Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100119
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝依芸zh_TW
dc.contributor.advisorI-Yun Lisa Hsiehen
dc.contributor.author張友睿zh_TW
dc.contributor.authorYu-Jui Changen
dc.date.accessioned2025-09-24T16:33:29Z-
dc.date.available2025-09-25-
dc.date.copyright2025-09-24-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] G. T. Pecl et al., “Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being,” Science, vol. 355, no. 6332, p. eaai9214, Mar. 2017, doi: 10.1126/science.aai9214.
[2] Y. Malhi et al., “Climate change and ecosystems: threats, opportunities and solutions,” Phil. Trans. R. Soc. B, vol. 375, no. 1794, p. 20190104, Mar. 2020, doi: 10.1098/rstb.2019.0104.
[3] IPCC, “Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty,” 2018. [Online]. Available: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SPM_version_report_LR.pdf.
[4] H. L. Van Soest, M. G. J. Den Elzen, and D. P. Van Vuuren, “Net-zero emission targets for major emitting countries consistent with the Paris Agreement,” Nat Commun, vol. 12, no. 1, p. 2140, Apr. 2021, doi: 10.1038/s41467-021-22294-x.
[5] Y.-J. Chang and I.-Y. L. Hsieh, “Transitioning from illegal rooftop dwellings to solar PV: Market-based incentive design and techno-economic analysis,” Energy Strategy Reviews, vol. 49, p. 101154, Sep. 2023, doi: 10.1016/j.esr.2023.101154.
[6] 氣候變遷因應法. 2023. [Online]. Available: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098
[7] 行政院, “行政院全球資訊網,” 行政院. Accessed: Jul. 25, 2025. [Online]. Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1
[8] 國家發展委員會, “臺灣 2050 淨零排放路徑及策略總說明.” Mar. 30, 2022. [Online]. Available: https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvMC8xNTk5Mi85NzA1NTBhMi0wMWY0LTRlYmItOTAyMy1lMDA3YzE4MWU2MDIucGRm&n=MjAyMuW5tDPmnIgzMOaXpeWFrOW4g%2b%2b8muiHuueBozIwNTDmt6jpm7bmjpLmlL7ot6%2flvpHlj4rnrZbnlaXnuL3oqqrmmI4ucGRm&icon=.pdf
[9] “國家減碳新目標專區-核心業務|環境部氣候變遷署全球資訊網.” Accessed: Aug. 07, 2025. [Online]. Available: https://www.cca.gov.tw/affairs/carbon-reduction-targets/2367.html
[10] T. T. C. Lin, “Online opinions, sentiments and news framing of the first nuclear referendum in Taiwan: a mix-method approach,” Asian Journal of Communication, vol. 32, no. 2, pp. 152–173, Mar. 2022, doi: 10.1080/01292986.2021.2022728.
[11] B. Di Giusto, J. Lavallee, I. Žilák, and Y. H. Di Giusto, “Public Opinion and the Energy Transition in East Asia: The Case of Taiwan,” Sustainability, vol. 16, no. 10, p. 4164, May 2024, doi: 10.3390/su16104164.
[12] M. C. Chuang and H. W. Ma, “An assessment of Taiwan’s energy policy using multi-dimensional energy security indicators,” Renewable and Sustainable Energy Reviews, vol. 17, pp. 301–311, Jan. 2013, doi: 10.1016/j.rser.2012.09.034.
[13] C.-L. Shen and H.-S. Tai, “National goal, local resistance: How institutional gaps hinder local renewable energy development in Taiwan,” Energy for Sustainable Development, vol. 83, p. 101586, Dec. 2024, doi: 10.1016/j.esd.2024.101586.
[14] K. T. Chou, “The public perception of climate change in Taiwan and its paradigm shift,” Energy Policy, vol. 61, pp. 1252–1260, Oct. 2013, doi: 10.1016/j.enpol.2013.06.016.
[15] G. C.-L. Huang and R.-Y. Chen, “Injustices in phasing out nuclear power?: Exploring limited public participation and transparency in Taiwan’s transition away from nuclear energy,” Energy Research & Social Science, vol. 71, p. 101808, Jan. 2021, doi: 10.1016/j.erss.2020.101808.
[16] I. Suboticki, S. Heidenreich, M. Ryghaug, and T. M. Skjølsvold, “Fostering justice through engagement: A literature review of public engagement in energy transitions,” Energy Research & Social Science, vol. 99, p. 103053, May 2023, doi: 10.1016/j.erss.2023.103053.
[17] W. Shen et al., “A comprehensive review of variable renewable energy levelized cost of electricity,” Renewable and Sustainable Energy Reviews, vol. 133, p. 110301, Nov. 2020, doi: 10.1016/j.rser.2020.110301.
[18] F. Ueckerdt, L. Hirth, G. Luderer, and O. Edenhofer, “System LCOE: What are the costs of variable renewables?,” Energy, vol. 63, pp. 61–75, Dec. 2013, doi: 10.1016/j.energy.2013.10.072.
[19] A. G. Olabi, “Renewable energy and energy storage systems,” Energy, vol. 136, pp. 1–6, Oct. 2017, doi: 10.1016/j.energy.2017.07.054.
[20] W. Wang, B. Yuan, Q. Sun, and R. Wennersten, “Application of energy storage in integrated energy systems — A solution to fluctuation and uncertainty of renewable energy,” Journal of Energy Storage, vol. 52, p. 104812, Aug. 2022, doi: 10.1016/j.est.2022.104812.
[21] A. M. L. Leite Da Silva, W. S. Sales, L. A. D. F. Manso, and R. Billinton, “Long-Term Probabilistic Evaluation of Operating Reserve Requirements With Renewable Sources,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 106–116, Feb. 2010, doi: 10.1109/TPWRS.2009.2036706.
[22] Ž. B. Rejc and M. Čepin, “Estimating the additional operating reserve in power systems with installed renewable energy sources,” International Journal of Electrical Power & Energy Systems, vol. 62, pp. 654–664, Nov. 2014, doi: 10.1016/j.ijepes.2014.05.019.
[23] O. Gandhi, C. D. Rodriguez-Gallegos, and D. Srinivasan, “Review of optimization of power dispatch in renewable energy system,” in 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Melbourne, Australia: IEEE, Nov. 2016, pp. 250–257. doi: 10.1109/ISGT-Asia.2016.7796394.
[24] W. Su, J. Wang, and J. Roh, “Stochastic Energy Scheduling in Microgrids With Intermittent Renewable Energy Resources,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1876–1883, Jul. 2014, doi: 10.1109/TSG.2013.2280645.
[25] L. Reichenberg, F. Hedenus, M. Odenberger, and F. Johnsson, “The marginal system LCOE of variable renewables – Evaluating high penetration levels of wind and solar in Europe,” Energy, vol. 152, pp. 914–924, Jun. 2018, doi: 10.1016/j.energy.2018.02.061.
[26] S. Concettini, “Competition between renewable and traditional power producers: how spot market design influences the emergence of strategic investments in renewable capacity.” Chair Energy and Prosperity. [Online]. Available: https://chair-energy-prosperity.org/wp-content/uploads/2018/07/publication2018-competition-renewable-traditional-power-producers_concettini.pdf
[27] U. Nissen and N. Harfst, “Shortcomings of the traditional ‘levelized cost of energy’ [LCOE] for the determination of grid parity,” Energy, vol. 171, pp. 1009–1016, Mar. 2019, doi: 10.1016/j.energy.2019.01.093.
[28] C. S. Lai and M. D. McCulloch, “Levelized cost of electricity for solar photovoltaic and electrical energy storage,” Applied Energy, vol. 190, pp. 191–203, Mar. 2017, doi: 10.1016/j.apenergy.2016.12.153.
[29] G. Friedl, S. Reichelstein, A. Bach, M. Blaschke, and L. Kemmer, “Applications of the levelized cost concept,” J Bus Econ, vol. 93, no. 6–7, pp. 1125–1148, Aug. 2023, doi: 10.1007/s11573-023-01171-7.
[30] Massachusetts Institute of Technology, Ed., The future of coal: options for a carbon-constrained world ; an interdisciplinary MIT study. Cambridge/Mass, 2007.
[31] Lazard, “Lazard’s LCOE+ Report,” LinkedIn. [Online]. Available: https://www.linkedin.com/posts/lazard_levelized-cost-of-energy-activity-7051910528088039424-4a_n/
[32] “Lazard’s LCOE+ 2025 Report.” [Online]. Available: https://www.lazard.com/media/eijnqja3/lazards-lcoeplus-june-2025.pdf
[33] “Technologies | Electricity | 2024 | ATB | NREL.” Accessed: Jun. 29, 2025. [Online]. Available: https://atb.nrel.gov/electricity/2024/technologies
[34] “Levelized Cost of Energy Calculator | Energy Analysis | NREL.” Accessed: Jun. 29, 2025. [Online]. Available: https://www.nrel.gov/analysis/tech-lcoe
[35] 発電コスト検証ワーキンググループ, “発電コスト検証に関するとりまとめ,” Feb. 2025. [Online]. Available: https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/mitoshi/cost_wg/pdf/cost_wg_20250206_01.pdf
[36] P. L. Joskow, “Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies,” American Economic Review, vol. 101, no. 3, pp. 238–241, May 2011, doi: 10.1257/aer.101.3.238.
[37] K. Hansen, “Decision-making based on energy costs: Comparing levelized cost of energy and energy system costs,” Energy Strategy Reviews, vol. 24, pp. 68–82, Apr. 2019, doi: 10.1016/j.esr.2019.02.003.
[38] J. Y. Tao and A. Finenko, “Moving beyond LCOE: impact of various financing methods on PV profitability for SIDS,” Energy Policy, vol. 98, pp. 749–758, Nov. 2016, doi: 10.1016/j.enpol.2016.03.021.
[39] E. Loth, C. Qin, J. G. Simpson, and K. Dykes, “Why we must move beyond LCOE for renewable energy design,” Advances in Applied Energy, vol. 8, p. 100112, Dec. 2022, doi: 10.1016/j.adapen.2022.100112.
[40] S. Larsson, D. Fantazzini, S. Davidsson, S. Kullander, and M. Höök, “Reviewing electricity production cost assessments,” Renewable and Sustainable Energy Reviews, vol. 30, pp. 170–183, Feb. 2014, doi: 10.1016/j.rser.2013.09.028.
[41] S. Borenstein, “The Private and Public Economics of Renewable Electricity Generation,” Journal of Economic Perspectives, vol. 26, no. 1, pp. 67–92, Feb. 2012, doi: 10.1257/jep.26.1.67.
[42] International Energy Agency, The power of transformation: wind, sun and the economics of flexible power systems, Online-Ausg. Paris, France: OECD, 2014.
[43] F. Sensfuß, M. Ragwitz, and M. Genoese, “The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany,” Energy Policy, vol. 36, no. 8, pp. 3086–3094, Aug. 2008, doi: 10.1016/j.enpol.2008.03.035.
[44] J. Cludius, H. Hermann, F. Chr. Matthes, and V. Graichen, “The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications,” Energy Economics, vol. 44, pp. 302–313, Jul. 2014, doi: 10.1016/j.eneco.2014.04.020.
[45] M. Hildmann, A. Ulbig, and G. Andersson, “Empirical Analysis of the Merit-Order Effect and the Missing Money Problem in Power Markets With High RES Shares,” IEEE Trans. Power Syst., vol. 30, no. 3, pp. 1560–1570, May 2015, doi: 10.1109/tpwrs.2015.2412376.
[46] N. C. Figueiredo and P. P. D. Silva, “The ‘Merit-order effect’ of wind and solar power: Volatility and determinants,” Renewable and Sustainable Energy Reviews, vol. 102, pp. 54–62, Mar. 2019, doi: 10.1016/j.rser.2018.11.042.
[47] “総合資源エネルギー調査会|資源エネルギー庁.” Accessed: Aug. 04, 2025. [Online]. Available: https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/index.html
[48] 臺灣電力公司, “各種發電方式之發電成本.” [Online]. Available: https://www.taipower.com.tw/media/5mefckit/%E5%90%84%E7%A8%AE%E7%99%BC%E9%9B%BB%E6%96%B9%E5%BC%8F%E4%B9%8B%E7%99%BC%E9%9B%BB%E6%88%90%E6%9C%AC-114%E5%B9%B45%E6%9C%88%E5%BA%95%E6%AD%A2.pdf
[49] 許弼程, “台灣地區離岸風力發電均化成本分析,” 國立中興大學, 2020. [Online]. Available: https://hdl.handle.net/11296/ue27ca
[50] 盧品瑜, “我國電力部門深度減碳技術組合評估,” 國立成功大學. [Online]. Available: https://hdl.handle.net/11296/34rz64
[51] 陳啟賢, “望安島綠能微電網系統示範區運轉效益評估,” 國立澎湖科技大學, 2023. [Online]. Available: https://hdl.handle.net/11296/g5wakn
[52] 王俊凱, “台灣電力系統邁向淨零碳發展之研究,” 國立臺北大學, 2024. [Online]. Available: https://hdl.handle.net/11296/8kx8vh
[53] J. Hernández-Moro and J. M. Martínez-Duart, “Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 119–132, Apr. 2013, doi: 10.1016/j.rser.2012.11.082.
[54] 台灣電力股份有限公司, “中華民國114年度台灣電力股份有限公司附屬單位預算.” [Online]. Available: https://www.taipower.com.tw/media/3xiej5k0/114%E5%B9%B4%E9%99%A2%E6%A0%B8%E9%A0%90%E7%AE%97%E6%9B%B8.pdf?mediaDL=true
[55] 經濟部能源署, “112年度全國電力供需報告.” [Online]. Available: https://ws.ndc.gov.tw/001/administrator/10/relfile/5653/30018/ba6fc4a0-d9b3-41da-b8dd-1c87eca7ea1a.pdf
[56] 經濟部能源署, “114 年度再生能源電能躉購費率審定會 「地熱、生質能及水力分組 」第 3 次會議紀錄.” Nov. 01, 2024. [Online]. Available: https://www.moeaea.gov.tw/ECW/main/content/wHandMenuFile.ashx?file_id=16660
[57] 經濟部能源署, “114 年度再生能源電能躉購費率審定會 「風力及海洋能發電分組」第 3 次會議紀錄.” Oct. 28, 2024. [Online]. Available: https://www.moeaea.gov.tw/ECW/main/content/wHandMenuFile.ashx?file_id=16658
[58] 經濟部能源署, “114 年度再生能源電能躉購費率審定會「太陽光電分組 」第 3 次會議紀錄.” Nov. 04, 2024. [Online]. Available: https://www.moeaea.gov.tw/ECW/main/content/wHandMenuFile.ashx?file_id=16659
[59] 台灣電力股份有限公司, “中華民國111年度台灣電力股份有限公司附屬單位預算.” [Online]. Available: https://www.taipower.com.tw/media/4rpdjpbu/2021083115535414585.pdf?mediaDL=true
[60] 經濟部能源署, “能源統計.” [Online]. Available: https://www.esist.org.tw/
[61] 台灣電力公司, “114年上半年電價費率檢討方案自發及購入電力燃料成本.” Mar. 18, 2025. [Online]. Available: https://ele.tri.org.tw/1140328/1140328-1/1140328-1-4/mobile/index.html
[62] “興達電廠,” 台灣電力公司. Accessed: Aug. 04, 2025. [Online]. Available: https://www.taipower.com.tw/2289/2558/2387/10650/
[63] “台中電廠,” 台灣電力公司. Accessed: Aug. 04, 2025. [Online]. Available: https://www.taipower.com.tw/2289/2558/2387/10649/
[64] “通霄電廠,” 台灣電力公司. Accessed: Aug. 04, 2025. [Online]. Available: https://www.taipower.com.tw/2289/2558/2387/10648/
[65] “南部電廠,” 台灣電力公司. Accessed: Aug. 04, 2025. [Online]. Available: https://www.taipower.com.tw/2289/2558/2387/10651/
[66] 吳明竑, 王振勇, and 吳清敏, “水力發電開發現況、面臨環境與未來展望,” 土木水利, vol. 42, no. 4, pp. 46–51, Aug. 2015, [Online]. Available: http://www.ciche.org.tw/wordpress/wp-content/uploads/2018/03/DB4204-P046-%E6%B0%B4%E5%8A%9B%E7%99%BC%E9%9B%BB.pdf
[67] 黎潤林, “小水力發電之生命週期評估,” 國立臺北大學, 2011. [Online]. Available: https://hdl.handle.net/11296/u4kz69
[68] C. Milne, S. Jalili, and A. Maheri, “Decommissioning cost modelling for offshore wind farms: A bottom-up approach,” Sustainable Energy Technologies and Assessments, vol. 48, p. 101628, Dec. 2021, doi: 10.1016/j.seta.2021.101628.
[69] Md. S. Chowdhury et al., “An overview of solar photovoltaic panels’ end-of-life material recycling,” Energy Strategy Reviews, vol. 27, p. 100431, Jan. 2020, doi: 10.1016/j.esr.2019.100431.
[70] “Executive summary – The Future of Geothermal Energy – Analysis,” IEA. Accessed: Aug. 04, 2025. [Online]. Available: https://www.iea.org/reports/the-future-of-geothermal-energy/executive-summary
[71] 環境部氣候變遷署, “113 年第 5 次碳費費率審議會會議紀錄.” [Online]. Available: https://service.cca.gov.tw/File/Get/cca/zh-tw/61Ia1G3QHo4b2zc
[72] 環境部氣候變遷署, “113 年第 6 次碳費費率審議會會議紀錄.” [Online]. Available: https://service.cca.gov.tw/File/Get/cca/zh-tw/JVJaWd1E9o3ZFXw
[73] 曾暐畯, 陳厚銓, 張綜桁, 張天昱, and 謝依芸, “臺灣電力碳密集度現況研究與淨零政策之展望,” 臺灣能源期刊, vol. 9, no. 4, pp. 307–321, Dec. 2022.
[74] P. J. Heptonstall and R. J. K. Gross, “A systematic review of the costs and impacts of integrating variable renewables into power grids,” Nat Energy, vol. 6, no. 1, pp. 72–83, Nov. 2020, doi: 10.1038/s41560-020-00695-4.
[75] H. Moon, S. Baik, and W. Y. Park, “Assessing the Levelized Cost of Energy in South Korea,” 2025. doi: 10.2139/ssrn.5221504.
[76] International Renewable Energy Agency, “Renewable power generation costs in 2024,” 2025. [Online]. Available: https://tecsol.blogs.com/files/irena_tec_rpgc_in_2024_2025.pdf
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100119-
dc.description.abstract臺灣於2022年公布「2050淨零排放路徑」,目標將再生能源滲透率提升至六成以上。然而,臺灣目前仍缺乏以在地參數建立、可公開比較且可動態更新的發電成本與電力供給曲線資料,限制了政策規劃與市場分析的精確度。本研究整合台電自有機組與代表性再生能源專案的成本與性能參數,計算各主要技術的均化能源成本(LCOE),並納入儲能、輸電與備援等系統成本,以反映高滲透率間歇性再生能源的整合需求。同時,依邊際成本與即時發電量繪製供給曲線,分析不同碳定價情境下的出力排序變化。
研究結果顯示,陸域風電與中大型小水力發電是目前少數具成本競爭力的再生能源,其均化能源成本與燃煤、燃氣發電相當,甚至更低;其他再生能源技術則因資本與運維成本偏高,成本普遍高於傳統火力機組。與日本、南韓、美國、中國及全球平均相比,臺灣多數再生能源成本仍處於高檔,特別是離岸風電與太陽光電,反映出規模化程度不足、建設條件受限及容量因數偏低等結構性挑戰。燃煤與燃氣發電的成本高度依賴燃料價格,國際市場變動可在短期內大幅改變其經濟性;在碳定價達1,500元/tCO₂e的情境下,燃煤成本將顯著上升並高於燃氣,供給曲線出現燃煤與燃氣排序反轉,驗證「減煤增氣」政策在經濟面與減碳面的合理性。將系統成本納入後,間歇性再生能源的實際發電成本可增加三至八成,凸顯在高滲透率情境下忽略系統成本可能低估其真實成本。
本研究建立了一套在地化、可比較且可動態更新的 LCOE 與供給曲線資料,補足傳統成本分析無法反映的系統運作特性。結果顯示,若要在2050年前兼顧淨零轉型與供電穩定,臺灣需加速具成本競爭力再生能源的佈建,同時降低離岸風電與太陽光電的資本與運維成本,並透過系統成本內部化與邊際成本排序引導投資與調度策略。
zh_TW
dc.description.abstractIn 2022, Taiwan announced its “2050 Net-Zero Emissions Pathway,” setting a target to raise the renewable energy penetration rate to over 60%. However, Taiwan still lacks locally parameterized, publicly comparable, and dynamically updatable data on power generation costs and electricity supply curves, limiting the accuracy of policy planning and market analysis. This study integrates the cost and performance parameters of generation units owned by Taipower and representative renewable energy projects to calculate the levelized cost of energy (LCOE) for major technologies, incorporating system costs such as storage, transmission, and operating reserve to reflect the integration requirements of high-penetration intermittent renewables. In addition, supply curves are constructed based on marginal costs and instantaneous generation output to analyze changes in dispatch order under different carbon pricing scenarios.
The result of the study shows that onshore wind power and medium-to-large small hydropower technologies are among the few renewable energy sources that are cost competitive, and their LCOEs are comparable to or even lower than coal- and gas-fired generation. Other renewable energy technologies, affected by relatively high capital costs and high operation & maintenance costs, generally remain more expensive than conventional thermal power technologies. Compared with Japan, South Korea, the United States, China, and the global average, most renewable energy costs in Taiwan remain at the higher end of the cost spectrum, offshore wind and solar photovoltaics in particular, reflecting structural challenges such as insufficient economies of scale, site constraints, and low capacity factors. The costs of coal- and gas-fired generation are highly dependent on fuel prices, with international market fluctuations capable of significantly altering their short-term economics. Under a carbon price of NT$1,500/tCO₂e, the cost of coal-fired generation rises significantly and exceeds that of gas-fired generation, reversing their positions on the supply curve and supporting the economic and decarbonization rationale of the “Increase Natural Gas, Reduce Coal-fired” (coal-to-gas transition) policy. When system costs are included, the actual generation costs of variable renewable energy technologies increase by 30% to 80%, highlighting the risk of underestimating their true costs under high-penetration scenarios if system costs are ignored.
This study develops a localized, comparable, and dynamically updatable dataset of LCOE and supply curves, addressing operational characteristics that traditional cost analyses fail to capture. The results imply that to achieve both a net-zero transition and power supply stability by 2050, Taiwan must accelerate the deployment of cost-competitive renewables, reduce the capital and operation and maintenance costs of offshore wind and solar photovoltaic, and guide investment and scheduling strategies based on internalized system costs and the marginal cost-based dispatch order.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:33:29Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-24T16:33:29Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
ABSTRACT iv
目 次 vi
圖 次 viii
表 次 ix
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與問題陳述 2
1.3 文獻回顧 3
1.3.1 均化能源成本(LCOE)的定義與應用背景 3
1.3.2 現行均化能源成本方法之侷限 4
1.3.3 電力供給曲線作為補充工具 6
1.3.4 臺灣現況與研究落差 6
1.4 研究目的與範疇 8
第二章 資料與方法 10
2.1 均化能源成本 10
2.1.1 發電方式 11
2.1.2 資本成本 12
2.1.3 運維成本 14
2.1.4 燃料成本 16
2.1.5 容量因數 16
2.1.6 折現率 17
2.1.7 期數與機組壽命 18
2.1.8 碳定價費率及電力排碳係數 20
2.1.9 系統成本 21
2.2 臺灣電力供給曲線 22
2.2.1 出力排序及電力供給曲線 22
2.2.2 電力供給曲線建構方法 22
第三章 結果與討論 24
3.1 臺灣各種發電技術之均化能源成本現況與比較分析 24
3.1.1 臺灣各種發電技術之均化能源成本計算結果 24
3.1.2 各種發電技術均化能源成本之跨國比較與分析 29
3.1.3 臺灣新建再生能源均化能源成本與傳統發電形式邊際成本比較 41
3.2 政策與參數對於臺灣均化能源成本之影響 43
3.2.1 臺灣均化能源成本對燃料成本之敏感度分析 43
3.2.2 臺灣均化能源成本對碳定價之敏感度分析 47
3.2.3 系統成本對於均化能源成本的影響 49
3.2.4 臺灣均化能源成本對工程經濟參數之敏感性分析 51
3.3 臺灣電力供給曲線 54
第四章 結論與建議 60
4.1 結論 60
4.2 建議 60
4.3 研究限制與未來展望 61
參考文獻 63
-
dc.language.isozh_TW-
dc.subject淨零排放zh_TW
dc.subject間歇性再生能源(VRE)zh_TW
dc.subject均化能源成本(LCOE)zh_TW
dc.subject系統成本zh_TW
dc.subject電力供給曲線zh_TW
dc.subject出力排序zh_TW
dc.subject技術經濟分析(TEA)zh_TW
dc.subjectVariable Renewable Energy (VRE)en
dc.subjectTechno-Economic Analysis (TEA)en
dc.subjectMerit Orderen
dc.subjectElectricity Supply Curveen
dc.subjectSystem Costen
dc.subjectLevelized Cost of Energy (LCOE)en
dc.subjectNet-Zero Emissionsen
dc.title臺灣發電成本之再評估:淨零轉型下之均化能源成本及電力供給曲線分析zh_TW
dc.titleReassessing Power Generation Costs in Taiwan: Integrated Analysis of Levelized Cost of Energy and Electricity Supply Curves for Net-Zero Transitionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王穎達;徐昕煒zh_TW
dc.contributor.oralexamcommitteeYing-Da Wang;Hsin-Wei Hsuen
dc.subject.keyword淨零排放,間歇性再生能源(VRE),均化能源成本(LCOE),系統成本,電力供給曲線,出力排序,技術經濟分析(TEA),zh_TW
dc.subject.keywordNet-Zero Emissions,Variable Renewable Energy (VRE),Levelized Cost of Energy (LCOE),System Cost,Electricity Supply Curve,Merit Order,Techno-Economic Analysis (TEA),en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202504375-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved