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Abstract

In Section 4 we give two elementary proofs of Nullstellensatz. The first is
due to Enrique Arrondo which is more brief. The second is due to Terrance
Tao which is constructive. In Section 5 we will discuss different proofs of
above theorems. The first is above three forms which are equivalent. The
second we give two different proofs of strong form. The third we give four
different proofs of field form.

Alon is the principal founder of the Combinatorial Nullstellensatz. This
theorem can prove another theorem (see Theorem 13) which has many ap-
plications in combinatorics and number theory. In this paper we will give
another view point to this proof and generalize this theorem (see Theorem
12). We also give some applications in Example 14 and Example 15.

Key words: Nullstellensatz, Combinatorial Nullstellensatz, Grobner bases,
different forms of Nullstellensatz, proofs of Nullstellensatz
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1 Introduction

Gauss’ fundamental theorem of algebra establish the basic link between algebra
and geometry: It says that a polynomial in one variable over C, an algebra
object, is determined up to a scalar factor by the set of its roots, a geometry.
Hilbert’s Nullstellensatz (German: ”Theorem of Zeros”) extends this link to cer-
tain ideals of polynomial in many variables. Given an ideal I of a polynomial ring

F[Xy, -, X,], we define a corresponding algebra set of F™ to be
V(I) = {(@1’... ’an) c F"‘f(al’... 7&71) = O’Vf c [}

Given a subset V' of F", we also define a corresponding ideal of a polynomial ring
to be

I(V)={f € F[Xy, -, Xy]|f(a) =0,Va € V}.
Now we state the Hilbert’s Nullstellensatz as follows:

Theorem 1. (Strong form)Let L be an algebraically closed field. The assignment
V — I(V) defines a bijection of the set of all L varieties V- C A™(L) onto the set of
all ideals I of L[Xy,- -+, X,] with Rad(I) = I. For any ideal I of L[ Xy, -+, X,],

Rad(I) = 1(V(I)).
Nullstellensatz has another three different forms stated as follows:

Theorem 2. (Weak form 1)[6][7] Let L be an algebraically closed field. For an
ideal I of L[ X1, -+, X,). If I # L[X1,---,X,], then V(I) is not empty.

Theorem 3. (Field form) If A/F is an extension of field and A arises from F
through ring adjunction of finite many elements, then A/F is an algebraic exten-

S10M.

Theorem 4. (Weak form Il ) Let L be an algebraically closed field. For any

mazximal ideal M of L[ Xy, -, X,] there exist ay,--- ,a, in L such that

M:(Xl—(ll,"',Xn—CLn).



In Section 4 we give two elementary proofs of Nullstellensatz. The first is due to
Enrique Arrondo which is more brief. The second is due to Terrance Tao which is
constructive. In Section 5 we will discuss different proofs of above theorems. The
first is above three forms which are equivalent. The second we give two different
proofs of strong form. The third we give four different proofs of field form.

Alon is the principal founder of the Combinatorial Nullstellensatz which has
many applications in combinatorics and number theory. The theorem stated as

follows:

Theorem 5. [1] Let F' be an arbitrary field, and let f be a polynomial in F[X1,- -, X,].
Let Sy,---,S, be nonempty subset of F and let S = S; x --- X S,. we de-
fine g; = [ (Xi—s). If f(s) =0 for all s in S, then there are hy,--- , hy, in

SES;

F[Xy, -, X,] satisfing deg(h;) < deg(f) — deg(g;) such that

f= Z higi-
i=1

As a consequence of the above one can prove another theorem (see Corollary
13) which has many applications. In this paper we will give another view point
to this proof and generalize this theorem (see Theorem 12). We also give some

applications in Example 14 and Example 15.

2 Preliminaries on Grobner bases

In this section we introduce some concepts about Groébner bases, and all the ma-

terial, except Lemma 10 are referred from [4 ,chapter 2].

Definition 6. Let F be a field and R = Flxy,--- , X,] be the polynomial ring over
F.

(1) A monomial order > in R is a totally order on monomial ideal in R satisfies
the following properties:

(i) If X* > XP, then Xt > XP for all v in Z2,,

(ii) > is a well-ordering on monomials.



(2) A monomial order >, is called graded if it satisfies
X*>, X < |a| > |8 or|a| = |8] anda > 3

for some monomial order >.

(3) The leading monomial of f is denoted by LM (f), note that the coefficient
of LM(f) may not be 1.

(4) We note that R = k[X1,- -+, X,] can be regard as a graded ring graded by
total degree, so for any f in R, f = fo+ fi+ -+ fn, deg fi =1 and f,, #0. We

said that the leading term, LT(f), of f is fn. Note that f, may not be a monomial.
We introduce some notions of Gronber bases.

Definition 7. (1) Fiz a monomial order. A finite subset G = {g1, -+ ,9s} of
an ideal I is called a Grébner basis if (LM(g1),---,LM(gs)) = (LM(I)), where
LM(I) means the set of leading monomial of element of I.
(2) Fiz a monomial order and let G = {g1,- -, gs} be a subset of k[ X1, -+, X,].
Given [ in k[Xy, -, X,], we say that f reduces to zero modulo G, written
f—a0,

iof f can be written in the form
J=ai1g1+ - asgs,
such that whenever a;g; # 0, we have
multideg (f) > multideg (a;g;).

There is a well-known criterion for deciding whether a generating set of deal is

Grobner basis, and the following is the criterion:

Proposition 8. A basis G = {g1,- -+, gs} for an ideal I is a Grobner basis if and
only if S(gi, i) — 0 for all i # j.

Lemma 9. Let G be a finite subset of F[Xy,---, X,], suppose that we have f,g in
G such that the leading monomial of f and g are relatively prime. Then S(f,g) —¢
0.



Proof. Write f = LM(f) +p, g = LM(g) + q. Since LCM(LM(f), LM(g)) =
LM(f)- LM(g), we have

S(f,9)=LM(g) - f—LM(f)-g
=(@g—aq)-f=(f-Dp) g
=g-f—-q f—f-9+p-g
=p-9g—q-/

We claim that

multideg(S(f, g)) = max(multideg(p - g), multideg(q - f)).

Assume the claim holds, then by Definition 7.(2) S(f,g9) —¢ 0. To prove the
claim, we show that the leading monomial of p- g and ¢ - f are distinct . For if the

leading monomial are the same, we would have
LM(p) - LM(g) = LM(f) - LM(q).

Since LM (g) and LM(f) are relative prime, LM (g) divide LM(q) which is im-
possible because ¢ = LM (g) + ¢q. Hence leading monomial of p- g and ¢ - f can

not be canceled. O
Next we generalize the above lemma as follows:

Lemma 10. Let G be a finite subset of k[Xy,---,X,] and for f,g in G write
f=h-pandg=h-q, where h = LCM(f,qg). Suppose the leading monomial of p

and q are relatively prime. Then S(f,g) —¢ 0.



Proof. Write p = LM (p) + p; and q = LM(q) + ¢1, then

S(f,9) = LM(q) - f —LM(p)-g
=LM(q)-p-h—LM(p)-q-h
= h(LM(q)-p— LM(p) - q)
= h(LM(q) - (LM(p) +p1) — LM(p) - (LM (q) + q1))
= h{LM(q) - LM(p) + LM(q) - p1 — LM (p) - LM (q) + LM (p) - g1}
= h(LM(q) -p1 — LM(p) - q1)
=h(LM(q) -pr —LM(p) - ¢1 +p1-¢1 —p1- ¢1)
= h((LM(q) + ) - p1 — (LM(p) + p1) - 1)
=h-q¢-pr—h-p-q

=g-m—f-a
We claim that
multideg(S(f, g)) = max(multideg(g - p1), multideg(f - ¢1)).

Assume the claim holds, then by Definition 7.(2) S(f,g) —¢ 0. To prove the
claim, we show that the leading monomial of g - p; and f - ¢; are distinct. For if

the leading monomial are the same, we would have
LM(q) - LM (py) = LM(p) - LM ().

Since LM (p) and LM(q) are relative prime, LM/(q) divide LM (q;) which is im-
possible because ¢ = LM (q) + ¢;. Hence the leading monomial of g - p; and f - ¢

cannot cancel. O

Lemma 11. Fiz a monomial order > on R, and let F' = (f1,--- , fs) be an ordered
s—tuple of polynomials in F[Xq,--+,X,]. Then every f in k[Xq, -+, X,] can be
written as

f=afi+-asfs+r



where a;,r in F[Xy,---,X,], and either r = 0 or all monomials of r are not

divided by any of LM(f1),---, LM(fs). Furthermore, if a;f; # 0, then we have

multideg (f) > multideg (a; f;).

3 Main theorem

Recall that for a polynomial f, the leading term of f, LT(f), is in the sense of
definition 6.(4).

Theorem 12. Given a polynomial f in F[Xy,---,X,|, where F is an arbitrary
field, and a variety V in F™with finite cardinality. Let I(V)) = (g1, -, gs), where
gi is in F[Xq,---, X,] and {g1, - ,9s} is a Grobner basis under some graded
monomial order. Assume LT(g;) is a monomial for all i. If LT(f) contains a

monomial which is not divisible by LT (g;) for all i, then f is not lie in I(V).

Proof. Suppose fisin I(V), then f = hyg1+- - -+hsgs where h; is in F[Xy, -+, X,)]

and by Lemma 11 we have
multideg (f) > multideg (h;g;).

This implies deg f > degh,g; for all i. Let h; = hjo + hiz + -+ + hi;, and
Gi = Gio + i1+ -+ gis,, where degg;, = k and degh; ; = j fori=1,2,--- 5.
We denote the monomial of LT'(f) which is not divided by LT(g;) for all i by P.
Then P occur in h;g; for some i. Observing that if P occur in hy;, g;;, for some
i; < . Then deg P < deg(hi,.gi:,) < degf. This contradicts to that P is in
LT(f). Hence P occur in h;;, g4, then P is divided by LT(g;). this contradicts
to that P is not divided by LT'(g;) for all j. Therefore f is not in I(V). O

As a corollary we proof the theorem due to Alon.

Corollary 13. [1] Let F be an arbitrary field, and let Sy,---,S, be nonempty

subset of F. Let f be a polynomial in F[Xy,---,X,]. Suppose there exists a

monomial in the LT(f) say [] X}/ such that |S;| > t; for each i, then there exists
i=1

sinV =5y x -+ xS, such that f(s) # 0.
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Proof. Suppose f(s) =0 for all sin S, then fisin I(V). Fori=1,--- n let

gi = H(X, — ).

SES;

By Proposition 8 and Lemma 9 {g1,---,g,} is a Grobner basis. Since |S;| are
grater than ¢; for all 4, Theorem 12 implies that f is not in I(V'), contradicts to
that f is in I(V'). Therefore there exists s in V' such that f(s) # 0. O

Alon just consider the case that V' is a "rectangle”. We will generalize this
result to the case, which V' is not a rectangle, but eliminate a subrectangle from a

rectangle.

Example 14. Let F' be an arbitrary field, Sy,---,S, be nonempty subset of F,
Uy,---,U, are subsets of Sy,---,S, respectively. Consider a variety V = S; X
coox Sy = Uy X -+ x U,. Let f be a polynomial in F[Xy,---,X,]. Suppose there
exists a monomial in the LT(f) say ﬁlez such that |S;| > t; for each i and there

exists i such that |S;| — |U;| > t;, then there exists s in S such that F(s) # 0.
Proof. Let
I(V) = <H5651 (Xl - 8)7 HSGSQ(X2 - 3)7 T 7Hs€Sn (Xn - 5)7 H?:lnsesi—Ui(Xi - S))

Using Proposition 8, Lemma 9 and Lemma 10 this generating set is a Grobner
basis. Since |9;| are greater than ¢; for each ¢ and there exists i such that |.S;| —|Uj]

is greater t;, [] X;* is not divided by all of the leading terms of generators. Then

=1
Theorem 12 implies f is not lies in I(V'). In other words, there exists s in V' such
that f(s) # 0. O

Furthermore, we can also apply the theorem to the case of S being a ”triangu-

2

lar”.

Example 15. Let F' be an arbitrary field, S = {aq,- - ,a,} be a nonempty subset
of F', and S1 D S5 O --- O S, also be nonempty subsets of F'. Let f be a polynomaial
in F[X1, Xs] and let V = {(a;,b)|a; € S,b € S;}. Suppose there exists a monomial
in the LT(f), say X"'Y™ such that t; < n ,ty < |Sy,+1| for all i, then there exist

(a;,b) in'V such that f(a;,b) # 0.



Proof. Suppose f(a;,b) =0 for all (a;,b) in V. Let

1) = ([Tt ).~ a) [T =9+ [J ) TLw 9. T[]t~ a2

Using Proposition 8, Lemma 9 and Lemma 10 this generating set is a Grobner
basis. Since t; < [S| ,ta < |Sy 41| for all ¢, XY™ is not divided by all of the
leading terms of generators. Then Theorem 12 implies f is not lies in [(V). In

other words, there exists s in V' such that f(s) # 0. O

For example let S = {1,2,3,4}, S; ={1,2,3,4} D Sy ={1,2} D S3 = {1} =
Syandlet f(X,Y) = X3—2X2Y +Y3. Clearly f satisfies the condition of Example
15 and we have f(1,2) # 0.

4 Elementary proofs of Nullstellensatz

The first proof of weak form of Nullstellensatz which is given by Arrondo.

Theorem 16. Let I be a proper ideal of L[ Xy, --,X,]|. If L is an algebraically

closed field, then V (I) is nonempty.

Proof. [2] If I =0, then nothing to prove. So we may assume I # 0. We prove the
theorem by induction on n. For the case n = 1, any non-zero ideal I of L[X] is
generated by a non-constant polynomial. Because L is a algebraically closed field,
every generator of I has some root a in L. Therefore f(a) =0 for all f in I.

We assume n > 1 and the theorem proved for the case n — 1. We claim that
I contains a polynomial g which is monic in the variable X,. To prove claim,
given any polynomial f with degree d in I. Let f; be the homogeneous com-
ponent of f of degree d, then the coefficient of X% in f(X; + M X, -+, X1 +
A1 X, X)) is fa(Aq, -+, An_1, 1), Since fy(Xy, -, X,_1,1) is a non-zero poly-
nomial in L[X;, -+, X, 1] and L is infinite, there is a point (Ay, -+, A\,_1) in L*!
such that fy(A1,---, As_1, 1) is non-zero. This proves the claim.

By claim after change of coordinates and scaling, we may assume that I con-

tains a polynomial g which is monic in the variable X,,. Fixing such a polynomial



g, we consider the ideal I" = {f € I|f € L[Xy, -+, X,1]} of L[ Xy, -+, X,—1].
Since 1 is not in I, I’ is a proper ideal. Therefore, by induction hypothesis there is
a point(ay, - - ,a,_1) such that h(ay, - ,a,_1) for all b in I’. We now claim that
the set J = {f(a1,- - ,an—1,Xn)|f € I} is a proper ideal of L[X,,].

Now we show that J is an ideal of L[X,]. Consider a homomorphism map
¢ L[Xy, -+, X,] — L[X,] defined by of(Xy,---,X,) = flar, -, an_1, Xn).
For any h in L[X,| and any f in I, o ' (hf(a, -+ ,a,_1,X,)) in I. Hence
hf(ai, - ,an—1,Xy) is in J. There J is an ideal of [

Now we show that J is a proper ideal of L[X,]. Suppose to the contrary
that there exists f in I such that f(ay,---,a,-1,X,) = 1. Thus we can write

f = fo + len + 4 deg, Wlth all the fz n L[Xl, tee 7Xn71]7

filar, -+ ap1) = = falar, - ,ap1) =0, and folar, -+ ,ap-1) =1 (%)

On the other hand, we can express the monic polynomial g in the form g =
90+91Xn+ "'+ge—1X7§71 +Xrel with g;j n L[Xla 7Xn—1] fOI‘j = 17 € — L.

Let R be the resultant of f and g with respect to the variable X,,. In other

words, R is the polynomial in L[X,---, X, _1] given by the determinant
Jo i o fa 0O 0 0 O
0 fo - fiq O 0O -+ 0
0 - 0 fo fi - fia f
R 0 1 -1 Jd
go 91 - Ge-1 1 0 .- 0
0 9 g -+ geer 1 -+ 0
0O -+ 0 g9 ¢ - G 1

which has e + d rows. It is then well known that R is a linear combination of
f and g and hence belongs to I. Therefore R is a member of I’. But direct
inspection of determinant defining the resultant shows that, when we use (*) to

evaluate R at (aq, -+ ,a,_1), it reduces to the determinant of lower-triangular



matrix whose entries on its main diagonal are all 1's. Hence R(ay, - ,a,-1) = 1,
which contradicts the fact that R is in I’. This proves the claim.

Therefore J is a proper ideal of L[X,], and since L[X,] is a principle ideal
domain, J is generated either by polynomial h(X,,) of positive degree or by h = 0.
Since L is algebraically closed field, in the former case h has at least one root a,
in L. In either case this means that f(ay,---,a,-1,a,) = 0 for all f in I, which

completes the proof. O
The second proof of strong form of Nullstellensatz which is given by Tao.

Theorem 17. Let Py, Py, , Py, R € L[ X1, Xo, -+, X4 = L[X], where L is an
algebraically closed field. Then the pair (Py, P, - -+, Py; R) satisfies exactly one of
the following statements :
(a) There exists x € L¢ such that Py(x) = Py(x) = -+ = P,,(z) = 0, R(x) # 0.
(b) There exists Q,Q2,- -+ ,Qm € L[X] such that PLQ1 + -+ + PnQm = R’

for some non-negative integer r.

Proof. [9] We proved by induction on d.
Step 1.: d=1
Step 1.1.: Reduce to the case m =1
Let ged(Py, - -+ .Py,) = D, then there exists Uy - -+, U, € L[ X] such that

UrP, + -+ UpnPy = D. (1)

We claim that (Py,-- -, P,; R) satisfies theorem if and only if (D; R) satisfies the
theorem.

Suppose (Py, - -+, Py; R) satisfies (a), then there exists € F such that P;(z) =
Pyz) = --- = Pyu(z) = 0,R(x) # 0. Hence D(z) = 0,R(x) # 0 this im-
plies (D; R) satisfies (a). Suppose (Pi,---, Pn; R) satisfies (b), then there exist
Q1,Qa2, -+, Qn € L[X] such that PLQ1+ -+ P,,Q,, = R" for some non-negative
integer r. Let P, =V,-D foralli=1,---,m. So R" = PQ, + ---+ P,Q.,, =
D(ViQ1+- -+ V@) and hence (D; R) satisfies (b). Conversely, Suppose (D; R)
satisfies (a), then there exists € L such that D(z) = 0, R(x) # 0. Since D|P;,

10



Pi(x) = 0, for all ¢ = 1,--- ,m. Then (Py,---,Py; R) satisfies (a). Suppose
(D; R) satisfies (b), then there exists ) € L[X] such that @D = R" for some
non-negative integer . From (1) we have (QU,)P, + -+ -+ (QU,,) P, = QD = R".
Then (P, -+, Pn; R) satisfies (b) and hence we proved the claim.
Step 1.2.:

So we have effectively reduced to the case m = 1. We will prove that the
pair (D; R) satisfies either (a) or (b) by induction on min{deg D, deg R}. Let
ged(D, R) = D', then

D=D"-S and R=D"-T forsome S,T € L[X].
On the other hand,
D'= DA+ RB for some A, B € L[X].

Then AS + BT = 1. Clearly D(X) = 0; R(X) # 0 has a solution if and only if
S(X) = 0; R(X) # 0 has a solution. Suppose D" = QS for some is non-negative
integer 7 and @ € L[X]. Then

Rr+1 — Tr+1D/7‘+1 — Q . S . Tr+1 . D/ =D- Ql- (2)

Thus we see that if (S; D’) satisfies the theorem, then (D; R) does also.

Now we have degS < deg D and deg D' < deg R. Suppose deg S = deg D,
then deg D’ = 0. Since D’ and R are relative prime, there exists x € F' such that
D(z) = 0; R(x) # 0. Thus (D; R) satisfies (a). Suppose deg D' = deg R, then
D" = R and hence D = R - S. If for all x in F' with D(z) = 0 such that R(z) = 0,
then ¢D = R for some constant c. Thus (D; R) satisfies (b). Hence there exists
x in F with D(z) = 0 such that R(xz) # 0. Then (D; R) satisfies (a). Therefore
we may assume min{deg D, deg R} < min{deg S, deg D'}. By induction, we can
reduce to min {deg D,deg R} = 0. Suppose D is zero. Since F is a infinity field,
F is an infinity field. Then there exists a in L such that R(a) # 0 and hence
(D; R) satisfies (a). If D is a non-zero constant, then £ - D = r and hence (D; R)

D

satisfies (b). Suppose D is not a constant. In this case, R is a constant. If R = 0,

11



then 0 - D = 0. Thus (D; R) satisfies (b). If R is a non-zero constant. Since F
is a algebraically closed field, D has at least one root. Then (D; R) satisfies (a).
Hence we proved the theorem for the case d = 1.
Step 2.: d > 2

Assume the theorem has been proved for d — 1. Consider P;(X),R(X) €
L[X][Xg4], where X = (X1,--+,Xq_1). For any y € L Py, Xy), R(y, X4) €

L[X,4]. Suppose the equations

Pl(and) == Pm(and> = OaR(and) 7& 0
have no common solutions. By the case for d = 1 there exists Q1,- -+, Qm € F[X{]
such that
Pi(y, Xa)Q1,y(Xa) + -+ + Py, Xa)Qmy(Xa) = R(y, Xa)"™ (3)

for some ¥ > 0. Note that @);, and r, are depend on y.

Observing (2) in our argument for the case d = 1, we have r, is uniform
bounded in y (which has upper bounded max{deg, D,degy, R}). So we can
always multiply both side of (3) by suitable power of R, (X,), and make r =, is

independent of y. Thus we get a equation

Pl (ya Xd)Ql,y(Xd) + -+ Pm(ya Xd)Qm,y(Xd) = R(ya Xd)r

We will use an example to illustrate how to find the polynomial @Q;, by explicitly
construct.
Example: Let m =2, R =1 and Py ,(t) = a(y) + b(y)t, Py (t) = c(y) +d(y)(t). To
find the ged(P,(t), P, (t)) for a given y.
Case 1: b(y) =0
If a(y) = c(y) = d(y) = 0, then ged(Py (%), Py(t)) = 0 and hence (a) holds.
If a(y) = d(y) = 0,c(y) # 0, then ged(Py,(t), Poy(t)) = Pry + =P, (t) = 1.

c(y)

We take @1 =1 and Q2 = 5, then (b) holds.

[

v
If a(y) =0, c(y) # 0,d(y) # 0,then ged(Py (1), Pay(t)) = Pry(t) + ﬁpg,y(t) =

t+ Zgz; and hence (a) holds.

12



If a(y) # 0, then ged(Py (%), Poyl(t)) LP,@t)+0-Py,(t) = 1. We take

= al)

Q= @ and Q3 = 0, then (b) holds.

Case 2: b(y) #0

d
If a(y)d(y) — b(y)c(y) # 0, then ged(Pry(t), Poy(t)) = mﬂ,y@ -
b(y) _ _ d(y) _ b(y)
sdw e () = 1. We take Q1 = Zomeitioey and Qo = —omeiiers
then (b) holds.

If a(y)d(y) — b(y)c(y) = 0, then ged(Pry (1), Poy(t)) = g5 Pry(t) +0- Poy(t) =
% + ¢ and hence (a) holds.

So we see that even in the rather simple case of solving two linear equation
in one unknown, there is a moderately complicated branching tree involved. Nev-

ertheless, there are only finitely many branching paths. For any fixed complete

path, it is defined by some conditions, we denote them as
TI(X) 7£ 07 e 7TQ(X) 7£ 07 SI(X) - 07 e 7Sb(X) =0.

T1(X) # 0, ,T,(X) # 0 define an open set U and S;(X) = 0,---,5,(X) =0
define a closed set W in L% '. Then this path define a quasi-variety V =U NW
Note that V' may be empty. Now we consider any fixed nonempty quasi-variety
V' The above example show that in the equation (3), for all y in V' all R;, are
the same and the polynomial ();, are in fact piecewise rational in the sense that
Qiy € L(X)[X4]. Thus we write R; ; = R; v and Q;, = Q;v = Q(X, Xy) in V and

hence we may write the equation (3) as
Pi(X, Xg)Q1(X, Xg) + -+ + Pn(X, Xg)Qn(X, Xq) = R(X, X4)"

in V. Then the denominators of the coefficient of Q(X, X,) are product of

T1(X), -+, To(X). We may thus clear denominators and get an identity

Py (Xa Xd>U1(X7 Xd) +oot pm(X7 Xd)Um(Xa Xd) = (Tl (X> T Ta(X)R(Xa Xd))r

(4)
for some Uy, ---,U,, € F[X, X,]. Let

G=nP (X7 Xd>U1 (Xa Xd>+ ’ +pm(X7 Xd)UmX7 Xd)_(Tl (X> T Ta(X)R(Xa Xd))r'
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Therefore (4) holds in W, by induction hypothesis G lies in I(W) = radl (V).
Then there exists nonnegative integer s such that G* € (Si,---,S,). Thus we

have an equation
pl(Xa Xd)Ul(Xa Xd) +tet Pm(X7 Xd)Um(Xa Xd) =

(T1(X) - To(X)R(X, Xa))"+51(X, Xa)Vi(X, Xa)+- - +55(X, Xa) Vo(X, Xa). (5)
for some Uy, -+, Uy, Vi, , V, € LIX, t].

Now We consider L4t D V4 D --- DV, = V and fix a path such that V} is
nonempty. Note that for any V; is defined by T7(X) #0,- -+, T,(X) # 0, 51(X) =
0, ,5(X) =0 and the defining condition of V;;; is more then one of V;.

Now we inductive backward on the length of a+b to show that we can eliminate
conditions until conditions are empty and then we proved the theorem. In V; we
have known that it has a relation of the form (5). So we assume that the path is
not complete say V;. Hence there is another condition say HX) and assume in V;
has relation (5) for all j > ¢. Then for any y in V either H(y) = 0 or H(y) # 0.
Now we have three possibility and discuss in the following.

Case 1: Assume H(y) =0 for all y in V. Then by inductive hypothesis, we have
PU 4+ PpUp = (Ty - TR+ S1Vi+ -+ SV + HV. (6)
On the other hand
Si(X) == S(X) = 0; T} - T,H(X) £ 0

has no common solution. Since the nullstellensatz is assumed to hold for dimension

d — 1, there exists G1,--- , G, such that
Glsl+"'+GaSa — (Tl."TbH)T,

for some /. Then we multiply (6) by (7} ---T,R)" to eliminate the role of H.
Then we have a relation of the form (5).

Case 2: Assume H(y) # 0 for all y in V. Then we have

p1U1+"‘+PmUm:(Tl"'TaHR)TI+5’1{/1+"'+Sb% (7)
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On the other hand the equation
S1(X) = = §(X) = HX) = 0:T; - Tu(X) £0 ()

has no common solutions and so by nullstellensatz in dimension d — 1 there exists

G, -+ ,Gy, Z such that
GiS1+ 4+ GoSe+HZ = (Ty---T,W)"

for some 7”. then we multiply (7) by Z" and using (8) to eliminate H, we obtain
the relation of the form (5).
Case 3: There exist y;,y2 in V such that H(y;) = 0 and H(ys) # 0. In this case
we obtain relation of the form (6) and (7). Multiplying (6) by Z” to eliminate H
and we get a relation of the form (5).

The above induction show that we can elimination conditions until condition

is empty and hence we find @1, Q2, -, @, are in F[X] such that
PiQi+- -+ P =R

for some non-negative integer r. 0

5 Different forms of Nullstellensatz

In this section we discuss various proofs of the Nullstellensatz. First we show that

weak form I, IT and field form are equivalent.

Theorem 18. [8] Let L be a algebraically closed field, then the following are equiv-
alent

(a) (Weak form I) For an ideal I of L[ Xy, -+, X,]. If I # L[ Xy, -+, X,], then
V(I) is not empty.

(b) (Field form) If A/F is an extension of field and A arises from F through
ring adjunction of finite many elements, then A/F is a algebraic extension.

(c) (Weak form II) For any mazimal ideal M of L[Xy,---,X,] there exist

ai,- -+ ,a, € L such that
M:(Xl_a17”'7Xn_a/n)

15



Proof. (b) = (a) For I there is a maximal ideal M of L[X,---,X,] such that
I c M. Let A:= L[Xy,---,X,]/M is then a field which arises from L through
ring adjunction of the residue classes a; of X; for i = 1,--- ,n. By (b) A/L is
an algebraic extension, so there is a L— homomorphism ¢ : A — L, since L is
algebraically closed field. Then (¢(aq),- -, ¢(ay,)) € L™ is a root of M, and hence
so is I.

(a) = (b) If the field A arises from F' through ring adjunction of finite many
elements, then A ~ F[X;,---,X,]/M for some maximal ideal M. By (a) M has
a zero in I, where F is the algebraic closure of F. One has a F—homomorphism
¢:A— F, ¢(X;) =& with kernel M and thus A ~ F[&,---,&,]. Since & is
algebraic over F'; A/F is an algebraic extension.

(¢) = (a) For I there is a maximal ideal M of L[Xy,---,X,] such that I C M.
Since M = (X; —ay, -+, X, —a,) for some a; in L, V(I) D V(M) = (a1, ,a,).
Therefore V(1) # ¢

(a) = (c¢) Given any maximal ideal M, by (a) there exist ay,--- ,a, such that
(ay,--- ,a,)in V(M). The polynomial not belong to M then do not have (ay,- - , ay,)
as a zero; otherwise, every polynomial would have this zero. It follows that
(X1 —ay, -+, X, —a,) C M. Since (X1 —ay, -+, X, — a,) is a maximal ideal,

(Xl—al,-~-,Xn—@n):M. ]

Now we use Hilbert basis Theorem and Fundamental Theorem of algebra to
proof the strong form by Rabinowitsch trick.
Theorem 1. (Strong form)Let L is an algebraically closed field. The assignment
V — I(V) defined a bijection of the set of all L varieties V' C A"(L) onto the set of
all ideals I of L[Xy,- -+, X,] with Rad(I) = I. For any ideal I of L[ Xy, -+, X,],

Rad(I) = I(V(I)).

Proof. [6][8] Let f in I(V(I)),f # 0. In the polynomial ring L[X, -, X,,T]

with one more variable T, we form the ideal J generated by I and f-T — 1. If
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(ar,--+ .an,t) in L™t is a zero of J, then (ay,--- ,a,) liein V(I), so f(a, - ,an)-
t—1 = —1. But since (ay,- -, ay,t) is also a zero of f-T'—1, this is a contradiction.

Since J has no zeros, J = L[X, -+, X, T]. Then we have an equation

1:iRiE+S(fT—1)

i=1
with R;, S in L[Xy,---,X,,T] and F; € I. Now take T' = %, then we have
S A
1= "R,
for some A; in L[X;,---,X,] and for some integer ;. We can elimination the

denominator by multipling F'* for some suitable .. Thus we get

m

fo=) A

i=1

Therefore we proved the theorem. O

In the special case for L has infinite transcendental degree over prime field k.

We have the fastest proof[5].

Theorem 19. Let L is an algebraically closed field with infinite transcendental

degree over prime field k. For any ideal I of L[ Xy, -+, X,],
Rad(I) = I(V(I)).

Proof. We claim that for each prime ideal P of L[X;,---,X,] = R is the inter-
section of maximal ideal which is containing P. To prove the claim we have two
steps.

Stepl.: There exist a; -+, ay, in L such that for P = P K'[ Xy, -, X,], then
P=PLXy,- -, X, where K/ = k(g -+, ).

Since L[X1,---,X,] is a Noetherian ring, P = (fi, -, f). Let a; be all
the coefficient of f; for i = 1,--- ,m. Let K/ = k(ay---,a) and let P’ =
PO K'[X1, -+, X,]. Thus f; liein K'[ X3, -+, X,,] and hence for any fin P, f =
gifi + -+ gmfm where g; in L[Xy,---, X,]|. Therefore f lie in P'L[ Xy, -, X,].
So P C P'L[Xy,---,X,]. Conversely, P'L[Xy,---,X,] C P is obviously. Then
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we have P = P'L[Xy, -+, X,].

Step2.: Let K be the quotient field of K'[Xy,---, X,]/P’. Since L has infinite
transcendental degree over prime field k, we can embedded K into L. Let a; be
the image of X; for this embedded, and let a = (ay,- -, a,). Then clearly for any
f does not lie in P f(a) # 0. Thus we prove the claim. By definition of radical
ideal we have

Rad(l) = (| P = N M = I(V(I)).

ICP ICPCM,MeMazR

O

Next we will give four different proof of Field form. The first we give a proof

by Artin Tate Lemma.

Lemma 20. [8](Artin Tate Lemma) Let R C .S C T be rings, let R be Noetherian
and T = Rlzy,- -+ ,x,] with x1,--- ,x, in T. Assume T'is finitely generated as an

S—module. Then S is also finitely generated as a ring over R.

First proof of field form: Suppose A/F is transcendental and {Zy,- -+, Z;}, t >
0 is a transcendence basis, then by Lemma 20 S := F(Z,---,Z;) is finitely
generated as a ring over F. On the other hand, let {xy, -, z,,} be a generating
set of S/F, where x; = % with polynomials f;, g; fori =1,--- ,m. Because
S = Flxy--+ x|, every element of S can be represented as a quotient of two
polynomials in F[Z;---,Z,]. But forp=g¢y---gm € S }D does not lie in S, this

is a contradiction. Therefore A/F is algebraic.

The second we give another proof by the version of integral extension.

Proposition 21. [8]Let S/R be an extension of ring, where R is non-zero, and
let I be an ideal of R. For x lie in S the following statements are equivalent.

(a) x is integral over I.

(b) R[x] is finitely generated as an R—module and x is in Rad(IR[z]).

(¢) There is a subring S" of S with R[z] C S such that S’ is finitely generated as

an R—module and x lie in Rad(1S").
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Second proof of field form: Let L/F be an extension of field, where L =
Flxy, -+, x,] for some x; in L. We show by induction on n that L/F is algebraic.
For n = 1 this i clear. Suppose that n > 2 and the assertion has been proved for
n —1 elements, but that it is false for n elements. Say z; is transcendental over F'.
Since L = F(x1)[xe, - ,x,], L is algebraic over F(z;) by induction hypothesis.
Let u; in F[x1] be the leading coefficient of an algebraic equation of z; over F[z].
and u = ﬁ u;. Then by Proposition 21 L is integral over Fxy, %] Let p be a

=2
prime polynomial in F'[z;]| that does not divide u. 113 satisfies an equation

1 1., 1
) an (5" 4 a =0 (m > 0,4 € Flay, ~
(p) +a1(p) +--+4a (m a B u])

After multiplying by p™ and suitable power of u, we get an equation
wWHbp+--+b,p" =0 (peN, b € Flxy]).

But then p is a divisor of u” in F[z;], a contradiction.

The third we use valuation ring version to proof field form. Let R be an integral
domain and let K be the field of fractions. R is called valuation ring of K if, for
each z # 0, either x in Ror 7' in R. Let K be a field and let L be the algebraically
closed field. Let > be the set of all pairs (A, f) where A is a subring of K and f

is a homomorphism of A into L. We difine a partial order on the ) as follows:
(A7 f) S (A/7 f/) = A C A/andf"A = f

By Zorn’s Lemma there is a maximal element of » . To proof the theorem we

need following lemma which lemmas we refered from [2].

Lemma 22. Let (B, g) be a mazimal element of > . Then B is a valuation ringof
the field K

Corollary 23. Let A be a subring of a field K. Then the integral closure A of A

in K is the intersection of all the valuation rings of K contain A.

Proposition 24. Let C' C B be a integral domain, B is finitely generated over

C. Let v be a non-zero element of B. Then there exist a non-zero element u of
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C with the following property: any homomorphism f of C' into an algebraically
closed field Lsuch that f(u) # 0 can be extended to a homomorphism g of B into

L such that g(v) # 0.

Third proof of field form: In Proposition 3 We take C' = K, v = 1 and L be
the algebraically closure of K. Then we can get the result of the theorem.

Last we give the fastest proof for a special case that K is a uncountable field.

Theorem 25. (Field form) Suppose K is a uncountable field. If A/K is an
extension of field and A arises from K through ring adjunction of finite many

elements, then A/K is an algebraic extension.

Proof. Step 1. dimy K(X) > |K]|.

For

by bn,

= 0.
X—al X—an

We claim that b; = 0 for all 2. We Proof the claim by induction on n. For n =1

nothing to proof. Now we assume the assertion hold for n = 1.

bl + + bn
X - X —a,

=> [[X —a)=0

i=1 j#i

=0

Now take X = a; we have by = 0 and by induction hypothesis we get b; = 0 for
all . Thus dimy K(X) > |K|

Step 2. If £ is an field extension of K and dimg E < |K]|, then E is algebra over
K.

Suppose F is transcendental over K and let {Si,---,S,,} be a transcendental

basis of F£. Then
dimg E > dimg K(Sy, -+, S,) > dimg K(S)) > | K.

This contradicts to that dimyx F < |K|. Therefore E is algebra over K.

Step 3. Let A = Klay,- -+ ,a,] be a finitely generated K algebra. Then dimg A
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is at most countable.

Observing that one of bases of R over K is of the form B = {aj[i =1,--- ,ns € N.

Thus |B| is at most countable and hence dimg A is at most countable.

Step 4 Now suppose A is transcendental over K. By step 1 dimg A > |K|, but K

in a uncountable field this contradicts to dimx A is at most countable. Therefore

A os algebra over K. O
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