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Abstract

We study the clique diameter problem. Given an undirected, unweighted graph
containing a fixed set of cliques, we are interested in finding the maximum distance

among all pairs of cliques. In the conte::Et of social network analysis, a clique repre-
LA

sents an ideal community, a cquﬁe: d;hsﬁance repfésé'figs the sparsity between the two

i =

communities, and a chque\dl fﬁ}/at‘e 1cate faé%hest‘dlstance among the social

network. Let n denote'-fzh,__laq er

denote the number of..glven liques.
L

compute approximate thue
-..s, e

2 ., B
Key words: graph algorithi’ﬁ;'@ﬁﬂgﬁ}, 7%11,?3%:1shortest paths, matrix multipli-

cation, breadth-first search.
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Chapter 1

Introduction

We present a new computation problerﬁ, the &lique distance problem, which is raised
from the context of social networkianalysis. A cliq{i‘e’, which is a complete subgraph,
is an ideal community in the contexf?f‘sociaﬂ ;ﬁetworks analysis. Figure[T]illustrates

some examples of complete graphs. In é)@i_é;ueillike community, each member shares

1 |

a relationship between any.-other &%mbeilré_,,in the same community. Given a set of
cliques, we are interested in-findin ‘Ethe clique élizr!stance between each pair of them.

Graph models or network.niodels‘ arg poWerfﬁl tools to represent relationship
and are essential components in the field of computer science. Various systems can
be modeled as graphs or networks. Recently the researchers have focused on the
complex networks, which are the graph models of complex systems. The network
models of the Metro routes map and the collaborative relationship of scientists are

examples.

Traditionally the random graph models or the Erdos-Rényi model [11] is adopted

A X

K Ky K

Figure 1.1: Some Examples of Complete Graphs



to represent a complex network. In the ER-model there are two parameters. The
first one is the number of nodes and is denoted as n. The other parameter is the
probability of an edge existing in a random graph and denoted as p. However, some
graphs are different from random graph models. For example, the degree distribu-
tion of ER-model is a normal distribution, but empirical evaluation shows that the
degree distribution of real world networks usually belong to Power Law distribution

126].

Community detection on graphs is an old and deeply investigated problem.
The problem has numerous variants and many different objective functions [12].
However, our problem is not solving community detection problem but providing a

measurement to the sparsity .of commiimities.*
L £

Intuitively the clique distangé s the shortest :f):'ath joining the two cliques. The
clique distance problem is”niOtivate'cﬁiy measﬁﬁng the ‘distances from the two com-
munities in a social network. The a.@gspfl the cliquesdistance is that the mini-

I l

mum number of steps needed frorr] ne ogmmwmty to reach another community.
= 1}

We adopt a very striet’ deﬁmfm)n for commhmtlesKthus our measurements are
worst estimates. Our contribution inicludes a stralghtforward O(mn 4 n?) time
algorithm and a simple algorithm computing the approximate clique distance with
an additive error of one. Both of them utilize the classic BREADTH-FIRST-SEARCH

algorithm.

Even we are facing a brand new problem, it is highly related to the All-Pairs
Shortest Paths (APSP) problem. The classic APSP problem has a long and vastly
investigated history. Moreover, it is possible to solve our problem on top of the
well-developed techniques solving APSP problem with only slight rise of time com-
plexity. However,the clique model is too strict in practice. Members in one specific
community might not know all of the others. So there are several different defi-
nitions of communities, for example, k-clique [21] or k-club[2], 25]. Note that our

problem adopts the clique representatives only and is purely theoretical interest.



Note that computing the clique distance while enumerating all of the cliques in
the input graph at the same time are impossible because there might be exponential
many of cliques in input graphs. In other words, the problem of finding all cliques

is much harder than the APSP problem.

The following are brief outlines. In Chapter 2 we describe the symbols and
definitions in this thesis. We also introduce the prior results of APSP problem,
both the exact and approximate results are surveyed. In Chapter 3 we describe an
algorithm with an additive error of one. Starting with a straightforward algorithm
and some observation, we obtain the approximate algorithm. In Chapter 4 we
describe a transformation from therchquf d}stance problem to the All-Pairs Shortest

Paths problem. Thus we mayi, 5(1)'1;\-;6 -our pro_‘bi'ibbm ﬁy 11501V111g the APSP problem. In
1= » e
%,

Chapter 5 we conclude og‘r re ar sults.




Chapter 2

Preliminaries

2.1 Basic Terminelogies

First we define the notation O(f (n))fa's__ the 'S‘horthand of O(f(n)log’n) for some

| T | |

positive constant ¢ >0, based onbthe "fa.i}t'fhat‘ logk(n) = o(n°) for some positive
|
] | | |

constant & and € [7]. k v
2 S | 1 :

By default we adopt the Random«Access Macliine (RAM) model [7].

Every graph model consists of two. primary classes of elements: wvertex, (or
node) and edge, (or link). In this thesis we use the terms “vertex” and ‘“node”
interchangeably and do the same manner to the terms “edge” and “link”. If we
consider a simple graph representing the routes of air transportation, each airport is
formulated into a vertex, and the route between two particular airports is formulated
into an edge between the two corresponding nodes. Let V(G) denote the vertex set

of G and let E(G) denote the edge set of G.

An edge has weight or cost. We denote w : E(G) — F as a weight function
where F' denote a field structure, for example, the set consists of all of real numbers.

The edge weights of e is denoted as w(e).

For two arbitrary nodes u,v belonging to V(G), we have a directed edge e =



(u,v) representing a link from u to v. The directed edge e is an one-way link. Only
u is able to reach v via e and reversed order is not allowed. We usually draw directed
edges as line segments with arrows pointing to the end point v. We say an edge
f = (u,v) undirected means there is a link f between u and v and both two vertices
are able to reach the others via the edge f. We draw undirected edges as plain line

segments between two end points without any arrow.

The edges in one particular graph are either directed or undirected. A directed

graph has only directed edges and an undirected graph has only undirected edges.

A clique is a subgraph which has its node set V' and every pair of nodes in the

set V' is adjacent.

A path in a graph is a'sequencé of-vertices sueh that from each of its vertices

there is an edge to the next.vertexin the sequences We-introduce a notation
el ';T—"li—,_ y Sy \ ]
| ! P 1
| l""l"? |l_i! '
-

P (v 2:7-159'_-.7;@1;«21, Ug)
.r[J. l ‘;
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representing a path which starts Lji' V1, reachq|3§| Ug, W5y .. vp_1 consequently, and

stops by v at last. The length‘él;"the weight, of the above path is defined as:

l(P) = Z w(vi, Vit1)

1<i<k—1

The shortest path is the path with minimum path length among all the paths
between the particular pair of nodes. Given two nodes u and v, the notation d(u, v)
denote the distance, which means the length of the shortest path(s) between u and
v. Fixing two nodes, the shortest paths joining the nodes ©v and v may not be unique

but have equal length.

The Single Source Shortest Paths(SSSP) problem is to find the distance from
node u to every node in the same graph. If we unite all the shortest path start-

ing from u, we obtain a Shortest-Paths Tree rooted at u. The All-Pairs Shortest



Paths(APSP) problem is to find the distance between every pair of nodes in a graph.

The diameter of a graph G, denote as diam(G), is:

diam(G) = d 2.1
iam(G)  nax (u,v) (2.1)

An eccentricity of a node u, denote as ecc(u), is the distance between u and the

farthest node from .

n
1,j=1

Given a weighted graph G with n nodes, define the length matriz D = {d;;

as:

p w(e) Jee E(G), e=(v;,v;),
00 Otherwise.

2.2 Related Works

In the clique distance problem we are;in?c;%éd’lim the inter-distance among a portion
of vertices - those are covered by thi_l iven@@quest; Thus onr problem is highly related
to the all-pairs shortest path__probietm. Th(;ughll {[?he tworproblems are not identical,
some concepts could be bortowed from the APSP":broblem. Some related works on
APSP problem are presented here. We refer Zwick’s detailed survey [34] as a good

reference regarding the algorithms for SSSP problem and APSP problem.

2.2.1 All-Pairs Shortest Paths Problem

A basic approach to solve APSP problem is launching Dijkstra’s algorithm [9] from
all of nodes. This takes O(mn + n?logn) time but may only adopted on the graph
with nonegative edge weighted. To overcome this drawback, a re-weighted method
is purposed [18]. The edge weight is adjusted into nonegative values and the length
of all shortest paths are preserved. Combining the re-weighted methods and Dijk-
stra’s algorithm, the APSP problem on the graph with negative weights is solvable.

Nonetheless, this approach can not handle the graphs containing negative cycles.



The Flody-Warshall algorithm [7] solves APSP problem in O(n?®) time. The Algo-
rithm describes the algorithm. Flody-Warshall can not handle the cases with

negative cycles either. However, it detects the negative cycles in any graphs.

Algorithm 2.1 Flody-Warshall Algorithm
FLoDY-WARSHALL (W)

> Input weights matrix W
> Output distance matrix D
n < rows[W|
DO« W
for L < 1ton
do for ; < 1ton
do for j < 1ton

do dY + min{d{} ™V dy;"" +d "}

N O Ol W N~

return D

Spira [29] gave an algorithm with expected :funning time in O(n?*(logn)?).
Karger et al. [19] presented an' O (mf n+n2 log )-time a}gorlthm for weighted graph
— the Hidden Paths Algorithmn, Where II_i_gslenoted the number of optimal edges in
the input graph. Karger et al. déﬁ ed 'imy edge itself swas a shortest path as an

optimal edge. Therefore, they: madte no 1mpr0ve on,the.undirected graphs.

1

Karger et al. also proved the lower bound. for“any path-comparsion-based algo-
rithms, which meant an algorithm revealed the weight information only by compar-
ing the edges to see if one edge was heavier to another one. In other words, A only
relied on order of the edge weight. McGeoch [23] independently concluded to an

algorithm with identical time complexity.

2.2.2 Distance Matrix Multiplication

The APSP problem is equivalent to matrix multiplication over the closed semi-
ring {min, +} [3]. Such matrix multiplication operations are defined as distance
matriz multiplication. We demonstrate the similarity between the formulation of

two operations. Given three n x n matrices A,B and C'. A matrix multiplication



C = A x B is as same as the following equations:

Cij = Z aikbkj (2-2)

1<k<n

where a;;, b;; and ¢;; denote the element in the sth-row and jth-column of matrix
A, B and C respectively. Indeed, this is a matrix multiplication over the semi-ring

{+, x}. Now we define the operation *:
(A B);; = mkin{aik + by } (2.3)

One may see the analogue between equation and equation 2.3 Given a length

matrix W, the nth distance product: ™ is defined as:

=WV = Wk W - ok WRIN

-~

. ',nfl [' ~timesx )
| F Ve d L

-

-

The product W" is a matrix with # ch e]fhlen{sl wgilequals to the distance between
o\
v; and v;. However, the distance ri) trix’qr?iulti[bl%cation:unfortunately have a Q(n?)
lower bound, even with only minimumsand sum aze allowed [20].
Fredman [13] discovered that O(ﬁ2'5) comparison and addition are sufficient to
solve APSP problem, and devised a O(n®(loglogn)*?/(logn)"?)-time algorithm by

preprocessing. Fredman’s algorithm was based on distance matrix and for nonega-

tive weighted cases only. Takaoka[30] improved the time bound to O(n?y/loglog n/logn).
Han [16] presented an O(n?(loglog n/log n)”")-time algorithm for directed real weighted
graph. Then Takaoka [31], 32] pushed down the time bound twice in a short pe-
riod of time, to O(n*(loglogn)?/logn) and O(n?loglogn/logn). Zwick [36] gave

a further improvement, a O(n3y/loglogn/logn) algorithm. Inspired by techniques
used in computational geometry, Chan [4] devised an algorithm which runs in the
time of O(n?/logn). Han [I7] then devised the state-of-the-art algorithm running in
O(n*(loglogn/logn)”*) time. Recently, Chan [5] presented a O(n®log® log n/log® n)-

time algorithm but for real-weighted dense graphs only



Time References Year
O(mn +n*logn) Dijkstra [9] 1959

O(n?) Flody/Warshall [7] | 1962
O(n?*(logn)?) Spira [29] 1973
O(n?(loglogn)*?/(logn)"?) | Fredman [13] 1976
O(mn + n*logn) Johnson [1§] 1977
O(m*n + n?logn) Karger [19] 1991
O(n34/loglogn/logn) Takaoka[30] 1992
O(m n +n*logn) McGeoch [23] 1995
O(n?(loglogn/logn)’7) Han[16] 2004
O(n?(loglogn)?/logn) Takaoka [31] 2004
O(n3loglogn/logn) Takaoka [32] 2005
O(n*\/loglogn/logn) Zwick [36] 2006
O(n 3/ logn) Chan [4] 2008
O(n?(loglogn/log n) o) Han [17] 2008
O(n?log® logn/log® n) Chan [5] 2010

Table 2.1: APSP algorithms for general dense real-weighted graphs.
“Year” refers to the published year of the citation.
Let O(n”) denote the total alg_bralc operatlons used for a multiplication be-
tween two n X n matrices. This techrtique—ls@al}ed the fast matriz multiplication and

the best known upper boundifor wllj w <12 376 [6] The only lower bound available

1t |
P

on w is the naive lower bound w Zl |
!

|
Inspired by Yuval [33]; Alon ¢t al. 3] dev1sed a O( °3")-time algorithm utilizing

the fast matrix multiplication. His algorlthm was limited to directed graphs with
possible edge weights in {—1,0,1}. Galil and Margalit [14, [15] and Seidel [27] have
obtained O(nw)—time algorithms for unweighted undirected graphs. Zwick gave a

O(n*°™) time algorithm.[35].

When extending to the graph with edges weighted in the range of {0, 1, ..., M},
the complexity of algorithms devised by Galil and Margalit were O(M “H2pw),

Shoshan and Zwick [28] obtained an improved time bound of O(Mn®).

Table[2.T)and Table[2.2]summarize the results we surveyed. Table[2.T]are mainly
excerpted from the Table 1.1 of [5] but some additional citation are updated by us.

Table demonstrates the algorithms based on the fast matrix multiplication.



Time References Year | Limitation of edge weighted

O(n®) Seidel [27] 1992 | unweighted and undirected
O(n**/?) Alon [3] 1997 | {—1,0,1}

O( “) Galil and Margalit [14], 15] | 1997 | unweighted and undirected

O(M*™*>n#) | Galil and Margalit [14, 15] | 1997 | {0,1,..., M}

O(Mn®) Shoshan and Zwick [28] 1999 | {0,1,..., M}

O(n*5™) Zwick [35] 2002 | {~1,0,1}

Table 2.2: APSP algorithms based on the fast matrix multiplication.
“Year” refers to the published year of the citation.

2.2.3 Approximate Results

We summarize the approximation results of APSP problem into two types. Let the
approximate distance denoted as g(u,v). We. say cf(u, v) is stretch t if and only if
d(u,v) < d(u,v) < t-d(u,a). We'say c/l\(u',!'v) surplus t if and only if d(u,v) <

d(u,v) < d(u,v) +t.

Zwick [35] gave an stretch 1+4 algorlthm apprommatmg all distance in directed
graph in the time of O((n“/¢) log(W]e))f-Wh?eie,W wag the largest edge weight in the
graph. Aingworth et al. [T}:gave a su plus,rllalgdrlthm approximating APSP problem
in the time of O(n”?(log n)lf 4% Dd)r et als [10] Ip.lresented an surplus 2 algorithm in
the time of O(n¥*>m"?) and O( ) i

2.2.4 Diameters

Here we state some prior results regarding diameter finding techniques. Once the
All-Pairs Shortest Paths problem is solved then it is possible to find diameter by
searching the maximum value among the all-pairs distance. There might be more

than one diameter in the same graph if all of them have a equally maximum length.

Aingworth et al. [I] gave a 2/s-approximation algorithm finding diameter in a

weighted directed graph and it runs in the time of O(m(nlogn)’? + n?logn).

Magnien et al. purposed [22] some lower and upper bounds of diameter, and

evaluated those bounds with the real world network datasets. They considered the

10



Algorithm 2.2 DOUBLE-SWEEP-ALGORITHM

DOUBLE-SWEEP-ALGORITHM(G)

> Input graph G

> Output the Double-Sweep-Lower- Bound of G

Randomly choose r from V (G)

Lanuch BREADTH-FIRST-SEARCH(r) and let a be the eccentricity of r
Lanuch BREADTH-FIRST-SEARCH(a) and let b be the eccentricity of a
Return dg(a,b) by launching BREADTH-FIRST-SEARCH (a)

=W N

unweighted graphs only. The following were lower bounds introduced.

Eccentricity The eccentricity gives a trivial bound ecc(v) < diam(G) < 2-ecc(v),

which is computed in the time of O(n + m).

Double Sweep Lower Bound, See Algorithm [2.2l Since it computes a distance

on the graph and diameter is the largest distance, it always serves as a lower

bound.

Crescenzi et al. [8] purposed the fringe upper bound of diameters. The authors
defined the fringe of some node Uy T‘er-fo?fda‘z;s' F(uw)y as the set of nodes v € V(G)
such that d(u,v) = ece(u). The ﬁri ge ’ﬁiéi)er bound is computed in |F(u)] + 3 of

w1l (']

BREADTH-FIRST-SEARCH. Algorithm 2.3l describes how to compute it.

Algorithm 2.3 FRINGE-ALGORITHM [§]

FRINGE-ALGORITHM(G)

> Input: The input graph G
> Output: The fringe upper bound

1 P(a...b) < The path returned by DOUBLE-SWEEP-ALGORITHM(G)
2 u < the halfway of P(a...b)
3 T, + BREADTH-FIRST-SEARCH(u)
4 Maz-B <0
5 if [F(u)| > 1
6 then for each z € F(u)
7 do BREADTH-FIRST-SEARCH(z)
8 if Maz-B < ecc(z)
9 then Maz-B < ecc(z)
10 if Maz-B =2 -ecc(u) — 1
11 then return 2 - ecc(u) — 1
12 elseif Maz-B < 2-ecc(u) —1
13 then return 2 - ecc(u) — 2
14 else return diam(7),)

11



Though FRINGE-ALGORITHM has no theoretical guarantee to compute the ex-
actly diameter, it reports very good estimates in practice. According to results of
the experiments reported, it computes tight upper bounds which match the lower

bounds in substantial cases.

12



Chapter 3

Clique Distance and a

Straightforward-Adgorithm

In this chapter the precise’ definition fis presernted. Currently our problem is re-

| —

stricted to an undirected+and unweight."é_pd%'g—raph, where any two given cliques are

i
non-overlapped. - >

3.1 Problem Definition

An instance of the clique distance problem is comprised of an undirected, unweighted
graph G and a set C = {C, (s, ... C,} collecting the given cliques. In addition, the
total number of given cliques is r» = |C|. For each clique in C, there are at least 3
nodes in it. Two degenerated cases are filtered out by the restriction. The first one
is the single isolated nodes and the another is the subgraphs with only two nodes
and one edge. We assume that every clique in C has no common node with any
others, i.e. they are all non-overlapped. Without loss of generality take two cliques
Ci ={u1, us, ... us} and Cj = {vy,v9,...v:}. Let the clique distance cd defined as:

cd(C;,Cj) =  min  d(ug, vp)

uGECi,vbGCj

13



d a l e C;
® Co

r& ® Cs

Figure 3.1: An Example of the Clique Distance Problem

and we call the shortest path between v, and v, as a clique shortest path. Conse-
quently, the clique diameter of G is defined as the maximum length among all of

the clique shortest paths on G.

Figure illustrates an instance of clique distance problem. In the figure every

clique is depicted in its own type of nodes: 'There are three cliques in the graph,

= {a,b,c,d}, Cy = {f,g,h} andCs = {j, K" Thus we have cd(C, Cs) equals

to (b, 9), and cd(Cy, C3) equals to PTrsg, 5). A c‘hque shortest path may include any

edges from the input graph except phojs_bl l;)hg to the starting or ending cliques.

For example, cd(Cy, C3) = P(b, g,jz 0 leth}} includes the edge (g, h) from clique
s | l

C.
j L

3.2 A Straightforward Algorithm

Indeed, we intend to compute the shortest paths between some vertex v and v where
the two located in two distinct, non-overlapping cliques. We may use breadth-first-
search traversals to compute the shortest paths since we are restricted on unweighted

graphs.

Our algorithm COMPUTE-CLIQUE-DISTANCE solves this problem by utilizing
the BREADTH-FIRST-SEARCH algorithm. The details are presented in Algorithm
.1l We are going to explain the data structures in our algorithm. The input graph
is stored in the form of adjacent lists. The mapping from V' (G) to C is stored in the
array CLIQUE. In other words, for each node v, CLIQUE [v] is refereed to the clique

14



containing v, or return NIL if v does not belong to any clique. Another variable

X ={vjv e C; C;€C} is aset consists of every node covered by the cliques in C.

Algorithm 3.1 CoMPUTE-CLIQUE-DISTANCE

CoMPUTE-CLIQUE-DISTANCE(G, C)

> Input the graph G and the given cliques list C.
> Output the clique distances matrix CD.

1 r«|C|, n<+ |V(G)
2 Initialize CD as a r X r matrix with each element has the value oo
3 Initialize D as n X n matrix with each element has the value co
4 Initialize JT as n X n matrix with each element has the value NIL
5 for each v in X
6 do BREADTH-FIRST-SEARCH(G, u, X, D, II)
7 for each C; in C
8 do for each C; in C
9 doifi=j
10 then CD[i,g]«— 0.7
11 else for u'c C; - <
12 do for v € Cj::"‘
13 _if D[y, 0] <NRfi, ]
14 _\ then (CD[i, )+ Dlu,v]
15 e
I

return CD [ |

T

Now we are going to prgye t}ier corréc_ftnes:s Elof thesiev‘algorithms. In the proce-
dure COMPUTE—CLIQUE—DiéT-AN;(;EE, it initiali%és-.;‘phe global data structures. The
initialization takes at worst O(|X ) £:O(n) of timei"Then we perform BREADTH-
FIRST-SEARCH starting from every vertex in X. After the algorithm terminated we
have obtained the all-pairs shortest path for nodes in X. The algorithm finishes in
the time of O(| X |(n+m)). However, the size of X could be n. The time complexity

of Algorithm [3.1]is at worst O(n? +nm) and the space complexity is at worst O(n?).

After computing the clique distances we may find the clique distance by simply
checking every element in D. This can be done in the O(]X|?) time. If the input
graph is a complete graph K,,, the size of set X equals to n and we may need O(n?)
time to check all of elements. So now we have an algorithm runs in O(n? + nm)

time and O(n?) space.
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3.3 Some Improvements

In this section some additional lemmas are presented. We also demonstrate an
approximate algorithm computing approximate clique distance in an additive error
of one.

Fact 3.1 ([7]). A tree which is the result of a breadth-first search traversal rooted at
a, 18 a shortest path tree rooted at a.

Lemma 3.1. On an unweighted graph, assume two nodes u and v are located in the

same clique. Take another arbitrary node z, then |d(u,z) — d(v,z)| < 1.

Proof. Assume d(u,x) > d(v, z) with noloss of generality. Assume
)= d(0Tm>2

this implies 3 ¥ e !I,-i
d(th ’5’: ) ;+2
l I

If we take the path P(uyv, 2. %) IL which its length is 1 + d(v, x), then we have
i i

d(u,z) =d(v,z) + 1, a contra,dictlon . ) O

Lemma 3.2. On an undirected, unweighted graph, every shortest path starting from

a node in any clique C includes at most one edge in C'.

Proof. Assume there is a shortest path P contains a subpath Q = p(uy,us, ..., u,)
where uq,us, . .., u, are the vertices in clique C. We may reduce the length of P by
replacing the subpath Q into one edge (uy,u,). Since P is not a shortest path, our

assumption leads to a contradiction. Thus we are done. O

Lemma 3.3. Let T be the tree returned by BREADTH-FIRST-SEARCH starting by
u € C; and let w be the first node reached by the algorithm in C;. Let dr(u,w)

denote the length of the path joining u and w on T. Then we have:

Cd(Ci, CJ) < dT(u, w) < Cd(CZ‘, C]) +1
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Proof. By definition the case such that ¢d(C;, C;) > dr(u, w) is impossible. If the
case such that c¢d(C;, C;) = dr(u, w) or cd(C;, C;) = dr(u, w) + 1 are encountered,
then we are done. This means either the node u or at least one of nodes v € C;\ {u}

is the starting points of the clique shortest path joining C; and C}.

For every node x € Cj, by Lemma 3.1} d(u, ) — ¢d(C;, C;) > 2 is true only if

x # w so dr(u,w) — cd(C;, C;) > 1 is impossible. O

Lemma 3.4. Let T denote the breadth-first-tree returned by BREADTH-FIRST-
SEARCH starting by a node u € C; and reaching w at clique C;. If the shortest path

joining v and w passes though the node v € C; \ {u}, then dr(v,w) = cd(C;, C)).

Proof. Clearly d(u,w) is not_equal to. d(v,w) since.u # v. The length of every

path joining u and w can.not s'mallerrth'an 1 qIL cd(Q;, C})sotherwise the BREADTH-

FIRST-SEARCH picked athher rotites as the;s,_‘gorteét path Since any subpath of a

shortest path is also a shortest path ’vv;%a{éﬁflﬁv, w) L éd(Ci, C;). O
<= |

Summarize the above-lemmas l de\‘E[ée Alg%)rithm and 3.3}, which computes

the approximate cliques distances, iAlgorithm:l W:hich is the procedures BF'S-

REVISED, is slightly modified from the-classic BRE‘;EDTH—FIRST—SEARCH algorithm.

We describe the variables in BFS-REVISED. The variable color[u| maintains
the color of u to indicate whether the vertex w is discovered. If color[u] = WHITE,
this means none of children are reached via the operation. If color[u] = GRAY,
this means wu itself is reached but some of its children may remain uncovered. If
color[u] = BLACK means the u and its children are discovered so we color u as
BLACK. A distance matrix D is constructed to store the distances. In addition,
the value of D[u,v] is the distance from u to v. The variable [T[u,v| contains the
parent of v during the execution of the traversal starting from u. The number of
cliques in the list C is » = |C|. A clique distance matrix CD, which is a r x r
matrix, is constructed to store the clique distance estimates during the execution of

the algorithm.
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Algorithm 3.2 BFS-REVISED

BFS-REVISED(G, s, X, D, I1,C, CD)

CO 1 O Ul W N =

—_ = =
W N = OO

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

> G: The graph that operation perform on.
> s: The node whole operation starting with.
> C: The given clique list.
> D: The distance matrix.
> [I: The predecessor matrix.
> CD: The clique distances matrix.
> BRANCH: Recording by which neighbor s reached the newly discovered node.
Initialize BRANCH as an array with the default values NIL
Cs + CLIQUE(s]
for cach vertex u € V(G) — s
do color[u] + WHITE
D[s,u] < oo
I[s,u] < NIL
coloru] < GRAY.
Dls,u] <0 ol
I[s, u] + NIL M= o'l
BRANCH|s] « s | T2 |
ENQUEUE(Q,s) | o= ||
while Q # 0 o
do u + DEQUEUE(Q)::
for each w € Adj‘[u"] 7
do if color[w]) = WHITE
then color|w] = GRAY
D[s,w] < D[s,u] + 1
II[s,w] < u
if we C,
then BRANCH[w] < w
else BRANCH w] <— BRANCH [u]
if we X
then C; < CLIQUE[w]
v < BRANCH|w]
if v # s
then CDJs, j] < min{CD]s, j|,
else CDJs,j] < min{CD]s, j],
ENQUEUE(Q, w)
color[u] <~ BLACK

Dlv,wl}
Dls,w]}
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Algorithm 3.3 CLIQUE-DISTANCE-APPROX

CLIQUE-DISTANCE-PRUNING(G, C)

> Input the graph G and the given cliques list C.
> Output CD storing the approximate clique distances.
r<I[Cl, n« V(G|
Initialize C'D as a r x r matrix with each element has the value oo
Initialize D as n X n matrix with each element has the value oo
Initialize JT as n X n matrix with each element has the value NIL
for C; e C

do Pick an arbitrary node y from V(C;)

BFS-REVISED(G,y, X, D, II,C, CD)

return CD

0 3 O U= Wi

Figure 3.2: cd(C, Cg).z..ié_li_b,j_.)?drawing in thick lines)

\:

) .
| -

The algorithm BFS—REVISE]'}) mairﬁtéins I,a% néwly.added variable BRANCH.
Consider a BFS tree T Com_p_uted! by qu:TS—RiE’;./ISED‘ Every node except s must
have a parent node on T. If.the {‘opierzﬁmtion BFISh-REVISED starts from a node s in
the clique Cj, then all of neighbor of}s in therclique C are at the level one of the
tree T (The node s is at level zero.) For every node w, the variable BRANCH [w]
refers the ancestor at the level one if s reaches w via a neighbor also in the clique

Cs, or refers to s if s reaches w without passing through any neighbor belonging to

Cs.

If the variable v = BRANCH [w] # s, we may reached a clique from s and
the shortest path passes through one of neighbor of s in the clique C;. By Lemma
B.4] the distance D[v,w] is the clique distance. Otherwise we compare the distance

D[s,w] with the currently known clique distances estimation.

Note that Algorithm computes only approximate results. To see how it

failed to compute exact results, we provide the graphs showing in Figure and
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Figure 3.3: The Failed BFS-Tree Rooted at a

Figure as examples. The correct clique distance c¢d(C1, C3), which is showing
in Figure 3.2 is d(b, j) = 4. If the BFS-REVISED starting from node a expands
the children of e prior the expansion of b, BFS-REVISED(a) reaches C5 by node j
without taking the correct clique shortest path. In this particular case Algorithm
return an approximate estimate with an additive error of one. Because Algorithm
expands nodes in arbitraryfordéf, .’-che f:;!iiéd cases are not preventable. So we
conclude that Algorithm compuﬁtei the fip‘__lﬁ)rox-i.mat_e:clique distances with the
| \ i)

additive error at most one. Va! ™/ | .
|

T
Now we prove the correctness|0 our}'ﬁlg)r thms. Algorlthm [3.3]is just a trivial
loop. Algorithm [3.2]is a modlﬁed \Je sion of BRHADTH—FIRST SEARCH. It traverses
every node and computes the Shortest path from ‘starting node to every node in
graph G. If a newly found chque is reached via d neighbor in the same clique of

starting node, by Lemma and Lemma[3.4] the correct clique distance is reported.

Otherwise, we can not filter out the error cases.

The procedure BFS-REVISED runs in the time of O(m + n). The time com-
plexity of Algorithm is O(r(m 4+ n)) since it perform at most r times of BFS-
REVISED, where 7 is the number of cliques in C. Our algorithm performs better
than the straightforward algorithm if the number of r is much smaller than the

node number n.
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Chapter 4

On Transformation to All-Pairs

Shortest Paths.Problem

In this chapter a technique which trahsforms ény instance of clique distances prob-
lem into an instance of APSP problem is%!ﬁdrted. Transforming the clique distances
problem into APSP problem is berie;}‘iciaﬂg_ipce we may utilize the algorithms estab-
lished for APSP problem to:golve tih_é clique dis;ca,nce problem. However, we can not

solve APSP problem by solving ciique distange préblem. By solving clique distance

problem it is possible to obtain only a partial solution of APSP problem.

4.1 A Failed Attempt

Before introducing the final version construction, we demonstrate a failed attempt.
Definition 4.1 (Pitfall roof node). For each clique C; = {uy, us, ug, ..., up_1,ug}
in C, a newly created roof node v,, is inserted into V(G). A roof nodes v,, are only
adjacent to those nodes belong to the corresponding clique C; and is disconnected
to the rest of nodes (also disconnected from any other roof nodes). Then we put

edges (v.,,u) for u € C; where these edges are weighted in zero.

However, this design has a pitfall. Assume v, is a roof node of clique Cj;.
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u U9

(a) Before Insertion (b) After Insertion

Figure 4.1: A Counterexample

There must be a path P(x,v,,,y) with its length smaller than any edges belonging
to C;. Then the shortest path found by APSP algorithms is the path including
P(x,v.,,y). The newly found shortest path passes through the roof node v., and is
not a possible path on the origfmrallyr 'gfaph. ;Therefqre, the transformation can not

fulfill our objectives.

4.2 Correction | ; m |l |
| | Voo
S\ |/ %
So we must give weighed 0. the ‘edgessadjacent-tosthe roof nodes.
Definition 4.2 (Roof node). The comstritction steps Temain unchanged. Instead of
creating edges weighted in zero, a heavier edge weighted is given. We put edges
(ve;,uj) for w; € C;. Those edges are weighted in (wpe, + 1) where wpe, =

maX.cpc) w(e). The set R = {v,|C; € C} contains all roof nodes on G.

Actually we may adopt smaller edge weights. Given a clique C; and the cor-
responding roof nodes v,,. Let the maximum edge weight among the edges in C; is
we,. Then the edges weight for those edges adjacent to the roof nodes are at least
# since this is enough to prevent roof nodes from being included by any shortest
paths.

Lemma 4.1. For all of pairs of cligue C; and C; and the corresponding roof nodes

Ve,

T

and v.;, we have the length d(v,, Ve;) =2 X (Wmaee+1) as the desired clique distance

Cd(Ci, C]) .
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Proof. By the definition the roof nodes are constructed and inserted into G.
After all the roof nodes are created, these operations result in an newly created
graph G’. Because the negative edge weight is not allowed, it is possible to compute

the all-pairs shortest path on G’ by any algorithms solving APSP problem.

Assume the shortest path between v., and v., as P(v,,s,...,t,v.,), and the
node s and t belong to C; and Cj. It must be the cases because any roof node is
connected to every node in the corresponding clique only and is isolated from the
rest of nodes in originally graph G. So the edge (v.,, s) must be taken. The edge

(t,ve,) is also taken for the same reason.

We argue that the path P(s...t)is'the elique shortest path between C; and C;
for the reason that the path P(v.,, s, .1, UCJ) is the'shortest path between v, and
v¢;- If the path between § and ¢ ‘azé not the one With‘£he ;pinimal length, the shortest
path algorithm must find Someé diffefi%t._nod@ §" % s or z;’ # t where d(s',t") < d(s, ).
This contradicts our assumption. ﬁm@w Flcbst of ((ve, s) and (t,v.;) are both
Wmae + 1 clearly the path-length 0} ':d(@CJ) ir% d(We, &) =2 X (Winae + 1). O

ais |

| | -
i | i1 .

After doing the transfofrriation,t we may cérhp_ute the clique distances by com-
puting the all-pairs shortest path amb}lg all of theg@oof nodes. Algorithm illus-

trates the whole algorithm.

Algorithm 4.1 CLIQUE-DISTANCES-ROOF-NODES

CLIQUE-DISTANCES-ROOF-NODES(G, C)

> Input the graph G and given cliques list C
> Output the matrix CD storing clique distances

1 r<«|C|

2 Initialize CD as a r X r matrix

3 R+ ¢

4 for each C; € C

5 do Insert a roof node v, into V(G)

6 Insert edge (v.,,u) for every node u € C;

7 R+ RU{v.,}

8 for each v, in R

9 do Compute the shortest path tree rooted at v,
10 CD[i, j] < d(ve;,v.;) for any node v., € R
11 return CD
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The Lemma offers the possibility to compute clique distance by any known
algorithms solving APSP problem. Even though the nodes in the graph increased
after we inserted those roof nodes, the insertion expands the set of nodes V(G)
slightly because we put a limitation on the smallest size of cliques, which is three
of nodes. Let n denote the number of nodes in original graph G. We conclude that
|R| = o(n) and the time complexity are still dominated by n. So the overall time

complexity remains.

Note that the input graph is not restricted to unweighted graphs; Lemmald.1] are
safe to extend to weighted graphs. We may use the identical procedure to construct

the roof nodes. The design of roof nodeLfilso handle the cases when some of given

2L "
cliques in C are overlapped. B1y ‘éeﬁmdsfdms t_‘h%éb—ehqtie‘_.ﬂ_lstances of overlapped cliques
I ._—1
i, e

shrink down to zero 1mn&$ilat)gf
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Chapter 5

Concluding Remarks

The clique diameter problem and clique distance problem provide insights about
the distances of interconnection between every palr’*of communities. Even we solve
an instance of clique distance problem we could not, selve any instance of APSP

problem by the solution we obtamed fr@qhque distance problem.

LW |
i |
Starting from a stralghtforwe? algeﬂthm our algorlthm which runs in the
time of O(r(n+m)) approx1mates Cllque d1star1ce n an ‘additive error of one. If the
number of cliques r is much smaller than the number of node n then our approximate

algorithm runs faster than the straightferward algorithm.

We solve any instance of clique distance problem by transforming it into an
instance of APSP problem. However, it is not possible to solve an APSP problem
by solving a clique distance problem. After adding the roof nodes into inputed
graph, we may reconstruct the clique distances from the shortest path joining the
corresponding roof nodes. Any improvements on the APSP problem immediately

improve on our problems.

We state the future works below. As we stated in the Chapter [I] there are
different models of community structures. The first possible future work is to devise
the algorithm for different model of community structures. For example, we may use

the k-clique or k-club models. Since k-clique and k-club are more practical models
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comparing with cliques, the computation techniques based on them could capture

much more precise community distances.

The second lane of future works is evaluating our algorithm on the real world
datasets. Our algorithms are based on the BREADTH-FIRST-SEARCH which has a
good external-memory implementation [24] so our methods could have good perfor-
mance in practice. In the future we may establish the experiments to evaluate and

improve our algorithm.
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