Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100168
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林乃君zh_TW
dc.contributor.advisorNai-Chun Linen
dc.contributor.author包典zh_TW
dc.contributor.authorTien Paoen
dc.date.accessioned2025-09-24T16:43:13Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-09-
dc.identifier.citation王梓傑。2017。施用內生細菌增加蕃茄生長及抗生物性逆境之探討。國立臺灣大學植物醫學碩士學位學程碩士論文。臺北。臺灣。
陳佳翰。2019。提昇蕃茄抗生物及非生物逆境之內生菌特性分析研究。國立臺灣大學生物資源暨農學院植物醫學碩士學位學程碩士論文。臺北。臺灣。
黃培真。2020。內生細菌應用於蕃茄青枯病與熱逆境管理之效果評估。國立臺灣大學植物醫學碩士學位學程碩士論文。臺北。臺灣。
劉佳容。2022。移動性對 Pseudomonas sp. XP1-6 生物膜形成與定殖於蕃茄根部之影響。國立臺灣大學生物資源暨農學院農業化學系碩士論文。臺北。臺灣。
Ahmad, Z., Anjum, S., Waraich, E. A., Ayub, M. A., Ahmad, T., Tariq, R. M. S. Ahmad, R. and Iqbal, M. A. 2018. Growth, physiology, and biochemical activities of plant responses with foliar potassium application under drought stress – a review. J. Plant Nutr. 41:1734-1743.
Alquéres, S., Meneses, C., Rouws, L., Rothballer, M., Baldani, I., Schmid, M. and Hartmann, A. 2013. The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. Mol. Plant Microbe Interact. 26:937-945.
Alsamir, M., Mahmood, T., Trethowan, R., and Ahmad, N. 2021. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi J. Biol. Sci. 28:1654-1663.
Anfang, M., and Shani, E. 2021. Transport mechanisms of plant hormones. Curr. Opin. Plant Biol. 63:102055.
Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R. and Kovács, Á. T. 2021. Bacillus subtilis biofilm formation and social interactions. Nat. Rev. Micro. 19:600-614.
Balsanelli, E., Serrato, R. V., de Baura, V. A., Sassaki, G., Yates, M. G., Rigo, L. U., Pedrosa, F. O., de Souza, E. M. and Monteiro, R. A. 2010. Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ. Microbiol. 12:2233-2244.
Beneduzi, A., Ambrosini, A. and Passaglia, L. M. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35:1044-1051.
Bevivino, A., Sarrocco, S., Dalmastri, C., Tabacchioni, S., Cantale, C., and Chiarini, L. 1998. Characterization of a free-living maize rhizosphere population of Burkholderia cepacia: effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiol. Ecol. 27:225-237.
Bhattacharyya, P. N. and Jha, D. K. 2011. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28:1327-1350.
Compant, S., Reiter, B., Nowak, J., Sessitsch, A., Clément, C. and Barka, E.A. 2005. Endophytic Colonization of Vitis vinifera L. by Plant Growth- Promoting Bacterium Burkholderia sp. Strain PsJN. Appl. Environ. Microbiol. 71:1685-1693.
Corral-Lugo, A., De la Torre, J., Matilla, M.A., Fernández, M., Morel, B., Espinosa-Urgel, M. and Krell, T. 2016. Assessment of the contribution of chemoreceptor-based signalling to biofilm formation. Environ. Microbiol. 18:3355-3372.
De Serrano, L.O., Camper, A.K. and Richards, A.M. 2016. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 29:551-571.
Defez, R., Andreozzi, A., Romano, S., Pocsfalvi, G., Fiume, I., Esposito, R., Angelini, C. and Bianco, C. 2019. Bacterial IAA-delivery into Medicago root nodules triggers a balanced stimulation of C and N metabolism leading to a biomass increase. Microorganisms 7:403.
Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z., Lugtenberg, B. 2008. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ. Microbiol. 10:1-9.
Emonet, A., Zhou, F., Vacheron, J., Heiman, C. M., Dénervaud Tendon V., Ma, K. W., Schulze-Lefert, P., Keel, C. and Geldner, N. 2021. Spatially restricted immune responses are required for maintaining root meristematic activity upon detection of bacteria. Curr. Biol. 31:1012-1028.
Feng, H., Fu, R., Hou, X., Lv, Y., Zhang, N., Liu, Y., Xu, Z., Miao, Y., Krell, T., Shen, Q., and Zhang, R. 2021. Chemotaxis of beneficial rhizobacteria to root exudates: the first step towards root–microbe rhizosphere interactions. Int. J. Mol. Sci. 22:6655.
Feng, H., Zhang, N., Du, W., Zhang, H., Liu, Y., Fu, R., Shao, J., Zhang, G., Shen, Q. and Zhang, R. 2018. Identification of chemotaxis compounds in root exudates and their sensing chemoreceptors in plant-growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9. Mol. Plant Microbe Interact. 31:995-1005.
Feng, H., Zhang, N., Fu, R., Liu, Y., Krell, T., Du, W., Shao, J., Shen, Q. and Zhang, R. 2019. Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria. Environ. Microbiol. 21:402-415.
Ferrández, A., Hawkins, A. C., Summerfield, D. T. and Harwood, C. S. 2002. Cluster II che genes from Pseudomonas aeruginosa are required for an optimal chemotactic response. J. Bacteriol. 184:4374-4383.
Flemming, H. C., van Hullebusch, E. D., Neu, T. R., Nielsen, P. H., Seviour, T., Stoodley, P., Wingender, J. and Wuertz, S. 2023. The biofilm matrix: multitasking in a shared space. Nat. Rev. Micro. 21:70-86.
Glick, B. R. 2014. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 169:30-39.
Gouda, S., Kerry, R. G., Das, G., Paramithiotis, S., Shin, H. S., and Patra, J. K. 2018. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 206:131-140.
Guttenplan, S. B., and Kearns, D. B. 2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37:849-871.
Guttman, D., McHardy, A. and Schulze-Lefert, P. 2014. Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15:797-813.
Hallmann, J., Quadt-Hallmann, A., Mahaffee, W. F., Kloepper J. W. 1997. Bacterial endophytes in agricultural crops. Can. J. Microbiol. 43:895-914.
Han, J., Sun. L., Dong, X., Cai, Z., Sun, X., Yang, H., Wang, Y. and Song, W. 2005. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst. Appl. Microbiol. 28:66-76.
Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A. and Döring, M. 2015. Sessitsch, A. The hidden world within Plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 79:293-320.
He, S., Li, L., Lv, M. Wang, R., Wang, L., Yu, S., Gao, Z. and Li, X. 2024. PGPR: Key to enhancing crop productivity and achieving sustainable agriculture. Curr. Microbiol. 81:377.
Hibbing, M. E., Fuqua, C., Parsek, M. R. and Peterson, S. B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature Rev. Microbiol. 8:15-25.
Johnson, R., Vishwakarma, K., Hossen, M. S., Kumar, V., Shackira, A. M., Puthur, J. T., Abdi, G., Sarraf, M., and Hasanuzzaman, M. 2022. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 172:56-69.
Kamilova, F., Kravchenko, L. V., Shaposhnikov, A. I., Makarova, N., & Lugtenberg, B. 2006. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate. Mol. Plant Microbe Interact. 19:1121-1126.
Kamilova, F., Kravchenko, L., V., Shaposhnikov, A., I., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19:250-6.
Kandel, S. L., Joubert, P.M. and Doty, S. L. 2017. Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms. 5:77.
Kang, S. M., Khan, A. L., Waqas, M., Asaf, S., Lee, K. E., Park, Y. G., Kim, A. Y., Khan, M. A., You, Y. H. and Lee, I. J. 2019. Integrated phytohormone production by the plant growth-promoting rhizobacterium Bacillus tequilensis SSB07 induced thermotolerance in soybean. J. Plant Interact. 14:416–423.
Karygianni, L., Ren, Z., Koo, H. and Thurnheer, T. 2020. Biofilm matrixome: extracellular components in structured microbial communities. Trends Microbiol. 28:668–681.
Kawasaki, A., Donn, S., Ryan, P.R., Mathesius, U., Devilla, R., Jones, A., and Watt, M. 2016. Microbiome and exudates of the root and rhizosphere of brachypodium distachyon, a model for wheat. PLoS One 11:e0164533.
Kearns, D. B. 2010. A field guide to bacterial swarming motility. Nat. Rev. Micro. 8:634-644.
Keegstra, J.M., Carrara, F. and Stocker, R. 2022. The ecological roles of bacterial chemotaxis. Nat. Rev. Microbiol. 20:491-504.
Kennedy, E. N., Barr, S. A., Liu, X., Vass, L. R., Liu, Y, Xie, Z. and Bourret, R., B. 2022. Azorhizobium caulinodans chemotaxis is controlled by an unusual phosphorelay network. J. Bacteriol. 204:e00527-21.
Khan, M. S., Zaidi, A. and Wani, P.A. 2007. Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agron. Sustain. Develop. 27:29-43.
Kirisits, M. J., Prost, L., Starkey, M. and Parsek, M. R. 2005. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 71:4809-4821.
Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes‐Jørgensen, A., Molin, S., and Tolker‐Nielsen, T. 2003. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol. 48:1511-1524.
Kloepper, J. W. and Schroth, M. N. 1981. Relationship of in vitro antibiosis of plant growth promoting rhizobacteria to plant growth and the displacement of root microflora. Phytopathology. 71:1020–1024.
Kloepper, J. W., Gutierrez-Estrada, A. and Mclnroy, J. A. 2007. Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Can. J. Microbiol. 53:159–167.
Kost, T., Stopnisek, N., Agnoli, K., Eberl, L., and Weisskopf, L. 2014. Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front. Microbiol. 4:1–9.
Krishna, R., Ansari, W. A., Soumia, P. S., Yadav, A., Jaiswal, D. K., Kumar, S., Singh, A. K., Singh, M. and Verma, J. P. Biotechnological interventions in tomato (Solanum lycopersicum) for drought stress tolerance: achievements and future prospects. BioTech. 11:48.
Kumar, S., Sindhu, S. S., and Kumar, R. 2022. Biofertilizers: an ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 3:100094.
Lacal, J., García-Fontana, C., Muñoz-Martínez, F., Ramos, J. L. and Krell, T. 2010. Sensing of environmental signals: classification of chemoreceptors according to the size of their ligand binding regions. Environ. Microbiol. 12:2873-2884.
Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., del Rio, T. G., Jones, C. D., Tringe, S. G., and Dangl, F. L. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science. 349:860-4.
Li, D., Li, R., Ding, Z., Ruan, X., Luo, J., Chen, J., Zheng, J., and Tang, J. 2020. Discovery of a novel native bacterium of Providencia sp. with high biosorption and oxidation ability of manganese for bioleaching of heavy metal contaminated soils. Chemosphere. 241:125039.
Lindström, K., and Mousavi, S. A. 2020. Effectiveness of nitrogen fixation in rhizobia. Microb. Biotechnol.13:1314-1335.
Liu, A., Wang, W., Chen, X., Zheng, X., Fu, W., Wang, G., Ji, J. and Guan, C. 2022. Phytoremediation of DEHP and heavy metals co-contaminated soil by rice assisted with a PGPR consortium: insights into the regulation of ion homeostasis, improvement of photosynthesis and enrichment of beneficial bacteria in rhizosphere soil. Environ. Pollut. 314:120303.
Liu, C. J., Zhao, Y. and Zhang, K. 2019. Cytokinin transporters: multisite players in Cytokinin homeostasis and signal distribution. Front Plant Sci. 10:693.
Liu, D. 2021. Root developmental responses to phosphorus nutrition. J. Integr. Plant Biol. 63:1065-1090.
Liu, D., Lian, B., and Dong, H. 2012. Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol. J. 29:413-421.
Liu, F., Xing, S., Ma, H., Du, Z., and Ma, B. 2013. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Appl. Microbiol. Biotechnol. 97:9155-9164.
Liu, Y., Feng, H., Fu, R., Zhang, N., Du, W., Shen, Q. and Zhang, R. 2020. induced root-secreted d -galactose functions as a chemoattractant and enhances the biofilm formation of Bacillus velezensis SQR9 in an McpA-dependent manner. Appl. Micro. Biotechnol. 104:785-797.
Liu, Y., Kong, D., Wu, H. L. and Ling, H. Q. 2021. Iron in plant-pathogen interactions. J. Exp. Bot. 72:2114-2124.
Lugtenberg, B. J. J., Dekkers, L. C., and Bloemberg, G. V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39:461-490.
Martín-Mora, D., Reyes-Darias, J. A., Ortega, Á., Corral-Lugo, A., Matilla, M. A. and Krell, T. 2016. McpQ is a specific citrate chemoreceptor that responds preferentially to citrate/metal ion complexes. Environ Microbiol. 18:3284-3295.
Meena, M., Swapnil, P., Divyanshu, K., Kumar, S., Harish, Tripathi, Y. N., Zehra, A., Marwal, A. and Upadhyay, R. S. 2020. PGPR‐mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens: Current perspectives. J. Basic Microbiol. 60:828-861.
Mehnaz, S. and Lazarovits, G. 2006. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51:326-335.
Mendes, R., Garbeva, P. and Raaijmakers, J. M. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663.
Meneses, C. H. S. G., Rouws, L. F. M., Simoes-Araujo, J. L., Vidal, M. S. and Baldani, J. I. 2011. Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. Mol. Plant Microbe Interact. 24:1448-1458.
Mignot, T. 2007. The elusive engine in Myxococcus xanthus gliding motility. Cell Mol. Life Sci. 64:2733-2745.
Muriel, C., Jalvo, B., Redondo-Nieto, M., Rivilla, R. and Martín, M. 2015. Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS One. 10:e0132242.
Murgia, I., Marzorati, F., Vigani, G. and Morandini, P. 2022. Plant iron nutrition: the long road from soil to seeds. J Exp Bot. 73:1809-1824.
Nadeem, S. M., Ahmad, M., Zahir, Z.A., Javaid, A. and Ashraf, M. 2014. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol. Adv. 32:429-448.
Naveed, M., Mitter, B., Yousaf, S., Pastar, M., Afzal, M. and Sessitsch, A. 2014. The endophyte Enterobacter sp. FD17: a maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Fertil. Soils 50:249-2ˋ62.
Neeraja, C., Anil, K., Purushotham, P., Suma, K., Sarma, P., Sarma, P. V. S. R. N., Moerschbacher, B. M., and Podile, A. R. 2010. Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases. Crit. Rev. Biotechnol. 30:231-241.
Oku, S., Komatsu, A., Nakashimada, Y., Tajima, T. and Kato, J. 2014. Identification of Pseudomonas fluorescens chemotaxis sensory proteins for malate, succinate, and fumarate, and their involvement in root colonization. Microbes Environ. 29:413-419.
Oku, S., Komatsu, A., Tajima, T., Nakashimada, Y. and Kato, J. 2012. Identification of chemotaxis sensory proteins for amino acids in Pseudomonas fluorescens Pf0-1 and their involvement in chemotaxis to tomato root exudate and root colonization. Microbes Environ. 27:462-469.
Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-Gros, R., Bigot, S., Martinez, J. P., and Lutts, S. 2019. Tomato fruit development and metabolism. Front. Plant Sci. 10:1554.
Ramon, U., Weiss, D., and Illouz-Eliaz, N. 2020. Underground gibberellin activity: differential gibberellin response in tomato shoots and roots. New Phytol. 229:1196-1200.
Reinhold-Hurek, B., and Hurek, T. 1998. Life in grasses: diazotrophic endophytes. Trends Microbiol. 6:139-144.
Reinhold-Hurek, B., Maes, T., Gemmer, S., Van Montagu, M. and Hurek, T. 2006. An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol. Plant Microbe Interact. 19:181-188.
Richardson, A. E., Barea, J. M., McNeill, A. M. and Prigent-Combaret, C. 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 321:305-339.
Rolfe, S. A., Griffiths, J. and Ton, J. 2019. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr. Opin. Microbiol. 49:73-82.
Rolón-Cárdenas, G.A., Arvizu-Gómez, J.L., Soria-Guerra, R.E., Pacheco-Aguilar, J. R., Alatorre-Cobos, F., and Hernández-Morales, A. 2022. The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environ. Geochem. Health. 44:3743-3764.
Romera, F. J., García, M. J., Lucena, C., Martínez-Medina, A., Aparicio, M. A., Ramos, J. and Pérez-Vicente, R. 2019. Induced systemic resistance (ISR) and Fe deficiency responses in dicot plants. Front. Plant Sci. 10:287.
Roy, S., Liu, W., Nandety, R. S., Crook, A., Mysore, K. S., Pislariu, C. I., Frugoli, J., Dickstein, R. and Udvardi, M. K. 2020. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell. 32:15-41.
Sampedro, I., Parales, R. E., Krell, T. and Hill, J. E. 2015. Pseudomonas chemotaxis. FEMS Microbiol Rev. 39:17-46.
Satish, D. and Mehta, S. 2023. Induced systematic resistance and plant immunity. In Sustainable Agriculture Reviews 60: Microbial Processes in Agriculture (pp. 151-173).
Scharf, B.E., Hynes, M.F. and Alexandre, G.M. 2016. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant Mol. Biol. 90:549-559.
Schikora, A., Schenk, S.T. and Hartmann, A. 2016. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. Plant Mol. Biol. 90:605-612.
Schmidt, J., Muesken, M., Becker, T., Magnowska, Z., Bertinetti, D., Moeller, S., Zimmermann, B., Herberg, F. W., Jaensch, L. and Haeussler, S. 2011. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling. PLoS One. 6:e18184.
Seeling, B., and Zasoski, R. J. 1993. Microbial effects in maintaining organic and inorganic solution phosphorus concentrations in a grassland topsoil. Plant Soil. 148: 277–284.
Shrivastav, P., Prasad, M., Singh, T. B., Yadav, A., Goyal, D., Ali, A. and Dantu, P. K. 2020. Role of nutrients in plant growth and development. In Contaminants in Agriculture: Sources, Impacts and Management; Springer: 43-59.
Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., and Parsek, M. R. 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol. Microbiol. 62:1264-1277.
Sturz, A. V. and Nowak, J. 2000. Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. J. Appl. Soil Ecol. 15:183-190.
Sudhakar, P., Chattopadhyay, G. N., Gangwar, S. K. and Ghosh, J. K. 2000. Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). J. Agric. Sci. 134:227-234.
Tariq, A., Pan, K., Olatunji, O. A., Graciano, C., Li, Z., Sun, F., Sun, X., Song, D., Chen, W., Zhang, A., Wu, X., Zhang, L., Mingrui, D., Xiong, Q., and Liu, C. 2017. Phosphorous application improves drought tolerance of Phoebe zhennan. Front. Plant Sci. 13:1561.
Tariq, M., Noman, M., Ahmed, T., Hameed, A., Manzoor, N. and Zafar, M. 2017. Antagonistic features displayed by plant growth promoting rhizobacteria (PGPR): a review. J. Plant Sci. Phytopathol. 1:38-43.
Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. and Singh, B. K. 2020. Plant-microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18:607-621.
Tzipilevich, E., Russ, D., Dangl, J. L. and Benfey, P. N. 2021. Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host Microbe. 9:1507-1520.
Tumewu, S., A., Ogawa, Y., Okamoto, T., Sugihara, Y., Yamada, H., Taguchi, F., Matsui, H., Yamamoto, M., Noutoshi, Y., Toyoda, K. and Ichinose, Y. 2021. Cluster II che genes of Pseudomonas syringae pv. tabaci 6605, orthologs of cluster I in Pseudomonas aeruginosa, are required for chemotaxis and virulence. Mol. Genet. Genomics. 296:299-312.
Van den Berg, J., Greyvenstein, B., and du Plessis, H. 2022. Insect resistance management facing African smallholder farmers under climate change. Curr. Opin. Insect Sci. 50:100894.
Vicente, A. D., M. Cazorla, F. M. and Gutiérrez-Barranquero, J. A. 2025. A putative novel type of tight adherence (tad) like gene cluster of Pseudomonas chlororaphis PCL1606 exhibits a crucial role in avocado roots colonization, fostering its biological control activity. Plant Soil. 1:17.
Viveros, O. M., Jorquera, M. A, Crowley, D. E., Gajardo, G. and Mora, M. L. 2010. Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 10:293-319.
Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., and Pérez-Clemente, R. M. 2020. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 39:3-17.
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., and SkZ, A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184:13-24.
Wagner, M. R., Lundberg, D. S., del Rio, T. G., Tringe, S. G., Dangl, J. L. and Mitchell-Olds, T. 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7:12151.
Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44-51.
White, J.F., Kingsley, K.L., Zhang, Q., Verma, R., Obi, N., Dvinskikh, S., Elmore, M.T., Verma, S.K., Gond, S.K. and Kowalski, K.P. 2019. Review: Endophytic microbes and their potential applications in crop management. Pest Manag. Sci. 10:2558-2565.
Xu, S., Yang, N., Zheng, S., Yan, F., Jiang, C., Yu, Y., Guo, J., Chai, Y. and Chen, Y. 2017. The spo0A-sinI-sinR regulatory circuit plays an essential role in biofilm formation, nematicidal activities, and plant protection in Bacillus cereus AR156. Mol. Plant Microbe Interact. 30:603-619.
Xu, Z., Zhang, R., Wang, D., Qiu, M., Feng, H., Zhang, N. and Shen, Q. 2014. Enhanced control of cucumber wilt disease by Bacillus amyloliquefaciens SQR9 by altering the regulation of its DegU phosphorylation. Appl. Environ. Microb. 80:2941-2950.
Yang, J., Kloepper, J. W., and Ryu, C. M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4.
Yost, C.K., Rochepeau, P. and Hyne,s M.F. 1998. Rhizobium Leguminosarum contains a group of genes that appear to code for methyl-accepting chemotaxis proteins. Microbiology. 144:1945-1956.
Zayed, O., Hewedy, O. A., Abdelmoteleb, A., Ali, M., Youssef, M. S., Roumia, A. F., Seymour, D. and Yuan, Z. C. 2023. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules. 13:1443.
Zhang, C., Yu, Z., Zhang, M., Li, X., Wang, M., Li, L., Li, X., Ding, Z., and Tian, H. 2022. Serratia marcescens PLR enhances lateral root formation through supplying PLR-derived auxin and enhancing auxin biosynthesis in Arabidopsis. J. Exp. Bot. 73:3711-3725.
Zúñiga, A., Poupin, M.J., Donoso, R., Ledger, T., Guiliani, N., Gutiérrez, R.A., González, B. 2013. Quorum sensing and indole-3-acetic acid degradation play a role in colonization and plant growth promotion of Arabidopsis thaliana by Burkholderia phytofirmans PsJN. Mol. Plant Microbe Interact. 26:546–553.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100168-
dc.description.abstractPseudomonas kribbensis XP1-6 為一種能定殖於番茄根部的促進植物生長根棲細菌能促進番茄生長,提高番茄對青枯病之抗性並降低高溫、乾旱、鹽害及淹水等非生物逆境對番茄造成之危害,因此具有發展為生物肥料或生物農藥的潛力。雖然已知 P. kribbensis XP1-6 對番茄植株生長有諸多助益,但對其定殖於番茄宿主根部之機制仍所知甚少。根棲菌定殖於植物根部之過程中,化學趨向性與泳動能力對於根部之初期附著至關重要,亦會影響到後續定殖之生物膜形成。本研究探討 P. kribbensis XP1-6 中,cheA操作子中蛋白質產物預測為趨化受體的 mcpQ13 以及趨化作用相關基因 cheA 與 cheZ ,對 P. kribbensis XP1-6 移動能力、化學趨向性及番茄根部定殖之影響。試驗結果顯示,野生型 P. kribbensis XP1-6 不僅會受到種子及根部滲出液之吸引,亦會對番茄根部滲出液中琥珀酸、蘋果酸及檸檬酸等三種最主要的有機酸有趨化反應,但對滲出液中葡萄糖、麥芽糖和果糖等三種最主要的糖僅有微弱的趨化性。在營養充足之 KBM 培養基上,cheA2、cheZ 及 mcpQ13之突變株表面移行能力與泳動能力和野生型菌株皆無顯著差異,但 cheA1 突變株雖然表面移行能力沒有受影響,泳動能力卻顯著下降。個別剔除 cheZ 與 mcpQ13 基因後,相比於野生型,突變株對種子及根部滲出液的趨性指數顯著下降;而以cheA2、cheZ 及 mcpQ13突變株進行上述三種有機酸之趨化試驗,僅 cheZ 及 mcpQ13 突變株之趨化反應顯著下降。後續聚焦於 cheZ 及 mcpQ13兩基因,在低營養且僅以檸檬酸作為碳源之情況下,剔除 cheZ 及 mcpQ13 兩基因並不會影響 P. kribbensis XP1-6 對檸檬酸的趨化性。而在生物膜形成能力試驗中,雖然刪除 cheZ 或 mcpQ13 並未影響 P. kribbensis XP1-6 生物膜初期附著的能力,但會顯著降低後期成熟生物膜的形成。最後以 cheZ 及 mcpQ13 兩基因之突變株及互補株進行番茄根部定殖試驗,mcpQ13 回補株相比於帶有空質體之突變株,其定殖於番茄根部之菌量有顯著提高,而 cheZ 基因之回補株亦有較高之趨勢。此結果有助於了解 P. kribbensis XP1-6 化學趨向性的機制和根部定殖之關聯性,未來可透過番茄植株生長及逆境試驗,來探討化學趨向性對 P. kribbensis XP1-6 促進番茄植株生長能力之影響。zh_TW
dc.description.abstractPseudomonas kribbensis XP1-6 is a plant growth-promoting rhizobacterium (PGPR) that can colonize tomato roots. In addition to promoting tomato vegetative growth, it can increase resistance to bacterial wilt and mitigate the damage caused by abiotic stresses such as heat, drought, salinity, and flooding. These traits make P. kribbensis XP1-6 hold its potential for development as a biofertilizer or biopesticide. While the various benefits of P. kribbensis XP1-6 on tomato plant growth have been reported, the mechanisms underlying its colonization of tomato roots remain poorly understood. Effective root colonization by rhizobacteria depends on robust chemotactic responses and bacterial motility, which are essential for early root attachment and can influence subsequent biofilm formation, a key step for persistent root colonization. This study aimed to investigate the effects of the chemotaxis receptor gene mcpQ13 and the chemotaxis-related genes cheA and cheZ, which are located within two cheA operons in P. kribbensis XP1-6, on its motility, chemotaxis, and tomato root colonization. The results showed that P. kribbensis XP1-6 demonstrated strong chemotaxis toward tomato seed and root exudates and succinic acid, malic acid, and citric acid, three major organic acids in tomato root exudates. However, glucose, maltose, and fructose, the three major sugars in root exudates, elicited only weak chemotaxis. On nutrient-rich KBM medium, the swarming and swimming motility of cheA2, cheZ, and mcpQ13 mutants showed no significant difference compared to the wild-type strain. However, while the swarming motility of the cheA1 mutant was unaffected, its swimming motility significantly decreased. After individual deletion of the cheZ and mcpQ13, the chemotaxis indices to seed and root exudates of the mutants were significantly reduced compared to the wild-type strain. Chemotaxis assays with the three aforementioned organic acids using cheA2, cheZ, and mcpQ13 mutants revealed that only the cheZ and mcpQ13 mutants showed a significant decrease in chemotactic response. This study further focused on the cheZ and mcpQ13 genes, and under low-nutrient conditions with citric acid as the sole carbon source, the deletion of either cheZ or mcpQ13 had no significant effect on the chemotaxis towards citric acid of the wild-type strain. In the biofilm formation assay, mcpQ13 and cheZ mutations did not impact early root attachment but significantly impaired the ability to form mature biofilms. Finally, tomato root colonization assays were conducted using mutants and complementation strains of the cheZ and mcpQ13 genes. The bacterial population of the mcpQ13 complementation strain on tomato roots was significantly higher than that of the mutant carrying an empty plasmid, and the cheZ complementation strain also showed a higher trend. These results contribute to understanding the chemotaxis mechanisms in Pseudomonas kribbensis XP1-6 and its correlation with root colonization. Future studies will incorporate tomato plant growth and abiotic stress experiments to investigate the impact of chemotaxis on the ability of P. kribbensis XP1-6 to promote tomato plant growth.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:43:13Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:43:13Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 II
摘要 III
Abstract V
目次 VII
圖次 IX
表次 X
壹、前人研究 1
一、促進植物生長根棲細菌 1
二、促進植物生長根棲細菌促進植物生長之機制 2
(一) 直接促進植物生長的可能機制: 2
1. 促進植物吸收環境中之營養元素 2
(1) 協助氮的吸收 2
(2) 協助磷的吸收 3
(3) 協助鉀之吸收 4
(4) 協助鐵的轉運 5
2. 調節和分泌植物荷爾蒙 5
(1) IAA 5
(2) GA 6
(3) 細胞分裂素 6
(二) 間接促進植物生長的可能機制: 6
1. 協助植物抵抗非生物逆境 6
2. 協助植物抵抗生物逆境 7
(1) 拮抗作用 7
(2) 誘導系統性抗性 (induced systemic resistance, ISR) 8
三、內生細菌定殖於根部之過程 8
(一) 植物吸引土壤中游離之內生細菌 8
(二) 內生細菌對宿主植物的表面附著 9
(三) 內生細菌進入宿主植物根部組織 9
(四) 內生細菌定殖於宿主植物根部 10
四、內生細菌定殖於植物根部之機制 10
(一) 抗氧化活性 (antioxidant activity) 10
(二) 生物膜形成 11
(三) 化學趨向性和移動能力 11
五、細菌化學趨向性之調控與機制 12
(一) 化學趨向性之調控與機制 12
(二) 根棲細菌之趨化作用及 MCP 受器對其根部定殖之影響 13
貳、研究動機與目的 14
參、材料與方法 16
肆、結果 22
一、P. kribbensis XP1-6對番茄種子及根部滲出物具化學趨向性 22
二、刪除趨化作用基因對 P. kribbensis XP1-6 移動能力之影響 23
三、刪除 mcpQ13 和 cheZ 基因對 P. kribbensis XP1-6 化學趨向性之影響 24
四、刪除 mcpQ13 和 cheZ 對 P. kribbensis XP1-6 生物膜生成之影響 25
五、刪除 mcpQ13 和 cheZ 基因對 P. kribbensis XP1-6 番茄根部定殖之影響 26
伍、討論 27
陸、結論 31
柒、參考文獻 32
捌、表 47
玖、圖 49
拾、附錄 62
-
dc.language.isozh_TW-
dc.subject促進植物生長根棲細菌zh_TW
dc.subject根部定殖zh_TW
dc.subject化學趨向性zh_TW
dc.subject移動性zh_TW
dc.subject生物膜zh_TW
dc.subjectRoot colonizationen
dc.subjectMotilityen
dc.subjectPlant growth-promoting rhizobacteria (PGPR)en
dc.subjectBiofilm formationen
dc.titlemcpQ13 與 cheZ 對 Pseudomonas kribbensis XP1-6 化學趨向性及番茄根部定殖能力影響之研究zh_TW
dc.titleStudies on the effects of mcpQ13 and cheZ on chemotaxis and tomato root colonization of Pseudomonas kribbensis XP1-6en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭秋萍;陳宜龍zh_TW
dc.contributor.oralexamcommitteeChiu-Ping Cheng;Yi-Lung Chenen
dc.subject.keyword促進植物生長根棲細菌,根部定殖,化學趨向性,移動性,生物膜,zh_TW
dc.subject.keywordPlant growth-promoting rhizobacteria (PGPR),Root colonization,Motility,Biofilm formation,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202504211-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept農業化學系-
dc.date.embargo-liftN/A-
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved