Rz b ST BT ARRT B 28)
R %=

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

55 EH P ANE D A SRR

Intelligent Software Testing'with Multiple Learning Classifiers

—
-

Hickie?
Jhe-Jhang.Jhan

R gL
Advisor: Farn Wang, Ph.D.

¢33 K 100 £ 6 "
June, 2011

R SE L 0 e SVAL Y
DRXERCERLT
B 42 R rREANT VRN
Intelligent Software Testing with Multiple Learning
Classifiers

WXGBEYE (£33 R8N2I077) AR EEALER I LS
ARARZEESEH HREB 100 £ 6 A 29 BATHHREAE
ERBR ORAA - HHILEA

(&%)

(48 ¥ #42)

9% FEAN
2

bmﬂ "]
x4z '@, ¥ ;\%/;\ (#4)

>+
A

A aEflR A FALR WSS £ R RS HEA P DT VR

HREPRRET AHPFLRE 0 U PR G B EKE L83 bR
FLZRSFEYS R#Hr#FL QR HERE - 0 d s mAta E 4 R R

,??;, '*"%‘%m,&ﬂ.’fe’fapmvui‘t;{%°
LTk REPAT BT E - A FHAE SR e

gﬁfﬁ?u DA S -ﬂi- KL—V%-T- 1?\' 4 AL ?’K‘{\/—:’}’ K

wETLE /?;'FT

S

\H

Vi sk ehdEs o e pE

‘ﬁ?%iﬁwug\%%W“W%P*&ﬂﬁﬂmmm%” o P T S

o . W el IS T
B EFRL A S e ‘_;|__f1 ,,I {r

el _=__;1-=.

2\
wﬁwﬂkﬁw‘%ﬁﬁﬁw“
2 !

i ra R _b'rr»}g %]’gé R EAIRN ,@ﬁgh

A s R s d ?& ‘J‘ #_.a-ﬂ‘._
"-f“’. K r ¥ t.—#/' # e
#ﬁ%w¢&ﬂ$r%?§5 : m-ndm%%%ﬂ*ﬁ&’ﬁ%
L - .’
B2 AN Al R Pl g é’uiﬂ‘% P o} B\ 1a%hm)§zgh 4

19 ’ *3_;12‘* < [;g.ﬁ{-}:?‘
SRR B3 5 R I t@%&% AT

lj—ﬂé}ﬁ‘& ,gg‘}\;};‘;ﬁ% E’F—Lﬁﬂ -—gs"'“:"{l\;ﬁ(g—r‘ vy “'ij éé.? /LLbE?’RA
j,'_::f;_o lll' j_‘f j r

EE ¥

PlR LB PR E A b Y LR h- TR RASEFRF AR 0 AW
R P o B MR AR B AhRRIE 4 4 KRBT HRIR Y AR AR TR
Ped M2 A 0 B EWEE Y RABREE -

AABE2FP > APRET - BRAAESBE N CRRE FEBES
VREZNSEr MBS CRREHELIR A S B0 1 5 - 00 AR kR

IRCEERE R RRE - LS Sl S LS et

B
o FREEFRL T o - Kﬁcﬁ”‘,&y‘lﬁ’h% - ATk R enE
N
EIRE U SRR e VLR T *i?“ﬁ?%w?éF%*i
L5 " L il =
Ss B JCIEE ES LS R S
5)
o - el
{4Fen % o 9 i N
AL BT dele ik RS BE Y ek A 4
" ,.Ir r -,I . E . :ll‘
A2 3 EREIER] > G A A B A B LR S FRALSY KGR A R

MAET | BalRlE EEY > S AT A3 B A SRR LY
Il

ABSTRACT

Testing is an essential process of software development. Along with the progress of
scientific and technological development of hardware, software systems become larger
and larger. It is time consuming to do software testing with manpower traditionally.
Using machine learning in place of labor efforts is getting more and more attractive.

In this thesis, we present a multiple-classifier structure of software testing with
machine learning algorithms including support vector machine (SVM), neural network
(NN) and L*. The structure is compesed of three phases. In the first phase, the structure
uses some functions which can insert ihto-user.programs to collect useful information as
our input data during program executions. Those input-data, of course, could also be
provided by users. In the second phase, wg;‘ie_parate the input data into training data and
testing data. The training data ISsused fo.;-ﬁbuiilding models and the testing data is for
testing the models we build. The last phase i—s that we combine the results of models to
generate a better result by using combinatorial functidns.

We investigate how to use machine learning techniques to automatically construct
test oracles for programs without reliance on explicit specifications, and experiment
with two open-source benchmarks to compare the accuracy of different learning
algorithms and the accuracy after using combinatorial functions in the end.

Keyword: software testing, machine learning, multiple classifier, SVM, NN, L*,

test oracle

CONTENTS

CRE R € F T #
o RS SPSRTRORRPRRO i
B2 BB & e ii
ABSTRACT ettt et e b e et e nan e be e e ii
CONTENTS Lttt b et b et e st e st e e sbe e s be e s beeenbeenaeeenes v
LIST OF FIGURESottt ettt Vi
LIST OF TABLES. ..ot it B i viii
Chapter 1 INtrodUCtiON....... ..ol ool etk te e seee e enee e eneesneeneeas 1
1.1 Motivation @ Sl N N NSRS R 1
1.2 Research Goal x..................... .Z’E-“ .. 2
1.3 Contribution..... 7. i b b : 1 .. 2
1.4 Thesis Framework:........: il a4 IV T 3
Chapter 2 Related WOrK .. it s 4
Chapter 3 BacKkground ... 6
3.1 Support VECTOr MACHINEooiiiiiiieiiece s 6
3.2 Artificial Neural NetWOrK.........cccooiiiiiiiiiii s 8
3.3 LFAIGOMM (i 9
3.4 Unified Modeling LanQUaGE..........ccoveieierieriesesiesieeeeeee et 15
Chapter 4 Software Testing with Multiple Learning Classifiersc.cccceoueue. 19
4.1 The Usage 0f SyStem SIrUCTUIEccoviiriiiiiiiiisieee s 20
4.2 Workflow of SyStem SErUCTUIEcoveviiiiiiiiiicce e 20
4.3 WOrKflow of L™ trainingcccovveiiiiirieieiesesesie e 23

4.4 Multiple Learning ClasSifierscccoveiveviiiiiie e 25

Chapter5 Implementationccccceeeiieiiiie e 28
51 HOW 0 COIECE TrACEcveiiiiieiieieie e 28

52 How to Decide Failure..........cocoiiiiiiiiiiiiiceee e 30

53 HOW 0 INSEIt FUNCLION ..ot 30

5.4 Feature SEIECIONc.ccoiviiiiiiics e 31

3 R O TOU PR PP UUROPRPRRP 32

0. 2 K ittt 32

0. 3 K i 32

544 Xyl R BT e 33

545 Xpeoo ... 0 A | NS 33
Chapter 6 Experiment /... L.\ RS AR L o 34
6.1 Experiment Setting............... :"’ ... 34

6.2 Results of Each Classifie:r.f I v TR N 35

6.3 Results of Multiplé Claséifiers .. 40
Chapter 7 Conclusion and Future Work .. 42
BIDIIOGIaPNY ... 43

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

LIST OF FIGURES

BEefOre TralniNgcoveiveiiiiei s 7
ATLEE TTAINING c.vevieiee ettt ene e reeneesneenreas 7
N LS00 o PO TP ORI 8
Neuron Network of MUltiple LaYersccccviiiiiiiiieiene e 9
Example of Non-closed Table..........cccooiiiiiiiii 11
Table T; and Hypothesis MOGel Micvveeevveeeeeeeeeeseeseeeeeeresae 12
B0 [T e | [L N 13
Table T3 and Hypothesis MOJel Maw......... 5. oiiitieeeeeeereeeerseeeeeeeeeeseesneesnene 13
BE 1 CRPE T o SRR o - 14
Table Ts and Hypothesis Modg_l;ﬁg .. 14
Actor....... G 11 P = .. 15
Use CasSe ... % W ... 15
System Box Boundary.............................;7 .. 16
Include RelationShip e 16
Extend RelationShip........cccoveiioiiiiciece e 17
Association RelationShipcccoveiiiiiiicecce e 17
Generalization RelationsShip..........cocoiieiiiiiie e 17
Example of Use Case Diagram.........cccccevieiierieiieieeiie e sve e 18
SYSEM SEIUCTUIE ...t 19
WOIKFIOW OF SYSEEM ..o 21
WOrKFIOW Of Trainingcoovviiiieicc e 22
Workflow of Testing in Different Machine Learning Algorithms................ 22

Vi

Fig. 4.5
Fig. 4.6
Fig. 5.1

Fig. 5.2

Flowchart of L* algorithm.........ccccoviveii e 24

Structure of Parallel CIassIfierscccoovviiive i 25
Flowchart of Deciding Failure...........cccoveeiiiiicicceceee e 29
Fragment Of COUEccveuiiie e 31

vii

LIST OF TABLES

Table 6.1 TCAS EXperiment Of NN ..o 36
Table 6.2 TCAS EXperiment 0f SVIM ... 36
Table 6.3 TCAS Experiment of SVM with Optimal Parameter.............c.ccoovvvvniennn. 37
Table 6.4 TCAS Experiment of L* with Teacher NN ... 37
Table 6.5 TCAS Experiment of L* with Teacher SVM ... 37
Table 6.6 Schedule Experiment 0f NNccoiiiiiiiie s 39
Table 6.7 Schedule Experiment 0f SVIM .. i s 39
Table 6.8 Schedule Experiment.of SVM-with. Optimal Parameter................cc...co....... 39
Table 6.9 Schedule Experimentiof L* with TeacherNIN <. oo 40
Table 6.10 Schedule Experiment of L¥ wifg_‘l_‘eacher SVM ..t 40
Table 6.11 TCAS Experiment of Multiplezzflassifiers .. 41

Table 6.12 Schedule Experiment of Multiple Classifiers i oo, 41

viii

Chapter 1 Introduction

Machine learning, a subfield of artificial intelligence, is an active research field in
Computer Science. It is concerned with design and development of algorithms and
statistical data. The algorithms allow computers evolving these behaviors based on
statistical data; that is, extracting the part we are interested in from the past data or
experience as training data (or feature selections [1]), building a model and defining
different parameters. Then let model execute as programs, and use a useful algorithm to
tune the parameters based on those-training data. After learning is done, we could use
this model to do some predication:

The training data are camposed by input and output:values. We could divide the
learning process into regression analyses_;:{gnd classification according to the output
value. The output of regression analyses i;‘_d éontinuous value. For example, predicting
the number of stock index.in.the future is a—kind of regression analyses. The output of
classification is a lot of numbers of‘integers suchas {1 1}. For example, predicting the

score is pass or fail.

1.1 Motivation

Since the cost of software testing has escalated because of the increasing
complexity of current systems, how to reduce the cost is an important issue. There are a
lot of methods proposed to solve this problem. One of them is machine learning. There
have been several researches to solve the software testing by using machine learning
algorithms. [2] uses support vector machine to generate a test oracle in black-box testing.

[3] uses the technique bootstrapping in machine learning to promote the prediction

1

accuracy of the model they build. [4] provides a better input to software testing by using
machine learning. [5] uses EXIST (Exploration eXploitation Inference for Software
Testing) which is developed by EDA (Estimation of Distribution Algorithm) and online
learning to maximize the number of distinct feasible paths of the process. There are
many machine learning algorithms which could be used in different kind of software
testing. However we don't know what is the best choice for a certain kind of software
testing. We build a framework which contains several machine learning algorithms and
compare their performance in software testing in order to find the most suitable machine

learning algorithm for a certain kind of software testing.

1.2 Research Goal

We want to find an efficient way to [g;luce the cost of software testing by applying
efficient machine learning algarithms, and ;mbine them to generate a better result. To
do this we propose a multiple-classifier sf—ructure of software testing with machine
learning algorithms, such as suppart vector machire (SVM) [6], neural network (NN)
[7], and L* algorithm [8]. We separate our-input data into two sets: a training set and a
testing set. The training set is used by the machine learning algorithms to generate the
models as our classifiers to predict unknown input data. The testing set is used to test

the performance of the classifiers. The training data and testing data are gathered from

public resources.

1.3 Contribution

The main contribution is constructing a simple framework which contains three
machine learning algorithms as classifiers. We make it easy to use, and compare

2

performance of each machine learning algorithm. Then we combine the result of each
classifier to generate a new result by using some combinatorial functions. We could find
out that the prediction accuracy of combinatorial function is better than the result of
single classifier.

Without specifications, SVM and NN could use input and output values to do
software testing. However, L* would ask some problems that need a teacher to tell the
answers. In the past, the answer is got through the execution of SUT or the specification
of SUT. Since there is an overhead in execution of SUTSs, and no specification of SUT,
we propose a flowchart instead. The flowchart uses SVM/NN as the teacher of L*
algorithm to get fault models: Since:we do.not have:the visualization of SVM/NN
model, we use the visualization of fault models as the visualization of SVM/NN models.

Therefore, the other contribution is that we design the flowchart of L* training to build

e
—

the fault model and do software. testing.

&

1.4 Thesis Framework:,

The remainder of this thesis is organized as follows: Chapter 2 reviews the related
work on multiple-classifier systems. Chapter 3 we give the background knowledge of
support vector machine (SVM), neural network (NN), L* algorithm and unified
modeling language. Chapter 4 describes the structure of software testing with multiple
learning classifiers. Chapter 5 presents the details of the structure implementation.
Chapter 6 shows the experimental result with two open-source programs. Chapter 7

gives conclusion and some directions of future work.

Chapter 2 Related Work

Multiple-classifier system is getting more and more popular due to their ability to
combine the output of each classifier into a better result [9]. At present, there are many
researches about how to design the multiple-classifier system. A successful design of
multiple-classifier system is related to structure and combinatorial methodology.

[10] classifies current different structures of multi-classifier systems into three
types. They are cascading, parallel, and hierarchical. In the cascading classifier, the
result of a classifier is used as the input of the next elassifier. In the parallel classifier, all
of the classifiers are executed in parallel,-and.then the:results of classifiers are used to
obtain a new result by using eombinatorial function. -Hierarchical classifiers are a
combination of cascading classifier and Pa%'.‘?—" classifier.

[11] classifies different structures of.:m_ulrti-classifier systems in more detail. They
are conditional, hierarchical, “hybrid,| and r—nultiple (parallel) topologies. Conditional
topology first selects the result from any: classifier asr the final result. If the result is not
correct, another classifier is selected. All the selection is random. Hierarchical topology
is similar to conditional one. The only difference is the selection has priority. Hybrid
topology selects the best result of classifiers as the final result. Parallel topology is as
same as the parallel classifier in [10].

[12] classifies current combinatorial methodologies into four types. The first type
is linear combination method. It uses linear functions such as summation and product to
do combination. The second type is non-linear combination method. It uses rank based
classifiers to generate final result such as majority voting. Majority voting selects the

classifier which gets the highest vote to generate final result. The third type is statistical.

It uses some probabilistic functions such as Bayes rule. The last one is computationally
intelligent. It uses machine learning algorithm such as genetic algorithms for
combination.

All the outputs of the multiple classifier mechanisms we described above are
continuous numbers, but we use discrete numbers in our experiment. Because we create
the test oracle about the pass and fail problem, the output number we define here is only
-1 and 1. The mechanisms we described above may not suitable for our experiment, so

we do a little modification to fit our experiment.

Chapter 3 Background

3.1 Support Vector Machine

Support vector machine (SVM) proposed by Vapnik and Corinna Cortes in 1995
[6], is a kind of learning method which is widely used in solving the problem of
classification or regression. The basic idea is given a group of data in a high- or
infinite-dimensional space RY, where d e N. finding a hyper-plane to separate those data
into two parts. After that, if there is a new data, SVM could map it into the same space
and predict which category it belongs to:based-en which side of the hyper-plain it falls
on.

For example, there are people’s profiles;"and we'want to know which party he

belongs to. We pick the place as our tré_ifﬁng data and transfer it into longitude and
latitude such as the graph show in [Fig. 3.:L Then we usesSVM to find a line which
divides the map into two sides like fhe graph.shown'in Fig. 3.2. Suppose left hand side
is the Democratic Party and the other-side*is the Republican Party. After training, we
can use the model generated by SVM to predicate result. Suppose there is a new profile,
then we could locate the place in the map. If it locates at left hand side, then we predict
that he belongs to the Democratic Party. Otherwise he belongs to the Republican Party.
The graphs in Fig. 3.1 and Fig. 3.2 are drawn by the tool provided by C.C. Chang [14].
Because SVM finds the hyper-plane which has the maximum margin of input data
in different categories, it builds only one solution and is a global optimal solution. The
margin is defined by the sum of the shortest distances from the closest input data in

different category to the hyper-plane.

If you want to know more about SVM we refer you to [6], [13] for more details.

6

re-Training)

Fall

3% 0. 3I,iq\§lefo

Fig. 3.2 After Training

3.2 Artificial Neural Network

Artificial neural network [7] is a kind of statistical learning method which is
connected by artificial neurons. The model imitates the behavior of neuron network of
organism in Nature. Each neuron represents a specific function called activation
function and each transition between two neurons has a weight on it. The output of node
depends on the activity function and weight. Fig. 3.3 is an example of graphical neuron.
It has a set of input data | and a combine function ¢ to merge those input data with a set
of weights W corresponded to input I and bias b as the input of activity function F. Then
it generates a specific output O.

Most neuron network algorithms constitute'their. [earning structure as three layers.
They are an input layer, one_or more hidden layers and an- output layer. Fig. 3.4 is the
layer structure composed by neurons. Note,fthat the node number of each layer may not

—

be equivalence.

I, b
W,
! .)
, F @
°
°

Fig. 3.3 Neuron
8

(ORSY 0,

Il """""
]:2 """""
b
]
UL 0u®
L, 0,
Wm,l(O) Wal,aZ(l)
b ‘ b i
Input layer Hidden layer Output layer

=

Fig. 3.4 'Neuron Neit\A!ofk of Multiple Layers

3.3 L*Algorithm

In 1987, Dana Angluin proposed an-algorithm, L* [8], to learn from queries and
counterexample. There are two different kinds of queries called membership query and
equivalence query, and there is a teacher to answer these two queries. On a membership
query, the algorithm would ask the teacher whether the string s is accepted or not. On an
equivalence query, the algorithm would ask the teacher if the hypothesis model A7 which
we construct is equivalence to the model M which we want to learn. If the answer is no,
the teacher would return a counterexample. The learning structure is stored by
observation table.

The row of observation table can be divided into two sections. One of the sections

is the state section S and this part locates at the upper part of table, and every unique

row of the upper part of the table represents a state from the DFA. The other part is

transitions’ section S e A, and this part locates at lower part of the table which defines

the transitions of the DFA. A state machine can be constructed according to an

observation table. The table’s columns are labeled by experiments E for distinguishing

states-rows. The observation table must satisfy two conditions. They are closed and

consistent.

The observation table is closed means for all transition t in bottom part of the table
there exists an state s in top part of the table such that row(t) = row(s).
The observation table is consistent means for all state s; and s; in top part of the

table such that row(sy) = row(sz), for all a inialphabet A, row(s; ea) = row(s; «a).

The basic steps to build up the correct observation'table are:”

If the machine accepts the row Iabelj'.:aé’o‘hcatenated by the column label, a field in
the observation table is true. On the oth:'er hand, if the machine rejects the row label
concatenated by the coIiJmn I'abel, a field-in«the observation table is false. A
membership query with the concatenated string decides if a field is true or false.

The observation table is not closed, this means the transition contains a row at the
lower part of table is different from the state contains all rows at the top part of the
table. When this situation occurs, the row from the transitions’ part which is
different from the state contains all rows at the top part of the table added as a state
row and corresponding transition rows are added. For example, in Fig. 3.5 table (a)
is not closed since row(0) is different from row(A). So L* chooses to move the
string O to the top part of the table and then queries the strings 00 and 01 to build

new table.

10

A
0
1

00

01

-
o O

O — OO =

(@) (b)

Fig. 3.5 _Example of Non-closed Table

The observation table is nat_consistent, this_means two state rows are equal but
their corresponding transition rows are different. When this situation occurs, in
order to separate these two states, i.e;r_lw_g_,tr the two inconsistent states have different
results, Add an additional'column to tﬁg observation table and the label of the new
column is the label of an.already lexisting column label concatenate one letter from
the alphabet. For example,-in"Fig. 3.7, table T, is-inconsistent since the row(1) =
row(0), but row(A0) = row (00). In order to make the table consistent a new column
is added to the table, the label of the new column is A which is A concatenate A
from the alphabet, after that all free fields are queried.

If a counterexample is found, add the counterexample and its prefixes into the top
part of the observation table. Then add the corresponding transitions in the lower
part of table.

After the observation table is closed and consistent, we could use this table to build
a DFA by creating a state for every unique state row. Every state has a transition for

every possible letter from the alphabet. The transitions row, labeled equal to the

11

origins states label concatenated the transition’s letter, determines the destination

state. The destination state is the state with the same state row as the mentioned

transitions row.

Here runs a simple example for L* algorithm in order to show how the L* works
Initially, L* asks membership queries for the strings 4, 0, and 1. The initial observation
table T, is shown in Fig. 3.6. 0 means fail and 1 means pass. This observation table is
closed and consistent, so L* builds the hypothesis model A, shown in Fig. 3.6. We

could easily find the counterexample 00 labeled as false.

Fig. 3.6 Table T, and Hypothesis Model M
To process the counterexample 00, L* adds the strings 0 and 00 to top part of the
table, and queries the strings 000, 01, and 001 to construct the observation table T,
shown in Fig. 3.7. This observation table is closed but not consistent since row(4) =
row(0) but row(A40) = row (00).
Thus L* adds the string O to E, and queries the strings 0000, 010, 0010 and 10 to
construct observation table T3 shown in Fig. 3.8. This observation table is closed and

consistent, so L* builds the hypothesis model A2, shown in Fig. 3.8.

12

0
00
000
01
001
]

—_ O == I — =

Fig. 3.7 Table T,

00
000
01
001

—_ o — olo — —

1
0 1

= L O=0
1

0

|

Fig. 3.8 Table T3 and Hypothesis Model A1,

We could easily find the counterexample 11 labeled as false. L* responds to this
counterexample by adding the strings 1 and 11 to top part of the table then queries the
strings 100, 110, 111, 1100, and 1110 to construct the observation table T, in Fig. 3.9.
This table is found to be closed but not consistent, since row(A) = row(1) but row(41) =
row (11).

13

A 0

A] 1
0 | 0
00 0 0
1 1 1
1] 0 0
000 0 0
01 1 |
001 0 0
10 1 0
110 0 0
|11 0 0

Fig.39 Tabie Tyt
A 0

—_

—_—
—_— =~
—_— = /=

—_—

~— = = F
—_
—_— —

e

— e =
—_ T
—

Fig. 3.10 Table Ts and Hypothesis Model M3
Thus L* adds the string 1 to E and queries the strings 0001, 011, 0011, 101, 1101,
and 1111 to construct the observation table Ts in Fig. 3.10. This table is closed and
consistent, so L* builds the hypothesis model A3 shown in Fig. 3.10. And L* terminates

with hypothesis model M3 as its output.

14

3.4 Unified Modeling Language

Unified Modeling Language (UML) [15] proposed by Grady Booch, Ivar Jacobson,
and Jim Rumbaugh in 1996, is a specification language that is used in the software
engineering field to describe the behavior of the target system from an external point of
view. Now, the standard is managed, and was created by, the Object Management
Group (OMG). And the latest version is UML 2.2 which has 14 types of diagrams. We
will make use of use case diagram in this thesis.

Use case diagrams overview graphically the usage requirements (use cases) for a
system, actors, and any relationship between those use cases. This use case diagram can
only give the most basic view of a use‘case or‘a collection of use cases. So it can’t be
used to define the function.of use cases. Here are seme.the components of use case

diagram. \ A
=

® Actor in Fig. 3.11 is drawn.as a hun:{_z;;ln éhape graph and it means a participant in
the system, which maybe.a people, a s—ystem oriavirtual thing such as time etc.

Note that there is no interaction’among actors in the use case diagram.

Actor

Fig. 3.11 Actor
® Use case in Fig. 3.12 is drawn a horizontal oval and a sequence of actions

performed by system. It provides something of measurable value for actors.

Fig. 3.12 Use Case

15

® System box boundary in Fig. 3.13 is displayed as rectangle around the use cases

to indicate the scope of system.

System box boundary

Fig. 3:13 System-Box Boundary
® Include relationship in'Fig./3.14 between two use cases implies the behavior of the
included use case will be inserté;c‘l".jmofi_t'ﬁe behavior of the including one. It is

|| == |
drawn as a dash arrow froml| tiIugﬁmg use case to..included one, with label

= T i

«include». The function_is Iil%e; a rﬁaé-ro e;lx:_pansion in program. Note that the
included use case is always-required forr_the-:irncluding use case. It means the
included use case is not optional and must be executed. For example, you may not
need to login when browsing websites of the Youtube.

«include»

TN
Leavea \ o '

Fig. 3.14 Include Relationship

® Extend relationship in Fig. 3.15 between two use cases implies the behavior of the
extending use case may be insert into the behavior of the extended one. It is drawn
as a dash arrow from extending use case to extended one, with label «extend».

Note that the extended use case may be required for the including use case. It
16

means the extended use case is optional and may be executed. For example, you

must need to login when you want to upload a video in the Youtube.

Fig. 3.15 Extend Relationship
® Association relationship in Fig. 3.16 between actor and use case is represented as
solid line with an optional arrowhead which implies the direction of control flow. It

exists whenever an actor is participated in a behavior in the use case.

@

Fig.3.16 Asé'cj);iﬁ;ion Relationship

Guest

® If two use cases or two actors have ‘(-ﬂ'hlbmmon behaviars, we just need to describe
the common once and describe ar_lzy diffefencé in.another case or actor. For example,
In website of the Youtube, bdth Guest and Mé:mber can browse videos, but only
member can upload videos. So the meaning of generalization relationship in Fig.
3.17 between two use cases or between two actors is to present the situation
describe above. It is a solid line ending in a hollow triangle drawn from the

common to the customized use case.

Guest Member

Fig. 3.17 Generalization Relationship
In Fig. 3.18, we use the components mentioned above to describe a simple

message board. There are two actors, guest and member, in simple message board. Both
17

of them can browse the message, but only member can leave a message. You must login

when leave a message.

Simple message board

Guest

«include» .~

r'/
Leave a
N message

Member

-
e

18

Chapter 4 Software Testing with Multiple Learning

Classifiers

Since software testing is getting more time-consuming, how to reduce the cost is
becoming an important issue. Many solutions has be proposed, one of them is machine
learning. Here we use three machine learning algorithms to solve software testing

problems.

get trace *

training

sSUT

di
! \
/
! \
/
! \
A
! ,
/
! \
/
! \
/
! \
/
! \
/
! \
/
! \
/
.
", . e
-, Y,
) ", ! A
! A ™ ! M,
! Y s . ! M,
I 3 ., ! %
{ o | %
/J o .'\ %
/ N K
/ { X
! { N \
i ! -
T 3
R

Fig. 4.1 System Structure

19

4.1 The Usage of System Structure

Fig. 4.1 is the whole system structure we build. We make use of use case diagram
to overview the usage requirements. There are three main use cases in our system
structure. They are get traces, training and testing respectively. In the SUT, if we want to
do software testing, first we need to collect training traces and testing traces. This is the
usage of get traces. After we get traces, we need to select algorithm to train the model,
this is the usage of training and there are three algorithms for training. After training, we
need to test the accuracy of the model, this is the usage of testing and there are three

algorithms to chose as same as training.

4.2 Workflow of System Structure

Our research workflow can be dividé:g'{fgi‘n_m three parts according to the usages. The
first part is collecting the traces from SU'I; ?(_/hich Is shown:in Fig. 4.2. After that, there
should generate a trace file and;a dictionary which is corresponding to trace file. Then
we translate the trace file and corresponding dictionary to different input of machine
language. Due to different properties of machine learning algorithms, there are different
ways to do translation. The input of L* algorithm is similar to the trace we collect, so
we can translate it without feature extraction. The input of SVM and NN algorithms is a
vector which represents different features. So we need to do feature extraction to get the
input files of SVM and NN algorithms. After translation, we can get input files of
different machine learning algorithms. The input file is composed of training file and
testing file. And we generate a model by using training file to do training which is
shown in Fig. 4.3. Then use the model and testing file to do testing which is shown in

Fig. 4.4 to get result.

20

SUT

collect traces

v v

trace file dictionary
file

translate

v

extract feature
4 \ l

input file input file input file
of L* of SVM of NN

\/'/—\\1,

Training/Testing

Fig. 4.2 Workflow of System

21

training file training file training file

of L* of SVM of NN
L* training SVM training NN training
model model model
of L* of SVM of NN
Testing

Fig. 4.3 | Workftow of Training

testing file testing file testing file
of L* of SVM of NN

model model model
of L* of SVM of NN
V v V]VA v
L* testing SVM testing NN testing

SVM result NN result

Fig. 4.4 Workflow of Testing in Different Machine Learning Algorithms

22

4.3 Workflow of L* training

Remember that L* needs a teacher to answer membership query and equivalence
query we mentioned in Chapter 3.3. The teacher must be reliable, and usually there will
be something as a teacher. For example, the specification or result from actual system
execution. It is possible that there is an overhead while system execution or it is
possible for lack of specifications, so we choose SVM/NN which is already learned as
teacher of L*.

Fig. 4.5 is our workflow of L* training. First, L* algorithm will check whether the
observation table is closed and consistent: or'not. If the observation table is not closed
and consistent, in order to make the observation table closed and consistent, there is a
trace set which the table want to.know whether they are members or not, then L* will

set membership query to ask whether each.tracet in trace set is a member of the model.

aF
-

We let L* algorithm to check whether tré-cg_e -tr IS in the'training trace T collected while
system execution. If trace t is.in. training tféce T, L* will return the verdict which is
recorded in training trace T. Then-we end up this membership query. If trace t is not in
trace T, we make L* algorithm ask SVM/NN whether it is pass or not. If it is pass, L*
will return pass and add trace t to its knowledge as pass, if it is fail, L* algorithm will
return fail and add trace t to its knowledge as fail. If the observation table is closed and
consistent, then we will set equivalence query to check whether the hypothesis model A/
is equal to system model M. Our method which is used for deciding the equivalence
between M and M is checking whether the hypothesis model A could predict all traces
in T correctly. If it could not predict all traces in T correctly, then we pick the trace
which is predicted wrongly by M as counterexample and continues the L* learning.

Otherwise, we terminate the L* training and return the hypothesis model M.

23

training
trace T

> L* learning [€

table is closed
and consist?

equivalence query membership query

return counter-
example

predict all traces
in T correctly?

YEs return
verdict

ask SVM/NN to
generate prediciton

yes

add t to knowledge
as pass and return

add t to knowledge
as fail and return

Fig. 4.5 Flowchart of L* algorithm

24

4.4 Multiple Learning Classifiers

[10] categorizes current different multi-classifier systems into three categories:
Cascading, Parallel and Hierarchical. We use parallel classifiers in this thesis. The
structure for parallel classifiers is shown in Fig. 4.6. This is the most common
methodology used in multi-classifier systems. First, we operate all of the classifiers in
parallel with the input data to get the corresponding prediction data. Then the results are
obtained by using combinatorial function with those prediction data. Because all of the
classifiers need to be executed to obtain the corresponding prediction data, this

methodology incurs an overhead as it is time-consuming.

input II
data

A 4 A 4 ’L

classifier; classifier, classifier,

ene l
h 4 A 4

prediction prediction prediction
data data data

l

combinatorial
function

h 4

result

Fig. 4.6 Structure of Parallel Classifiers

25

The combinatorial function affects the result heavily. If we design a good
combinatorial function, the system can reach better performance. However, an
unsuitable combinatorial function may lead the system to generate poor performance.
We present four combinatorial functions in the thesis. They are maximum, summation,
weighted summation, and product.

Maximum is the simplest implementation of combinatorial functions. the
prediction data of classifier with the highest accuracy is chosen as the output result of
the system. If the prediction data of the classifiers are denoted by Ci(x), where i =
1, ... ,r, then the output of the maximum combinatorial function is provided in formula

(4.1).
funr (EMRX(C, (VB (X)} @.1)

Summation uses the summation .operation, to generate the result by adding the

S
prediction data of all classifierin the system. The output of the summation function is

defined in formula (4.2).

Fsum (X) - Z:‘Ci (X) (4.2)

Weighted summation is an advanced version of the summation. For each classifier
Ci, it is assigned a weight w; and the weight value can be varied. First, the weighted
summation let the prediction data of each classifier C; multiply its assigned weight w;

and then sum up all the obtained value. The function is described as formula (4.3).
fu_som (X)=D_C; (X)w, (4.3)
i=1

We can see the formula (4.1) and (4.2) are special cases in formula (4.3). If we
have the weight w; = 1, for classifier C; which has the highest accuracy in formula (4.3),
then we could get the same result as formula (4.1). If we have the weight w; = 1, for all i

26

= 1,...,1, then we get the same result as formula (4.2).
Product is similar to the summation, it multiples the values instead of summing up
the prediction data of each classifiers. The product function is presented in formula

(4.4).

foron (X) = I:ICi (x) (4.4)

27

Chapter 5 Implementation

In this chapter, we describe the details about the implementation of our software
testing with multiple learning classifiers. Our program is written in C and C++, so in
this chapter, programs start in C or C++ fashion.

This work is implemented with off-the-shelf SVM library libsvm [14], NN library
FANN [17], and L* library libalf [18]. Basically, these libraries provide complete
functions about training and testing. All we need to do is modifying the function to fit

our system framework.

5.1 How to Collect Trace

Because we are interested in|the ;’:__'s-t'iﬁucture of system, we want to know the
relationship of procedures in-system. To get:?this goal, we use two functions from InTOL
and insert them into the program. These two functions will help us to collect trace when
system runs. They are:
® InTOL_set_event(char event_type, const char* event);
® InTOL_assert(bool cond);

The fuction InTOL_set_event has two parameters. Their types are char and const
char*. First parameter is event type, and there are two kinds of event type. They are
input event and output event respectively. The other one is event which labels what
event occurs, so the function INTOL_set_event records what kind of event happened.
The function InTOL_assert has one parameter, and it is a bool type parameter which

represents the rule the system must to obey. Once the program goes against the rule, the

output trace must be failure. The test trace we collect is a sequence of events. In fact,

28

InTOL assert

fail

pass

oracle

)
)

pass

Fig. 5.1 Flowchart of Deciding Failure

29

there is no bound to the lengths of the test traces. However L* learning time is related to
the number of event and the length of test trace. The more number of event you use, the

more time of L* training you cost.

5.2 How to Decide Failure

Fig. 5.1 shows the collected trace will be fail in two conditions. First, when
function InTOL_assert returns fail message, the trace must be fail. For example, when
system bumps into the function INnTOL_assert, the function INnTOL_assert says variable
a must equals to 1, but the variable a is;2 in practice. Second, the function INTOL_assert
returns pass, but output of oracle is fail,“and then'it will be failure. The trace will be pass

except these two conditions.

e

5.3 How to Insert Ftmction 1

How to insert function?:it depends on what purpose-you need. For example, if we
want to know the whole structure of system andthe relationship of functions, we could
insert code into every procedure. If we want'to know the most important procedure or
the procedure from revision recently, we could insert more functions to the procedure
which we focus on than others. There is an example of insert function shown in Fig. 5.2.
The three fragments of example are from same program. There are some processes
working in the program. The total number of processes is recorded in global variable
num_process. When system executes case FLUSH in line 383. The function
finish_all_processes will be called, and then it will call fuction finish_process to do their
job in linel62 for every process. After job done, the process must be free, and the global

variable num_process will be decreased by 1. After these steps, the global variable

30

num_process sould be 0, and we insert function InTOL_assert with the condition

num_process equals 0 to check the relationship is correct.

void
171 finish _all processes()
172 B8
173 InTOL set event('i',"finish all processes"):
int i;
int total;
(a) 17¢€ total = num_processes;
7 for (i=0; i<total; i++)
finish process();
}
158 void

finish process()
B {

161 InTOL set event('i',"finish process");

162 schedule() ;

163 if (cur proc)
®) 164 8
165 fprintf(stdout, "%d ", cur_proc->val);
166 free_ele(cur_proc) ;
167 num processes--;

68 }
169

case FLUSH:
384 finish all processes();
() 385 InTOL assert (num processes==0) ;
386 break;

Fig. 5.2 Fragment of Code

5.4 Feature Selection

After collect the trace from the method we mentioned above, we need to transfer
these traces into the input type of SVM and NN. How to transfer is also an important

issue. This issue is called feature selection. The machine learning algorithm could do

31

better performance with a good feature selection. Here we use five feature sets Xo, X,
Xz, X3, and X4. Then we concatenate them as an input vector. These five feature sets are

explained in the following.

541 X,

Xo Is a structure which records the last W events of trace, i.e. the X, records events
from the tail of trace to the head of trace up to W. The W is a window size which means
the biggest capacity that X, could record. For example, given Xo = {Xo, X1, .. , X4}, and
the event index of a, b, ¢, d, and e in dictionary are index(a) = 1, index(b) = 2, index(c)
= 3, index(d) = 4, and index(e) = 5. If window size W =4 and there is an trace t = abcde,
then xo = index(e) = 5, x; = index(d) = 4, x3 = index(e). = 3, and x4 = index(b) = 2.

e
Y

542 Xy

fl

Given the event set E, a}nd there is ar—trace t which. is composed of a sequence
events, each event belongs to E.“For every event.e; and e; in E, there exists a function
F(e1, e2) which means the number of ey occurrences without any e, event from the end
of a trace t. i.e. the number of event e; since the last event e,. For example, given a trace

t = abbcccaabc, F(c,a) =1, F(b,a) =1, and F(a, ¢) = 0.

543 X,

Given the event set E, and there is a trace t which is composed of a sequence
events, each event belongs to E. For every event e; and e; in E, there exists a function
F(e1, €2) which means the max number of e; occurrences without any e; event in a trace

t. i.e. the max number of event e; before the event e,. For example, given a trace t =

32

abbcccaabc, F(c,a) = 3, F(b,a) = 2, and F(a,c) = 2.

544 X

Given the event set E, and there is a trace t which is composed of a sequence
events, each event belongs to E. If there is an event e in t, then |e| means the number of
event e in trace t. For every event e; and e, in E, there exists a function F(ey, e2) which
means the number of e; occurrences minus the number of e, occurrences in a trace t. i.e.
les| - |e2|. For example, given a trace t = abbcccaabc, F(c,a) =1, F(b,a) =0, and F(a,c) =

-1.

545 X4

Given the event set E, and there-is.a trace it which irs composed of a sequence
events, each event belongs to ExFor ever.j‘/_;:/ent e; and e; in E, there exists a function
F(es, e2) to check whether it is:satisfi_ed With:'i” of the folowing three conditions or not:
® For every e; event occurrencein trace t, there must (transitively) follow an e, event

occurrence.
® [or every e; event occurrence in trace t, there must be (transitively) followed by an

e; event occurrence.

® There must be an e, event occurrence between two e; event occurrences.

For example, if trace t = abcaabc, F(b, c) is true and F(a, b) is false.

33

Chapter 6 Experiment

We use the two benchmarks (SUT) which are TCAS with bug version 10 and 28
and benchmark schedule with bug version 3 in SIR [16] to demonstrate our technique.
We present the experimental studies of different training data sizes with five different
classifiers which are L* with teacher SVM, L* with teacher NN, SVM, SVM trained
with optimal parameters and NN. The performance of constructed test oracle is
measured with prediction accuracy and time cost. The prediction accuracy is the
percentage of correctly labeled test cases of a testing data set with the constructed test
oracle. The time cost is the used. time to train the test oracle and testing data. The
experimental data are collected -on Intel(R)-Core(TM).i7 CPU 860@ 2.8GHz with 2G
RAM, running on Ubuntu 9.10.

To objectively demonstrate the effecyggf different training data size, we have the
prediction accuracy to test with artesting Aa_tar set of 200 test.cases. Each experiment is
run for 10 times and the average performance; data is recarded. And has time limit which
is 30 minutes. Because the wayt0 build model ofr L* with teacher NN or SVM s
different from the way to build model"of NN and SVM. Their prediction accuracy is
totally different when it is time out. That is, L* would generate hypothesis model during
training. If it is time out, we could still use the hypothesis model to do prediction. So the
prediction accuracy of L* would not be 0. However the model of NN and SVM is
generated after training, if it is time out, there is no model for testing. The prediction

accuracy will be 0.

6.1 Experiment Setting

Following are the settings of each algorithm mechanism we use in this experiment:

34

1. NN: Here we use multiple layer structure. The number of neutron in input layer is
as same as the element number in vector. The number of hidden layer is 3 and each
hidden layer has 3 neurons. Because we just need to know the output is pass or fail,
the number of neutron in output layer is 1.

2. SVM: the kernel we use is radial basis function (RBF) with no parameters.

3. SVM with optimal parameter: the kernel we use is radial basis function (RBF).
And use the procedure which is provided by libsvm to find suitable parameters.

4. L* with teacher NN: Here we use the NN model from 1 to be the teacher of L*.

5. L* with teacher SVM: Here we use the SVM model from 3 to be the teacher of L*.

6.2 Results of Each Classifier

Following we list the result of exper@ments in table type. The first column of table
is the size of training data set, the second oirilrels predietion accuracy, and the last one is
average execution time.

The experiments of benchmark TCAS is from Table 6.1 to Table 6.5. We could find
several things.
® When the size of training data set increases, the prediction accuracy will also

increase. However there is an exception in Table 6.4, we could find the time cost in

experiment of size 200 and 1000 is time out. This means the leaning is not

complete, so it could not promote accuracy to 100%. We believe it may be 100%

while increase time limit.
® |t will cost much time with increment of size, except for L* algorithm. We think it

may be because L* builds hypothesis model M according to the teacher. Here we

use NN or SVM as the teacher of L*. The model construction of SVM and NN is

35

depends on the training data. If data size is too small, the information would be not
enough. If data size is too big, there would be redundant information in the data set.
It would build different size of model, although the benchmark is same and the
time is relative to the size and complexity of model.

The experiment time of SVM with optimal parameter is much higher than that
without optimal parameter, because it costs the most part of time to find parameter.
SVM seems more suitable to be the teacher of L* than NN, because the accuracy

of SVM is higher than accuracy of NN.

size of training data set prediction accuracy Time

200 98.8% 0.168s
400 98.8% 0.262s
600 99.2% 0.310s
800 99.4% 0.389s
1000 100% 0.413s

Table.6:1 TCAS Experiment of NN

size of training data set prediction accuracy Time

200 94% 0.109s
400 94% 0.156s
600 100% 0.284s
800 100% 0.293s
1000 100% 0.301s

Table 6.2 TCAS Experiment of SVM

36

size of training data set prediction accuracy Time

200 100% 6.102s
400 100% 6.327s
600 100% 17.831s
800 100% 26.350s
1000 100% 35.218s

Table 6.3 TCAS Experiment of SVM with Optimal Parameter

size of training data set prediction accuracy Time

200 94% Time out
400 100% 63.776s
600 100% 18.891s
800 100% 1239.611s
1000 92% Time out

Table 6.4 TCAS Experiment of L* with Teacher NN

size of training data set prediction accuracy Time

200 100% 113.651s
400 100% 77.231s
600 100% 1392.952s
800 100% 110.710s
1000 100% 261.330

Table 6.5 TCAS Experiment of L* with Teacher SVM

37

The experiments of benchmark schedule are from Table 6.6 to Table 6.10. We

could find several things.

When the size of training data set increases, the prediction accuracy will almost
increase in Table 6.6, Table 6.7 and Table 6.8 except for the size 1000. The data in
size 1000 may be more discrete than the other and does not have strong connection
with testing data. Moreover it will cost much time with increment of size as same
as experiments of benchmark TCAS.

The accuracy in Table 6.6, Table 6.7 and Table 6.8 is lower than same strategy used
in TCAS. It may be because the schedule is more complex than TCAS and do not
collect enough information.

In Table 6.9 and Table 6.10, the cost time IS time-.out in every experiment. For the
higher prediction accuracy, we thinkit may be because the schedule program is so
complex that we do nét give enoughtt:i;fﬁe to|let it to learn. For the lower prediction
accuracy, we think it may be because t-:he teacher NN*and SVM do not get enough
prediction accuracy such that it:could not.give-a.correct answer.

The experiment time of SVM with optimal parameter is much higher than that
without optimal parameter, and the reason is as same as experiment in TCAS.

Here we can't figure out which one is suitable to be the teacher of L* because of
the low prediction accuracy. Due to the result of experiments in TCAS, we still
believe SVM is more suitable the NN if there are high prediction accuracy and
enough time to learn.

We could find out that L* costs much time than the other learning algorithm from

Table 6.4, Table 6.5, Table 6.9, and Table 6.10. It may be because it needs a lot queries

to build the model and wait for teacher's respond. Because of many reasons we

mentioned above, we think L* is not suitable for such a complex system.

38

size of training data set prediction accuracy Time

200 88.6% 1.137s
400 89.6% 2.541s
600 90.95% 3.862s
800 91.05% 4.839s
1000 90.4% 5.694s

Table 6.6 Schedule Experiment of NN

size of training data set prediction accuracy Time

200 89.6% 0.207s
400 88.5% 0.440s
600 89.5% 0.772s
800 89% 1.063s
1000 90% 1.517s

Table 6.7 Schedule Experiment of SVM

size of training data set prediction accuracy Time

200 90.5% 17.082s
400 92% 48.567s
600 94% 98.898s
800 94% 164.815s
1000 91.5% 248.747s

Table 6.8 Schedule Experiment of SVM with Optimal Parameter

39

size of training data set prediction accuracy Time

200 82% Time out
400 88.8% Time out
600 23% Time out
800 80.5% Time out
1000 61.5% Time out

Table 6.9 Schedule Experiment of L* with Teacher NN

size of training data set prediction accuracy Time

200 41% Time out
400 89% Time out
600 33.5% Time out
800 88.5% Time out
1000 43.5% Time out

Table 6.10 Schedule Experiment of L* with Teacher SVM

6.3 Results of Multiple Classifiers

Following we list the result of experiments in table type. The first column of table
is the size of training data set, and columns which are from the second one to the fifth
one are prediction accuracy of combinatorial functions mentioned in Chapter 4.4. Table
6.11 is the TCAS experiment which uses multiple classifiers. The weight values are
obtained according to the accuracy of each classifier. We could easily find out that

multi-classifier methodologies reach a better performance except the product. Obviously,

40

the product function is an unsuitable combinatorial function, and it affects the
performance very much.

Table 6.12 is the schedule experiment which uses multiple classifiers. We could
find out that the weighted summation function performs better than other combinatorial
functions and the SVM with optimal parameter.

Although, we could get a better result by using weighted summation function, it is
time-consuming. The total cost time of combinatorial function is approximately equal to

sum up the time of each classifier.

Combinatorial
function Weighted

size of trainin Maximum - Summation summation product

data set
200 100% 100% 100% 66.5%
400 100% 100% 100% 91%
600 100% 100% 100% 28.5%
800 100% 100% 100% 28.5%
1000 100% 100% 100% 28.5%

Table 6.11 TCAS‘Experiment of Multiple Classifiers

Combinatorial

size of traini function Maximum summation s\lj\r/ﬁin%z:?:n product

data set
200 90.5% 90% 91.5% 39%
400 92% 89% 92% 88.5%
600 94% 91% 94% 63%
800 94% 93.5% 94% 77.5%
1000 91.5% 92% 92% 56%

Table 6.12 Schedule Experiment of Multiple Classifiers

41

Chapter 7 Conclusion and Future Work

In this thesis, we present a comparison among different machine learning
algorithms and find out a better result by using combinatorial function. We also find out
that L* may not suitable for big program and we think it is more suitable in unit testing.
The performance is good when doing software testing in small program. We
successfully combine different algorithms such as L* with teacher SVM and L* with
teacher NN to build fault model and do prediction. We build the framework of using
different machine algorithms to the software testing-at the same time.

In the future, we may improyve the performance of.our work by finding a better way
to decide the weight of weighted summation or ‘by cellecting more machine learning
algorithm to do software testing or bytgﬁz{ipg the parameter such as the number of
neuron and the number of layersin hidd;ﬂ_ Iéyer intNIN .or. by selecting more useful
feature selection. It is possible‘to‘use the mo—del which' is‘constructed by L* to do some
model checking, and it is also-possible to use L* in' unit testing to get a great

performance.

42

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

I. Guyon and A. Elisseeff, "An introduction to variable and feature selection”, J.
Mach. Learn. Res. 3, pp. 1157-1182.

F. Wang, J.H. Wu, C.H. Huang, and K.H. Chang, "Evolving a test oracle in
black-box testing”, in Fundamental Approaches to Software Engineering, pp.
310-325, 2011.

J.F. Bowring, J.M. Rehg, and M.J. Harrold, "Active learning for automatic
classification of software behavior”, in JInternational Symposium on Software
Testing and Analysis, pp 195205, 2004-

M.D. Ernst, J Cockrell;;W.G."Griswold, and'D."Notkin, “Dynamically discovering
likely program invariants to support:ggrggram evolution”, in IEEE Transactions of
Software Engineering, Vol. 27, No. 2,.-2_061.

N. Baskiotis, M. Sebag, M.C\ Gaude—l, and| Si" Gouraud, "A machine learning
approach for statistical software testing", in Prbc. International Joint Conference
on Artificial Intelligence, 2007.

C. Cortes and V. Vapnik. "Support-vector networks", in Machine Learning, Vol. 20,
pp. 273-297, 1995.

M. T. Hagan, H. B. Demuth, and M. Beale, "Neural Network Design", Boston:
PWS Publishing Co., 1996.

D. Angluin, "Queries and concept learning", in Machine Learning, 2, pp. 319-342,
1988.

T.G. Dieterich, "Machine-learning research: Four current direction”, The Al

Magazine 18(4), pp. 97-136, 1998.

43

[10] Y. Lu, "Knowledge integration in a multiple classifier system"”, Appl. Intell. 6(2),
pp. 75-86, 1996.

[11] L. Lam, "Classifier combinations: Implementations and theoretical issues”, In MCS
2000: Proceedings of the First International Workshop on Multiple Classifier
Systems, Springer-Verlag, London, UK, pp. 77-86, 2000

[12] A.M. de P Canuto, "Combining neural networks and fuzzy logic for applications in
character recognization”, PHD thesis, University of Kent, 2001.

[13] Y.-C. F. Wang and D. Casasent, "A hierarchical classifier using new support vector
machine”, in ICDAR, IEEE Computer Society, pp. 851-855, 2005.

[14] C.C. Chang and C.J. Ling"LIBSVM : alibrary for support vector machines”. In
ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

Software available at http://www.csie.ntu.edustw/~cjlin/libsym

e

[15] M. Fowler, and K. Scott, "UML distilled: Applying the standard object modeling
language™, New York: AddisonWesley:Longman, 1997
[16] G. Rothermel, S. Elbaum, AKinneer and.H. Do, "Software-artifact infrastructure

repository”, at http://sir.unl.edu/portal, 2006.

[17] S. Nissen, "Implementation of a fast artificial neural network library (fann)”,
Department of Computer Science University of Copenhagen (DIKU), Tech. Rep.

2003. Note http://fann.sf.net.

[18] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,
David R. Piegdon, "Libalf: the automata learning framework", in Proceedings of

CAV'2010. pp.360~364.

44

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://sir.unl.edu/portal
http://fann.sf.net/

