Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen
dc.contributor.author謝忠達zh_TW
dc.contributor.authorChung-Ta Hsiehen
dc.date.accessioned2025-09-24T16:40:39Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citation1. Koch, G., Cost of corrosion. Trends In Oil and Gas Corrosion Research and Technologies 2017, 3-30.
2. Baldwin, K.; Robinson, M.; Smith, C., The corrosion resistance of electrodeposited zinc-nickel alloy coatings. Corrosion Science 1993, 35 (5-8), 1267-1272.
3. Gavrila, M.; Millet, J.; Mazille, H.; Marchandise, D.; Cuntz, J., Corrosion behaviour of zinc–nickel coatings, electrodeposited on steel. Surface and Coatings Technology 2000, 123 (2-3), 164-172.
4. Dwivedi, S.; Fatima, U.; Gupta, A.; Khan, T.; Lawrence, A., Indian Journal of Advances in Chemical Science. Indian Journal of Advances in Chemical Science 2021, 9 (4), 329-335.
5. Trabelsi, W.; Cecilio, P.; Ferreira, M.; Montemor, M., Electrochemical assessment of the self-healing properties of Ce-doped silane solutions for the pre-treatment of galvanised steel substrates. Progress in Organic Coatings 2005, 54 (4), 276-284.
6. Zhao, J.; Frankel, G.; McCreery, R. L., Corrosion protection of untreated AA‐2024‐T3 in chloride solution by a chromate conversion coating monitored with Raman spectroscopy. Journal of the Electrochemical Society 1998, 145 (7), 2258.
7. Twite, R.; Bierwagen, G. P., Review of alternatives to chromate for corrosion protection of aluminum aerospace alloys. Progress in Organic Coatings 1998, 33 (2), 91-100.
8. Xia, L.; McCreery, R. L., Chemistry of a chromate conversion coating on aluminum alloy AA2024‐T3 probed by vibrational spectroscopy. Journal of the Electrochemical Society 1998, 145 (9), 3083.
9. Shashikala, A.; Umarani, R.; Mayanna, S.; Sharma, A., Chemical conversion coatings on magnesium alloys-a comparative study. International Journal of Electrochemical Science 2008, 3 (9), 993-1004.
10. Kendig, M.; Buchheit, R., Corrosion inhibition of aluminum and aluminum alloys by soluble chromates, chromate coatings, and chromate-free coatings. Corrosion 2003, 59 (5), 379-400.
11. Li, J.; Bai, H.; Feng, Z., Advances in the modification of silane-based sol-gel coating to improve the corrosion resistance of magnesium alloys. Molecules 2023, 28 (6), 2563.
12. Montemor, M. F., Functional and smart coatings for corrosion protection: A review of recent advances. Surface and Coatings Technology 2014, 258, 17-37.
13. Díaz, I.; Chico, B.; De La Fuente, D.; Simancas, J.; Vega, J.; Morcillo, M., Corrosion resistance of new epoxy–siloxane hybrid coatings. A laboratory study. Progress in Organic Coatings 2010, 69 (3), 278-286.
14. Brusciotti, F.; Snihirova, D. V.; Xue, H.; Montemor, M. F.; Lamaka, S. V.; Ferreira, M. G., Hybrid epoxy–silane coatings for improved corrosion protection of Mg alloy. Corrosion Science 2013, 67, 82-90.
15. Ahmad, S.; Gupta, A.; Sharmin, E.; Alam, M.; Pandey, S., Synthesis, characterization and development of high performance siloxane-modified epoxy paints. Progress in Organic Coatings 2005, 54 (3), 248-255.
16. Qian, M.; Soutar, A. M.; Tan, X. H.; Zeng, X. T.; Wijesinghe, S. L., Two-part epoxy-siloxane hybrid corrosion protection coatings for carbon steel. Thin Solid Films 2009, 517 (17), 5237-5242.
17. Pathak, S.; Khanna, A., Investigation of anti-corrosion behavior of waterborne organosilane–polyester coatings for AA6011 aluminum alloy. Progress in Organic Coatings 2009, 65 (2), 288-294.
18. Xue, D.; Van Ooij, W. J., Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings. Progress in Organic Coatings 2013, 76 (7-8), 1095-1102.
19. Kunst, S.; Cardoso, H.; Oliveira, C.; Santana, J.; Sarmento, V.; Muller, I.; Malfatti, C., Corrosion resistance of siloxane–poly (methyl methacrylate) hybrid films modified with acetic acid on tin plate substrates: Influence of tetraethoxysilane addition. Applied Surface Science 2014, 298, 1-11.
20. Seo, J. Y.; Han, M., Multi-functional hybrid coatings containing silica nanoparticles and anti-corrosive acrylatemonomer for scratch and corrosion resistance. Nanotechnology 2010, 22 (2), 025601.
21. Pieters, K.; Mekonnen, T., Progress in waterborne polymer dispersions for coating applications: commercialized systems and new trends. RSC Sustainability 2024.
22. Salzano de Luna, M., Recent trends in waterborne and bio‐based polyurethane coatings for corrosion protection. Advanced Materials Interfaces 2022, 9 (11), 2101775.
23. Tejero-Martin, D.; Rezvani Rad, M.; McDonald, A.; Hussain, T., Beyond traditional coatings: a review on thermal-sprayed functional and smart coatings. Journal of Thermal Spray Technology 2019, 28, 598-644.
24. Dahotre, N., Functional coatings and their applications: a web perspective. Jom 2000, 52 (1), 14-14.
25. Ou, Y.; Wang, H.; Ouyang, X.; Zhao, Y.; Zhou, Q.; Luo, C.; Hua, Q.; Ouyang, X.; Zhang, S., Recent advances and strategies for high-performance coatings. Progress in Materials Science 2023, 136, 101125.
26. Bao, Y.; Fu, R.; Liu, Y.; Guo, R.; Ding, Y., Polyacrylate modified alkyd hybrid latex with high anti-corrosion performance synthesized via solvent-free and emulsifier-free method. Sustainable Chemistry and Pharmacy 2024, 39, 101535.
27. Wang, D.; Zhao, J.; Claesson, P.; Zhang, F.; Pan, J.; Shi, Y., Green synergy: Eco-friendly, high-performance anti-corrosion and wear-resistant coatings utilizing organosolv lignin and polydimethylsiloxane. Progress in Organic Coatings 2024, 190, 108365.
28. Mohammadkhani, A.; Mohammadkhani, F.; Farhadyar, N.; Sadjadi, M. S., Novel nanocomposite zinc phosphate/polyvinyl alcohol/carboxymethyl cellulose: Synthesis, characterization and investigation of antibacterial and anticorrosive properties. Case Studies in Chemical and Environmental Engineering 2024, 9, 100591.
29. Wang, H.; Liu, L.; Fei, G.; Duan, Y.; Sun, L.; Hao, X., Enhancement of anticorrosion resistance of a fluorinated polyimide matrix by incorporating self-fixing POSS-GO. Progress in Organic Coatings 2024, 187, 108135.
30. Chen, Y.-C.; Huang, Y.-C.; Wu, C.-H.; Lin, H.-W.; Chiu, W.-Y.; Jeng, R.-J.; Tung, S.-H., Waterborne Epoxy/Acrylic Resins Stabilized through the Neutralization of Basic Amine-Modified Epoxy and Acidic Acrylic Copolymers. ACS Applied Polymer Materials 2023, 6 (1), 828-836.
31. Wu, C.-H.; Huang, Y.-C.; Lai, T.-H.; Chiu, S.-H.; Uchibe, N.; Lin, H.-W.; Chiu, W.-Y.; Tung, S.-H.; Jeng, R.-J., Facile synthesis toward self-dispersible waterborne comb-like Poly (hydroxyaminoethers). Polymer 2020, 196, 122464.
32. Huang, Y. C.; Wang, L. T.; Hsu, S. W.; Lin, T. F.; Liao, Y. C.; Chiu, W. Y.; Lin, H. W.; Wu, C. H.; Jeng, R. J.; Tung, S. H., Amphiphilic Thermoresponsive Poly (Hydroxyaminoethers) as Effective Emulsifiers for Preparation of Waterborne Epoxy Resins. Macromolecular Materials and Engineering 2022, 307 (2), 2100668.
33. Chen, H.-C.; Huang, Y.-C.; Wu, C.-H.; Jeng, R.-J.; Chang, F.-C., Stable emulsion of cationic waterborne polyurethanes with cellulose nanocrystals for enhanced nanocomposite performance. Cellulose 2023, 30 (4), 2217-2234.
34. Okamoto, H.; Massalski, T., Binary alloy phase diagrams. ASM International, Materials Park, OH, USA 1990, 12, 3528-3531.
35. Pourbaix, M., Atlas of electrochemical equilibria in aqueous solutions. NACE 1966.
36. Revie, R. W.; Uhlig, H. H., Corrosion and Corrosion Control. John Wiley & Sons: 2025.
37. Evans, U. R., An Introduction to Metallic Corrosion. 1948.
38. Tamura, H., The role of rusts in corrosion and corrosion protection of iron and steel. Corrosion Science 2008, 50 (7), 1872-1883.
39. Copley, S. M.; Wilkes, G. L., McGraw-Hill Series in Materials Science and Engineering.
40. Cao, H.; Fang, M.; Jia, W.; Liu, X.; Xu, Q., Remarkable improvement of corrosion resistance of silane composite coating with Ti3C2Tx MXene on copper. Composites Part B: Engineering 2022, 228, 109427.
41. Sedriks, A. J., Corrosion of stainless steels. John Wiley & Sons: 1996.
42. Jones, D. A., Principles and prevention of corrosion. 1996.
43. Castillo-Robles, J. M.; de Freitas Martins, E.; Ordejón, P.; Cole, I., Molecular modeling applied to corrosion inhibition: a critical review. npj Materials Degradation 2024, 8 (1), 72.
44. Alaoui, A. O.; Elfalleh, W.; Hammouti, B.; Titi, A.; Messali, M.; Kaya, S.; IBrahimi, B. E.; El-Hajjaji, F., Theoretical prediction of corrosion inhibition by ionic liquid derivatives: a DFT and molecular dynamics approach. RSC Advances 2025, 15 (16), 12645-12652.
45. Li, J.; Hong, C.; Liu, M.; Wang, Y.; Song, Y.; Zhai, R.; Zhang, J.; Zhou, C., Construction of eco-friendly multifunctional cashew nut shell oil-based waterborne polyurethane network with UV resistance, corrosion resistance, mechanical strength, and transparency. Progress in Organic Coatings 2024, 186, 108051.
46. Nogueira, P.; Costa, I.; Araújo, R.; Pasa, V., Bio-oil-based polyurethane coatings: A sustainable approach to corrosion protection. Progress in Organic Coatings 2024, 194, 108572.
47. Jahan, A.; Masood, S.; Zafar, F.; Rizvi, S. A.; Alam, M.; Haq, Q. M. R.; Nishat, N., Ambient-cured cardanol-derived polyurea coatings for anti-corrosive and anti-bacterial applications. Progress in Organic Coatings 2023, 182, 107638.
48. Ho, J.; Mudraboyina, B.; Spence-Elder, C.; Resendes, R.; Cunningham, M. F.; Jessop, P. G., Water-borne coatings that share the mechanism of action of oil-based coatings. Green Chemistry 2018, 20 (8), 1899-1905.
49. Arjmandi, A.; Bi, H.; Nielsen, S. U.; Dam-Johansen, K., From Wet to Protective: Film Formation in Waterborne Coatings. ACS Applied Materials & Interfaces 2024, 16 (43), 58006-58028.
50. Jomy, J.; Prabhu, D.; Prabhu, P., Inhibitors incorporated into water-based epoxy coatings on metals for corrosion protection: a review. Journal of Bio-and Tribo-Corrosion 2022, 8 (2), 44.
51. Tomić, N. Z.; Mustapha, A. N.; AlMheiri, M.; AlShehhi, N.; Antunes, A., Advanced application of drying oils in smart self-healing coatings for corrosion protection: Feasibility for industrial application. Progress in Organic Coatings 2022, 172, 107070.
52. Lyu, Y.; Sun, W.; Feng, T.; Li, W.; Jiang, Y.; Zuo, C.; Wang, S., Anticorrosion Performance of Waterborne Coatings with Modified Nanoscale Titania under Subtropical Maritime Climate. Polymers 2024, 16 (13), 1919.
53. Basak, S.; Dangate, M. S.; Samy, S., Oil-and water-resistant paper coatings: A review. Progress in Organic Coatings 2024, 186, 107938.
54. Chen, H.; Zhou, Z.; Zheng, B.; Yang, H.; Chen, Y.; Huang, Y.; Zhang, N.; Zhang, X.; Xiao, M.; Ye, J., Development and characterization of biodegradable water-and oil-resistant coatings based on derivatized cellulose, sodium alginate, and shellac for paper-based packaging. International Journal of Biological Macromolecules 2025, 303, 140490.
55. Gąsiorek, J.; Gąsiorek, A.; Babiarczuk, B.; Jones, W.; Simka, W.; Detyna, J.; Kaleta, J.; Krzak, J., Anticorrosion properties of silica-based sol-gel coatings on steel–the influence of hydrolysis and condensation conditions. Ceramics International 2022, 48 (24), 37150-37163.
56. Plueddemann, E. P.; Plueddemann, E. P., Nature of adhesion through silane coupling agents. Springer: 1991.
57. Hertl, W., Mechanism of gaseous siloxane reaction with silica. I. The Journal of Physical Chemistry 1968, 72 (4), 1248-1253.
58. Krasnoslobodtsev, A. V.; Smirnov, S. N., Effect of water on silanization of silica by trimethoxysilanes. Langmuir 2002, 18 (8), 3181-3184.
59. Xie, Y.; Hill, C. A.; Xiao, Z.; Militz, H.; Mai, C., Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing 2010, 41 (7), 806-819.
60. Schneider, M.; Brebner, K., Wood-polymer combinations: The chemical modification of wood by alkoxysilane coupling agents. Wood Science and Technology 1985, 19 (1), 67-73.
61. Matuana, L.; Balatinecz, J.; Park, C.; Sodhi, R., X-ray photoelectron spectroscopy study of silane-treated newsprint-fibers. Wood Science and Technology 1999, 33 (4), 259-270.
62. Salon, M. C. B.; Gerbaud, G.; Abdelmouleh, M.; Bruzzese, C.; Boufi, S.; Belgacem, M. N., Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid‐state NMR. Magnetic Resonance in Chemistry 2007, 45 (6), 473-483.
63. Ciriminna, R.; Fidalgo, A.; Pandarus, V.; Beland, F.; Ilharco, L. M.; Pagliaro, M., The sol–gel route to advanced silica-based materials and recent applications. Chemical Reviews 2013, 113 (8), 6592-6620.
64. Hatschek, E., The viscosity of colloidal solutions. Proceedings of the Physical Society of London 1915, 28 (1), 250.
65. Parfitt, G. D., Principles of the colloidal state. 1967.
66. Livage, J.; Henry, M.; Sanchez, C., Sol-gel chemistry of transition metal oxides. Progress in Solid State Chemistry 1988, 18 (4), 259-341.
67. Bischoff, B. L.; Anderson, M. A., Peptization process in the sol-gel preparation of porous anatase (TiO2). Chemistry of Materials 1995, 7 (10), 1772-1778.
68. Mahajan, S. V.; Colomer, M. T.; Borlaf, M.; Moreno, R., TiO2 Nanoparticle Thin Films Cast by Electrophoretic Deposition. In Nanomaterials, Apple Academic Press: 2013; pp 157-164.
69. Falk, G.; Borlaf, M.; Bendo, T.; Novaes de Oliveira, A. P.; Rodrigues Neto, J. B.; Moreno, R., Colloidal sol–gel synthesis and photocatalytic activity of nanoparticulate Nb2O5 sols. Journal of the American Ceramic Society 2016, 99 (6), 1968-1973.
70. Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R., Fundamentals of analytical chemistry. Saunders College Pub. Fort Worth: 1996; Vol. 33.
71. Colomer, M.; Guzmán, J.; Moreno, R., Determination of peptization time of particulate sols using optical techniques: Titania as a case study. Chemistry of Materials 2008, 20 (12), 4161-4165.
72. Figueira, R. B., Hybrid sol–gel coatings for corrosion mitigation: A critical review. Polymers 2020, 12 (3), 689.
73. Zub, Y. L.; Kessler, V. G., Sol-Gel Methods for Materials Processing: Focusing on Materials for Pollution Control, Water Purification, and Soil Remediation. Springer Science & Business Media: 2008.
74. Bergna, H. E.; Roberts, W. O., Colloidal silica: fundamentals and applications. CRC press: 2005.
75. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T., Synthesis of monodisperse spherical nanocrystals. Angewandte Chemie International Edition 2007, 46 (25), 4630-4660.
76. Rurack, K.; Martínez-Máñez, R., The supramolecular chemistry of organic-inorganic hybrid materials. John Wiley & Sons: 2010.
77. Zarzycki, J., Past and present of sol-gel science and technology. Journal of Sol-Gel Science and Technology 1997, 8, 17-22.
78. Faustini, M.; Nicole, L.; Ruiz‐Hitzky, E.; Sanchez, C., History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Advanced Functional Materials 2018, 28 (27), 1704158.
79. Gupta, R.; Chaudhury, N., Entrapment of biomolecules in sol–gel matrix for applications in biosensors: Problems and future prospects. Biosensors and Bioelectronics 2007, 22 (11), 2387-2399.
80. Leite, F. R. F.; Santos, W. d. J. R.; Kubota, L. T., Selective determination of caffeic acid in wines with electrochemical sensor based on molecularly imprinted siloxanes. Sensors and Actuators B: Chemical 2014, 193, 238-246.
81. Grieshaber, D.; MacKenzie, R.; Vörös, J.; Reimhult, E., Electrochemical biosensors-sensor principles and architectures. Sensors 2008, 8 (3), 1400-1458.
82. Pauliukaite, R.; Schoenleber, M.; Vadgama, P.; Brett, C. M., Development of electrochemical biosensors based on sol-gel enzyme encapsulation and protective polymer membranes. Analytical and Bioanalytical Chemistry 2008, 390 (4), 1121-1131.
83. Privett, B. J.; Shin, J. H.; Schoenfisch, M. H., Electrochemical sensors. Analytical Chemistry 2010, 82 (12), 4723-4741.
84. Bai, J.; Zhang, X.; Peng, Y.; Hong, X.; Liu, Y.; Jiang, S.; Ning, B.; Gao, Z., Ultrasensitive sensing of diethylstilbestrol based on AuNPs/MWCNTs-CS composites coupling with sol-gel molecularly imprinted polymer as a recognition element of an electrochemical sensor. Sensors and Actuators B: Chemical 2017, 238, 420-426.
85. Deiminiat, B.; Razavipanah, I.; Rounaghi, G. H.; Arbab-Zavar, M. H., A novel electrochemical imprinted sensor for acetylsalicylic acid based on polypyrrole, sol-gel and SiO2@ Au core-shell nanoparticles. Sensors and Actuators B: Chemical 2017, 244, 785-795.
86. Choi, M. M., Progress in enzyme-based biosensors using optical transducers. Microchimica Acta 2004, 148, 107-132.
87. Jerónimo, P. C.; Araújo, A. N.; Montenegro, M. C. B., Optical sensors and biosensors based on sol–gel films. Talanta 2007, 72 (1), 13-27.
88. Borisov, S. M.; Wolfbeis, O. S., Optical biosensors. Chemical Reviews 2008, 108 (2), 423-461.
89. Monton, M. R. N.; Forsberg, E. M.; Brennan, J. D., Tailoring sol–gel-derived silica materials for optical biosensing. Chemistry of Materials 2012, 24 (5), 796-811.
90. Wang, Y.; Tu, S.; Pinchuk, A. N.; Xiong, M. P., Active drug encapsulation and release kinetics from hydrogel-in-liposome nanoparticles. Journal of Colloid and Interface Science 2013, 406, 247-255.
91. Cho, H.; Gao, J.; Kwon, G. S., PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol–gels for drug delivery. Journal of Controlled Release 2016, 240, 191-201.
92. Khamsehashari, N.; Hassanzadeh-Tabrizi, S.; Bigham, A., Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Materials Chemistry and Physics 2018, 205, 283-291.
93. Lee, H.-Y.; Kim, H.-E.; Jeong, S.-H., One-pot synthesis of silane-modified hyaluronic acid hydrogels for effective antibacterial drug delivery via sol–gel stabilization. Colloids and Surfaces B: Biointerfaces 2019, 174, 308-315.
94. Hernández-Abad, V. J.; Sánchez-González, E. G.; Espinosa-Contreras, C.; Marroquín-Segura, R.; Mora-Guevara, J. L. A.; Flores-Cabrera, Y., Controlled release of glibenclamide from monolithic silica subdermal implants produced by the sol-gel process and its use for hyperglycaemia treatment in a murine model. Materials Science and Engineering: C 2019, 94, 1009-1019.
95. Catauro, M.; Papale, F.; Bollino, F., Coatings of titanium substrates with xCaO·(1− x) SiO2 sol–gel materials: characterization, bioactivity and biocompatibility evaluation. Materials Science and Engineering: C 2016, 58, 846-851.
96. Catauro, M.; Bollino, F.; Papale, F., Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol–gel hybrid coatings. Acta Astronautica 2016, 122, 237-242.
97. Rashti, A.; Yahyaei, H.; Firoozi, S.; Ramezani, S.; Rahiminejad, A.; Karimi, R.; Farzaneh, K.; Mohseni, M.; Ghanbari, H., Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process. Materials Science and Engineering: C 2016, 69, 1248-1255.
98. He, W.; Xie, Y.; Xing, Q.; Ni, P.; Han, Y.; Dai, H., Sol-gel synthesis of biocompatible Eu3+/Gd3+ co-doped calcium phosphate nanocrystals for cell bioimaging. Journal of Luminescence 2017, 192, 902-909.
99. Alcázar, J. C. B.; Lemos, R. M. J.; Conde, M. C. M.; Chisini, L. A.; Salas, M. M. S.; Noremberg, B. S.; da Motta, F. V.; Demarco, F. F.; Tarquinio, S. B. C.; Carreño, N. L. V., Preparation, characterization, and biocompatibility of different metal oxide/PEG-based hybrid coating synthesized by sol–gel dip coating method for surface modification of titanium. Progress in Organic Coatings 2019, 130, 206-213.
100. Barceló, D.; Hansen, P.-D., Biosensors for the Environmental Monitoring of Aquatic Systems: Bioanalytical and Chemical Methods for Endocrine Disruptors. Springer: 2009; Vol. 5.
101. Buskens, P.; Wouters, M.; Rentrop, C.; Vroon, Z., A brief review of environmentally benign antifouling and foul-release coatings for marine applications. Journal of Coatings Technology and Research 2013, 10, 29-36.
102. Maleki, H., Recent advances in aerogels for environmental remediation applications: A review. Chemical Engineering Journal 2016, 300, 98-118.
103. Nedeljko, P.; Turel, M.; Lobnik, A., Hybrid sol-gel based sensor layers for optical determination of biogenic amines. Sensors and Actuators B: Chemical 2017, 246, 1066-1073.
104. Arya, S. K.; Bhansali, S., Lung cancer and its early detection using biomarker-based biosensors. Chemical Reviews 2011, 111 (11), 6783-6809.
105. Baer, D. R.; Burrows, P. E.; El-Azab, A. A., Enhancing coating functionality using nanoscience and nanotechnology. Progress in Organic Coatings 2003, 47 (3-4), 342-356.
106. Tseng, C.-J.; Chang, J.-K.; Hung, I.-M.; Lee, K.-R.; Lee, S.-W., BaZr0. 2Ce0. 8− xYxO3− δ solid oxide fuel cell electrolyte synthesized by sol–gel combined with composition-exchange method. International Journal of Hydrogen Energy 2014, 39 (26), 14434-14440.
107. Tichit, D.; Coq, B.; Armendariz, H.; Figueras, F., One-step sol-gel synthesis of sulfated-zirconia catalysts. Catalysis Letters 1996, 38 (1), 109-113.
108. Borlaf, M.; Moreno, R., Colloidal sol-gel: A powerful low-temperature aqueous synthesis route of nanosized powders and suspensions. Open Ceramics 2021, 8, 100200.
109. Figueira, R. B.; Fontinha, I. R.; Silva, C. J.; Pereira, E. V., Hybrid sol-gel coatings: Smart and green materials for corrosion mitigation. Coatings 2016, 6 (1), 12.
110. Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J. S., The future of aviation soars with HTL-based SAFs: exploring potential and overcoming challenges using organic wet feedstocks. Sustainable Energy & Fuels 2023, 7 (17), 4066-4087.
111. Moon, M.; Park, W.-K.; Lee, S. Y.; Hwang, K.-R.; Lee, S.; Kim, M.-S.; Kim, B.; Oh, Y.-K.; Lee, J.-S., Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications. Renewable and Sustainable Energy Reviews 2022, 160, 112269.
112. Thanigaivel, S.; Vickram, S.; Dey, N.; Gulothungan, G.; Subbaiya, R.; Govarthanan, M.; Karmegam, N.; Kim, W., The urge of algal biomass-based fuels for environmental sustainability against a steady tide of biofuel conflict analysis: Is third-generation algal biorefinery a boon? Fuel 2022, 317, 123494.
113. Usman, M.; Cheng, S.; Cross, J. S., Biodiesel production from wet sewage sludge and reduced CO2 emissions compared to incineration in Tokyo, Japan. Fuel 2023, 341, 127614.
114. Zhu, Z.; Rosendahl, L.; Toor, S. S.; Yu, D.; Chen, G., Hydrothermal liquefaction of barley straw to bio-crude oil: Effects of reaction temperature and aqueous phase recirculation. Applied Energy 2015, 137, 183-192.
115. Rahman, T.; Jahromi, H.; Roy, P.; Adhikari, S.; Hassani, E.; Oh, T.-S., Hydrothermal liquefaction of municipal sewage sludge: Effect of red mud catalyst in ethylene and inert ambiences. Energy Conversion and Management 2021, 245, 114615.
116. Thomsen, L. B. S.; Carvalho, P. N.; Dos Passos, J. S.; Anastasakis, K.; Bester, K.; Biller, P., Hydrothermal liquefaction of sewage sludge; energy considerations and fate of micropollutants during pilot scale processing. Water Research 2020, 183, 116101.
117. Chen, W.-T.; Zhang, Y.; Zhang, J.; Schideman, L.; Yu, G.; Zhang, P.; Minarick, M., Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil. Applied Energy 2014, 128, 209-216.
118. Perrier, A.; Delsart, C.; Boussetta, N.; Grimi, N.; Citeau, M.; Vorobiev, E., Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry 2017, 39, 58-65.
119. Ragauskas, A. J.; Beckham, G. T.; Biddy, M. J.; Chandra, R.; Chen, F.; Davis, M. F.; Davison, B. H.; Dixon, R. A.; Gilna, P.; Keller, M., Lignin valorization: improving lignin processing in the biorefinery. Science 2014, 344 (6185), 1246843.
120. H. Clark, J.; EI Deswarte, F.; J. Farmer, T., The integration of green chemistry into future biorefineries. Biofuels, Bioproducts and Biorefining 2009, 3 (1), 72-90.
121. de Jesus, S. S.; Maciel Filho, R., Recent advances in lipid extraction using green solvents. Renewable and Sustainable Energy Reviews 2020, 133, 110289.
122. Janicka, P.; Płotka-Wasylka, J.; Jatkowska, N.; Chabowska, A.; Fares, M. Y.; Andruch, V.; Kaykhaii, M.; Gębicki, J., Trends in the new generation of green solvents in extraction processes. Current Opinion in Green and Sustainable Chemistry 2022, 37, 100670.
123. Kumar, S. J.; Prasad, S. R.; Banerjee, R.; Agarwal, D. K.; Kulkarni, K. S.; Ramesh, K., Green solvents and technologies for oil extraction from oilseeds. Chemistry Central Journal 2017, 11 (1), 9.
124. Chemat, F.; Abert Vian, M.; Ravi, H. K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S., Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24 (16), 3007.
125. Usman, M.; Cheng, S.; Boonyubol, S.; Cross, J. S., Evaluating green solvents for bio-oil extraction: advancements, challenges, and future perspectives. Energies 2023, 16 (15), 5852.
126. Imperato, G.; König, B.; Chiappe, C., Ionic Green Solvents from Renewable Resources. European Journal of Organic Chemistry 2007, 2007 (7), 1049-1058.
127. Sheldon, R. A., Green solvents for sustainable organic synthesis: state of the art. Green Chemistry 2005, 7 (5), 267-278.
128. Faccini, M.; Bautista, L.; Soldi, L.; Escobar, A. M.; Altavilla, M.; Calvet, M.; Domènech, A.; Domínguez, E., Environmentally friendly anticorrosive polymeric coatings. Applied Sciences 2021, 11 (8), 3446.
129. Aguilar-Ruiz, A. A.; Dévora-Isiordia, G. E.; Sánchez-Duarte, R. G.; Villegas-Peralta, Y.; Orozco-Carmona, V. M.; Álvarez-Sánchez, J., Chitosan-based sustainable coatings for corrosion inhibition of aluminum in seawater. Coatings 2023, 13 (9), 1615.
130. Rani, B. A.; Basu, B. B. J., Green inhibitors for corrosion protection of metals and alloys: an overview. International Journal of Corrosion 2012, 2012 (1), 380217.
131. Verma, C.; Ebenso, E. E.; Quraishi, M.; Hussain, C. M., Recent developments in sustainable corrosion inhibitors: design, performance and industrial scale applications. Materials Advances 2021, 2 (12), 3806-3850.
132. Ghehsareh, Z.; Sayah, T.; Moharramnejad, M.; Rahimitabar, A.; Ehsani, A., Green guardians: A comprehensive review of environmentally friendly corrosion inhibitors from plant extract to ionic-liquids in industrial applications. Progress in Organic Coatings 2025, 201, 109146.
133. Zhang, Q.; Zhang, R.; Wu, R.; Luo, Y.; Guo, L.; He, Z., Green and high-efficiency corrosion inhibitors for metals: a review. Journal of Adhesion Science and Technology 2023, 37 (9), 1501-1524.
134. Shahid, M., Corrosion protection with eco-friendly inhibitors. Advances in Natural Sciences: Nanoscience and Nanotechnology 2011, 2 (4), 043001.
135. Popoola, L. T., Organic green corrosion inhibitors (OGCIs): a critical review. Corrosion Reviews 2019, 37 (2), 71-102.
136. Yadav, S.; Raman, A. P.; Singh, M. B.; Massey, I.; Singh, P.; Verma, C.; AlFantazi, A., Green nanoparticles for advanced corrosion protection: Current perspectives and future prospects. Applied Surface Science Advances 2024, 21, 100605.
137. Al Jahdaly, B. A.; Maghraby, Y. R.; Ibrahim, A. H.; Shouier, K. R.; Alturki, A. M.; El-Shabasy, R. M., Role of green chemistry in sustainable corrosion inhibition: a review on recent developments. Materials Today Sustainability 2022, 20, 100242.
138. Tusher, M. M. H.; Imam, A.; Shuvo, M. S. I., Future and Challenges of Coating Materials. Coating Materials: Computational Aspects, Applications and Challenges 2023, 229-251.
139. Chen, Y.-C.; Huang, Y.-C.; Huang, Y.-H.; Lin, Y.-F.; Huang, H.-C.; Jeng, R.-J.; Cheng, Y.-W.; Wu, C.-H., A crosslinked waterborne poly (vinyl acetate) for greenhouse gas fixation with improved elastomeric properties, shape-memory ability, and recyclability. Journal of Environmental Chemical Engineering 2023, 11 (6), 111170.
140. Wu, S.-Y.; Chang, L.-T.; Peng, S.; Tsai, H.-C., Calcium-activated gene transfection from DNA/poly (amic acid-co-imide) complexes. International Journal of Nanomedicine 2015, 1637-1647.
141. Liu, Y.; Cao, H.; Chen, Y.; Chen, S.; Wang, D., Self-assembled super-hydrophobic multilayer films with corrosion resistance on copper substrate. RSC Advances 2016, 6 (3), 2379-2386.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100155-
dc.description.abstract鋼材因其優異的機械性質與成本效益,廣泛應用於建築、交通與工業等領域。然而,其在高濕與高鹽環境中極易腐蝕,導致結構劣化與重大資產損失,對經濟與公共安全構成嚴重威脅。傳統防腐塗層多採用溶劑型系統,但其所釋放的揮發性有機化合物(volatile organic compounds)對環境與人體健康造成負擔。為實現低污染且高效能之防腐機制,開發具環境友善性的水性混成塗層已成為材料科學中的重要研究趨勢。 本研究開發一種以高分子分散液為基礎之環保型水性塗層系統,用於鋼鐵(mild steel)之防腐蝕應用。首先,以乙二胺四乙酸二酐(ethylenediaminetetraacetic dianhydride)與2,2-(乙二氧基)雙(乙胺)(2,2-(ethylenedioxy)bis(ethylamine)合成具水溶性的聚酰胺酸(polyamic acid, PAmA)。其分子主鏈中之醚鍵與酰胺酸官能基提供大量極性位點,有助於促進3-甘油氧丙基三甲氧基矽烷(3-glycidoxypropyl trimethoxysilane, GPTMS)形成穩定的水性有機矽烷分散體,且無需額外添加界面活性劑或鹽類。進一步地,系統中最多可以25 wt%之四乙氧基矽烷(tetraethyl orthosilicate)替代GPTMS,以作為交聯劑與奈米二氧化矽前驅物,經最佳化條件製備水性有機/無機混成分散液。 與傳統聚丙烯酸分散液相比,本研究所製備之PAmA基有機/無機分散液經拉曼光譜(Raman spectroscopy)與29Si 核磁共振(29Si-NMR)分析顯示其縮合程度高達94.6%,證實已形成高交聯密度的矽氧網路結構,具被動保護層功能。該塗層在熱重分析中表現出超過380 °C的熱分解溫度,顯示出優異的熱穩定性。此外,PAmA的應用不僅促進交聯反應與矽氧結構生成,亦有助於形成酰亞胺結構,進一步增強塗層系統的結構完整性與化學穩定性,該現象亦由傅立葉轉換紅外光譜(FTIR)與示差掃描量熱分析(DSC)所驗證。zh_TW
dc.description.abstractSteel is widely utilized in construction, transportation, and industrial sectors due to its excellent mechanical properties and cost-effectiveness. However, its high susceptibility to corrosion under humid and saline environments often results in structural degradation and significant asset loss, posing serious economic and safety concerns. Conventional anticorrosive coatings predominantly rely on solvent-based systems, which emit volatile organic compounds that are detrimental to both environmental and human health. In pursuit of low-pollution and high-efficiency corrosion protection, the development of eco-friendly waterborne hybrid coatings has become a key research direction in materials science. In this study, an environmentally friendly waterborne coating system was developed using a polymeric dispersion as the base, intended for corrosion protection of mild steel. A water-soluble polyamic acid (PAmA) was first synthesized via the reaction of ethylenediaminetetraacetic dianhydride and 2,2-(ethylenedioxy)bis(ethylamine). The incorporation of ether linkages and amic acid functional groups into the polymer backbone introduces numerous polar sites, which facilitate the formation of a stable aqueous silane dispersion primarily composed of 3-glycidoxypropyl trimethoxysilane (GPTMS), without the need for surfactants or salts. Up to 25 wt% of GPTMS can be replaced with tetraethyl orthosilicate , which functions as a crosslinking agent and a precursor to nanosilica, thereby forming an aqueous organic/inorganic hybrid dispersion under optimized conditions. Compared with reference samples such as polyacrylic acid dispersions, the PAmA-based organic/inorganic dispersion exhibited a high degree of condensation (94.6%) as confirmed by Raman spectroscopy and ²⁹Si nuclear magnetic resonance (²⁹Si-NMR), indicating the formation of a highly crosslinked siloxane network. This structure acts as a passive layer and contributes to the thermal decomposition temperature of the hybrid coating exceeding 380 °C, as demonstrated by thermogravimetric analysis. The presence of PAmA not only enhances the crosslinking density and silica network formation but also facilitates the development of imide structures, resulting in a more robust sol-gel derived hybrid coating system. These observations are consistent with findings from Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) analyses.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:40:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:40:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vi
表次 viii
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 4
2-1 功能性塗層的發展與應用 4
2.1.1 工業與環境應用背景 8
2.1.2 功能性塗層分類與效能需求 12
2-2 聚合物塗層材料 14
2-3 鋼鐵材料 19
2.3.1 腐蝕的定義 20
2.3.2 鋼板腐蝕的機理 21
2.3.3 鋼板腐蝕的環境 24
2.3.4 鋼板腐蝕的防護方法 25
2.3.5 不同防腐蝕塗層探討 26
2-4 溶膠-凝膠法 36
2.4.1 有機-無機混成材料 38
2.4.2 奈米填料與混成體系 41
2-5 綠色製程 44
2.5.1 綠色化學與防腐塗層的應用 47
2.5.2 綠色化學防腐蝕技術的挑戰與未來趨勢 50
2-6 研究動機 55
第三章 實驗材料與方法 57
3-1 實驗藥品 57
3-2 實驗設備與儀器 58
3-3 實驗製備與步驟 60
3.3.1 聚醯胺酸的製備 60
3.3.2 矽烷分散液的製備 60
3-4 材料鑑定與分析方法 63
3-5 電化學性質評估 67
3-6 腐蝕性質評估 69
第四章 結果與討論 70
4-1 合成具脂肪族主鏈之聚醯胺酸 70
4-2 合成與表徵具脂肪族主鏈之聚醯胺酸 72
4-3 具脂肪族主鏈之PAmA之熱穩定性與熱轉變行為 73
4-4 水性PAmA有機–無機分散液的製備與特性分析 75
4-5 溶膠–凝膠製程應用於有機/無機混成複合材料之研究 77
4-6 混成塗層之熱穩定性與相分析 80
4-7 混成塗層表面親疏水性評估 83
4-8 混成塗層對鋼板腐蝕行為之抑制效能探討 85
4-9 鋼板表面塗層之防腐蝕評估 89
第五章 結論 91
第六章 未來展望 92
參考文獻 94
附錄 103
-
dc.language.isozh_TW-
dc.subject聚酰胺酸zh_TW
dc.subject水溶性zh_TW
dc.subject防腐蝕性zh_TW
dc.subject溶膠-凝膠法zh_TW
dc.subjectanti-corrosionen
dc.subjectpolyamic aciden
dc.subjectsol-gel reactionen
dc.subjectwater-solubleen
dc.title以水溶性聚醯胺酸為螯合劑之環保型混合材料於鋼材防腐蝕之應用研究zh_TW
dc.titleStudy on Eco-Friendly Hybrid Materials for Steel Corrosion Protection Using Water-Soluble Polyamic Acid as a Chelating Agenten
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee邱文英;鄭有為;吳建欣;黃英治zh_TW
dc.contributor.oralexamcommitteeWen-Yen Chiu;Yu-Wei Cheng;Chien-Hsin Wu;Ying-Chih Huangen
dc.subject.keyword聚酰胺酸,水溶性,防腐蝕性,溶膠-凝膠法,zh_TW
dc.subject.keywordpolyamic acid,water-soluble,anti-corrosion,sol-gel reaction,en
dc.relation.page104-
dc.identifier.doi10.6342/NTU202502544-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-06-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
dc.date.embargo-lift2030-07-25-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.13 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved