| dc.subject | Contrastive Learning | en |
| dc.subject | New Intent Discovery | en |
| dc.title | 基於人與人對話進行未知使用者意圖探勘、建構及命名方法 | zh_TW |
| dc.title | Unseen User Intent Discovery and Induction from Human-Human Conversations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫紹華;陳重吉 | zh_TW |
| dc.contributor.oralexamcommittee | Shao-Hua Sun;Chung-Chi Chen | en |
| dc.subject.keyword | 新意圖探勘,對比學習,大型語言模型,意圖命名,對話系統, | zh_TW |
| dc.subject.keyword | New Intent Discovery,Contrastive Learning,Large Language Models,Intent Naming,Dialogue Systems, | en |
| dc.relation.page | 26 | - |
| dc.identifier.doi | 10.6342/NTU202504217 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2028-12-31 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 3.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
