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中中中文文文摘摘摘要要要

我們研究完全子圖之最遠距離（clique diameter）問題。給定一個無向、無權重

圖，並同時給定一個集合，集合包含圖上所有給定的完全子圖，該問題問其中任兩組完

全子圖間之最遠距離為何？由於完全子圖可以代表一個理想的社群，其中每一成員均關

聯於其它成員，本問題即是詢問圖上各社群之距離，以及距離最遠的一組社群。假設圖

上有n個點與m個邊，同時給定r個完全子圖，我們設計一個O(r(n + m))時間且最多誤

差為1的近似演算法，並提供一個轉換方式，讓我們得以運用全點最短路徑演算法來解決

我們的研究問題。

關關關鍵鍵鍵字字字：圖形演算法（graph algorithm）、完全子圖（clique）、全點最短路

徑（all-pairs shortest paths）、矩陣相乘（matrix multiplication）、廣度優先搜尋

（breadth-first search）。
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Abstract

We study the clique diameter problem. Given an undirected, unweighted graph

containing a fixed set of cliques, we are interested in finding the maximum distance

among all pairs of cliques. In the context of social network analysis, a clique repre-

sents an ideal community, a clique distance represents the sparsity between the two

communities, and a clique diameter indicates the farthest distance among the social

network. Let n denote the number of nodes, m denote the number of edges and r

denote the number of given cliques. We provide an O(r(n+m)) time algorithm to

compute approximate clique distances with additive error of one. Another contri-

bution is a reduction which transforms any instance of the clique distance problem

into an instance of the all-pairs shortest paths problem.

Key words: graph algorithm, clique, all-pairs shortest paths, matrix multipli-

cation, breadth-first search.
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Chapter 1

Introduction

We present a new computation problem, the clique distance problem, which is raised

from the context of social network analysis. A clique, which is a complete subgraph,

is an ideal community in the context of social networks analysis. Figure 1 illustrates

some examples of complete graphs. In a clique-like community, each member shares

a relationship between any other members in the same community. Given a set of

cliques, we are interested in finding the clique distance between each pair of them.

Graph models or network models are powerful tools to represent relationship

and are essential components in the field of computer science. Various systems can

be modeled as graphs or networks. Recently the researchers have focused on the

complex networks, which are the graph models of complex systems. The network

models of the Metro routes map and the collaborative relationship of scientists are

examples.

Traditionally the random graph models or the Erdös-Rényi model [11] is adopted

K3 K4 K5

Figure 1.1: Some Examples of Complete Graphs
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to represent a complex network. In the ER-model there are two parameters. The

first one is the number of nodes and is denoted as n. The other parameter is the

probability of an edge existing in a random graph and denoted as p. However, some

graphs are different from random graph models. For example, the degree distribu-

tion of ER-model is a normal distribution, but empirical evaluation shows that the

degree distribution of real world networks usually belong to Power Law distribution

[26].

Community detection on graphs is an old and deeply investigated problem.

The problem has numerous variants and many different objective functions [12].

However, our problem is not solving community detection problem but providing a

measurement to the sparsity of communities.

Intuitively the clique distance is the shortest path joining the two cliques. The

clique distance problem is motivated by measuring the distances from the two com-

munities in a social network. The meanings of the clique distance is that the mini-

mum number of steps needed from one community to reach another community.

We adopt a very strict definition for communities thus our measurements are

worst estimates. Our contribution includes a straightforward O(mn + n2) time

algorithm and a simple algorithm computing the approximate clique distance with

an additive error of one. Both of them utilize the classic Breadth-First-Search

algorithm.

Even we are facing a brand new problem, it is highly related to the All-Pairs

Shortest Paths (APSP) problem. The classic APSP problem has a long and vastly

investigated history. Moreover, it is possible to solve our problem on top of the

well-developed techniques solving APSP problem with only slight rise of time com-

plexity. However,the clique model is too strict in practice. Members in one specific

community might not know all of the others. So there are several different defi-

nitions of communities, for example, k-clique [21] or k-club[2, 25]. Note that our

problem adopts the clique representatives only and is purely theoretical interest.
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Note that computing the clique distance while enumerating all of the cliques in

the input graph at the same time are impossible because there might be exponential

many of cliques in input graphs. In other words, the problem of finding all cliques

is much harder than the APSP problem.

The following are brief outlines. In Chapter 2 we describe the symbols and

definitions in this thesis. We also introduce the prior results of APSP problem,

both the exact and approximate results are surveyed. In Chapter 3 we describe an

algorithm with an additive error of one. Starting with a straightforward algorithm

and some observation, we obtain the approximate algorithm. In Chapter 4 we

describe a transformation from the clique distance problem to the All-Pairs Shortest

Paths problem. Thus we may solve our problem by solving the APSP problem. In

Chapter 5 we conclude our research results.
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Chapter 2

Preliminaries

2.1 Basic Terminologies

First we define the notation Õ(f(n)) as the shorthand of O(f(n) logc n) for some

positive constant c > 0, based on the fact that logk(n) = o(nε) for some positive

constant k and ε [7].

By default we adopt the Random Access Machine (RAM) model [7].

Every graph model consists of two primary classes of elements: vertex, (or

node) and edge, (or link). In this thesis we use the terms “vertex” and “node”

interchangeably and do the same manner to the terms “edge” and “link”. If we

consider a simple graph representing the routes of air transportation, each airport is

formulated into a vertex, and the route between two particular airports is formulated

into an edge between the two corresponding nodes. Let V (G) denote the vertex set

of G and let E(G) denote the edge set of G.

An edge has weight or cost. We denote w : E(G) → F as a weight function

where F denote a field structure, for example, the set consists of all of real numbers.

The edge weights of e is denoted as w(e).

For two arbitrary nodes u, v belonging to V (G), we have a directed edge e =
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(u, v) representing a link from u to v. The directed edge e is an one-way link. Only

u is able to reach v via e and reversed order is not allowed. We usually draw directed

edges as line segments with arrows pointing to the end point v. We say an edge

f = (u, v) undirected means there is a link f between u and v and both two vertices

are able to reach the others via the edge f . We draw undirected edges as plain line

segments between two end points without any arrow.

The edges in one particular graph are either directed or undirected. A directed

graph has only directed edges and an undirected graph has only undirected edges.

A clique is a subgraph which has its node set V ′ and every pair of nodes in the

set V ′ is adjacent.

A path in a graph is a sequence of vertices such that from each of its vertices

there is an edge to the next vertex in the sequence. We introduce a notation

P(v1, v2, v3 . . . , vk−1, vk)

representing a path which starts by v1, reaches v2, v3, . . . vk−1 consequently, and

stops by vk at last. The length or the weight of the above path is defined as:

l(P) =
∑

1≤i≤k−1

w(vi, vi+1)

The shortest path is the path with minimum path length among all the paths

between the particular pair of nodes. Given two nodes u and v, the notation d(u, v)

denote the distance, which means the length of the shortest path(s) between u and

v. Fixing two nodes, the shortest paths joining the nodes u and v may not be unique

but have equal length.

The Single Source Shortest Paths(SSSP) problem is to find the distance from

node u to every node in the same graph. If we unite all the shortest path start-

ing from u, we obtain a Shortest-Paths Tree rooted at u. The All-Pairs Shortest

5



Paths(APSP) problem is to find the distance between every pair of nodes in a graph.

The diameter of a graph G, denote as diam(G), is:

diam(G) = max
u,v∈V (G)

d(u, v) (2.1)

An eccentricity of a node u, denote as ecc(u), is the distance between u and the

farthest node from u.

Given a weighted graph G with n nodes, define the length matrix D = {dij}ni,j=1

as:

dij =

 w(e) ∃e ∈ E(G), e = (vi, vj),

∞ Otherwise.

2.2 Related Works

In the clique distance problem we are interested in the inter-distance among a portion

of vertices - those are covered by the given cliques. Thus our problem is highly related

to the all-pairs shortest path problem. Though the two problems are not identical,

some concepts could be borrowed from the APSP problem. Some related works on

APSP problem are presented here. We refer Zwick’s detailed survey [34] as a good

reference regarding the algorithms for SSSP problem and APSP problem.

2.2.1 All-Pairs Shortest Paths Problem

A basic approach to solve APSP problem is launching Dijkstra’s algorithm [9] from

all of nodes. This takes O(mn+ n2 log n) time but may only adopted on the graph

with nonegative edge weighted. To overcome this drawback, a re-weighted method

is purposed [18]. The edge weight is adjusted into nonegative values and the length

of all shortest paths are preserved. Combining the re-weighted methods and Dijk-

stra’s algorithm, the APSP problem on the graph with negative weights is solvable.

Nonetheless, this approach can not handle the graphs containing negative cycles.
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The Flody-Warshall algorithm [7] solves APSP problem in O(n3) time. The Algo-

rithm 2.1 describes the algorithm. Flody-Warshall can not handle the cases with

negative cycles either. However, it detects the negative cycles in any graphs.

Algorithm 2.1 Flody-Warshall Algorithm

Flody-Warshall(W )

� Input weights matrix W
� Output distance matrix D

1 n ← rows [W ]
2 D (0 ) ← W
3 for k ← 1 to n
4 do for i ← 1 to n
5 do for j ← 1 to n

6 do d
(k)
ij ← min{d(k−1)ij , d

(k−1)
ik + d

(k−1)
kj }

7 return D

Spira [29] gave an algorithm with expected running time in O(n2(log n)2).

Karger et al. [19] presented an O(m∗n+n2 log n)-time algorithm for weighted graph

– the Hidden Paths Algorithm, where m∗ denoted the number of optimal edges in

the input graph. Karger et al. defined any edge itself was a shortest path as an

optimal edge. Therefore, they made no improve on the undirected graphs.

Karger et al. also proved the lower bound for any path-comparsion-based algo-

rithms, which meant an algorithm revealed the weight information only by compar-

ing the edges to see if one edge was heavier to another one. In other words, A only

relied on order of the edge weight. McGeoch [23] independently concluded to an

algorithm with identical time complexity.

2.2.2 Distance Matrix Multiplication

The APSP problem is equivalent to matrix multiplication over the closed semi-

ring {min,+} [3]. Such matrix multiplication operations are defined as distance

matrix multiplication. We demonstrate the similarity between the formulation of

two operations. Given three n × n matrices A,B and C. A matrix multiplication
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C = A×B is as same as the following equations:

cij =
∑

1≤k≤n

aikbkj (2.2)

where aij, bij and cij denote the element in the ith-row and jth-column of matrix

A, B and C respectively. Indeed, this is a matrix multiplication over the semi-ring

{+,×}. Now we define the operation ?:

(A ? B)ij = min
k
{aik + bkj} (2.3)

One may see the analogue between equation 2.2 and equation 2.3. Given a length

matrix W , the nth distance product W n is defined as:

W n = W ?W ? · · · ? W ?W︸ ︷︷ ︸
(n−1) times?

The product W n is a matrix with each elements wij equals to the distance between

vi and vj. However, the distance matrix multiplication unfortunately have a Ω(n3)

lower bound, even with only minimum and sum are allowed[20].

Fredman [13] discovered that O(n2.5) comparison and addition are sufficient to

solve APSP problem, and devised a O(n3(log log n)1/3/(log n)1/3)-time algorithm by

preprocessing. Fredman’s algorithm was based on distance matrix and for nonega-

tive weighted cases only. Takaoka[30] improved the time bound toO(n3
√

log log n/ log n).

Han [16] presented anO(n3(log log n/ log n)5/7)-time algorithm for directed real weighted

graph. Then Takaoka [31, 32] pushed down the time bound twice in a short pe-

riod of time, to O(n3(log log n)2/ log n) and O(n3 log log n/ log n). Zwick [36] gave

a further improvement, a O(n3
√

log log n/ log n) algorithm. Inspired by techniques

used in computational geometry, Chan [4] devised an algorithm which runs in the

time of O(n3/ log n). Han [17] then devised the state-of-the-art algorithm running in

O(n3(log log n/ log n)5/4) time. Recently, Chan [5] presented aO(n3 log3 log n/ log2 n)-

time algorithm but for real-weighted dense graphs only

8



Time References Year
O(mn+ n2 log n) Dijkstra [9] 1959
O(n3) Flody/Warshall [7] 1962
O(n2(log n)2) Spira [29] 1973
O(n3(log log n)1/3/(log n)1/3) Fredman [13] 1976
O(mn+ n2 log n) Johnson [18] 1977
O(m∗n+ n2 log n) Karger [19] 1991

O(n3
√

log log n/ log n) Takaoka[30] 1992
O(m∗n+ n2 log n) McGeoch [23] 1995
O(n3(log log n/ log n)5/7) Han[16] 2004
O(n3(log log n)2/ log n) Takaoka [31] 2004
O(n3 log log n/ log n) Takaoka [32] 2005
O(n3

√
log log n/ log n) Zwick [36] 2006

O(n3/ log n) Chan [4] 2008
O(n3(log log n/ log n)5/4) Han [17] 2008
O(n3 log3 log n/ log2 n) Chan [5] 2010

Table 2.1: APSP algorithms for general dense real-weighted graphs.
“Year” refers to the published year of the citation.

Let O(nω) denote the total algebraic operations used for a multiplication be-

tween two n×n matrices. This technique is called the fast matrix multiplication and

the best known upper bound for ω is ω < 2.376 [6]. The only lower bound available

on ω is the naive lower bound ω ≥ 2.

Inspired by Yuval [33], Alon et al. [3] devised a Õ(n
3+ω
2 )-time algorithm utilizing

the fast matrix multiplication. His algorithm was limited to directed graphs with

possible edge weights in {−1, 0, 1}. Galil and Margalit [14, 15] and Seidel [27] have

obtained Õ(nω)-time algorithms for unweighted undirected graphs. Zwick gave a

O(n2.575) time algorithm.[35].

When extending to the graph with edges weighted in the range of {0, 1, . . . ,M},

the complexity of algorithms devised by Galil and Margalit were Õ(Mω+1/2nω).

Shoshan and Zwick [28] obtained an improved time bound of Õ(Mnω).

Table 2.1 and Table 2.2 summarize the results we surveyed. Table 2.1 are mainly

excerpted from the Table 1.1 of [5] but some additional citation are updated by us.

Table 2.2 demonstrates the algorithms based on the fast matrix multiplication.
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Time References Year Limitation of edge weighted

Õ(nω) Seidel [27] 1992 unweighted and undirected

Õ(n3+ω/2) Alon [3] 1997 {−1, 0, 1}
Õ(nω) Galil and Margalit [14, 15] 1997 unweighted and undirected

Õ(Mω+1/2nω) Galil and Margalit [14, 15] 1997 {0, 1, . . . ,M}
Õ(Mnω) Shoshan and Zwick [28] 1999 {0, 1, . . . ,M}
Õ(n2.575) Zwick [35] 2002 {−1, 0, 1}

Table 2.2: APSP algorithms based on the fast matrix multiplication.
“Year” refers to the published year of the citation.

2.2.3 Approximate Results

We summarize the approximation results of APSP problem into two types. Let the

approximate distance denoted as d̂(u, v). We say d̂(u, v) is stretch t if and only if

d(u, v) ≤ d̂(u, v) ≤ t · d(u, v). We say d̂(u, v) surplus t if and only if d(u, v) ≤

d̂(u, v) ≤ d(u, v) + t.

Zwick [35] gave an stretch 1+ε algorithm approximating all distance in directed

graph in the time of Õ((nω/ε) log(W/ε)), where W was the largest edge weight in the

graph. Aingworth et al. [1] gave a surplus 2 algorithm approximating APSP problem

in the time of O(n5/2(log n)1/2). Dor et al. [10] presented an surplus 2 algorithm in

the time of Õ(n3/2m1/2) and Õ(n7/3).

2.2.4 Diameters

Here we state some prior results regarding diameter finding techniques. Once the

All-Pairs Shortest Paths problem is solved then it is possible to find diameter by

searching the maximum value among the all-pairs distance. There might be more

than one diameter in the same graph if all of them have a equally maximum length.

Aingworth et al. [1] gave a 2/3-approximation algorithm finding diameter in a

weighted directed graph and it runs in the time of O(m(n log n)1/2 + n2 log n).

Magnien et al. purposed [22] some lower and upper bounds of diameter, and

evaluated those bounds with the real world network datasets. They considered the

10



Algorithm 2.2 Double-Sweep-Algorithm

Double-Sweep-Algorithm(G)

� Input graph G
� Output the Double-Sweep-Lower -Bound of G

1 Randomly choose r from V (G)
2 Lanuch Breadth-First-Search(r) and let a be the eccentricity of r
3 Lanuch Breadth-First-Search(a) and let b be the eccentricity of a
4 Return dG(a, b) by launching Breadth-First-Search (a)

unweighted graphs only. The following were lower bounds introduced.

Eccentricity The eccentricity gives a trivial bound ecc(v) ≤ diam(G) ≤ 2·ecc(v),

which is computed in the time of O(n+m).

Double Sweep Lower Bound See Algorithm 2.2. Since it computes a distance

on the graph and diameter is the largest distance, it always serves as a lower

bound.

Crescenzi et al. [8] purposed the fringe upper bound of diameters. The authors

defined the fringe of some node u, denoted as F (u), as the set of nodes v ∈ V (G)

such that d(u, v) = ecc(u). The fringe upper bound is computed in |F (u)| + 3 of

Breadth-First-Search. Algorithm 2.3 describes how to compute it.

Algorithm 2.3 Fringe-Algorithm [8]

Fringe-Algorithm(G)

� Input: The input graph G
� Output: The fringe upper bound

1 P(a . . . b)← The path returned by Double-Sweep-Algorithm(G)
2 u← the halfway of P(a . . . b)
3 Tu ← Breadth-First-Search(u)
4 Max -B ← 0
5 if |F (u)| > 1
6 then for each z ∈ F (u)
7 do Breadth-First-Search(z)
8 if Max -B < ecc(z)
9 then Max -B ← ecc(z)

10 if Max -B = 2 · ecc(u)− 1
11 then return 2 · ecc(u)− 1
12 elseif Max -B < 2 · ecc(u)− 1
13 then return 2 · ecc(u)− 2
14 else return diam(Tu)

11



Though Fringe-Algorithm has no theoretical guarantee to compute the ex-

actly diameter, it reports very good estimates in practice. According to results of

the experiments reported, it computes tight upper bounds which match the lower

bounds in substantial cases.
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Chapter 3

Clique Distance and a

Straightforward Algorithm

In this chapter the precise definition is presented. Currently our problem is re-

stricted to an undirected and unweighted graph, where any two given cliques are

non-overlapped.

3.1 Problem Definition

An instance of the clique distance problem is comprised of an undirected, unweighted

graph G and a set C = {C1, C2, . . . Cr} collecting the given cliques. In addition, the

total number of given cliques is r = |C|. For each clique in C, there are at least 3

nodes in it. Two degenerated cases are filtered out by the restriction. The first one

is the single isolated nodes and the another is the subgraphs with only two nodes

and one edge. We assume that every clique in C has no common node with any

others, i.e. they are all non-overlapped. Without loss of generality take two cliques

Ci = {u1, u2, . . . us} and Cj = {v1, v2, . . . vt}. Let the clique distance cd defined as:

cd(Ci, Cj) = min
ua∈Ci,vb∈Cj

d(ua, vb)

13
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Figure 3.1: An Example of the Clique Distance Problem

and we call the shortest path between va and vb as a clique shortest path. Conse-

quently, the clique diameter of G is defined as the maximum length among all of

the clique shortest paths on G.

Figure 3.1 illustrates an instance of clique distance problem. In the figure every

clique is depicted in its own type of nodes. There are three cliques in the graph,

C1 = {a, b, c, d}, C2 = {f, g, h}, and C3 = {j, k, l}. Thus we have cd(C1, C2) equals

to (b, g), and cd(C2, C3) equals to P(h, i, j). A clique shortest path may include any

edges from the input graph except those belong to the starting or ending cliques.

For example, cd(C1, C3) = P(b, g, h, i, j), which includes the edge (g, h) from clique

C2.

3.2 A Straightforward Algorithm

Indeed, we intend to compute the shortest paths between some vertex u and v where

the two located in two distinct, non-overlapping cliques. We may use breadth-first-

search traversals to compute the shortest paths since we are restricted on unweighted

graphs.

Our algorithm Compute-Clique-Distance solves this problem by utilizing

the Breadth-First-Search algorithm. The details are presented in Algorithm

3.1. We are going to explain the data structures in our algorithm. The input graph

is stored in the form of adjacent lists. The mapping from V (G) to C is stored in the

array CLIQUE . In other words, for each node v, CLIQUE [v] is refereed to the clique

14



containing v, or return NIL if v does not belong to any clique. Another variable

X = {v|v ∈ Ci Ci ∈ C} is a set consists of every node covered by the cliques in C.

Algorithm 3.1 Compute-Clique-Distance

Compute-Clique-Distance(G, C)
� Input the graph G and the given cliques list C.
� Output the clique distances matrix CD .

1 r ← |C| , n← |V (G)|
2 Initialize CD as a r × r matrix with each element has the value ∞
3 Initialize D as n× n matrix with each element has the value ∞
4 Initialize Π as n× n matrix with each element has the value NIL
5 for each u in X
6 do Breadth-First-Search(G, u, X , D , Π )
7 for each Ci in C
8 do for each Cj in C
9 do if i = j

10 then CD [i, j]← 0
11 else for u ∈ Ci
12 do for v ∈ Cj
13 if D[u, v] < CD [i, j]
14 then CD [i, j]← D [u, v]
15 return CD

Now we are going to prove the correctness of these algorithms. In the proce-

dure Compute-Clique-Distance, it initializes the global data structures. The

initialization takes at worst O(|X|) = O(n) of time. Then we perform Breadth-

First-Search starting from every vertex in X. After the algorithm terminated we

have obtained the all-pairs shortest path for nodes in X. The algorithm finishes in

the time of O(|X|(n+m)). However, the size of X could be n. The time complexity

of Algorithm 3.1 is at worst O(n2 +nm) and the space complexity is at worst O(n2).

After computing the clique distances we may find the clique distance by simply

checking every element in D . This can be done in the O(|X|2) time. If the input

graph is a complete graph Kn, the size of set X equals to n and we may need O(n2)

time to check all of elements. So now we have an algorithm runs in O(n2 + nm)

time and O(n2) space.
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3.3 Some Improvements

In this section some additional lemmas are presented. We also demonstrate an

approximate algorithm computing approximate clique distance in an additive error

of one.

Fact 3.1 ([7]). A tree which is the result of a breadth-first search traversal rooted at

a, is a shortest path tree rooted at a.

Lemma 3.1. On an unweighted graph, assume two nodes u and v are located in the

same clique. Take another arbitrary node x, then |d(u, x)− d(v, x)| ≤ 1.

Proof. Assume d(u, x) > d(v, x) with no loss of generality. Assume

d(u, x)− d(v, x) ≥ 2.

this implies

d(u, x) ≥ d(v, x) + 2

If we take the path P(u, v, . . . x) of which its length is 1 + d(v, x), then we have

d(u, x) = d(v, x) + 1, a contradiction.

Lemma 3.2. On an undirected, unweighted graph, every shortest path starting from

a node in any clique C includes at most one edge in C.

Proof. Assume there is a shortest path P contains a subpath Q = p(u1, u2, . . . , ux)

where u1, u2, . . . , ux are the vertices in clique C. We may reduce the length of P by

replacing the subpath Q into one edge (u1, ux). Since P is not a shortest path, our

assumption leads to a contradiction. Thus we are done.

Lemma 3.3. Let T be the tree returned by Breadth-First-Search starting by

u ∈ Ci and let w be the first node reached by the algorithm in Cj. Let dT (u,w)

denote the length of the path joining u and w on T . Then we have:

cd(Ci, Cj) ≤ dT (u,w) ≤ cd(Ci, Cj) + 1
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Proof. By definition the case such that cd(Ci, Cj) > dT (u,w) is impossible. If the

case such that cd(Ci, Cj) = dT (u,w) or cd(Ci, Cj) = dT (u,w) + 1 are encountered,

then we are done. This means either the node u or at least one of nodes v ∈ Ci \{u}

is the starting points of the clique shortest path joining Ci and Cj.

For every node x ∈ Cj, by Lemma 3.1, d(u, x) − cd(Ci, Cj) ≥ 2 is true only if

x 6= w so dT (u,w)− cd(Ci, Cj) > 1 is impossible.

Lemma 3.4. Let T denote the breadth-first-tree returned by Breadth-First-

Search starting by a node u ∈ Ci and reaching w at clique Cj. If the shortest path

joining u and w passes though the node v ∈ Ci \ {u}, then dT (v, w) = cd(Ci, Cj).

Proof. Clearly d(u,w) is not equal to d(v, w) since u 6= v. The length of every

path joining u and w can not smaller than 1 + cd(Ci, Cj), otherwise the Breadth-

First-Search picked another routes as the shortest path. Since any subpath of a

shortest path is also a shortest path, we have d(v, w) = cd(Ci, Cj).

Summarize the above lemmas we devise Algorithm 3.2 and 3.3, which computes

the approximate cliques distances. Algorithm 3.2, which is the procedures BFS-

Revised, is slightly modified from the classic Breadth-First-Search algorithm.

We describe the variables in BFS-Revised. The variable color [u] maintains

the color of u to indicate whether the vertex u is discovered. If color [u] = WHITE,

this means none of children are reached via the operation. If color [u] = GRAY,

this means u itself is reached but some of its children may remain uncovered. If

color [u] = BLACK means the u and its children are discovered so we color u as

BLACK. A distance matrix D is constructed to store the distances. In addition,

the value of D [u, v] is the distance from u to v. The variable Π [u, v] contains the

parent of v during the execution of the traversal starting from u. The number of

cliques in the list C is r = |C|. A clique distance matrix CD , which is a r × r

matrix, is constructed to store the clique distance estimates during the execution of

the algorithm.
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Algorithm 3.2 BFS-Revised

BFS-Revised(G, s,X ,D ,Π , C,CD)

� G: The graph that operation perform on.
� s : The node whole operation starting with.
� C: The given clique list.
� D : The distance matrix.
� Π : The predecessor matrix.
� CD : The clique distances matrix.
� BRANCH : Recording by which neighbor s reached the newly discovered node.

1 Initialize BRANCH as an array with the default values NIL
2 Cs ← CLIQUE[s]
3 for each vertex u ∈ V (G)− s
4 do color [u]←WHITE
5 D [s, u]←∞
6 Π [s, u]← NIL
7 color [u]← GRAY
8 D[s, u]← 0
9 Π[s, u]← NIL

10 BRANCH [s]← s
11 Q ← ∅
12 Enqueue(Q ,s)
13 while Q 6= ∅
14 do u← Dequeue(Q)
15 for each w ∈ Adj [u]
16 do if color [w] = WHITE
17 then color [w]← GRAY
18 D [s, w]← D [s, u] + 1
19 Π [s, w]← u
20 if w ∈ Cs
21 then BRANCH [w]← w
22 else BRANCH [w]← BRANCH [u]
23 if w ∈ X
24 then Cj ← CLIQUE [w]
25 v ← BRANCH[w]
26 if v 6= s
27 then CD [s, j]← min{CD [s, j],D [v, w]}
28 else CD [s, j]← min{CD [s, j],D [s, w]}
29 Enqueue(Q , w)
30 color [u]← BLACK
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Algorithm 3.3 Clique-Distance-Approx

Clique-Distance-Pruning(G, C)
� Input the graph G and the given cliques list C.
� Output CD storing the approximate clique distances.

1 r ← |C|, n← |V (G)|
2 Initialize CD as a r × r matrix with each element has the value ∞
3 Initialize D as n× n matrix with each element has the value ∞
4 Initialize Π as n× n matrix with each element has the value NIL
5 for Ci ∈ C
6 do Pick an arbitrary node y from V (Ci)
7 BFS-Revised(G, y,X ,D ,Π , C,CD)
8 return CD

a

bc
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e f

g h i j k

l

Figure 3.2: cd(C1, C3) = d(b, j) (drawing in thick lines)

The algorithm BFS-Revised maintains a newly added variable BRANCH .

Consider a BFS tree T computed by BFS-Revised. Every node except s must

have a parent node on T. If the operation BFS-Revised starts from a node s in

the clique Cs, then all of neighbor of s in the clique Cs are at the level one of the

tree T (The node s is at level zero.) For every node w, the variable BRANCH [w]

refers the ancestor at the level one if s reaches w via a neighbor also in the clique

Cs, or refers to s if s reaches w without passing through any neighbor belonging to

Cs.

If the variable v = BRANCH [w] 6= s, we may reached a clique from s and

the shortest path passes through one of neighbor of s in the clique Cs. By Lemma

3.4, the distance D [v, w] is the clique distance. Otherwise we compare the distance

D [s, w] with the currently known clique distances estimation.

Note that Algorithm 3.2 computes only approximate results. To see how it

failed to compute exact results, we provide the graphs showing in Figure 3.2 and
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Figure 3.3: The Failed BFS-Tree Rooted at a

Figure 3.3 as examples. The correct clique distance cd(C1, C3), which is showing

in Figure 3.2, is d(b, j) = 4. If the BFS-Revised starting from node a expands

the children of e prior the expansion of b, BFS-Revised(a) reaches C3 by node j

without taking the correct clique shortest path. In this particular case Algorithm 3.2

return an approximate estimate with an additive error of one. Because Algorithm

3.2 expands nodes in arbitrary order, the failed cases are not preventable. So we

conclude that Algorithm 3.2 computes the approximate clique distances with the

additive error at most one.

Now we prove the correctness of our algorithms. Algorithm 3.3 is just a trivial

loop. Algorithm 3.2 is a modified version of Breadth-First-Search. It traverses

every node and computes the shortest path from starting node to every node in

graph G. If a newly found clique is reached via a neighbor in the same clique of

starting node, by Lemma 3.3 and Lemma 3.4, the correct clique distance is reported.

Otherwise, we can not filter out the error cases.

The procedure BFS-Revised runs in the time of O(m + n). The time com-

plexity of Algorithm 3.3 is O(r(m + n)) since it perform at most r times of BFS-

Revised, where r is the number of cliques in C. Our algorithm performs better

than the straightforward algorithm if the number of r is much smaller than the

node number n.
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Chapter 4

On Transformation to All-Pairs

Shortest Paths Problem

In this chapter a technique which transforms any instance of clique distances prob-

lem into an instance of APSP problem is reported. Transforming the clique distances

problem into APSP problem is beneficial since we may utilize the algorithms estab-

lished for APSP problem to solve the clique distance problem. However, we can not

solve APSP problem by solving clique distance problem. By solving clique distance

problem it is possible to obtain only a partial solution of APSP problem.

4.1 A Failed Attempt

Before introducing the final version construction, we demonstrate a failed attempt.

Definition 4.1 (Pitfall roof node). For each clique Ci = {u1, u2, u3, . . . , uk−1, uk}

in C, a newly created roof node vci is inserted into V (G). A roof nodes vci are only

adjacent to those nodes belong to the corresponding clique Ci and is disconnected

to the rest of nodes (also disconnected from any other roof nodes). Then we put

edges (vci , u) for u ∈ Ci where these edges are weighted in zero.

However, this design has a pitfall. Assume vci is a roof node of clique Ci.
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Figure 4.1: A Counterexample

There must be a path P(x, vci , y) with its length smaller than any edges belonging

to Ci. Then the shortest path found by APSP algorithms is the path including

P(x, vci , y). The newly found shortest path passes through the roof node vci and is

not a possible path on the originally graph. Therefore, the transformation can not

fulfill our objectives.

4.2 Correction

So we must give weighed to the edges adjacent to the roof nodes.

Definition 4.2 (Roof node). The construction steps remain unchanged. Instead of

creating edges weighted in zero, a heavier edge weighted is given. We put edges

(vci , uj) for uj ∈ Ci. Those edges are weighted in (wmax + 1) where wmax =

maxe∈E(G)w(e). The set R = {vci|Ci ∈ C} contains all roof nodes on G.

Actually we may adopt smaller edge weights. Given a clique Ci and the cor-

responding roof nodes vci . Let the maximum edge weight among the edges in Ci is

wci . Then the edges weight for those edges adjacent to the roof nodes are at least

1+wci

2
since this is enough to prevent roof nodes from being included by any shortest

paths.

Lemma 4.1. For all of pairs of clique Ci and Cj and the corresponding roof nodes

vci and vcj , we have the length d(vci , vcj)−2×(wmax+1) as the desired clique distance

cd(Ci, Cj).
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Proof. By the definition 4.2 the roof nodes are constructed and inserted into G.

After all the roof nodes are created, these operations result in an newly created

graph G′. Because the negative edge weight is not allowed, it is possible to compute

the all-pairs shortest path on G′ by any algorithms solving APSP problem.

Assume the shortest path between vci and vcj as P(vci , s, . . . , t, vcj), and the

node s and t belong to Ci and Cj. It must be the cases because any roof node is

connected to every node in the corresponding clique only and is isolated from the

rest of nodes in originally graph G. So the edge (vci , s) must be taken. The edge

(t, vcj) is also taken for the same reason.

We argue that the path P(s . . . t) is the clique shortest path between Ci and Cj

for the reason that the path P(vci , s, . . . , t, vcj) is the shortest path between vci and

vcj . If the path between s and t are not the one with the minimal length, the shortest

path algorithm must find some different node s′ 6= s or t′ 6= t where d(s′, t′) < d(s, t).

This contradicts our assumption. Since the cost of (vci , s) and (t, vcj) are both

wmax + 1 clearly the path length of cd(Ci, Cj) = d(vci , vcj)− 2× (wmax + 1).

After doing the transformation, we may compute the clique distances by com-

puting the all-pairs shortest path among all of the roof nodes. Algorithm 4.2 illus-

trates the whole algorithm.

Algorithm 4.1 Clique-Distances-Roof-Nodes

Clique-Distances-Roof-nodes(G, C)
� Input the graph G and given cliques list C
� Output the matrix CD storing clique distances

1 r ← |C|
2 Initialize CD as a r × r matrix
3 R ← φ
4 for each Ci ∈ C
5 do Insert a roof node vci into V (G)
6 Insert edge (vci , u) for every node u ∈ Ci
7 R ← R∪ {vci}
8 for each vci in R
9 do Compute the shortest path tree rooted at vci

10 CD [i, j] ← d(vci , vcj) for any node vcj ∈ R
11 return CD
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The Lemma 4.1 offers the possibility to compute clique distance by any known

algorithms solving APSP problem. Even though the nodes in the graph increased

after we inserted those roof nodes, the insertion expands the set of nodes V (G)

slightly because we put a limitation on the smallest size of cliques, which is three

of nodes. Let n denote the number of nodes in original graph G. We conclude that

|R| = o(n) and the time complexity are still dominated by n. So the overall time

complexity remains.

Note that the input graph is not restricted to unweighted graphs; Lemma 4.1 are

safe to extend to weighted graphs. We may use the identical procedure to construct

the roof nodes. The design of roof nodes also handle the cases when some of given

cliques in C are overlapped. By definitions, the clique distances of overlapped cliques

shrink down to zero immediately.
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Chapter 5

Concluding Remarks

The clique diameter problem and clique distance problem provide insights about

the distances of interconnection between every pair of communities. Even we solve

an instance of clique distance problem, we could not solve any instance of APSP

problem by the solution we obtained from clique distance problem.

Starting from a straightforward algorithm, our algorithm which runs in the

time of O(r(n+m)) approximates clique distance in an additive error of one. If the

number of cliques r is much smaller than the number of node n then our approximate

algorithm runs faster than the straightforward algorithm.

We solve any instance of clique distance problem by transforming it into an

instance of APSP problem. However, it is not possible to solve an APSP problem

by solving a clique distance problem. After adding the roof nodes into inputed

graph, we may reconstruct the clique distances from the shortest path joining the

corresponding roof nodes. Any improvements on the APSP problem immediately

improve on our problems.

We state the future works below. As we stated in the Chapter 1 there are

different models of community structures. The first possible future work is to devise

the algorithm for different model of community structures. For example, we may use

the k-clique or k-club models. Since k-clique and k-club are more practical models

25



comparing with cliques, the computation techniques based on them could capture

much more precise community distances.

The second lane of future works is evaluating our algorithm on the real world

datasets. Our algorithms are based on the Breadth-First-Search which has a

good external-memory implementation [24] so our methods could have good perfor-

mance in practice. In the future we may establish the experiments to evaluate and

improve our algorithm.

26



Bibliography

[1] Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast

estimation of diameter and shortest paths (without matrix multiplication).

SIAM J. Comput., 28(4):1167–1181, 1999.

[2] Richard D. Alba. A graph-theoretic definition of a sociometric clique. Journal

of Mathematical Sociology, 3:3–113, 1973.

[3] Noga Alon, Zvi Galil, and Oded Margalit. On the exponent of the all pairs

shortest path problem. J. Comput. Syst. Sci., 54(2):255–262, 1997.

[4] Timothy Chan. All-pairs shortest paths with real weights in O(n3/ log n) time.

Algorithmica, 50:236–243, 2008.

[5] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted

graphs. SIAM J. Comput., 39(5):2075–2089, 2010.

[6] Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic

progressions. J. Symb. Comput., 9(3):251–280, 1990.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to

Algorithms, 2nd edition. MIT Press, Cambridge, MA, 2 edition, 2001.

[8] Pierluigi Crescenzi, Roberto Grossi, Claudio Imbrenda, Leonardo Lanzi, and

Andrea Marino. Finding the diameter in real-world graphs - experimentally

turning a lower bound into an upper bound. In Mark de Berg and Ulrich

Meyer, editors, ESA (1), volume 6346 of Lecture Notes in Computer Science,

pages 302–313. Springer, 2010.

27



[9] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Nu-

merische Mathematik, 1:269–271, 1959.

[10] Dorit Dor, Shay Halperin, and Uri Zwick. All-pairs almost shortest paths.

SIAM J. Comput., 29(5):1740–1759, 2000.
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