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摘要

在第三節中, 我們給了兩個比較基本的零點定理的証明。 在第四節中, 我們討論了不同

形式的零點定理的相互關係, 並且我們也給了一些不同形式的零點定理的不同的証明。

Alon 是組合的零點定理的主創者, 這個定理可以可以用來證明另一個定理 (定理13)並

且在組合學和數輪上有很多的應用。 在本篇論文中, 我們用另外一個觀點來證明此定理

並將它推廣 (定理12)。 在例子 14和例子 15 中, 我們也給了一些應用。

關鍵字: 零點定理, Gröbner 基底, 組合的零點定理, 零點定理的証明, 不同形式的

零點定理
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Abstract

In Section 4 we give two elementary proofs of Nullstellensatz. The first is
due to Enrique Arrondo which is more brief. The second is due to Terrance
Tao which is constructive. In Section 5 we will discuss different proofs of
above theorems. The first is above three forms which are equivalent. The
second we give two different proofs of strong form. The third we give four
different proofs of field form.

Alon is the principal founder of the Combinatorial Nullstellensatz. This
theorem can prove another theorem (see Theorem 13) which has many ap-
plications in combinatorics and number theory. In this paper we will give
another view point to this proof and generalize this theorem (see Theorem
12). We also give some applications in Example 14 and Example 15.

Key words: Nullstellensatz, Combinatorial Nullstellensatz, Gröbner bases,
different forms of Nullstellensatz, proofs of Nullstellensatz
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1 Introduction

Gauss’ fundamental theorem of algebra establish the basic link between algebra

and geometry: It says that a polynomial in one variable over C, an algebra

object, is determined up to a scalar factor by the set of its roots, a geometry.

Hilbert’s Nullstellensatz (German: ”Theorem of Zeros”) extends this link to cer-

tain ideals of polynomial in many variables. Given an ideal I of a polynomial ring

F [X1, · · · , Xn], we define a corresponding algebra set of F n to be

V (I) = {(a1, · · · , an) ∈ F n|f(a1, · · · , an) = 0, ∀f ∈ I}.

Given a subset V of F n, we also define a corresponding ideal of a polynomial ring

to be

I(V ) = {f ∈ F [X1, · · · , Xn]|f(a) = 0, ∀a ∈ V }.

Now we state the Hilbert’s Nullstellensatz as follows:

Theorem 1. (Strong form)Let L be an algebraically closed field. The assignment

V → I(V ) defines a bijection of the set of all L varieties V ⊂ An(L) onto the set of

all ideals I of L[X1, · · · , Xn] with Rad(I) = I. For any ideal I of L[X1, · · · , Xn],

Rad(I) = I(V (I)).

Nullstellensatz has another three different forms stated as follows:

Theorem 2. (Weak form I )[6][7] Let L be an algebraically closed field. For an

ideal I of L[X1, · · · , Xn]. If I �= L[X1, · · · , Xn], then V (I) is not empty.

Theorem 3. (Field form) If A/F is an extension of field and A arises from F

through ring adjunction of finite many elements, then A/F is an algebraic exten-

sion.

Theorem 4. (Weak form II ) Let L be an algebraically closed field. For any

maximal ideal M of L[X1, · · · , Xn] there exist a1, · · · , an in L such that

M = (X1 − a1, · · · , Xn − an).
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In Section 4 we give two elementary proofs of Nullstellensatz. The first is due to

Enrique Arrondo which is more brief. The second is due to Terrance Tao which is

constructive. In Section 5 we will discuss different proofs of above theorems. The

first is above three forms which are equivalent. The second we give two different

proofs of strong form. The third we give four different proofs of field form.

Alon is the principal founder of the Combinatorial Nullstellensatz which has

many applications in combinatorics and number theory. The theorem stated as

follows:

Theorem 5. [1] Let F be an arbitrary field, and let f be a polynomial in F [X1, · · · , Xn].

Let S1, · · · , Sn be nonempty subset of F and let S = S1 × · · · × Sn. we de-

fine gi =
∏

s∈Si

(Xi − s). If f(s) = 0 for all s in S, then there are h1, · · · , hn in

F [X1, · · · , Xn] satisfing deg(hi) ≤ deg(f) − deg(gi) such that

f =

n∑

i=1

higi.

As a consequence of the above one can prove another theorem (see Corollary

13) which has many applications. In this paper we will give another view point

to this proof and generalize this theorem (see Theorem 12). We also give some

applications in Example 14 and Example 15.

2 Preliminaries on Gröbner bases

In this section we introduce some concepts about Gröbner bases, and all the ma-

terial, except Lemma 10 are referred from [4 ,chapter 2].

Definition 6. Let F be a field and R = F [x1, · · · , Xn] be the polynomial ring over

F .

(1) A monomial order > in R is a totally order on monomial ideal in R satisfies

the following properties:

(i) If Xα > Xβ, then Xα+γ > Xβ+γ for all γ in Zn
≥0

(ii) > is a well-ordering on monomials.

2



(2) A monomial order >gr is called graded if it satisfies

Xα >gr Xβ ⇔ |α| > |β| or |α| = |β| and α > β

for some monomial order >.

(3) The leading monomial of f is denoted by LM(f), note that the coefficient

of LM(f) may not be 1.

(4) We note that R = k[X1, · · · , Xn] can be regard as a graded ring graded by

total degree, so for any f in R, f = f0 + f1 + · · ·+ fn, deg fi = i and fn �= 0. We

said that the leading term, LT (f), of f is fn. Note that fn may not be a monomial.

We introduce some notions of Grönber bases.

Definition 7. (1) Fix a monomial order. A finite subset G = {g1, · · · , gs} of

an ideal I is called a Gröbner basis if 〈LM(g1), · · · , LM(gs)〉 = 〈LM(I)〉, where

LM(I) means the set of leading monomial of element of I.

(2) Fix a monomial order and let G = {g1, · · · , gs} be a subset of k[X1, · · · , Xn].

Given f in k[X1, · · · , Xn], we say that f reduces to zero modulo G, written

f →G 0,

if f can be written in the form

f = a1g1 + · · ·asgs,

such that whenever aigi �= 0, we have

multideg (f) ≥ multideg (aigi).

There is a well-known criterion for deciding whether a generating set of deal is

Gröbner basis, and the following is the criterion:

Proposition 8. A basis G = {g1, · · · , gs} for an ideal I is a Gröbner basis if and

only if S(gi, gi) →G 0 for all i �= j.

Lemma 9. Let G be a finite subset of F [X1, · · · , Xn], suppose that we have f, g in

G such that the leading monomial of f and g are relatively prime. Then S(f, g) →G

0.
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Proof. Write f = LM(f) + p, g = LM(g) + q. Since LCM(LM(f), LM(g)) =

LM(f) · LM(g), we have

S(f, g) = LM(g) · f − LM(f) · g

= (g − q) · f − (f − p) · g

= g · f − q · f − f · g + p · g

= p · g − q · f.

We claim that

multideg(S(f, g)) = max(multideg(p · g), multideg(q · f)).

Assume the claim holds, then by Definition 7.(2) S(f, g) →G 0. To prove the

claim, we show that the leading monomial of p · g and q · f are distinct . For if the

leading monomial are the same, we would have

LM(p) · LM(g) = LM(f) · LM(q).

Since LM(g) and LM(f) are relative prime, LM(g) divide LM(q) which is im-

possible because g = LM(g) + q. Hence leading monomial of p · g and q · f can

not be canceled.

Next we generalize the above lemma as follows:

Lemma 10. Let G be a finite subset of k[X1, · · · , Xn] and for f, g in G write

f = h · p and g = h · q, where h = LCM(f, g). Suppose the leading monomial of p

and q are relatively prime. Then S(f, g) →G 0.
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Proof. Write p = LM(p) + p1 and q = LM(q) + q1, then

S(f, g) = LM(q) · f − LM(p) · g

= LM(q) · p · h − LM(p) · q · h

= h(LM(q) · p − LM(p) · q)

= h(LM(q) · (LM(p) + p1) − LM(p) · (LM(q) + q1))

= h{LM(q) · LM(p) + LM(q) · p1 − LM(p) · LM(q) + LM(p) · q1}

= h(LM(q) · p1 − LM(p) · q1)

= h(LM(q) · p1 − LM(p) · q1 + p1 · q1 − p1 · q1)

= h((LM(q) + q1) · p1 − (LM(p) + p1) · q1)

= h · q · p1 − h · p · q1

= g · p1 − f · q1.

We claim that

multideg(S(f, g)) = max(multideg(g · p1), multideg(f · q1)).

Assume the claim holds, then by Definition 7.(2) S(f, g) →G 0. To prove the

claim, we show that the leading monomial of g · p1 and f · q1 are distinct. For if

the leading monomial are the same, we would have

LM(q) · LM(p1) = LM(p) · LM(q1).

Since LM(p) and LM(q) are relative prime, LM(q) divide LM(q1) which is im-

possible because q = LM(q) + q1. Hence the leading monomial of g · p1 and f · q1

cannot cancel.

Lemma 11. Fix a monomial order > on R, and let F = (f1, · · · , fs) be an ordered

s−tuple of polynomials in F [X1, · · · , Xn]. Then every f in k[X1, · · · , Xn] can be

written as

f = a1f1 + · · ·asfs + r.
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where ai, r in F [X1, · · · , Xn], and either r = 0 or all monomials of r are not

divided by any of LM(f1), · · · , LM(fs). Furthermore, if aifi �= 0, then we have

multideg (f) ≥ multideg (aifi).

3 Main theorem

Recall that for a polynomial f , the leading term of f , LT (f), is in the sense of

definition 6.(4).

Theorem 12. Given a polynomial f in F [X1, · · · , Xn], where F is an arbitrary

field, and a variety V in F nwith finite cardinality. Let I(V ) = 〈g1, · · · , gs〉, where

gi is in F [X1, · · · , Xn] and {g1, · · · , gs} is a Gröbner basis under some graded

monomial order. Assume LT (gi) is a monomial for all i. If LT (f) contains a

monomial which is not divisible by LT (gi) for all i, then f is not lie in I(V ).

Proof. Suppose f is in I(V ), then f = h1g1+· · ·+hsgs where hi is in F [X1, · · · , Xn]

and by Lemma 11 we have

multideg (f) ≥ multideg (higi).

This implies deg f ≥ deg higi for all i. Let hi = hi,0 + hi,1 + · · · + hi,im and

gi = gi,0 + gi,1 + · · · + gi,it, where deg gi,k = k and deg hi,j = j for i = 1, 2, · · · , s.

We denote the monomial of LT (f) which is not divided by LT (gi) for all i by P .

Then P occur in higi for some i. Observing that if P occur in hi,ikgi,ij , for some

ij < it. Then deg P < deg(hi,imgi,it) ≤ deg f . This contradicts to that P is in

LT (f). Hence P occur in hi,ikgi,im, then P is divided by LT (gi). this contradicts

to that P is not divided by LT (gj) for all j. Therefore f is not in I(V ).

As a corollary we proof the theorem due to Alon.

Corollary 13. [1] Let F be an arbitrary field, and let S1, · · · , Sn be nonempty

subset of F . Let f be a polynomial in F [X1, · · · , Xn]. Suppose there exists a

monomial in the LT (f) say
n∏

i=1

X ti
i such that |Si| > ti for each i, then there exists

s in V = S1 × · · · × Sn such that f(s) �= 0.
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Proof. Suppose f(s) = 0 for all s in S, then f is in I(V ). For i = 1, · · · , n let

gi :=
∏

s∈Si

(Xi − s).

By Proposition 8 and Lemma 9 {g1, · · · , gn} is a Gröbner basis. Since |Si| are

grater than ti for all i, Theorem 12 implies that f is not in I(V ), contradicts to

that f is in I(V ). Therefore there exists s in V such that f(s) �= 0.

Alon just consider the case that V is a ”rectangle”. We will generalize this

result to the case, which V is not a rectangle, but eliminate a subrectangle from a

rectangle.

Example 14. Let F be an arbitrary field, S1, · · · , Sn be nonempty subset of F ,

U1, · · · , Un are subsets of S1, · · · , Sn respectively. Consider a variety V = S1 ×
· · · × Sn − U1 × · · · × Un. Let f be a polynomial in F [X1, · · · , Xn]. Suppose there

exists a monomial in the LT (f) say
n∏

i=1

X ti
i such that |Si| > ti for each i and there

exists i such that |Si| − |Ui| > ti, then there exists s in S such that F (s) �= 0.

Proof. Let

I(V ) = 〈Πs∈S1(X1 − s), Πs∈S2(X2 − s), · · · , Πs∈Sn(Xn − s), Πn
i=1Πs∈Si−Ui

(Xi − s)〉.

Using Proposition 8, Lemma 9 and Lemma 10 this generating set is a Gröbner

basis. Since |Si| are greater than ti for each i and there exists i such that |Si|−|Ui|
is greater ti,

n∏
i=1

X ti
i is not divided by all of the leading terms of generators. Then

Theorem 12 implies f is not lies in I(V ). In other words, there exists s in V such

that f(s) �= 0.

Furthermore, we can also apply the theorem to the case of S being a ”triangu-

lar”.

Example 15. Let F be an arbitrary field, S = {a1, · · · , an} be a nonempty subset

of F , and S1 ⊇ S2 ⊇ · · · ⊇ Sn also be nonempty subsets of F . Let f be a polynomial

in F [X1, X2] and let V = {(ai, b)|ai ∈ S, b ∈ Si}. Suppose there exists a monomial

in the LT (f), say X t1Y t2 such that t1 < n , t2 < |St1+1| for all i, then there exist

(ai, b) in V such that f(ai, b) �= 0.
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Proof. Suppose f(ai, b) = 0 for all (ai, b) in V . Let

I(V ) = 〈
∏

s∈S1

(y − s), (x − a1)
∏

s∈S2

(y − s), · · · ,
n−1∏

i=1

(x − ai)
∏

s∈Sn

(y − s),
n∏

i=1

(x − ai).〉

Using Proposition 8, Lemma 9 and Lemma 10 this generating set is a Gröbner

basis. Since t1 < |S| , t2 < |St1+1| for all i, X t1Y t2 is not divided by all of the

leading terms of generators. Then Theorem 12 implies f is not lies in I(V ). In

other words, there exists s in V such that f(s) �= 0.

For example let S = {1, 2, 3, 4}, S1 = {1, 2, 3, 4} ⊃ S2 = {1, 2} ⊃ S3 = {1} =

S4 and let f(X, Y ) = X3−2X2Y +Y 3. Clearly f satisfies the condition of Example

15 and we have f(1, 2) �= 0.

4 Elementary proofs of Nullstellensatz

The first proof of weak form of Nullstellensatz which is given by Arrondo.

Theorem 16. Let I be a proper ideal of L[X1, · · · , Xn]. If L is an algebraically

closed field, then V (I) is nonempty.

Proof. [2] If I = 0, then nothing to prove. So we may assume I �= 0. We prove the

theorem by induction on n. For the case n = 1, any non-zero ideal I of L[X] is

generated by a non-constant polynomial. Because L is a algebraically closed field,

every generator of I has some root a in L. Therefore f(a) = 0 for all f in I.

We assume n > 1 and the theorem proved for the case n − 1. We claim that

I contains a polynomial g which is monic in the variable Xn. To prove claim,

given any polynomial f with degree d in I. Let fd be the homogeneous com-

ponent of f of degree d, then the coefficient of Xd
n in f(X1 + λ1Xn, · · · , Xn−1 +

λn−1Xn, Xn) is fd(λ1, · · · , λn−1, 1). Since fd(X1, · · · , Xn−1, 1) is a non-zero poly-

nomial in L[X1, · · · , Xn−1] and L is infinite, there is a point (λ1, · · · , λn−1) in Ln−1

such that fd(λ1, · · · , λn−1, 1) is non-zero. This proves the claim.

By claim after change of coordinates and scaling, we may assume that I con-

tains a polynomial g which is monic in the variable Xn. Fixing such a polynomial
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g, we consider the ideal I ′ = {f ∈ I|f ∈ L[X1, · · · , Xn−1]} of L[X1, · · · , Xn−1].

Since 1 is not in I, I ′ is a proper ideal. Therefore, by induction hypothesis there is

a point(a1, · · · , an−1) such that h(a1, · · · , an−1) for all h in I ′. We now claim that

the set J = {f(a1, · · · , an−1, Xn)|f ∈ I} is a proper ideal of L[Xn].

Now we show that J is an ideal of L[Xn]. Consider a homomorphism map

ϕ : L[X1, · · · , Xn] → L[Xn] defined by ϕf(X1, · · · , Xn) = f(a1, · · · , an−1, Xn).

For any h in L[Xn] and any f in I, ϕ−1(hf(a1, · · · , an−1, Xn)) in I. Hence

hf(a1, · · · , an−1, Xn) is in J . There J is an ideal of I

Now we show that J is a proper ideal of L[Xn]. Suppose to the contrary

that there exists f in I such that f(a1, · · · , an−1, Xn) = 1. Thus we can write

f = f0 + f1Xn + · · · + fdX
d
n, with all the fi in L[X1, · · · , Xn−1],

f1(a1, · · · , an−1) = · · · = fd(a1, · · · , an−1) = 0, and f0(a1, · · · , an−1) = 1. (*)

On the other hand, we can express the monic polynomial g in the form g =

g0 + g1Xn + · · ·+ ge−1X
e−1
n + Xe

n with gj in L[X1, · · · , Xn−1] for j = 1, · · · , e − 1.

Let R be the resultant of f and g with respect to the variable Xn. In other

words, R is the polynomial in L[X1, · · · , Xn−1] given by the determinant

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f0 f1 · · · fd 0 0 0 0

0 f0 · · · fd−1 0 0 · · · 0

. . .

0 · · · 0 f0 f1 · · · fd−1 fd

g0 g1 · · · ge−1 1 0 · · · 0

0 g0 g1 · · · ge−1 1 · · · 0

. . .

0 · · · 0 g0 g1 · · · ge−1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which has e + d rows. It is then well known that R is a linear combination of

f and g and hence belongs to I. Therefore R is a member of I ′. But direct

inspection of determinant defining the resultant shows that, when we use (*) to

evaluate R at (a1, · · · , an−1), it reduces to the determinant of lower-triangular
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matrix whose entries on its main diagonal are all 1′s. Hence R(a1, · · · , an−1) = 1,

which contradicts the fact that R is in I ′. This proves the claim.

Therefore J is a proper ideal of L[Xn], and since L[Xn] is a principle ideal

domain, J is generated either by polynomial h(Xn) of positive degree or by h = 0.

Since L is algebraically closed field, in the former case h has at least one root an

in L. In either case this means that f(a1, · · · , an−1, an) = 0 for all f in I, which

completes the proof.

The second proof of strong form of Nullstellensatz which is given by Tao.

Theorem 17. Let P1, P2, · · · , Pm, R ∈ L[X1, X2, · · · , Xd] = L[X], where L is an

algebraically closed field. Then the pair (P1, P2, · · · , Pm; R) satisfies exactly one of

the following statements :

(a) There exists x ∈ Ld such that P1(x) = P2(x) = · · · = Pm(x) = 0, R(x) �= 0.

(b) There exists Q1, Q2, · · · , Qm ∈ L[X] such that P1Q1 + · · · + PmQm = Rr

for some non-negative integer r.

Proof. [9] We proved by induction on d.

Step 1.: d = 1

Step 1.1.: Reduce to the case m = 1

Let gcd(P1, · · · .Pm) = D, then there exists U1 · · · , Um ∈ L[X] such that

U1P1 + · · ·+ UmPm = D. (1)

We claim that (P1, · · · , Pm; R) satisfies theorem if and only if (D; R) satisfies the

theorem.

Suppose (P1, · · · , Pm; R) satisfies (a), then there exists x ∈ F such that P1(x) =

P2(x) = · · · = Pm(x) = 0, R(x) �= 0. Hence D(x) = 0, R(x) �= 0 this im-

plies (D; R) satisfies (a). Suppose (P1, · · · , Pm; R) satisfies (b), then there exist

Q1, Q2, · · · , Qm ∈ L[X] such that P1Q1 + · · ·+PmQm = Rr for some non-negative

integer r. Let Pi = Vi · D for all i = 1, · · · , m. So Rr = P1Q1 + · · · + PmQm =

D(V1Q1 + · · ·+VmQm) and hence (D; R) satisfies (b). Conversely, Suppose (D; R)

satisfies (a), then there exists x ∈ L such that D(x) = 0, R(x) �= 0. Since D|Pi,
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Pi(x) = 0, for all i = 1, · · · , m. Then (P1, · · · , Pm; R) satisfies (a). Suppose

(D; R) satisfies (b), then there exists Q ∈ L[X] such that QD = Rr for some

non-negative integer r. From (1) we have (QU1)P1 + · · ·+ (QUm)Pm = QD = Rr.

Then (P1, · · · , Pm; R) satisfies (b) and hence we proved the claim.

Step 1.2.:

So we have effectively reduced to the case m = 1. We will prove that the

pair (D; R) satisfies either (a) or (b) by induction on min{deg D, deg R}. Let

gcd(D, R) = D′, then

D = D′ · S and R = D′ · T for some S, T ∈ L[X].

On the other hand,

D′ = DA + RB for some A, B ∈ L[X].

Then AS + BT = 1. Clearly D(X) = 0; R(X) �= 0 has a solution if and only if

S(X) = 0; R(X) �= 0 has a solution. Suppose D′r = QS for some is non-negative

integer r and Q ∈ L[X]. Then

Rr+1 = T r+1D′r+1 = Q · S · T r+1 · D′ = D · Q′. (2)

Thus we see that if (S; D′) satisfies the theorem, then (D; R) does also.

Now we have deg S ≤ deg D and deg D′ ≤ deg R. Suppose deg S = deg D,

then deg D′ = 0. Since D′ and R are relative prime, there exists x ∈ F such that

D(x) = 0; R(x) �= 0. Thus (D; R) satisfies (a). Suppose deg D′ = deg R, then

D′ = R and hence D = R · S. If for all x in F with D(x) = 0 such that R(x) = 0,

then cD = R for some constant c. Thus (D; R) satisfies (b). Hence there exists

x in F with D(x) = 0 such that R(x) �= 0. Then (D; R) satisfies (a). Therefore

we may assume min{deg D, deg R} < min{deg S, deg D′}. By induction, we can

reduce to min {deg D, deg R} = 0. Suppose D is zero. Since F is a infinity field,

F is an infinity field. Then there exists a in L such that R(a) �= 0 and hence

(D; R) satisfies (a). If D is a non-zero constant, then R
D
· D = r and hence (D; R)

satisfies (b). Suppose D is not a constant. In this case, R is a constant. If R = 0,
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then 0 · D = 0. Thus (D; R) satisfies (b). If R is a non-zero constant. Since F

is a algebraically closed field, D has at least one root. Then (D; R) satisfies (a).

Hence we proved the theorem for the case d = 1.

Step 2.: d ≥ 2

Assume the theorem has been proved for d − 1. Consider Pi(X), R(X) ∈
L[X][Xd], where X = (X1, · · · , Xd−1). For any y ∈ Ld−1, Pi(y, Xd), R(y, Xd) ∈
L[Xd]. Suppose the equations

P1(y, Xd) = · · · = Pm(y, Xd) = 0, R(y, Xd) �= 0

have no common solutions. By the case for d = 1 there exists Q1, · · · , Qm ∈ F [Xd]

such that

P1(y, Xd)Q1,y(Xd) + · · ·+ Pm(y, Xd)Qm,y(Xd) = R(y, Xd)
ry (3)

for some ry ≥ 0. Note that Qi,y and ry are depend on y.

Observing (2) in our argument for the case d = 1, we have ry is uniform

bounded in y (which has upper bounded max{degxd
D, degXd

R}). So we can

always multiply both side of (3) by suitable power of Ry(Xd), and make r = ry is

independent of y. Thus we get a equation

P1(y, Xd)Q1,y(Xd) + · · ·+ Pm(y, Xd)Qm,y(Xd) = R(y, Xd)
r

We will use an example to illustrate how to find the polynomial Qi,y by explicitly

construct.

Example: Let m = 2, R = 1 and P1,y(t) = a(y)+ b(y)t, P2,y(t) = c(y)+d(y)(t). To

find the gcd(P1,y(t), P2,y(t)) for a given y.

Case 1: b(y) = 0

If a(y) = c(y) = d(y) = 0, then gcd(P1,y(t), P2,y(t)) = 0 and hence (a) holds.

If a(y) = d(y) = 0, c(y) �= 0, then gcd(P1,y(t), P2,y(t)) = P1,y + 1
c(y)

P2,y(t) = 1.

We take Q1 = 1 and Q2 = 1
c(y)

, then (b) holds.

If a(y) = 0, c(y) �= 0, d(y) �= 0,then gcd(P1,y(t), P2,y(t)) = P1,y(t)+ 1
d(y)

P2,y(t) =

t + c(y)
d(y)

and hence (a) holds.
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If a(y) �= 0, then gcd(P1,y(t), P2,y(t)) = 1
a(y)

P1,y(t) + 0 · P2,y(t) = 1. We take

Q1 = 1
a(y)

and Q2 = 0, then (b) holds.

Case 2: b(y) �= 0

If a(y)d(y) − b(y)c(y) �= 0, then gcd(P1,y(t), P2,y(t)) = d(y)
a(y)d(y)−b(y)c(y)

P1,y(t) −
b(y)

a(y)d(y)−b(y)c(y)
P2,y(t) = 1. We take Q1 = d(y)

a(y)d(y)−b(y)c(y)
and Q2 = − b(y)

a(y)d(y)−b(y)c(y)
,

then (b) holds.

If a(y)d(y)− b(y)c(y) = 0, then gcd(P1,y(t), P2,y(t)) = 1
d(y)

P1,y(t) + 0 · P2,y(t) =

a(y)
d(y)

+ t and hence (a) holds.

So we see that even in the rather simple case of solving two linear equation

in one unknown, there is a moderately complicated branching tree involved. Nev-

ertheless, there are only finitely many branching paths. For any fixed complete

path, it is defined by some conditions, we denote them as

T1(X) �= 0, · · · , Ta(X) �= 0, S1(X) = 0, · · · , Sb(X) = 0.

T1(X) �= 0, · · · , Ta(X) �= 0 define an open set U and S1(X) = 0, · · · , Sb(X) = 0

define a closed set W in Ld−1. Then this path define a quasi-variety V = U ∩ W

Note that V may be empty. Now we consider any fixed nonempty quasi-variety

V The above example show that in the equation (3), for all y in V all Ri,y are

the same and the polynomial Qi,y are in fact piecewise rational in the sense that

Qi,y ∈ L(X)[Xd]. Thus we write Ri,j = Ri,V and Qi,y = Qi,V = Q(X, Xd) in V and

hence we may write the equation (3) as

P1(X, Xd)Q1(X, Xd) + · · ·+ Pm(X, Xd)Qm(X, Xd) = R(X, Xd)
r

in V . Then the denominators of the coefficient of Q(X, Xd) are product of

T1(X), · · · , Ta(X). We may thus clear denominators and get an identity

P1(X, Xd)U1(X, Xd) + · · · + Pm(X, Xd)Um(X, Xd) = (T1(X) · · ·Ta(X)R(X, Xd))
r

(4)

for some U1, · · · , Um ∈ F [X, Xd]. Let

G = P1(X, Xd)U1(X, Xd)+· · ·+Pm(X, Xd)UmX, Xd)−(T1(X) · · ·Ta(X)R(X, Xd))
r.
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Therefore (4) holds in W , by induction hypothesis G lies in I(W ) = radI(W ).

Then there exists nonnegative integer s such that Gs ∈ (S1, · · · , Sn). Thus we

have an equation

P1(X, Xd)U1(X, Xd) + · · · + Pm(X, Xd)Um(X, Xd) =

(T1(X) · · ·Ta(X)R(X, Xd))
r+S1(X, Xd)V1(X, Xd)+· · ·+Sb(X, Xd)Vb(X, Xd). (5)

for some U1, · · · , Um, V1, · · · , Vb ∈ L[X, t].

Now We consider Ld−1 ⊇ V1 ⊇ · · · ⊇ Vl = V and fix a path such that Vl is

nonempty. Note that for any Vi is defined by T1(X) �= 0, · · · , Ta(X) �= 0, S1(X) =

0, · · · , Sb(X) = 0 and the defining condition of Vi+1 is more then one of Vi.

Now we inductive backward on the length of a+b to show that we can eliminate

conditions until conditions are empty and then we proved the theorem. In Vl we

have known that it has a relation of the form (5). So we assume that the path is

not complete say Vi. Hence there is another condition say HX) and assume in Vj

has relation (5) for all j > i. Then for any y in V either H(y) = 0 or H(y) �= 0.

Now we have three possibility and discuss in the following.

Case 1: Assume H(y) = 0 for all y in V . Then by inductive hypothesis, we have

P1U1 + · · ·+ PmUm = (T1 · · ·TaR)r + S1V1 + · · · + SbVb + HV. (6)

On the other hand

S1(X) = · · · = Sb(X) = 0; T1 · · ·TaH(X) �= 0

has no common solution. Since the nullstellensatz is assumed to hold for dimension

d − 1, there exists G1, · · · , Ga such that

G1S1 + · · · + GaSa = (T1 · · ·TbH)r′

for some r′. Then we multiply (6) by (T1 · · ·TbR)r′ to eliminate the role of H .

Then we have a relation of the form (5).

Case 2: Assume H(y) �= 0 for all y in V . Then we have

P1U1 + · · · + PmUm = (T1 · · ·TaHR)r′ + S1V1 + · · ·+ SbVb (7)
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On the other hand the equation

S1(X) = · · · = Sb(X) = H(X) = 0; T1 · · ·Ta(X) �= 0 (8)

has no common solutions and so by nullstellensatz in dimension d− 1 there exists

G1, · · · , Ga, Z such that

G1S1 + · · · + GaSa + HZ = (T1 · · ·TbW )r′′

for some r′′. then we multiply (7) by Zr′ and using (8) to eliminate H , we obtain

the relation of the form (5).

Case 3: There exist y1, y2 in V such that H(y1) = 0 and H(y2) �= 0. In this case

we obtain relation of the form (6) and (7). Multiplying (6) by Zr to eliminate H

and we get a relation of the form (5).

The above induction show that we can elimination conditions until condition

is empty and hence we find Q1, Q2, · · · , Qm are in F [X] such that

P1Q1 + · · ·+ PmQm = Rr

for some non-negative integer r.

5 Different forms of Nullstellensatz

In this section we discuss various proofs of the Nullstellensatz. First we show that

weak form I, II and field form are equivalent.

Theorem 18. [8] Let L be a algebraically closed field, then the following are equiv-

alent

(a) (Weak form I) For an ideal I of L[X1, · · · , Xn]. If I �= L[X1, · · · , Xn], then

V (I) is not empty.

(b) (Field form) If A/F is an extension of field and A arises from F through

ring adjunction of finite many elements, then A/F is a algebraic extension.

(c) (Weak form II) For any maximal ideal M of L[X1, · · · , Xn] there exist

a1, · · · , an ∈ L such that

M = (X1 − a1, · · · , Xn − an)
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Proof. (b) ⇒ (a) For I there is a maximal ideal M of L[X1, · · · , Xn] such that

I ⊂ M . Let A := L[X1, · · · , Xn]/M is then a field which arises from L through

ring adjunction of the residue classes ai of Xi for i = 1, · · · , n. By (b) A/L is

an algebraic extension, so there is a L− homomorphism φ : A → L, since L is

algebraically closed field. Then (φ(a1), · · · , φ(an)) ∈ Ln is a root of M , and hence

so is I.

(a) ⇒ (b) If the field A arises from F through ring adjunction of finite many

elements, then A � F [X1, · · · , Xn]/M for some maximal ideal M . By (a) M has

a zero in F
n
, where F is the algebraic closure of F . One has a F−homomorphism

φ : A → F , φ(Xi) = ξi with kernel M and thus A � F [ξ1, · · · , ξn]. Since ξi is

algebraic over F , A/F is an algebraic extension.

(c) ⇒ (a) For I there is a maximal ideal M of L[X1, · · · , Xn] such that I ⊂ M .

Since M = (X1 − a1, · · · , Xn − an) for some ai in L, V (I) ⊃ V (M) = (a1, · · · , an).

Therefore V (I) �= φ

(a) ⇒ (c) Given any maximal ideal M , by (a) there exist a1, · · · , an such that

(a1, · · · , an) in V (M). The polynomial not belong to M then do not have (a1, · · · , an)

as a zero; otherwise, every polynomial would have this zero. It follows that

(X1 − a1, · · · , Xn − an) ⊂ M . Since (X1 − a1, · · · , Xn − an) is a maximal ideal,

(X1 − a1, · · · , Xn − an) = M .

Now we use Hilbert basis Theorem and Fundamental Theorem of algebra to

proof the strong form by Rabinowitsch trick.

Theorem 1. (Strong form)Let L is an algebraically closed field. The assignment

V → I(V ) defined a bijection of the set of all L varieties V ⊂ A
n(L) onto the set of

all ideals I of L[X1, · · · , Xn] with Rad(I) = I. For any ideal I of L[X1, · · · , Xn],

Rad(I) = I(V (I)).

Proof. [6][8] Let f in I(V (I)), f �= 0. In the polynomial ring L[X1, · · · , Xn, T ]

with one more variable T , we form the ideal J generated by I and f · T − 1. If
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(a1, · · · .an, t) in Ln+1 is a zero of J , then (a1, · · · , an) lie in V (I), so f(a1, · · · , an) ·
t−1 = −1. But since (a1, · · · , an, t) is also a zero of f ·T−1, this is a contradiction.

Since J has no zeros, J = L[X1, · · · , Xn, T ]. Then we have an equation

1 =

s∑

i=1

RiFi + S(fT − 1)

with Ri, S in L[X1, · · · , Xn, T ] and Fi ∈ I. Now take T = 1
f
, then we have

1 =

s∑

i=1

Ai

F αi
Fi

for some Ai in L[X1, · · · , Xn] and for some integer αi. We can elimination the

denominator by multipling F α for some suitable α. Thus we get

fα =

m∑

i=1

AiFi.

Therefore we proved the theorem.

In the special case for L has infinite transcendental degree over prime field k.

We have the fastest proof[5].

Theorem 19. Let L is an algebraically closed field with infinite transcendental

degree over prime field k. For any ideal I of L[X1, · · · , Xn],

Rad(I) = I(V (I)).

Proof. We claim that for each prime ideal P of L[X1, · · · , Xn] = R is the inter-

section of maximal ideal which is containing P . To prove the claim we have two

steps.

Step1.: There exist α1 · · · , αn in L such that for P ′ = P
⋂

K ′[X1, · · · , Xn], then

P = P ′L[X1, · · · , Xn], where K ′ = k(α1 · · · , αs).

Since L[X1, · · · , Xn] is a Noetherian ring, P = (f1, · · · , fm). Let αj be all

the coefficient of fi for i = 1, · · · , m. Let K ′ = k(α1 · · · , αs) and let P ′ =

P
⋂

K ′[X1, · · · , Xn]. Thus fi lie in K ′[X1, · · · , Xn] and hence for any f in P , f =

g1f1 + · · ·+ gmfm where gi in L[X1, · · · , Xn]. Therefore f lie in P ′L[X1, · · · , Xn].

So P ⊂ P ′L[X1, · · · , Xn]. Conversely, P ′L[X1, · · · , Xn] ⊂ P is obviously. Then
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we have P = P ′L[X1, · · · , Xn].

Step2.: Let K be the quotient field of K ′[X1, · · · , Xn]/P
′. Since L has infinite

transcendental degree over prime field k, we can embedded K into L. Let ai be

the image of Xi for this embedded, and let a = (a1, · · · , an). Then clearly for any

f does not lie in P f(a) �= 0. Thus we prove the claim. By definition of radical

ideal we have

Rad(I) =
⋂

I⊂P

P =
⋂

I⊂P⊂M, M∈MaxR

M = I(V (I)).

Next we will give four different proof of Field form. The first we give a proof

by Artin Tate Lemma.

Lemma 20. [8](Artin Tate Lemma) Let R ⊂ S ⊂ T be rings, let R be Noetherian

and T = R[x1, · · · , xn] with x1, · · · , xn in T . Assume T is finitely generated as an

S−module. Then S is also finitely generated as a ring over R.

First proof of field form: Suppose A/F is transcendental and {Z1, · · · , Zt}, t >

0 is a transcendence basis, then by Lemma 20 S := F (Z1, · · · , Zt) is finitely

generated as a ring over F . On the other hand, let {x1, · · · , xm} be a generating

set of S/F , where xi = fi(Z1,··· ,Zt)
gi(Z1,··· ,Zt)

with polynomials fi, gi for i = 1, · · · , m. Because

S = F [x1 · · · , xm], every element of S can be represented as a quotient of two

polynomials in F [Z1 · · · , Zm]. But for p = g1 · · · gm ∈ S 1
p

does not lie in S, this

is a contradiction. Therefore A/F is algebraic.

The second we give another proof by the version of integral extension.

Proposition 21. [8]Let S/R be an extension of ring, where R is non-zero, and

let I be an ideal of R. For x lie in S the following statements are equivalent.

(a) x is integral over I.

(b) R[x] is finitely generated as an R−module and x is in Rad(IR[x]).

(c) There is a subring S ′ of S with R[x] ⊂ S such that S ′ is finitely generated as

an R−module and x lie in Rad(IS ′).
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Second proof of field form: Let L/F be an extension of field, where L =

F [x1, · · · , xn] for some xi in L. We show by induction on n that L/F is algebraic.

For n = 1 this i clear. Suppose that n ≥ 2 and the assertion has been proved for

n−1 elements, but that it is false for n elements. Say x1 is transcendental over F .

Since L = F (x1)[x2, · · · , xn], L is algebraic over F (x1) by induction hypothesis.

Let ui in F [x1] be the leading coefficient of an algebraic equation of xi over F [x1].

and u :=
n∏

i=2

ui. Then by Proposition 21 L is integral over F [x1,
1
u
]. Let p be a

prime polynomial in F [x1] that does not divide u. 1
p

satisfies an equation

(
1

p
)m + a1(

1

p
)m−1 + · · · + am = 0 (m > 0, ai ∈ F [x1,

1

u
])

After multiplying by pm and suitable power of u, we get an equation

uρ + b1p + · · · + bmpm = 0 (ρ ∈ N, bi ∈ F [x1]).

But then p is a divisor of uρ in F [x1], a contradiction.

The third we use valuation ring version to proof field form. Let R be an integral

domain and let K be the field of fractions. R is called valuation ring of K if, for

each x �= 0, either x in R or x−1 in R. Let K be a field and let L be the algebraically

closed field. Let
∑

be the set of all pairs (A, f) where A is a subring of K and f

is a homomorphism of A into L. We difine a partial order on the
∑

as follows:

(A, f) ≤ (A′, f ′) ⇔ A ⊂ A′andf ′|A = f.

By Zorn’s Lemma there is a maximal element of
∑

. To proof the theorem we

need following lemma which lemmas we refered from [2].

Lemma 22. Let (B, g) be a maximal element of
∑

. Then B is a valuation ringof

the field K

Corollary 23. Let A be a subring of a field K. Then the integral closure A of A

in K is the intersection of all the valuation rings of K contain A.

Proposition 24. Let C ⊂ B be a integral domain, B is finitely generated over

C. Let v be a non-zero element of B. Then there exist a non-zero element u of
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C with the following property: any homomorphism f of C into an algebraically

closed field Lsuch that f(u) �= 0 can be extended to a homomorphism g of B into

L such that g(v) �= 0.

Third proof of field form: In Proposition 3 We take C = K, v = 1 and L be

the algebraically closure of K. Then we can get the result of the theorem.

Last we give the fastest proof for a special case that K is a uncountable field.

Theorem 25. (Field form) Suppose K is a uncountable field. If A/K is an

extension of field and A arises from K through ring adjunction of finite many

elements, then A/K is an algebraic extension.

Proof. Step 1. dimK K(X) ≥ |K|.
For

b1

X − a1
+ · · ·+ bn

X − an
= 0.

We claim that bi = 0 for all i. We Proof the claim by induction on n. For n = 1

nothing to proof. Now we assume the assertion hold for n = 1.

b1

X − a1
+ · · · + bn

X − an
= 0

⇒
n∑

i=1

∏

j �=i

(X − aj) = 0

Now take X = a1 we have b1 = 0 and by induction hypothesis we get bi = 0 for

all i. Thus dimK K(X) ≥ |K|
Step 2. If E is an field extension of K and dimK E < |K|, then E is algebra over

K.

Suppose E is transcendental over K and let {S1, · · · , Sm} be a transcendental

basis of E. Then

dimK E ≥ dimK K(S1, · · · , Sm) ≥ dimK K(S1) ≥ |K|.

This contradicts to that dimK E < |K|. Therefore E is algebra over K.

Step 3. Let A = K[a1, · · · , an] be a finitely generated K algebra. Then dimK A
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is at most countable.

Observing that one of bases of R over K is of the form B = {as
i |i = 1, · · · , n s ∈ N.

Thus |B| is at most countable and hence dimK A is at most countable.

Step 4 Now suppose A is transcendental over K. By step 1 dimK A > |K|, but K

in a uncountable field this contradicts to dimK A is at most countable. Therefore

A os algebra over K.

References

[1] Noga Alon, Combinatorial Nullstellensatz, combin. probab. comput. 8 (1999),

no1-2,7-29.

[2] Enrique Arrondo, Another Elementary Proof of the Nullstellensatz ,Amer.

Monthly 113 (2006), 169-170.

[3] M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra,

Addison-WesleyPublishing , 1969.

[4] David Cox, John Little, Donal O’shea, Ideals, Varities, and Algorithms: An

Introduction to Computational Algebraic Geometry and Commutative Algebra,

,Springer-Verlag, New York, Heidelberg, Berlin, 1992.

[5] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geom-

etry, Springer-Verlag, 1995.

[6] William Fulton, Algebra Curves, Addison-Wesley Publishing, 1989.

[7] Irving Kaplansky,Commutative Rings, Allyn and Bacon, 1970

[8] Ernst Kunz, Introduction to commutative Algebra and Algebraic Geometry,

Birkhauser, 1980.

[9] Terrance Tao, http://terrytao.wordpress.com/2007/11/26/hilberts-

nullstellensatz

21


	paperface.pdf
	paper2.pdf

