Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳世芳zh_TW
dc.contributor.advisorShih-Fang Chenen
dc.contributor.author陳思齊zh_TW
dc.contributor.authorSsu-Chi Chenen
dc.date.accessioned2025-09-24T16:43:54Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation陳世芳、戴登燦(2012)。臺中地區不同栽培類型番茄與行銷通路之效益分析。臺中區農業改良場研究彙報,116,1-13。
Ambrus, B., Teschner, G., Kovács, A. J., Neményi, M., Helyes, L., Pék, Z., Takács, S., Alahmad, T., and Nyéki, A. (2024). Field-grown tomato yield estimation using point cloud segmentation with 3D shaping and RGB pictures from a field robot and digital single lens reflex cameras. Heliyon, 10(20). https://doi.org/10.1016/j.heliyon.2024.e37997
Andrade-Sanchez, P., Gore, M. A., Heun, J. T., Thorp, K. R., Carmo-Silva, A. E., French, A. N., Salvucci, M, E., and White, J. W. (2013). Development and evaluation of a field-based high-throughput phenotyping platform. Functional Plant Biology, 41(1), 68-79. https://doi.org/10.1071/FP13126
Ayenan, M. A. T., Danquah, A., Hanson, P., Ampomah-Dwamena, C., Sodedji, F. A. K., Asante, I. K., and Danquah, E. Y. (2019). Accelerating breeding for heat tolerance in tomato (Solanum lycopersicum L.): an integrated approach. Agronomy, 9(11), 720. https://doi.org/10.3390/agronomy9110720
Barker III, J., Zhang, N., Sharon, J., Steeves, R., Wang, X., Wei, Y., and Poland, J. (2016). Development of a field-based high-throughput mobile phenotyping platform. Computers and Electronics in Agriculture, 122, 74-85. https://doi.org/10.1016/j.compag.2016.01.017
Cappetta, E., Andolfo, G., Guadagno, A., Di Matteo, A., Barone, A., Frusciante, L., and Ercolano, M. R. (2021). Tomato genomic prediction for good performance under high-temperature and identification of loci involved in thermotolerance response. Horticulture Research, 8. https://doi.org/10.1038/s41438-021-00647-3
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., and Zagoruyko, S. (2020, August). End-to-end object detection with transformers. In European Conference on Computer Vision (pp. 213-229). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-58452-8_13
Davies, J. N., Hobson, G. E., and McGlasson, W. B. (1981). The constituents of tomato fruit—the influence of environment, nutrition, and genotype. Critical Reviews in Food Science & Nutrition, 15(3), 205-280. https://doi.org/10.1080/10408398109527317
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghan, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2010.11929
Fernández-Crespo, E., Liu-Xu, L., Albert-Sidro, C., Scalschi, L., Llorens, E., González-Hernández, A. I., Crespo., O., Gonzalez-Bosch, C., Camañes, G., García-Agustín, P., and Vicedo, B. (2022). Exploiting tomato genotypes to understand heat stress tolerance. Plants, 11(22), 3170. https://doi.org/10.3390/plants11223170
Food and Agriculture Organization Statistical Database. (2023). Crops and livestock products (QCL). FAOSTAT Database. Retrieved May 11, 2025, from https://www.fao.org/faostat/en/#data/QCL/visualize
Furbank, R. T., and Tester, M. (2011). Phenomics–technologies to relieve the phenotyping bottleneck. Trends in Plant Science, 16, 635–644. https://doi.org/10.1016/j.tplants.2011.09.005
Gill, T., Gill, S. K., Saini, D. K., Chopra, Y., de Koff, J. P., and Sandhu, K. S. (2022). A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics, 2(3), 156-183. https://doi.org/10.1007/s43657-022-00048-z
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies for. accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 580-587). https://doi.org/10.1109/CVPR.2014.81
Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). https://doi.org/10.1109/ICCV.2015.169
Gonzalo, M. J., Nájera, I., Baixauli, C., Gil, D., Montoro, T., Soriano, V., Olivieri, F., Rigano, M, M., Ganeva, D., Grozeva-Tileva, S., Pevicharova, G., Barone, A., Granell, A., and Monforte, A. J. (2021). Identification of tomato accessions as source of new genes for improving heat tolerance: From controlled experiments to field. BMC Plant Biology, 21, 1-28. https://doi.org/10.1186/s12870-021-03104-4
Gu, Z., Ma, X., Guan, H., Jiang, Q., Deng, H., Wen, B., Zhu, T., and Wu, X. (2024). Tomato fruit detection and phenotype calculation method based on the improved RTDETR model. Computers and Electronics in Agriculture, 227, 109524. https://doi.org/10.1016/j.compag.2024.109524
Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017, July). On calibration of modern neural networks. In International Conference on Machine Learning (pp. 1321-1330). PMLR. arXiv:1706.04599
Jobson, D. J., Rahman, Z. U., and Woodell, G. A. (1997). A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Transactions on Image processing, 6(7), 965-976. https://doi.org/10.1109/83.597272
Jocher, G., Qiu, J., and Chaurasia, A. (2023). Ultralytics YOLO (Version 8.0.0) [Computer software]. https://github.com/ultralytics/ultralytics
Ke, B., Obukhov, A., Huang, S., Metzger, N., Daudt, R. C., and Schindler, K. (2024). Repurposing diffusion-based image generators for monocular depth estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 9492-9502). https://doi.org/10.1109/CVPR52733.2024.00907
Kendall, A., and Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision?. Advances in Neural Information Processing Systems, 30. arXiv:1703.04977
Khanam, R., and Hussain, M. (2024). Yolov11: An overview of the key architectural enhancements. https://doi.org/10.48550/arXiv.2410.17725
Köhl, K., and Gremmels, J. (2015). A software tool for the input and management of phenotypic data using personal digital assistants and other mobile devices. Plant Methods, 11, 1-10. https://doi.org/10.1186/s13007-015-0069-3
Land, E. H., and McCann, J. J. (1971). Lightness and retinex theory. Journal of the Optical society of America, 61(1), 1-11. https://doi.org/10.1364/JOSA.61.000001
Li, D., Quan, C., Song, Z., Li, X., Yu, G., Li, C., and Muhammad, A. (2021). High-throughput plant phenotyping platform (HT3P) as a novel tool for estimating agronomic traits from the lab to the field. Frontiers in Bioengineering and Biotechnology, 8, 623705. https://doi.org/10.3389/fbioe.2020.623705
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C. Y., and Berg, A. C. (2016). Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14 (pp. 21-37). Springer International Publishing. https://doi.org/10.1007/978-3-319-46448-0_2
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021). Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 10012-10022). https://doi.org/10.1109/ICCV48922.2021.00986
Malik, M. H., Zhang, T., Li, H., Zhang, M., Shabbir, S., and Saeed, A. (2018). Mature tomato fruit detection algorithm based on improved HSV and watershed algorithm. IFAC-PapersOnLine, 51(17), 431-436. https://doi.org/10.1016/j.ifacol.2018.08.183
Mueller-Sim, T., Jenkins, M., Abel, J., and Kantor, G. (2017). The Robotanist: A ground-based agricultural robot for high-throughput crop phenotyping. 2017 IEEE International Conference on Robotics and Automation (ICRA), (pp. 3634–3639). https://doi.org/10.1109/ICRA.2017.7989418
Ningsih, L., and Cholidhazia, P. (2022). Classification Of Tomato Maturity Levels Based on RGB And HSV Colors Using KNN Algorithm. RIGGS: Journal of Artificial Intelligence and Digital Business, 1(1), 25-30. https://doi.org/10.31004/riggs.v1i1.10
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 779-788). https://doi.org/10.1109/CVPR.2016.91
Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
Reynolds, D., Ball, J., Bauer, A., Davey, R., Griffiths, S., and Zhou, J. (2019). CropSight: a scalable and open-source information management system for distributed plant phenotyping and IoT-based crop management. Gigascience, 8(3), giz009. https://doi.org/10.1093/gigascience/giz009
Sato, S., Peet, M. M., and Thomas, J. F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell & Environment, 23(7), 719-726. https://doi.org/10.1046/j.1365-3040.2000.00589.x
Seo, D., Cho, B. H., and Kim, K. C. (2021). Development of monitoring robot system for tomato fruits in hydroponic greenhouses. Agronomy, 11(11), 2211. https://doi.org/10.3390/agronomy11112211
Tan, M., and Le, Q. (2021, July). Efficientnetv2: Smaller models and faster training. In International conference on machine learning (pp. 10096-10106). PMLR. arXiv:2104.00298
Tripodi, P., Massa, D., Venezia, A., and Cardi, T. (2018). Sensing technologies for precision phenotyping in vegetable crops: current status and future challenges. Agronomy, 8(4), 57. https://doi.org/10.3390/agronomy8040057
United States Department of Agriculture. (1997). United States standards for grades of fresh tomatoes (Effective October 1, 1991, Reprinted January 1997). Agricultural Marketing Service, Fruit and Vegetable Division. https://www.ams.usda.gov/sites/default/files/media/Tomato_Standard%5B1%5D.pdf
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, T and Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30. arXiv:1706.03762
Wada, K. (2018). Labelme: Image Polygonal Annotation with Python. [Computer software]. GitHub. https://github.com/wkentaro/labelme
Wang, Y., Sun, C., Ye, Z., Li, C., Huang, S., and Lin, T. (2024). The genomic route to tomato breeding: Past, present, and future. Plant Physiology, 195(4), 2500-2514. https://doi.org/10.1093/plphys/kiae248
Wang, B., Yang, C., Zhang, J., You, Y., Wang, H., and Yang, W. (2024). IHUP: An integrated high-throughput universal phenotyping software platform to accelerate unmanned-aerial-vehicle-based field plant phenotypic data extraction and analysis. Plant Phenomics, 6, 0164.
White, J. W., Andrade-Sanchez, P., Gore, M. A., Bronson, K. F., Coffelt, T. A., Conley, M. M., Feldmann, K. A., French, A. N., Heun, J. T., Hunsaker, D. J., Jenks, M. A., Kimball, B. A., Roth, R. L., Strand, R. J., Thorp, K. R., Wall, G. W., and Wang, G. (2012). Field based phenomics for plant genetics research. Field Crops Research, 133, 101–112. https://doi.org/10.34133/plantphenomics.0164
Xiang, L., Gai, J., Bao, Y., Yu, J., Schnable, P. S., and Tang, L. (2023). Field-based robotic leaf angle detection and characterization of maize plants using stereo vision and deep convolutional neural networks. Journal of Field Robotics, 40, 1034–1053. https://doi.org/10.1002/rob.22166
Yang, G., Wang, J., Nie, Z., Yang, H., and Yu, S. (2023). A lightweight YOLOv8 tomato detection algorithm combining feature enhancement and attention. Agronomy, 13(7), 1824.
Zapryanov, G., Ivanova, D., and Nikolova, I. (2012). Automatic white balance algorithms for digital still cameras–a comparative study. Information Technologies and Control, 1(0112012), 16-22. https://doi.org/10.3390/agronomy13071824
Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Lionel M Ni., and Shum, H. Y. (2022). Dino: Detr with improved denoising anchor boxes for end-to-end object detection. The Eleventh International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2203.03605
Zhao, Y., Gong, L., Huang, Y., and Liu, C. (2016). Robust tomato recognition for robotic harvesting using feature images fusion. Sensors, 16(2), 173. https://doi.org/10.3390/s16020173
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100171-
dc.description.abstract番茄(Solanum lycopersicum)作為全球重要的蔬菜作物,是人類日常飲食中維生素和茄紅素的重要來源,但氣候變遷、病原體擴散及勞動力短缺等挑戰威脅其生產穩定性。而番茄的育種研究以及自動化採收工具的使用可以有效解決以上問題。因此,本研究旨在開發兩套基於深度學習與影像處理的系統,分別協助育種研究進程以及自動化採收工具開發:用於田間表型評估的番茄時序觀測與監測系統(TOMATO)以及用於收穫評估的番茄成熟度預測系統(TRPS)。
TOMATO針對大果番茄進行自動化田間表型評估,包含植株定位系統、性狀識別模型、表型分析、資料庫系統四大功能模組。系統運作如下: 將包含多株植株的影片上傳至系統資料庫後,植株定位系統從影片中自動提取個別植株影像,其結合Marigold單目深度估測技術與Transformer時序建模架構。接著性狀識別模型對提取的番茄植株影像進行四種性狀: “花”、 “綠果”、 “轉色果”和“採收果”的識別,並設計二階段識別策略提高模型表現,模型採用DINO (DETR with Improved deNoising anchOr boxes)作為主架構,並利用EfficientNetV2對低信心分數的物件進行重分類。性狀識別結果會按照所屬植株及記錄日期系統化的儲存。進行表型評估時會從資料庫提取目標基因型的識別結果,並根據表型判定標準分析始花期、始果期及轉色期三種關鍵表型指標。本系統的實驗資料蒐集自位於臺灣臺南的世界蔬菜中心。TOMATO的植株提取表現在實驗中達到91.9%的提取準確率,每株植物處理時間15.9秒。性狀識別模型的平均精度均值(mean Average Precision, mAP)達到0.862,F1分數(F1 score)最高達到0.826。使用包含44個基因型的完整生長季資料測試,關鍵期的預測平均絕對誤差(Mean Absolute Error)為4.3天。最後為提高TOMATO的使用方便性開發網頁介面,支援遠端監控與自動化資料處理,提升番茄育種研究效率,減少人力負擔。
TRPS針對玉女番茄量化的成熟度評估,包含果實檢測、紅熟指數預測及糖度預測三部分組成。系統運作如下: 採用You Only Look Once version 11 (YOLOv11)為架構的果實偵測模型偵測影像中的果實物件,果實包含“綠果”、 “轉色果”和“採收果”三種成熟度類別。接著針對“採收果”類別透過基於HSV色彩空間的紅熟指數(Red Ripeness Index)量化演算法,將果實成熟度以60到100的連續數值評估。為克服光照變化影響,採用Perfect Reflection Algorithm及多尺度Retinex色彩復原(MSRCR)技術對影像進行色彩校正試驗。糖度預測採用分布密度加權方法建立RRI-糖度分類規則,將果實根據糖度分為四個等級。本系統實驗資料蒐集自台北、桃園、新竹的溫室。TRPS的偵測模型的平均精度均值(mAP@0.5)達93.1%,其中“採收果”偵測精確度(Precision)可達92.1%。RRI與實測色調值呈強負相關(溫室環境r=-0.952),在不同光照條件下展現良好穩定性。糖度預測準確率為52%,可作為收穫決策的輔助參考。TRPS系統能夠在複雜溫室環境中提供準確的果實紅熟度量化評估,為自動化採收工具提供收穫時機判斷依據,以提升採收效率並優化果實品質管理。
zh_TW
dc.description.abstractTomato (Solanum lycopersicum), as a globally important vegetable crop, serves as a vital source of vitamins and lycopene in the human diet. However, challenges such as climate change, pathogen proliferation, and labor shortages threaten its production stability. Tomato breeding research and the implementation of automated harvesting tools can effectively address these issues. Therefore, this study aims to develop two systems based on deep learning and image processing to assist breeding research progress and automated harvesting tool development: the Temporal Observation and Monitoring system for Automated Tomato phenOmics (TOMATO) for field phenotypic evaluation and the Tomato Ripeness Prediction System (TRPS) for harvest assessment.
TOMATO conducts automated field phenotypic evaluation for large-fruit tomatoes, comprising four functional modules: Plant Positioning System, trait identification model, phenotypic analysis, and database system. The system operates as follows: after uploading videos containing multiple plants to the system database, the Plant Positioning System automatically extracts individual plant images from videos, combining monocular depth estimation method with Transformer architecture. Subsequently, the trait identification model identifies four traits in the extracted tomato plant images: “Flower,” “Green stage fruit,” “Turning-Pink stage fruit,” and “Harvest stage fruit,” implementing a two-stage identification strategy to improve model performance. The model employs DINO (DETR with Improved deNoising anchOr boxes) as the main architecture and utilizes EfficientNetV2 for reclassification of low-confidence objects. Identification results are systematically stored according to their corresponding plants and recording dates. During phenotypic evaluation, identification results of target genotypes are extracted from the database, and three critical phenotypic indicators—flowering date, fruiting date, and color break date—are analyzed according to phenotypic determination criteria. Experimental data for this system were collected from the World Vegetable Center located in Tainan, Taiwan. TOMATO's plant extraction performance achieved 91.9% extraction accuracy with a processing time of 15.9 seconds per plant. The trait identification model achieved a mean Average Precision (mAP) of 0.862 and a maximum F1 score of 0.826. Testing with complete growing season data containing 44 genotypes showed a Mean Absolute Error (MAE) of 4.3 days for critical date prediction. Finally, a web interface was developed to enhance TOMATO's usability, supporting remote monitoring and automated data processing, improving tomato breeding research efficiency and reducing labor burden.
TRPS provides quantitative ripeness prediction for cherry tomatoes, comprising three components: fruit detection, Red Ripeness Index (RRI) prediction, and Brix prediction. The system operates as follows: a fruit detection model based on You Only Look Once version 11 (YOLOv11) architecture detects fruit objects in images, including three ripeness categories: “Green stage fruit,” “Turning-Pink stage fruit,” and “Harvest stage fruit.” For “Harvest stage fruit”, the HSV color space-based Red Ripeness Index (RRI) quantification algorithm evaluates fruit ripeness using continuous numerical values ranging from 60 to 100. To overcome illumination variation effects, Perfect Reflection Algorithm and Multi-Scale Retinex with Color Restoration (MSRCR) techniques were employed for image color correction experiments. Brix prediction utilizes a distribution density weighting method to establish RRI-brix classification rules, categorizing fruits into four levels based on brix content. Experimental data for this system were collected from greenhouses in Taipei, Taoyuan, and Hsinchu. TRPS detection model achieved 93.1% mAP@50 performance, with “Harvest stage fruit” detection precision reaching 92.1%. RRI showed strong negative correlation with measured hue values (r=-0.952), demonstrating good stability under different illumination conditions. Brix prediction accuracy was 52%, serving as auxiliary reference for harvest decisions. TRPS system provides accurate red ripeness prediction in greenhouse environments, offering harvest timing criteria for automated harvesting tools to improve efficiency and quality management.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:43:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:43:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES x
LIST OF TABLES xiv
ABBREVIATIONS xvi
CHAPTER 1. INTRODUCTION 1
1.1 Research Background 1
1.2 Research Objectives 3
CHAPTER 2. LITERATURE REVIEW 5
2.1 Overview of Plant Phenotypic Evaluation and Tomato Phenotype 5
2.2 Existing Automated Phenotyping Platforms and Applications 8
2.3 Computer Vision in Tomato Cultivation Management 10
2.3.1 Application of Image Processing Methods for Ripeness Classification 10
2.3.2 Object Detection 11
2.3.3 Tomato Trait Detection Using Deep Learning 12
2.3.4 Transformer in Computer Vision 13
CHAPTER 3. MATERIALS AND METHODS 14
3.1 Development of Temporal Observation and Monitoring system for Automated Tomato phenOmics (TOMATO) 14
3.1.1 Experimental Field 15
3.1.2 Plant Positioning System 16
3.1.3 Video Dataset for Plant Positioning System Development 18
3.1.3.1 Self-Guide Robot 20
3.1.3.2 Monocular Depth Estimation 21
3.1.3.3 Transformer-based Plant Positioning Model 22
3.1.3.4 Positioning Performance Evaluation 26
3.1.4 Tomato Trait Identification Model 27
3.1.4.1 Plant Image Acquisition and Annotation 30
3.1.4.2 DETR with Improved deNoising anchOr boxes (DINO) 33
3.1.4.3 Two-stage Identification Strategy with EfficientNet V2 35
3.1.4.4 Identification Model Evaluation 38
3.1.5 Phenotypic Recording and Analysis 40
3.1.5.1 Database System 40
3.1.5.2 Phenotypic Evaluation 42
3.1.5.3 Testing of Phenotypic Evaluation and Testing Dataset 43
3.1.6 Development of Tomato Open-field Management Features 45
3.2 Development of Tomato Ripeness Prediction System (TRPS) 47
3.2.1 TRPS Dataset 48
3.2.1.1 Fruit Image Acquisition 48
3.2.1.2 Image Annotation 52
3.2.1.3 Fruit Color and Brix Measurement 53
3.2.2 Fruit Detection Model 54
3.2.2.1 You Only Look Once version 11 (YOLOv11) 54
3.2.2.2 Evaluation Metrics for Fruit Detection Model 56
3.2.3 Red Ripeness Index (RRI) Prediction Algorithm 56
3.2.3.1 HSV (Hue-Saturation-Value) Color Space 56
3.2.3.2 Red Ripeness Index (RRI) 58
3.2.3.3 Color Correction Method 59
3.2.3.4 Illumination Experiment 61
3.2.3.5 Evaluation Metrics for Red Ripeness Index 62
3.2.4 Fruit Brix Prediction 63
CHAPTER 4. RESULTS AND DISCUSSION 65
4.1 Temporal Observation and Monitoring system for Automated Tomato phenOmics (TOMATO) 65
4.1.1 Performance of Plant Positioning 65
4.1.2 Trait Identification Model 71
4.1.2.1 Testing set correction 75
4.1.2.2 Performance of Two-stage Identification Strategy 78
4.1.3 Phenotypic Analysis 82
4.1.4 Tomato Open-field Management 89
4.2 Tomato Ripeness Prediction System (TRPS) 93
4.2.1 Fruit Detection Model 93
4.2.2 Color Correction under Various Illumination Conditions 96
4.2.3 Evaluation of Red Ripeness Index Prediction 97
4.2.4 Performance of Brix Prediction 100
CHAPTER 5. CONCLUSION AND FUTURE WORK 106
5.1 Conclusion 106
5.2 Future Work 108
REFERENCES 109
-
dc.language.isoen-
dc.subject番茄zh_TW
dc.subject表型評估zh_TW
dc.subject成熟度預測zh_TW
dc.subject深度學習zh_TW
dc.subjectDINOzh_TW
dc.subject紅熟指數zh_TW
dc.subjectripeness predictionen
dc.subjectTomatoen
dc.subjectRed Ripeness Index (RRI)en
dc.subjectDETR with Improved deNoising anchOr boxes (DINO)en
dc.subjectdeep learningen
dc.subjectphenotypic evaluationen
dc.title基於深度學習之番茄表型紀錄與成熟度預測系統開發zh_TW
dc.titleDevelopment of a Tomato Phenotype Recording and Ripeness Prediction System Based on Deep Learningen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林達德;林淑怡;郭彥甫zh_TW
dc.contributor.oralexamcommitteeTa-Te Lin;Shu-I Lin;Yan-Fu Kuoen
dc.subject.keyword番茄,表型評估,成熟度預測,深度學習,DINO,紅熟指數,zh_TW
dc.subject.keywordTomato,phenotypic evaluation,ripeness prediction,deep learning,DETR with Improved deNoising anchOr boxes (DINO),Red Ripeness Index (RRI),en
dc.relation.page114-
dc.identifier.doi10.6342/NTU202503385-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物機電工程學系-
dc.date.embargo-lift2030-08-18-
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved