請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100109完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 藍鼎文 | zh_TW |
| dc.contributor.advisor | Ting-Wen Lan | en |
| dc.contributor.author | 黃宇文 | zh_TW |
| dc.contributor.author | Yu Voon Ng | en |
| dc.date.accessioned | 2025-09-24T16:31:24Z | - |
| dc.date.available | 2026-01-31 | - |
| dc.date.copyright | 2025-09-24 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-16 | - |
| dc.identifier.citation | Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543, doi: 10.1088/0067-0049/182/2/543
Alexander, D. M., Davis, T. M., Chaussidon, E., et al. 2023, AJ, 165, 124, doi: 10.3847/1538-3881/acacfc Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJL, 556, L63, doi: 10.1086/322874 —. 2002, ApJL, 573, L137, doi: 10.1086/342095 Anand, A., Nelson, D., & Kauffmann, G. 2021, MNRAS, 504, 65, doi: 10.1093/mnras/stab871 Anand, A., Guy, J., Bailey, S., et al. 2024, AJ, 168, 124, doi: 10.3847/1538-3881/ad60c2 Andrews, B. H., & Martini, P. 2013, ApJ, 765, 140, doi: 10.1088/0004-637X/765/2/140 Anglés-Alcázar, D., Faucher-Giguère, C.-A., Kereš, D., et al. 2017, MNRAS, 470, 4698, doi: 10.1093/mnras/stx1517 Bahcall, J. N., & Spitzer, Lyman, J. 1969, ApJL, 156, L63, doi: 10.1086/180350 Bailey et al. 2025, , in preparation Baldwin, J. A., Phillips, M. M., & Terlevich, R. 1981, PASP, 93, 5, doi: 10.1086/130766 Berg, T. A. M., Ellison, S. L., Tumlinson, J., et al. 2018, MNRAS, 478, 3890, doi: 10.1093/mnras/sty962 Bergeron, J. 1986, A&A, 155, L8 Blanton, M. R., & Moustakas, J. 2009, ARA&A, 47, 159, doi: 10.1146/annurev-astro-082708-101734 Boquien, M., Burgarella, D., Roehlly, Y., et al. 2019, A&A, 622, A103, doi: 10.1051/0004-6361/201834156 Bordoloi, R., Lilly, S. J., Knobel, C., et al. 2011, ApJ, 743, 10, doi: 10.1088/0004-637X/743/1/10 Bordoloi, R., Tumlinson, J., Werk, J. K., et al. 2014, ApJ, 796, 136, doi: 10.1088/0004-637X/796/2/136 Borthakur, S., Heckman, T., Tumlinson, J., et al. 2015, ApJ, 813, 46, doi: 10.1088/0004-637X/813/1/46 —. 2016, ApJ, 833, 259, doi: 10.3847/1538-4357/833/2/259 Bouché, N., Hohensee, W., Vargas, R., et al. 2012, MNRAS, 426, 801, doi: 10.1111/j.1365-2966.2012.21114.x Bouché, N. F., Wendt, M., Zabl, J., et al. 2025, A&A, 694, A67, doi: 10.1051/0004-6361/202451093 Bowen, I. S. 1928, ApJ, 67, 1, doi: 10.1086/143091 Brinchmann, J., Charlot, S., White, S. D. M., et al. 2004, MNRAS, 351, 1151, doi: 10.1111/j.1365-2966.2004.07881.x Bryan, G. L., & Norman, M. L. 1998, ApJ, 495, 80, doi: 10.1086/305262 Calabrò, A., Amorín, R., Fontana, A., et al. 2017, A&A, 601, A95, doi: 10.1051/0004-6361/201629762 Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245, doi: 10.1086/167900 Chabrier, G. 2003, PASP, 115, 763, doi: 10.1086/376392 Chang, Y.-L., Lan, T.-W., Prochaska, J. X., & DESI members. 2025, in prep. Chang, Y.-L., Lan, T.-W., Prochaska, J. X., et al. 2024, ApJ, 974, 191, doi: 10.3847/1538-4357/ad6c44 Chatzikos, M., Bianchi, S., Camilloni, F., et al. 2023, RMxAA, 59, 327, doi: 10.22201/ia.01851101p.2023.59.02.12 Chaussidon, E., Yèche, C., Palanque-Delabrouille, N., et al. 2023, ApJ, 944, 107, doi: 10.3847/1538-4357/acb3c2 Chavez, M., & Bertone, E. 2011, Astrophysics and Space Science, 335, 193, doi: 10.1007/s10509-011-0619-8 Chen, H.-W., Helsby, J. E., Gauthier, J.-R., et al. 2010, ApJ, 714, 1521, doi: 10.1088/0004-637X/714/2/1521 Chen, H.-W., Zahedy, F. S., Boettcher, E., et al. 2020, MNRAS, 497, 498, doi: 10.1093/mnras/staa1773 Chen, H.-W., Zahedy, F. S., Boettcher, E., et al. 2020, Monthly Notices of the Royal Astronomical Society, 497, 498 Chen, Z., Wang, E., Zou, H., et al. 2025, ApJ, 981, 81, doi: 10.3847/1538-4357/ada942 Chen, Z.-F., Qin, H.-C., Cai, J.-T., et al. 2023, The Astrophysical Journal Supplement Series, 265, 46 Cherrey, M., Bouché, N. F., Zabl, J., et al. 2025, Astronomy & Astrophysics, 694, A117 Chisholm, J., Tremonti, C., & Leitherer, C. 2018, MNRAS, 481, 1690, doi: 10.1093/mnras/sty2380 Churchill, C. W., Nielsen, N. M., Kacprzak, G. G., & Trujillo-Gomez, S. 2013a, ApJL,763, L42, doi: 10.1088/2041-8205/763/2/L42 Churchill, C. W., Trujillo-Gomez, S., Nielsen, N. M., & Kacprzak, G. G. 2013b, ApJ, 779,87, doi: 10.1088/0004-637X/779/1/87 Crain, R. A., & van de Voort, F. 2023, ARA&A, 61, 473, doi: 10.1146/annurev-astro-041923-043618 Curti, M., Mannucci, F., Cresci, G., & Maiolino, R. 2020, MNRAS, 491, 944, doi: 10.1093/mnras/stz2910 Curti, M., D’Eugenio, F., Carniani, S., et al. 2023, MNRAS, 518, 425, doi: 10.1093/mnras/stac2737 Darragh-Ford, E., Wu, J. F., Mao, Y.-Y., et al. 2023, ApJ, 954, 149, doi: 10.3847/1538-4357/ace902 De Lucia, G., Xie, L., Fontanot, F., & Hirschmann, M. 2020, MNRAS, 498, 3215, doi: 10.1093/mnras/staa2556 De Robertis, M. M., Dufour, R. J., & Hunt, R. W. 1987, JRASC, 81, 195 Denicoló, G., Terlevich, R., & Terlevich, E. 2002, MNRAS, 330, 69, doi: 10.1046/j.1365-8711.2002.05041.x DESI Collaboration, Aghamousa, A., Aguilar, J., et al. 2016a, arXiv e-prints, arXiv:1611.00036, doi: 10.48550/arXiv.1611.00036 —. 2016b, arXiv e-prints, arXiv:1611.00037, doi: 10.48550/arXiv.1611.00037 DESI Collaboration, Abareshi, B., Aguilar, J., et al. 2022, AJ, 164, 207, doi: 10.3847/1538-3881/ac882b DESI Collaboration, Adame, A. G., Aguilar, J., et al. 2024a, AJ, 167, 62, doi: 10.3847/1538-3881/ad0b08 —. 2024b, arXiv e-prints, arXiv:2411.12020, doi: 10.48550/arXiv.2411.12020 —. 2024c, arXiv e-prints, arXiv:2404.03000, doi: 10.48550/arXiv.2404.03000 DESI Collaboration, Adame, A. G., Aguilar, J., et al. 2024d, arXiv e-prints, arXiv:2404.03001, doi: 10.48550/arXiv.2404.03001 DESI Collaboration, Adame, A. G., Aguilar, J., et al. 2024e, arXiv e-prints, arXiv:2411.12021, doi: 10.48550/arXiv.2411.12021 —. 2024f, arXiv e-prints, arXiv:2404.03002, doi: 10.48550/arXiv.2404.03002 —. 2024g, arXiv e-prints, arXiv:2411.12022, doi: 10.48550/arXiv.2411.12022 DESI Collaboration et al. 2024 —. 2025, in prep. Dey, A., Schlegel, D. J., Lang, D., et al. 2019, AJ, 157, 168, doi: 10.3847/1538-3881/ab089d Draine, B. T. 2011, Physics of the Interstellar and Intergalactic Medium Driver, S. P., Bellstedt, S., Robotham, A. S. G., et al. 2022, MNRAS, 513, 439, doi: 10.1093/mnras/stac472 Dutta, R., Fumagalli, M., Fossati, M., et al. 2020, MNRAS, 499, 5022, doi: 10.1093/mnras/staa3147 Euclid Collaboration, Mellier, Y., Abdurro’uf, et al. 2024, arXiv e-prints, arXiv:2405.13491, doi: 10.48550/arXiv.2405.13491 Ewen, H. I., & Purcell, E. M. 1951, Nature, 168, 356, doi: 10.1038/168356a0 Farina, E. P., Falomo, R., Scarpa, R., et al. 2014, MNRAS, 441, 886, doi: 10.1093/mnras/stu585 Faucher-Giguère, C.-A., & Oh, S. P. 2023, ARA&A, 61, 131, doi: 10.1146/annurev-astro-052920-125203 Ford, A. B., Werk, J. K., Davé, R., et al. 2016, MNRAS, 459, 1745, doi: 10.1093/mnras/stw595 Giavalisco, M., Vanzella, E., Salimbeni, S., et al. 2011, ApJ, 743, 95, doi: 10.1088/0004-637X/743/1/95 Green, J. C., Froning, C. S., Osterman, S., et al. 2012, ApJ, 744, 60, doi: 10.1088/0004-637X/744/1/6010.1086/141956 Grevesse, N., & Sauval, A. J. 1998, SSRv, 85, 161, doi: 10.1023/A:1005161325181 Guha, L. K., Srianand, R., & Petitjean, P. 2024, MNRAS, 527, 5075, doi: 10.1093/mnras/stad3489 Guy, J., Bailey, S., Kremin, A., et al. 2023, AJ, 165, 144, doi: 10.3847/1538-3881/acb212 Haardt, F., & Madau, P. 2012, ApJ, 746, 125, doi: 10.1088/0004-637X/746/2/125 Hahn, C., Wilson, M. J., Ruiz-Macias, O., et al. 2023, AJ, 165, 253, doi: 10.3847/1538-3881/accff8 Heckman, T. M., Alexandroff, R. M., Borthakur, S., Overzier, R., & Leitherer, C. 2015, ApJ, 809, 147, doi: 10.1088/0004-637X/809/2/147 Hewett, P. C., & Wild, V. 2007, MNRAS, 379, 738, doi: 10.1111/j.1365-2966.2007.11959.x Holweger, H. 2001, in American Institute of Physics Conference Series, Vol. 598, Joint SOHO/ACE workshop “Solar and Galactic Composition”, ed. R. F. Wimmer-Schweingruber (AIP), 23–30, doi: 10.1063/1.1433974 Hopkins, P. F., Kereš, D., Oñorbe, J., et al. 2014, MNRAS, 445, 581, doi: 10.1093/mnras/stu1738 Hsyu, T., Cooke, R. J., Prochaska, J. X., & Bolte, M. 2018, ApJ, 863, 134, doi: 10.3847/1538-4357/aad18a Huang, Y.-H., Chen, H.-W., Shectman, S. A., et al. 2021, MNRAS, 502, 4743, doi: 10.1093/mnras/stab360 Huggins, W., & Miller, W. A. 1864, Philosophical Transactions of the Royal Society of London Series I, 154, 437 Johnson, S. D., Chen, H.-W., & Mulchaey, J. S. 2015, MNRAS, 452, 2553, doi: 10.1093/mnras/stv1481 Kacprzak, G. G., Churchill, C. W., & Nielsen, N. M. 2012, ApJL, 760, L7, doi: 10.1088/2041-8205/760/1/L7 Kacprzak, G. G., Muzahid, S., Churchill, C. W., Nielsen, N. M., & Charlton, J. C. 2015, ApJ, 815, 22, doi: 10.1088/0004-637X/815/1/22 Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33, doi: 10.1046/j.1365-8711.2003.06291.x Kelvin, L. S., Driver, S. P., Robotham, A. S. G., et al. 2014, MNRAS, 439, 1245, doi: 10.1093/mnras/stt2391 Kennicutt, Jr., R. C. 1998, ARA&A, 36, 189, doi: 10.1146/annurev.astro.36.1.189 Kewley, L. J., & Ellison, S. L. 2008, ApJ, 681, 1183, doi: 10.1086/587500 Kewley, L. J., Groves, B., Kauffmann, G., & Heckman, T. 2006, MNRAS, 372, 961, doi: 10.1111/j.1365-2966.2006.10859.x Kewley, L. J., Nicholls, D. C., & Sutherland, R. S. 2019, ARA&A, 57, 511, doi: 10.1146/annurev-astro-081817-051832 Khoram, A. H., & Belfiore, F. 2025, A&A, 693, A150, doi: 10.1051/0004-6361/202451980 Kingma, D. P., & Ba, J. 2014, arXiv e-prints, arXiv:1412.6980, doi: 10.48550/arXiv.1412.6980 Koprowski, M. P., Wijesekera, J. V., Dunlop, J. S., et al. 2024, arXiv e-prints, arXiv:2403.06575, doi: 10.48550/arXiv.2403.06575 Lan, T.-W. 2020, ApJ, 897, 97, doi: 10.3847/1538-4357/ab989a Lan, T.-W., & Fukugita, M. 2017, ApJ, 850, 156, doi: 10.3847/1538-4357/aa93eb Lan, T.-W., Ménard, B., & Zhu, G. 2014, ApJ, 795, 31, doi: 10.1088/0004-637X/795/1/31 —. 2015, MNRAS, 452, 3629, doi: 10.1093/mnras/stv1519 Lan, T.-W., & Mo, H. 2018, ApJ, 866, 36, doi: 10.3847/1538-4357/aadc08 —. 2019, MNRAS, 486, 608, doi: 10.1093/mnras/stz839 Lan, T.-W., Tojeiro, R., Armengaud, E., et al. 2023, ApJ, 943, 68, doi: 10.3847/1538-4357/aca5fa Lang, D., Hogg, D. W., & Mykytyn, D. 2016, The Tractor: Probabilistic astronomical source detection and measurement, Astrophysics Source Code Library, record ascl:1604.008 Lee, D. D., & Seung, H. S. 1999, nature, 401, 788 Lehner, N., Howk, J. C., Fox, A. J., et al. 2024, The Astrophysical Journal, 975, 264 Lehnert, M. D., Heckman, T. M., & Weaver, K. A. 1999, ApJ, 523, 575, doi: 10.1086/307762 Levi, M., Bebek, C., Beers, T., et al. 2013, arXiv e-prints, arXiv:1308.0847. https://arxiv.org/abs/1308.0847 Liang, C. J., & Chen, H.-W. 2014, MNRAS, 445, 2061, doi: 10.1093/mnras/stu1901 Liang, C. J., Kravtsov, A. V., & Agertz, O. 2016, MNRAS, 458, 1164, doi: 10.1093/mnras/stw375 Lin, Y.-H., Scarlata, C., Mehta, V., et al. 2023, ApJ, 951, 138, doi: 10.3847/1538-4357/acd181 Lodders, K. 2019, arXiv e-prints, arXiv:1912.00844, doi: 10.48550/arXiv.1912.00844 Luridiana, V., Morisset, C., & Shaw, R. A. 2015, A&A, 573, A42, doi: 10.1051/0004-6361/201323152 Ly, C., Rigby, J. R., Cooper, M., & Yan, R. 2015, ApJ, 805, 45, doi: 10.1088/0004-637X/805/1/45 Madau, P., & Dickinson, M. 2014, ARA&A, 52, 415, doi: 10.1146/annurev-astro-081811-125615 Maiolino, R., & Mannucci, F. 2019, The Astronomy and Astrophysics Review, 27, 3, doi: 10.1007/s00159-018-0112-2 Mannucci, F., Cresci, G., Maiolino, R., Marconi, A., & Gnerucci, A. 2010, MNRAS, 408, 2115, doi: 10.1111/j.1365-2966.2010.17291.x Marino, R. A., Rosales-Ortega, F. F., Sánchez, S. F., et al. 2013, A&A, 559, A114, doi: 10.1051/0004-6361/201321956 Martin, C. L., Ho, S. H., Kacprzak, G. G., & Churchill, C. W. 2019, ApJ, 878, 84, doi: 10.3847/1538-4357/ab18ac Miller, T. N., Doel, P., Gutierrez, G., et al. 2024, AJ, 168, 95, doi: 10.3847/1538-3881/ad45fe Moster, B. P., Naab, T., & White, S. D. M. 2013, MNRAS, 428, 3121, doi: 10.1093/mnras/sts261 Moustakas, J., Buhler, J., Scholte, D., Dey, B., & Khederlarian, A. 2023, FastSpecFit: Fast spectral synthesis and emission-line fitting of DESI spectra, Astrophysics Source Code Library, record ascl:2308.005 Moustakas, J., Kennicutt, Jr., R. C., Tremonti, C. A., et al. 2010, ApJS, 190, 233, doi: 10.1088/0067-0049/190/2/233 Moustakas, J., Coil, A. L., Aird, J., et al. 2013, ApJ, 767, 50, doi: 10.1088/0004-637X/767/1/50 Muratov, A. L., Kereš, D., Faucher-Giguère, C.-A., et al. 2015, MNRAS, 454, 2691, doi: 10.1093/mnras/stv2126 Murga, M., Zhu, G., Ménard, B., & Lan, T.-W. 2015, MNRAS, 452, 511, doi: 10.1093/mnras/stv1277 Myers, A. D., Moustakas, J., Bailey, S., et al. 2023, AJ, 165, 50, doi: 10.3847/1538-3881/aca5f9 Nakajima, K., Ouchi, M., Xu, Y., et al. 2022, ApJS, 262, 3, doi: 10.3847/1538-4365/ac7710 Nateghi, H., Kacprzak, G. G., Nielsen, N. M., et al. 2024, MNRAS, 534, 930, doi: 10.1093/mnras/stae2129 National Academies of Sciences, Engineering, and Medicine. 2021, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, doi: 10.17226/26141 Neistein, E., & Weinmann, S. M. 2010, MNRAS, 405, 2717, doi: 10.1111/j.1365-2966.2010.16656.x Nelson, D., Pillepich, A., Springel, V., et al. 2019, MNRAS, 490, 3234, doi: 10.1093/mnras/stz2306 Nestor, D. B., Pettini, M., Hewett, P. C., Rao, S., & Wild, V. 2008, MNRAS, 390, 1670, doi: 10.1111/j.1365-2966.2008.13857.x Nestor, D. B., Turnshek, D. A., & Rao, S. M. 2005, ApJ, 628, 637, doi: 10.1086/427547 Ng, Y. V., Lan, T.-W., Prochaska, J. X., et al. 2025, arXiv e-prints, arXiv:2503.11139, doi: 10.48550/arXiv.2503.11139 Nielsen, N. M., Churchill, C. W., & Kacprzak, G. G. 2013, ApJ, 776, 115, doi: 10.1088/0004-637X/776/2/115 Nielsen, N. M., Churchill, C. W., Kacprzak, G. G., Murphy, M. T., & Evans, J. L. 2016, ApJ, 818, 171, doi: 10.3847/0004-637X/818/2/171 Nielsen, N. M., Kacprzak, G. G., Muzahid, S., et al. 2017, ApJ, 834, 148, doi: 10.3847/1538-4357/834/2/148 Nomoto, K., Kobayashi, C., & Tominaga, N. 2013, ARA&A, 51, 457, doi: 10.1146/annurev-astro-082812-140956 Oppenheimer, B. D., Schaye, J., Crain, R. A., Werk, J. K., & Richings, A. J. 2018, MNRAS, 481, 835, doi: 10.1093/mnras/sty2281 Peimbert, A., & Peimbert, M. 2010, ApJ, 724, 791, doi: 10.1088/0004-637X/724/1/791 Péroux, C., & Howk, J. C. 2020, ARA&A, 58, 363, doi: 10.1146/annurev-astro-021820-120014 Pettini, M., & Pagel, B. E. J. 2004, MNRAS, 348, L59, doi: 10.1111/j.1365-2966.2004.07591.x Pieri, M. M., Mortonson, M. J., Frank, S., et al. 2014, MNRAS, 441, 1718, doi: 10.1093/mnras/stu577 Pilyugin, L. S., Vílchez, J. M., & Thuan, T. X. 2010, ApJ, 720, 1738, doi: 10.1088/0004-637X/720/2/1738 Pointon, S. K., Kacprzak, G. G., Nielsen, N. M., et al. 2019, ApJ, 883, 78, doi: 10.3847/1538-4357/ab3b0e Prochaska, J. X., Lau, M. W., & Hennawi, J. F. 2014, ApJ, 796, 140, doi: 10.1088/0004-637X/796/2/140 Prochaska, J. X., Werk, J. K., Worseck, G., et al. 2017, ApJ, 837, 169, doi: 10.3847/1538-4357/aa6007 Raichoor, A., Moustakas, J., Newman, J. A., et al. 2023, AJ, 165, 126, doi: 10.3847/1538-3881/acb213 Raichoor et al. 2025, , in preparation Richter, P., Krause, F., Fechner, C., Charlton, J. C., & Murphy, M. T. 2011, A&A, 528, A12, doi: 10.1051/0004-6361/201015566 Rubin, K. H. R., Diamond-Stanic, A. M., Coil, A. L., Crighton, N. H. M., & Moustakas, J. 2018, ApJ, 853, 95, doi: 10.3847/1538-4357/aa9792 Rubin, K. H. R., Prochaska, J. X., Koo, D. C., et al. 2014, ApJ, 794, 156, doi: 10.1088/0004-637X/794/2/156 Rubin, K. H. R., Juarez, C., Cooksey, K. L., et al. 2022, ApJ, 936, 171, doi: 10.3847/1538-4357/ac7b88 Salim, S., Rich, R. M., Charlot, S., et al. 2007, ApJS, 173, 267, doi: 10.1086/519218 Salpeter, E. E. 1955, ApJ, 121, 161, doi: 10.1086/145971 Sardane, G. M., Turnshek, D. A., & Rao, S. M. 2014, MNRAS, 444, 1747, doi: 10.1093/mnras/stu1554 —. 2015, MNRAS, 452, 3192, doi: 10.1093/mnras/stv1506 Schaye, J., Crain, R. A., Bower, R. G., et al. 2015, MNRAS, 446, 521, doi: 10.1093/mnras/stu2058 Schlafly, E. F., Kirkby, D., Schlegel, D. J., et al. 2023, AJ, 166, 259, doi: 10.3847/1538-3881/ad0832 Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525, doi: 10.1086/305772 Schlegel, D. J., Ferraro, S., Aldering, G., et al. 2022, arXiv e-prints, arXiv:2209.03585, doi: 10.48550/arXiv.2209.03585 Schneider, D. P., Richards, G. T., Hall, P. B., et al. 2010, AJ, 139, 2360, doi: 10.1088/0004-6256/139/6/2360 Scholte, D., Saintonge, A., Moustakas, J., et al. 2024, MNRAS, 535, 2341, doi: 10.1093/mnras/stae2477 Schroetter, I., Bouché, N. F., Zabl, J., et al. 2021, MNRAS, 506, 1355, doi: 10.1093/mnras/stab1447 Scoville, N., Lee, N., Vanden Bout, P., et al. 2017, ApJ, 837, 150, doi: 10.3847/1538-4357/aa61a0 Sextl, E., Kudritzki, R.-P., Zahid, H. J., & Ho, I. T. 2023, ApJ, 949, 60, doi: 10.3847/1538-4357/acc579 Shapley, A. E. 2011, ARA&A, 49, 525, doi: 10.1146/annurev-astro-081710-102542 Shaw, R. A., & Dufour, R. J. 1995, PASP, 107, 896, doi: 10.1086/133637 Silber, J. H., Fagrelius, P., Fanning, K., et al. 2023, AJ, 165, 9, doi: 10.3847/1538-3881/ac9ab1 Siudek, M., Pucha, R., Mezcua, M., et al. 2024, arXiv e-prints, arXiv:2409.19066, doi: 10.48550/arXiv.2409.19066 Steidel, C. C., Erb, D. K., Shapley, A. E., et al. 2010, ApJ, 717, 289, doi: 10.1088/0004-637X/717/1/289 Steidel, C. C., Strom, A. L., Pettini, M., et al. 2016, ApJ, 826, 159, doi: 10.3847/0004-637X/826/2/159 Stern, J., Faucher-Giguère, C.-A., Fielding, D., et al. 2021, ApJ, 911, 88, doi: 10.3847/1538-4357/abd776 Strauss, M. A., Weinberg, D. H., Lupton, R. H., et al. 2002, AJ, 124, 1810, doi: 10.1086/342343 Sugahara, Y., Ouchi, M., Harikane, Y., et al. 2019, ApJ, 886, 29, doi: 10.3847/1538-4357/ab49fe Tacconi, L. J., Genzel, R., & Sternberg, A. 2020, ARA&A, 58, 157, doi: 10.1146/annurev-astro-082812-141034 Takada, M., Ellis, R. S., Chiba, M., et al. 2014, PASJ, 66, R1, doi: 10.1093/pasj/pst019 Tchernyshyov, K., Werk, J. K., Wilde, M. C., et al. 2023, ApJ, 949, 41, doi: 10.3847/1538-4357/acc86a Thronson, Jr., H. A., & Shull, J. M., eds. 1990, Astrophysics and Space Science Library, Vol. 161, The interstellar medium in galaxies, doi: 10.1007/978-94-009-0595-5 Tinker, J. L., Robertson, B. E., Kravtsov, A. V., et al. 2010, ApJ, 724, 878, doi: 10.1088/0004-637X/724/2/878 Torrey, P., Vogelsberger, M., Marinacci, F., et al. 2019, MNRAS, 484, 5587, doi: 10.1093/mnras/stz243 Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898, doi: 10.1086/423264 Tumlinson, J., Peeples, M. S., & Werk, J. K. 2017, ARA&A, 55, 389, doi: 10.1146/annurev-astro-091916-055240 Tumlinson, J., Thom, C., Werk, J. K., et al. 2013, ApJ, 777, 59, doi: 10.1088/0004-637X/777/1/59 Weaver, J. R., Davidzon, I., Toft, S., et al. 2023, A&A, 677, A184, doi: 10.1051/0004-6361/202245581 Weiner, B. J., Coil, A. L., Prochaska, J. X., et al. 2009, ApJ, 692, 187, doi: 10.1088/0004-637X/692/1/187 Werk, J. K., Prochaska, J. X., Thom, C., et al. 2013, ApJS, 204, 17, doi: 10.1088/0067-0049/204/2/17 Werk, J. K., Prochaska, J. X., Tumlinson, J., et al. 2014, ApJ, 792, 8, doi: 10.1088/0004-637X/792/1/8 Werk, J. K., Prochaska, J. X., Cantalupo, S., et al. 2016, ApJ, 833, 54, doi: 10.3847/1538-4357/833/1/54 Whitaker, K. E., van Dokkum, P. G., Brammer, G., & Franx, M. 2012, ApJL, 754, L29, doi: 10.1088/2041-8205/754/2/L29 White, S. D. M., & Frenk, C. S. 1991, ApJ, 379, 52, doi: 10.1086/170483 Wild, V., Hewett, P. C., & Pettini, M. 2006, MNRAS, 367, 211, doi: 10.1111/j.1365-2966.2005.09935.x Woodgate, B. E., Kimble, R. A., Bowers, C. W., et al. 1998, PASP, 110, 1183, doi: 10.1086/316243 Wu, X., Cai, Z., Lan, T. W., et al. 2024, arXiv e-prints, arXiv:2407.17809, doi: 10.48550/arXiv.2407.17809 Yang, H., Malhotra, S., Rhoads, J. E., & Wang, J. 2017, ApJ, 847, 38, doi: 10.3847/1538-4357/aa8809 Yates, R. M., Kauffmann, G., & Guo, Q. 2012, MNRAS, 422, 215, doi: 10.1111/j.1365-2966.2012.20595.x York, D. G., Adelman, J., Anderson, John E., J., et al. 2000, AJ, 120, 1579, doi: 10.1086/301513 Zabl, J., Bouché, N. F., Schroetter, I., et al. 2019, MNRAS, 485, 1961, doi: 10.1093/mnras/stz392 Zahid, H. J., Dima, G. I., Kudritzki, R.-P., et al. 2014, ApJ, 791, 130, doi: 10.1088/0004-637X/791/2/130 Zakamska, N. L., Hamann, F., Pâris, I., et al. 2016, MNRAS, 459, 3144, doi: 10.1093/mnras/stw718 Zheng, Y., Faerman, Y., Oppenheimer, B. D., et al. 2024, ApJ, 960, 55, doi: 10.3847/1538-4357/acfe6b Zhou, R., Dey, B., Newman, J. A., et al. 2023, AJ, 165, 58, doi: 10.3847/1538-3881/aca5fb Zhu, G. 2016, arXiv e-prints, arXiv:1612.06037, doi: 10.48550/arXiv.1612.06037 Zhu, G., & Ménard, B. 2013a, ApJ, 773, 16, doi: 10.1088/0004-637X/773/1/16 —. 2013b, ApJ, 770, 130, doi: 10.1088/0004-637X/770/2/130 Zhu, G., Ménard, B., Bizyaev, D., et al. 2014, MNRAS, 439, 3139, doi: 10.1093/mnras/stu186 Zhu, G. B., Comparat, J., Kneib, J.-P., et al. 2015, ApJ, 815, 48, doi: 10.1088/0004-637X/815/1/48 Zou, S., Petitjean, P., Noterdaeme, P., et al. 2018, A&A, 616, A158, doi: 10.1051/0004-6361/201732033 Zou, S., Jiang, L., Cai, Z., et al. 2024, ApJ, 960, 34, doi: 10.3847/1538-4357/ad09b2 Zych, B. J., Murphy, M. T., Hewett, P. C., & Prochaska, J. X. 2009, MNRAS, 392, 1429, doi: 10.1111/j.1365-2966.2008.14157.x | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/100109 | - |
| dc.description.abstract | 宇宙中的可見物質,包括恆星、星系及彌散氣體,皆由重子組成。理解重子如何透過氣體吸積、化學增豐與氣體外流,在星系內部及其周圍循環,是研究星系演化的核心課題。然而,這些過程彼此密切交織、物理機制複雜,使得純理論建模極具挑戰。因此,觀測作為約束條件對於建立正確的理論理解至關重要。
為此,本論文利用暗能量光譜儀(DESI)的首年觀測資料,探究了星系性質與星際介質(ISM)及環繞星際物質(CGM)之間的關聯。從DESI 所提供的巨量資料,我們得以偵測訊號微弱的化學豐度,並拓展星系性質的研究範圍。 我們首先利用約 90 萬組星系與類星體對,分析在 z<0.4 由 Ca II 吸收線示蹤的冷 CGM 特性,並研究其與星系性質之間的關係。通過該龐大的資料集,我們獲得可達毫埃等級的疊加光譜,進而詳細刻畫了 Ca II 吸收強度如何隨著星系質量、恆星形成率、紅移、方位角、暗物質暈質量及星系類型(包含 AGN)而改變。本研究結果涵蓋了從 10^8 到 10^11 M☉ 約三個數量級的星系質量,並顯示冷 CGM 的性質在恆星形成星系與靜謐星系間存在顯著差異。 其次,我們從 DESI 發射線星系(ELG)計畫中,發現並分析約 40,000 個低質量星系。透過疊加光譜,我們偵測到微弱的發射線,並以直接法測量其氣體金屬豐度,將質量與金屬豐度之間的關係下限延伸至約1個數量級的更低質量端。另外,與 DESI 亮星系(BGS) 的樣本相比,ELG低質量星系在此關係的低質量端呈現出較明顯的平緩趨勢。 總體而言,本研究展現了大規模光譜巡天計劃能有效捕捉微弱訊號與發掘更廣泛的星系族群,有助於增進我們對於星系演化的理解。未來新一代的光譜巡天計畫將進一步提高測量精度,並擴展星系參數空間的覆蓋範圍,從而深化我們對重子物質如何影響星系生命週期的理解。 | zh_TW |
| dc.description.abstract | Luminous matter in the Universe, including stars, galaxies and diffuse gas, is composed of baryons. Understanding how baryons cycle in and around galaxies via accretion, chemical enrichment, and outflows is central to the study of galaxy evolution. However, the complexity of these interconnected processes makes them challenging to model from first principles. As a result, observational constraints are essential for guiding and testing our understanding of the underlying physical mechanisms.
In this thesis, I examine how galaxy properties are linked to the properties of the interstellar medium (ISM) and the circumgalactic medium (CGM) by leveraging the Year 1 data of the Dark Energy Spectroscopic Instrument (DESI). The statistical power of DESI allows me to probe chemical abundances in low-signal regimes and expand the accessible parameter space over a wide range of galaxy properties. First, I investigate how the properties of the cool CGM, traced by Ca II absorption lines, relate to those of galaxies at z<0.4. By using approximately 900,000 galaxy-quasar pairs and stacking this large dataset, I achieve composite spectra with sensitivity down to the mÅ level, allowing detailed characterization of Ca II absorption as a function of stellar mass, SFR, redshift, azimuthal angle, halo mass, and galaxy types, including AGNs. These relationships cover over three orders of magnitude in stellar mass from 10^8 to 10^11 M☉, and reveal that the properties of the cool CGM differ significantly between star-forming and quiescent galaxies. Second, I identify and characterize a large population of approximately 40,000 low-mass galaxies by exploiting a serendipitous subset of the DESI Emission Line Galaxy (ELG) survey. Through stacking analysis, I detect weak auroral lines, and measure gas-phase metallicities using the direct method. This extends the mass–metallicity relation by 1 dex toward lower stellar masses compared to previous studies. A comparison with galaxies from the Bright Galaxy Survey (BGS) reveals a distinct flattening of the relation at the low-mass end. Together, these results demonstrate the power of large-scale spectroscopic surveys in capturing faint signals and unveiling broader galaxy population, thereby advancing our understanding of galaxy evolution. Looking ahead, next-generation spectroscopic surveys will further refine these insights by enabling more precise measurements across an even broader parameter space. Ultimately, such observational advances will enhance our understanding of how baryons drive the life cycle of galaxies across cosmic time. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-24T16:31:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-24T16:31:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
Acknowledgements iii 摘要 vii Abstract ix Contents xiii List of Figures xvii List of Tables xxiii Chapter 1 Introduction 1 Chapter 2 Dark Energy Spectroscopic Instrument (DESI) 5 Chapter 3 A Comprehensive Characterization of Galaxy-Cool CGM Connections at z < 0.4 9 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Sample of galaxy-quasar pairs . . . . . . . . . . . . . . . . . . . . 13 3.2.2 Constructing composite spectra . . . . . . . . . . . . . . . . . . . . 15 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3.1 Dependencies on galaxy properties . . . . . . . . . . . . . . . . . . 17 3.3.2 Redshift dependence . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3.3 Azimuthal angle dependence . . . . . . . . . . . . . . . . . . . . . 27 3.3.4 Gas distribution with respect to the size of halos . . . . . . . . . . . 28 3.3.5 Ca II mass in the halos . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 Comparisons with previous results . . . . . . . . . . . . . . . . . . 32 3.4.2 Possible redshift evolution of the azimuthal angle dependence . . . 36 3.4.3 Impact of AGNs on the properties of the CGM . . . . . . . . . . . . 38 3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Chapter 4 The Metallicity of Nearby Low-mass Galaxies in DESI ELG Sample 43 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1 Sample selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.2 Sample properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.3 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.1 Stacking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.5.1 DESI vs. SDSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 Chapter 5 Summary and Outlook 67 References 69 Appendix A — Chapter 3 89 A.1 Cloudy simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 A.2 Comparison with SDSS . . . . . . . . . . . . . . . . . . . . . . . . 90 | - |
| dc.language.iso | en | - |
| dc.subject | 光譜學 | zh_TW |
| dc.subject | 河外星系天文學 | zh_TW |
| dc.subject | 發射線星系 | zh_TW |
| dc.subject | 矮星系 | zh_TW |
| dc.subject | 星際介質 | zh_TW |
| dc.subject | 金屬豐度 | zh_TW |
| dc.subject | 環繞星際物質 | zh_TW |
| dc.subject | Circumgalactic medium | en |
| dc.subject | Spectroscopy | en |
| dc.subject | Metallicity | en |
| dc.subject | Interstellar medium | en |
| dc.subject | Extragalactic astronomy | en |
| dc.subject | Emission line galaxies | en |
| dc.subject | Dwarf galaxies | en |
| dc.title | 利用暗能量光譜儀首年資料探究鄰近宇宙的重子循環 | zh_TW |
| dc.title | Probing the Baryon Cycle in the Local Universe with DESI Year 1 Data | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 薛熙于;胡家瑜;江奕寬 | zh_TW |
| dc.contributor.oralexamcommittee | Hsi-Yu Schive;Chia-Yu Hu;Yi-Kuan Chiang | en |
| dc.subject.keyword | 矮星系,發射線星系,河外星系天文學,星際介質,金屬豐度,光譜學,環繞星際物質, | zh_TW |
| dc.subject.keyword | Dwarf galaxies,Emission line galaxies,Extragalactic astronomy,Interstellar medium,Metallicity,Spectroscopy,Circumgalactic medium, | en |
| dc.relation.page | 91 | - |
| dc.identifier.doi | 10.6342/NTU202501810 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-17 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 天文物理研究所 | - |
| dc.date.embargo-lift | 2026-01-31 | - |
| 顯示於系所單位: | 天文物理研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
