請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10009
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉興華 | |
dc.contributor.author | Mei-Chi Hsieh | en |
dc.contributor.author | 謝媺其 | zh_TW |
dc.date.accessioned | 2021-05-20T20:55:30Z | - |
dc.date.available | 2013-10-07 | |
dc.date.available | 2021-05-20T20:55:30Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-29 | |
dc.identifier.citation | Andersson H, Piras E, Demma J, Hellman B, Brittebo E (2009) Low levels of the air pollutant 1-nitropyrene induce DNA damage, increased levels of reactive oxygen species and endoplasmic reticulum stress in human endothelial cells. Toxicology 262: 57-64
Barry SP, Davidson SM, Townsend PA (2008) Molecular regulation of cardiac hypertrophy. The International Journal of Biochemistry & Cell Biology 40: 2023-2039 Belmont PJ, Chen WJ, San Pedro MN, Thuerauf DJ, Gellings Lowe N, Gude N, Hilton B, Wolkowicz R, Sussman MA, Glembotski CC (2009) Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart. Circulation Research 106: 307-316 Bonner JC (2007) Lung fibrotic responses to particle exposure. Toxicologic Pathology 35: 148-153 Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, Luepker R, Mittleman M, Samet J, Smith SC, Tager I (2004) Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation 109: 2655-2671 Brook RD, Rajagopalan S, Pope CA, Brook JR, Bhatnagar A, Diez-Roux AV, Holguin F, Hong Y, Luepker RV, Mittleman MA, Peters A, Siscovick D, Smith SC, Whitsel L, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121: 2331-2378 Cameron VA, Ellmers LJ (2003) Minireview: natriuretic peptides during development of the fetal heart and circulation. Endocrinology 144: 2191-2194 Cheng TH, Shih NL, Chen SY, Wang DL, Chen JJ (1999) Reactive oxygen species modulate endothelin-I-induced c-fos gene expression in cardiomyocytes. Cardiovascular Research 41: 654–662 Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. The FASEB Journal 5: 3037-3046 Clapham DE (1995) Calcium Signaling. Cell 80: 259-268 de Hartog JJ, Hoek G, Peters A, Timonen KL, Ibald-Mulli A, Brunekreef B, Heinrich J, Tiittanen P, van Wijnen JH, Kreyling W, Kulmala M, Pekkanen J (2003) Effects of fine and ultrafine particles on cardiorespiratory symptoms in elderly subjects with coronary heart disease: the ULTRA study. American Journal of Epidemiology 157: 613-623 Dickhout JG, Carlisle RE, Austin RC (2011) Interrelationship between cardiac hypertrophy, heart failure, and chronic kidney disease: endoplasmic reticulum stress as a mediator of pathogenesis. Circulation Research 108: 629-642 Dorn GW, Robbins J, Sugden PH (2003) Phenotyping hypertrophy: eschew obfuscation. Circulation Research 92: 1171-1175 Doroudgar S, Thuerauf DJ, Marcinko MC, Belmont PJ, Glembotski CC (2009) Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response. Journal of Biological Chemistry 284: 29735-29745 Escobal A, Iriondo C, Laborra C (1997) Determination of volatile compounds in Txakoli wine from Biscay by gas chromatography-mass spectrometry. Journal of Chromatography A 778: 225-234 Environmental Protection Agency (2002) National Ambient Air Quality Standards (NAAQS). Available at: http://www.epa.gov/ttnnaaqs/ Forssmann WG, Nokihara K, Gagelmann M, Hock D, Feller S, Schulz-Knappe P, Herbst F (1989) The heart is the center of a new endocrine, paracrine, and neuroendocrine system. Archives of Histology and Cytology 52 Suppl: 293-315 Frey N, Olson EN (2003) Cardiac hypertrophy: the good, the bad, and the ugly. Annual Review of Physiology 65: 45-79 Fu HY, Minamino T, Tsukamoto O, Sawada T, Asai M, Kato H, Asano Y, Fujita M, Takashima S, Hori M, Kitakaze M (2008) Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovascular Research 79: 600-610 Gething M-J (1999) Role and regulation of the ER chaperone BiP. Seminars in Cell & Developmental Biology 10: 465-472 Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M (2010) Biology of endoplasmic reticulum stress in the heart. Circulation Research 107: 1185-1197 Gu Z-W, Keane M, Ong T-m, Wallace W (2005) Diesel exhaust particulate matter dispersed in a phospholipid surfactant induces chromosomal aberrations and micronuclei but not 6-thioguanine-resistant gene mutation in V79 cells. Journal of Toxicology and Environmental Health Part A 68: 431-444 Guan HS, Shangguan HJ, Shang Z, Yang L, Meng XM, Qiao SB (2011) Endoplasmic reticulum stress caused by left ventricular hypertrophy in rats: effects of telmisartan. The American Journal of the Medical Sciences [Epub ahead of print] Gusev K, Domenighetti AA, Delbridge LMD, Pedrazzini T, Niggli E, Egger M (2009) Angiotensin II-mediated adaptive and maladaptive remodeling of cardiomyocyte excitation-contraction coupling. Circulation Research 105: 42-50 Harr MW, Distelhorst CW (2009) The endoplasmic reticulum pathway. Essentials of Apoptosis: 177-197 Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nature Reviews Molecular Cell Biology 7: 589-600 Huang CH, Lin LY, Tsai MS, Hsu CY, Chen HW, Wang TD, Chang WT, Cheng TJ, Chen WJ (2010a) Acute cardiac dysfunction after short-term diesel exhaust particles exposure. Toxicology Letters 192: 349-355 Huang H, Tang QZ, Wang AB, Chen M, Yan L, Liu C, Jiang H, Yang Q, Bian ZY, Bai X, Zhu LH, Wang L, Li H (2010b) Tumor suppressor A20 protects against cardiac hypertrophy and fibrosis by blocking transforming growth factor-β-activated kinase 1-dependent signaling. Hypertension 56: 232-239 Jung EJ, Avliyakulov NK, Boontheung P, Loo JA, Nel AE (2007) Pro-oxidative DEP chemicals induce heat shock proteins and an unfolding protein response in a bronchial epithelial cell line as determined by DIGE analysis. Proteomics 7: 3906-3918 Künzli N, Jerrett M, Garcia-Esteban R, Basagaña X, Beckermann B, Gilliland F, Medina M, Peters J, Hodis HN, Mack WJ (2010) Ambient air pollution and the progression of atherosclerosis in adults. PLoS One 5: e9096 Künzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, Gilliland F, Thomas D, Peters J, Hodis HN (2004) Ambient air pollution and atherosclerosis in Los Angeles. Environmental Health Perspectives 113: 201-206 Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. Journal of Clinical Investigation 110: 1389-1398 Kerkelä R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, Walters B, Shevtsov S, Pesant S, Clubb FJ, Rosenzweig A, Salomon RN, Van Etten RA, Alroy J, Durand J-B, Force T (2006) Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nature Medicine 12: 908-916 Kerkela R, Pikkarainen S, Majalahti-Palviainen T, Tokola H, Ruskoaho H (2002) Distinct roles of mitogen-activated protein kinase pathways in GATA-4 transcription factor-mediated regulation of B-type natriuretic peptide gene. Journal of Biological Chemistry 277: 13752-13760 Kim I, Xu W, Reed JC (2008) Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 7: 1013-1030 Kitakaze M, Tsukamoto O (2010) What is the role of ER stress in the heart?: introduction and series overview. Circulation Research 107: 15-18 Kleinman MT, Sioutas C, Froines JR, Fanning E, Hamade A, Mendez L, Meacher D, Oldham M (2007) Inhalation of concentrated ambient particulate matter near a heavily trafficked road stimulates antigen-induced airway responses in mice. Inhalation Toxicology 19 Suppl 1: 117-126 Kodavanti UP, Jaskot RH, Richards JE, Thomas R, Johnson JA, Nyska A, Linak WP, Krantz T, Ledbetter AD, Schladweiler MC, Karoly ED, Wallenborn JG, Gottipolu RR (2009) One-month diesel exhaust inhalation produces hypertensive gene expression pattern in healthy rats. Environmental Health Perspectives 117: 38–46 Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J (1988) The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 332: 462-464 Krishnaswami A (2008) The role of B-type and other natriuretic peptides in health and disease. The Permanente Journal 12: 32-43 Laing S, Wang G, Briazova T, Zhang C, Wang A, Zheng Z, Gow A, Chen AF, Rajagopalan S, Chen LC, Sun Q, Zhang K (2010) Airborne particulate matter selectively activates endoplasmic reticulum stress response in the lung and liver tissues. American Journal of Physiology - Cell Physiology 299: C736–C749 Liu JC, Chen CH, Chen JJ, Cheng TH (2009) Urotensin II Induces Rat Cardiomyocyte Hypertrophy via the Transient Oxidization of Src Homology 2-Containing Tyrosine Phosphatase and Transactivation of Epidermal Growth Factor Receptor. Molecular Pharmacology 76: 1186-1195 Martindale JJ, Fernandez R, Thuerauf D, Whittaker R, Gude N, Sussman MA, Glembotski CC (2006) Endoplasmic reticulum stress gene induction and protection from ischemia/reperfusion injury in the hearts of transgenic mice with a tamoxifen-regulated form of ATF6. Circulation Research 98: 1186-1193 Meguro T, Hong C, Asai K, Takagi G, McKinsey TA, Olson EN, Vatner SF (1999) Cyclosporine attenuates pressure-overload hypertrophy in mice while enhancing susceptibility to decompensation and heart failure. Circulation Research 84: 735-740 Mesaeli N, Nakamura K, Opas M, Michalak M (2001) Endoplasmic reticulum in the heart, a forgotten organelle? Molecular and Cellular Biochemistry 225: 1–6 Minamino T, Kitakaze M (2010) ER stress in cardiovascular disease. Journal of Molecular and Cellular Cardiology 48: 1105-1110 Muslin Anthony J (2008) MAPK signalling in cardiovascular health and disease: molecular mechanisms and therapeutic targets. Clinical Science 115: 203-218 National Institute of Standards and Technology (2009) SRM 2975: Diesel Particulate Extract. Gaithersburg, MD: U.S. Department of Commerce Nemmar A, Al-Maskari S, Ali BH, Al-Amri IS (2007) Cardiovascular and lung inflammatory effects induced by systemically administered diesel exhaust particles in rats. American Journal of Physiology - Lung Cellular and Molecular Physiology 292: L664-L670 Nemmar A, Al-Salam S, Zia S, Dhanasekaran S, Shudadevi M, Ali BH (2010) Time-course effects of systemically administered diesel exhaust particles in rats. Toxicology Letters 194: 58-65 Nemmar A, Dhanasekaran S, Yasin J, Ba-Omar H, Fahim MA, Kazzam EE, Ali BH (2009) Evaluation of the direct systemic and cardiopulmonary effects of diesel particles in spontaneously hypertensive rats. Toxicology 262: 50-56 Nickson P, Toth A, Erhardt P (2007) PUMA is critical for neonatal cardiomyocyte apoptosis induced by endoplasmic reticulum stress. Cardiovascular Research 73: 48-56 Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, Yutani C, Ozawa K, Ogawa S, Tomoike H, Hori M, Kitakaze M (2004) Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 110: 705-712 Okayama Y, Kuwahara M, Suzuki A, Tsubone H (2006) Role of reactive oxygen species on diesel exhaust particle-induced cytotoxicity in rat cardiac myocytes. Journal of Toxicology and Environmental Health Part A 69: 1699-1710 Ozawa K, Kondo T, Hori O, Kitao Y, Stern DM, Eisenmenger W, Ogawa S, Ohshima T (2001) Expression of the oxygen-regulated protein ORP150 accelerates wound healing by modulating intracellular VEGF transport. Journal of Clinical Investigation 108: 41-50 Pedruzzi E, Guichard C, Ollivier V, Driss F, Fay M, Prunet C, Marie JC, Pouzet C, Samadi M, Elbim C, O'Dowd Y, Bens M, Vandewalle A, Gougerot-Pocidalo MA, Lizard G, Ogier-Denis E (2004) NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells. Molecular and Cellular Biology 24: 10703-10717 Pekkanen J, Peters A, Hoek G, Tiittanen P, Brunekreef B, de Hartog J, Heinrich J, Ibald-Mulli A, Kreyling WG, Lanki T, Timonen KL, Vanninen E (2002) Particulate air pollution and risk of ST-segment depression during repeated submaximal exercise tests among subjects with coronary heart disease: the exposure and risk assessment for fine and ultrafine particles in ambient air (ULTRA) study. Circulation 106: 933-938 Peters A, Dockery DW, Muller JE, Mittleman MA (2001) Increased particulate air pollution and the triggering of myocardial infarction. Circulation 103: 2810–2815 Pikkarainen S, Tokola H, Kerkelä R, Ruskoaho H (2004) GATA transcription factors in the developing and adult heart. Cardiovascular Research 63: 196-207 Pozzan T, Rizzuto R, Volpe P, Meldolesi J (1994) Molecular and cellular physiology of intracellular calcium stores. Physiological Reviews 74: 595-636 Rückerl R, Ibald-Mulli A, Koenig W, Schneider A, Woelke G, Cyrys J, Heinrich J, Marder V, Frampton M, Wichmann HE, Peters A (2006) Air pollution and markers of inflammation and coagulation in patients with coronary heart disease. American Journal of Respiratory and Critical Care Medicine 173: 432-441 Rohini A, Agrawal N, Koyani CN, Singh R (2010) Molecular targets and regulators of cardiac hypertrophy. Pharmacological Research 61: 269-280 Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nature Reviews Molecular Cell Biology 8: 519-529 Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. The EMBO Journal 17: 2596–2606 Sakakibara M, Minami M, Endo T, Hirafuji M, Murakami S, Mori Y, Sagai M (1994) Biological effects of diesel exhaust particles (DEP) on isolated cardiac muscle of guinea pigs. Research Communications in Molecular Pathology and Pharmacology 86: 99-110 Schröder M, Kaufman RJ (2005a) ER stress and the unfolded protein response. Mutation Research 569: 29-63 Schröder M, Kaufman RJ (2005b) The mammalian unfolded protein response. Annual Review of Biochemistry 74: 739-789 Shih NL, Cheng TH, Loh SH, Cheng PY, Wang DL, Chen YS, Liu SH, Liew CC, Chen JJ (2001) Reactive oxygen species modulate angiotensin II-induced β-myosin heavy chain gene expression via Ras/Raf/extracellular signal-regulated kinase pathway in neonatal rat cardiomyocytes. Biochemical and Biophysical Research Communications 283: 143-148 Shinkai Y, Yamamoto C, Kaji T (2010) Lead induces the expression of endoplasmic reticulum chaperones GRP78 and GRP94 in vascular endothelial cells via the JNK-AP-1 pathway. Toxicological Sciences 114: 378-386 Stuart BO (1984) Deposition and clearance of inhaled particles. Environmental Health Perspectives 55: 369-390 Sydbom A, Blomberg A, Parnia S, Stenfors N, Sandström T, Dahlén S-E (2001) Health effects of diesel exhaust emissions. European Respiratory Journal 17: 733-746 Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Reports 7: 880-885 Terai K, Hiramoto Y, Masaki M, Sugiyama S, Kuroda T, Hori M, Kawase I, Hirota H (2005) AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Molecular and Cellular Biology 25: 9554-9575 Tzeng HP, Yang RS, Ueng TH, Lin-Shiau SY, Liu SH (2003) Motorcycle exhaust particulates enhance vasoconstriction in organ culture of rat aortas and involve reactive oxygen species. Toxicological Sciences 75: 66-73 van Engeland M, Nieland LJ, Ramaekers FC, Schutte B, Reutelingsperger CP (1998) Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry 31: 1-9 Van Hee VC, Adar SD, Szpiro AA, Barr RG, Bluemke DA, Diez Roux AV, Gill EA, Sheppard L, Kaufman JD (2009) Exposure to traffic and left ventricular mass and function: the multi-ethnic study of atherosclerosis. American Journal of Respiratory and Critical Care Medicine 179: 827-834 Watkins SJ, Borthwick GM, Arthur HM (2010) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cellular & Developmental Biology - Animal 47: 125-131 Watterson TL, Hamilton B, Martin R, Coulombe RA (2009) Urban particulate matter causes ER stress and the unfolded protein response in human lung cells. Toxicological Sciences 112: 111-122 Watterson TL, Sorensen J, Martin R, Coulombe RA, Jr. (2007) Effects of PM2.5 collected from Cache Valley Utah on genes associated with the inflammatory response in human lung cells. Journal of Toxicology and Environmental Health Part A 70: 1731-1744 Wek RC, Jiang HY, Anthony TG (2006) Coping with stress: eIF2 kinases and translational control. Biochemical Society Transactions 34: 7-11 Wellenius G, Schwartz J, Mittleman M (2006) Particulate air pollution and hospital admissions for congestive heart failure in seven united states cities. The American Journal of Cardiology 97: 404-408 Yan YH, Huang CH, Chen WJ, Wu MF, Cheng TJ (2008) Effects of diesel exhaust particles on left ventricular function in isoproterenol-induced myocardial injury and healthy rats. Inhalation Toxicology 20: 199-203 Yun Y, Lee J, Ahn E, Lee K, Yoon H, Lim Y (2009) Diesel exhaust particles induce apoptosis via p53 and Mdm2 in J774A.1 macrophage cell line. Toxicology in Vitro 23: 21-28 Zanobetti A, Schwartz J (2005) The effect of particulate air pollution on emergency admissions for myocardial infarction: a multicity case-crossover analysis. Environmental Health Perspectives 113: 978-982 Zielinska B, Sagebiel J, McDonald JD, Whitney K, Lawson DR (2004) Emission rates and comparative chemical composition from selected in-use diesel and gasoline-fueled vehicles. Journal of the Air & Waste Management Association 54: 1138-1150 Zou Y, Nagai R, Yamazaki T (2001) Urotensin II induces hypertrophic responses in cultured cardiomyocytes from neonatal rats. FEBS Letters 508: 57^60 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/10009 | - |
dc.description.abstract | 近年來,流行病學研究顯示空氣懸浮微粒的增加及其所含之化學成分與心血管疾病致死率有關。粒徑小於2.5微米的懸浮微粒(particulate matter; PM2.5)可深入肺部並累積於體內,與血栓的形成和發炎反應具高度相關性。柴油引擎懸浮微粒(diesel exhaust particles, DEPs)的平均直徑約為0.2微米,且為PM2.5之主要成分。柴油引擎車的使用量逐年漸增,因柴油引擎的效率較汽油引擎高,因而降低石油消耗速度及二氧化碳的排放量,較不易加劇溫室效應,但氮氧化物與懸浮微粒的排放量較汽油引擎相對得多。過去研究顯示柴油引擎懸浮微粒萃取物(DEP extracts, DEPEs)可降低心肌細胞存活率,且可能導因於活性氧分子的生成,但其造成的心血管系統毒性的確切機制尚未清楚。因此,本研究主要探討DEPEs對心肌細胞的毒性及參與的機制。
首先,利用初生大鼠心肌細胞探討DEPEs對心肌細胞的毒性。將初生大鼠心肌細胞處理DEPEs (1-15 μg/mL) 24小時,發現對細胞存活率沒有顯著的影響,但細胞大小與細胞中蛋白質含量則有增加,且細胞肥大指標因子[腦鈉素(BNP)及肌凝蛋白質重鏈(β-MHC)]的基因表現量上升,顯示DEPEs具引起心肌細胞肥大的作用。另外,DEPEs亦可活化mitogen-activated protein kinases (MAPKs),即extracellular signal-regulated kinase、c-Jun-N-terminal kinase (JNK)和p38,及其上游調控分子protein kinase C (PKC)的磷酸化程度也增加。結果顯示DEPEs可能經由PKC調控之MAPKs路徑導致初生大鼠心肌細胞肥大。 接著,利用H9c2心肌細胞株探討DEPEs (3-25 μg/mL)造成的心肌細胞毒性。將細胞處理25 μg/mL DEPEs 24小時後,細胞存活率降低,並且利用流式細胞儀技術發現,細胞會走向凋亡與壞死。同時,細胞內ATP降低,乳酸脫氫酶釋放情形也增加。利用西方墨點法顯示處理DEPEs於短時間內可使JNK磷酸化增加。內質網壓力恆定相關蛋白glucose-regulated protein 78 (GRP78)和C/EBP-homologous protein (CHOP)的表現量亦會上升,並且可被JNK抑制劑回復。結果指出DEPEs可使心肌細胞凋亡與壞死,並且可經JNK調控引起內質網壓力,但此內質網壓力在DEPEs造成的心肌細胞死亡中所扮演的角色仍須進一步探討。 綜合上述結果顯示,DEPEs可造成初生大鼠心肌細胞肥大,亦可使H9c2心肌細胞走向凋亡與壞死。此研究有助於進一步地了解DEPs造成的心血管毒性作用及參與之機制。 | zh_TW |
dc.description.abstract | Evidences from epidemiological studies indicate that exposure to particulate matter (PM) air pollution contributes to cardiovascular morbidity and mortality. Fine particles with a diameter <2.5 μm (PM2.5) have an important role in triggering biological responses such as thrombosis and inflammation. Diesel exhaust particles (DEPs) with a mean size of about 0.2 µm are a major component of ambient PM2.5. Moreover, the use of diesel engine powered cars has recently been increasing in the world, because diesel engines offer better fuel efficiency and lower emissions of carbon dioxide than gasoline engines, which means that vehicles running on diesel are less responsible for global warming. However, diesel engines emit more nitrogen oxides and particles than do gasoline engines. It was reported that DEP extracts (DEPEs) decreased cardiomyocytes viability and it might be due mainly to reactive oxygen species formation. However, the mechanisms by which DEPs produce adverse cardiovascular effects at the cellular level are not fully understood. In this study, we used rat neonatal cardiomyocytes and H9c2 cardiac myoblasts to investigate the effects of DEPEs.
First, we used neonatal rat cardiomyocytes to determine the effects of DEPEs on cardiomyocyte hypertrophic response. Exposure to DEPEs (1-15 μg/mL) had no effects on cardiomyocyte viability. DEPEs treatment was found to elevate not only the cell size but also the ratio of total protein/cell number; additionally, the gene expression of hypertrophy markers including brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC) but not atrial natriuretic peptide (ANP) in neonatal rat cardiomyocytes was also increased, which indicated that DEPEs might induce cardiomyocyte hypertrophy. Besides, DEPEs also caused an increase in phosphorylation of extracellular signal-regulated kinases, c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPKs), upstream regulators of ANP, BNP and β-MHC. And protein kinase C (PKC), one of the upstream regulators of these MAPKs, was also activated. These results suggested that DEPEs was capable of inducing cardiomyocyte hypertrophy and implied that a PKC-regulated MAPK pathway may be involved. On the other hand, we also investigate the effects of DEPEs on H9c2 myoblast death. After DEPEs (3-25 μg/mL) treatment for 24 hours, cell viability significantly decreased. DEPEs also increased annexin-V and propidium iodide binding, indicating that DEPEs could induce apoptosis and necrosis in H9c2 cells. Exposure to DEPEs also caused an increase in phosphorylation of JNK. Expression of endoplasmic reticulum (ER) chaperone protein glucose-regulated protein 78 and pro-apoptotic factor C/EBP-homologous protein was augmented after exposure to DEPEs, which could be reversed by JNK inhibitor. Meanwhile, DEPEs triggered the depletion of intracellular ATP and increased lactate dehydrogenase release. Collectively, these data showed that DEPEs could lead to not only apoptosis but also necrosis and induce ER stress through JNK pathway. The present study demonstrated that DEPEs prompted neonatal rat cardiomyocyte hypertrophy and also induced apoptosis as well as necrosis in H9c2 myoblasts. These data provide the better understanding of potential mechanisms that link DEPs to toxicological regulation of cardiomyocytes. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:55:30Z (GMT). No. of bitstreams: 1 ntu-100-R98447006-1.pdf: 1635784 bytes, checksum: 53d40f1689d49f16f4b7e3744c182da5 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | Contents………………………………………………………………………………….i
中文摘要…………………………………………………….…………………...……..iii Abstract………………………………………………………………………………....v Abbreviations………………………………………………….…………...………….vii CHAPTER I Introduction……………………………………….…………………1-13 1. Diesel exhaust particles (DEPs)…………………..........………………………..1 2. Cardiac hypertrophy……………………………………...……………………...5 3. Endoplasmic reticulum stress……………………………………………………7 4. Specific aims………………………………………………...…………………13 CHAPTER II Materials and Methods…………………………..………….…….14-21 CHAPTER III Results…………………………………...…..……………………22-27 Part I: Effects of DEPEs on neonatal rat cardiomyocytes………………...….…22-24 1.1 Effects of DEPEs on neonatal rat cardiomyocyte viability………...………..….22 1.2 DEPEs induced cardiomyocyte hypertrophy………………………………....…22 1.3 DEPEs induced upregulation of pathologic hypertrophy marker BNP and β-MHC but not ANP in neonatal rat cardiomyocytes……………...…….……..23 1.4 DEPEs induced activation of PKC, p38, ERK, and JNK in cardiomyocytes..…23 Part II: Effects of DEPEs on H9c2 cells…………...………………………….….25-27 2.1 DEPEs reduced H9c2 cell viability……………….……….……………………25 2.2 DEPEs induced apoptsis in H9c2 cells…………………………..……………..25 2.3 Exposure to DEPEs increased activation of JNK, ER chaperone GRP78, and pro-apoptotic factor CHOP………………………………………………….…25 2.4 Phospho-JNK mediated DEPEs-induced upregulation of GRP78 and CHOP…26 2.5 Necrosis is also involved in DEPEs-induced cytotoxicity………….…….……26 CHAPTER IV Discussion…………………………..……………………….…….28-32 Part II: Effects of DEPEs on neonatal rat cardiomyocytes…………...……..….28-30 Part II: Effects of DEPEs on H9c2 cells…………………………..………...……31-32 CHAPTER V Conclusions and future applications………………….……………..33 Figures and Tables…………………………….……………………….………….34-51 References………………………………………………………………………….52-65 | |
dc.language.iso | en | |
dc.title | 柴油引擎懸浮微粒對心肌細胞致毒機制之探討 | zh_TW |
dc.title | Toxicological Effects of Diesel Exhaust Particles on Cardiomyocytes | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蕭水銀,楊榮森,姜至剛 | |
dc.subject.keyword | 柴油引擎懸浮微粒,心肌細胞,細胞肥大,細胞凋亡,細胞壞死, | zh_TW |
dc.subject.keyword | diesel exhaust particles,cardiomyocyte,H9c2 cell,hypertrophy,apoptosis,necrosis, | en |
dc.relation.page | 65 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-07-29 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 毒理學研究所 | zh_TW |
顯示於系所單位: | 毒理學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf | 1.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。