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中文摘要  

 

 測試在開發軟體的過程中佔了非常重要的一環，但是隨著時代的進步，硬體

發展快速，軟體也隨之成長，傳統的純粹依賴人力來做軟體測試也越來越花時間，

取而代之的是，結合機器學習來做軟體測試。 

 在本篇文章中，我們提供了一個結合支持向量機、類神經網路與 L*等機器學

習演算法的多重分類器結構，這個結構主要分成三個部分：第一部分是提供使用

者一些函式，藉由將這些函式安插在程式中，讓使用者可以收集程式執行時的資

訊，當然這些資訊也可以由使用者自己提供；第二部分是將第一部分收集來的資

訊，分成訓練資料以及學習資料。其中，訓練資料用來建立模型而測試資料用來

測試模型的準確性。最後，我們把這些模型產生的結果利用一些組合函式產生出

更好的結果。 

 我們主要研究如何在沒有規格的情況下，使用這些機器學習技術來正確產生

程式的測試準則，並在文章最後以兩個網路上的共享資源程式來做實驗，比較不

同機器學習演算法以及使用組合函式之後的準確性。 

 關鍵字：軟體測試，機器學習，多重分類器，支援向量機，類神經網路，L*，

測試準則 
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ABSTRACT 

 

 Testing is an essential process of software development. Along with the progress of 

scientific and technological development of hardware, software systems become larger 

and larger. It is time consuming to do software testing with manpower traditionally. 

Using machine learning in place of labor efforts is getting more and more attractive. 

 In this thesis, we present a multiple-classifier structure of software testing with 

machine learning algorithms including support vector machine (SVM), neural network 

(NN) and L*. The structure is composed of three phases. In the first phase, the structure 

uses some functions which can insert into user programs to collect useful information as 

our input data during program executions. Those input data, of course, could also be 

provided by users. In the second phase, we separate the input data into training data and 

testing data. The training data is used for building models and the testing data is for 

testing the models we build. The last phase is that we combine the results of models to 

generate a better result by using combinatorial functions. 

 We investigate how to use machine learning techniques to automatically construct 

test oracles for programs without reliance on explicit specifications, and experiment 

with two open-source benchmarks to compare the accuracy of different learning 

algorithms and the accuracy after using combinatorial functions in the end. 

 Keyword: software testing, machine learning, multiple classifier, SVM, NN, L*, 

test oracle 
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Chapter 1 Introduction 

 

 Machine learning, a subfield of artificial intelligence, is an active research field in 

Computer Science. It is concerned with design and development of algorithms and 

statistical data. The algorithms allow computers evolving these behaviors based on 

statistical data; that is, extracting the part we are interested in from the past data or 

experience as training data (or feature selections [1]), building a model and defining 

different parameters. Then let model execute as programs, and use a useful algorithm to 

tune the parameters based on those training data. After learning is done, we could use 

this model to do some predication. 

 The training data are composed by input and output values. We could divide the 

learning process into regression analyses and classification according to the output 

value. The output of regression analyses is a continuous value. For example, predicting 

the number of stock index in the future is a kind of regression analyses. The output of 

classification is a lot of numbers of integers such as {-1, 1}. For example, predicting the 

score is pass or fail. 

 

1.1 Motivation 

 Since the cost of software testing has escalated because of the increasing 

complexity of current systems, how to reduce the cost is an important issue. There are a 

lot of methods proposed to solve this problem. One of them is machine learning. There 

have been several researches to solve the software testing by using machine learning 

algorithms. [2] uses support vector machine to generate a test oracle in black-box testing. 

[3] uses the technique bootstrapping in machine learning to promote the prediction 
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accuracy of the model they build. [4] provides a better input to software testing by using 

machine learning. [5] uses EXIST (Exploration eXploitation Inference for Software 

Testing) which is developed by EDA (Estimation of Distribution Algorithm) and online 

learning to maximize the number of distinct feasible paths of the process. There are 

many machine learning algorithms which could be used in different kind of software 

testing. However we don't know what is the best choice for a certain kind of software 

testing. We build a framework which contains several machine learning algorithms and 

compare their performance in software testing in order to find the most suitable machine 

learning algorithm for a certain kind of software testing. 

 

1.2 Research Goal 

 We want to find an efficient way to reduce the cost of software testing by applying 

efficient machine learning algorithms, and combine them to generate a better result. To 

do this we propose a multiple-classifier structure of software testing with machine 

learning algorithms, such as support vector machine (SVM) [6], neural network (NN) 

[7], and L* algorithm [8]. We separate our input data into two sets: a training set and a 

testing set. The training set is used by the machine learning algorithms to generate the 

models as our classifiers to predict unknown input data. The testing set is used to test 

the performance of the classifiers. The training data and testing data are gathered from 

public resources.  

 

1.3 Contribution 

 The main contribution is constructing a simple framework which contains three 

machine learning algorithms as classifiers. We make it easy to use, and compare 
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performance of each machine learning algorithm. Then we combine the result of each 

classifier to generate a new result by using some combinatorial functions. We could find 

out that the prediction accuracy of combinatorial function is better than the result of 

single classifier. 

 Without specifications, SVM and NN could use input and output values to do 

software testing. However, L* would ask some problems that need a teacher to tell the 

answers. In the past, the answer is got through the execution of SUT or the specification 

of SUT. Since there is an overhead in execution of SUTs, and no specification of SUT, 

we propose a flowchart instead. The flowchart uses SVM/NN as the teacher of L* 

algorithm to get fault models. Since we do not have the visualization of SVM/NN 

model, we use the visualization of fault models as the visualization of SVM/NN models. 

Therefore, the other contribution is that we design the flowchart of L* training to build 

the fault model and do software testing. 

 

1.4 Thesis Framework 

 The remainder of this thesis is organized as follows: Chapter 2 reviews the related 

work on multiple-classifier systems. Chapter 3 we give the background knowledge of 

support vector machine (SVM), neural network (NN), L* algorithm and unified 

modeling language. Chapter 4 describes the structure of software testing with multiple 

learning classifiers. Chapter 5 presents the details of the structure implementation. 

Chapter 6 shows the experimental result with two open-source programs. Chapter 7 

gives conclusion and some directions of future work. 
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Chapter 2 Related Work 

 

 Multiple-classifier system is getting more and more popular due to their ability to 

combine the output of each classifier into a better result [9]. At present, there are many 

researches about how to design the multiple-classifier system. A successful design of 

multiple-classifier system is related to structure and combinatorial methodology. 

 [10] classifies current different structures of multi-classifier systems into three 

types. They are cascading, parallel, and hierarchical. In the cascading classifier, the 

result of a classifier is used as the input of the next classifier. In the parallel classifier, all 

of the classifiers are executed in parallel, and then the results of classifiers are used to 

obtain a new result by using combinatorial function. Hierarchical classifiers are a 

combination of cascading classifier and parallel classifier. 

 [11] classifies different structures of multi-classifier systems in more detail. They 

are conditional, hierarchical, hybrid, and multiple (parallel) topologies. Conditional 

topology first selects the result from any classifier as the final result. If the result is not 

correct, another classifier is selected. All the selection is random. Hierarchical topology 

is similar to conditional one. The only difference is the selection has priority. Hybrid 

topology selects the best result of classifiers as the final result. Parallel topology is as 

same as the parallel classifier in [10]. 

 [12] classifies current combinatorial methodologies into four types. The first type 

is linear combination method. It uses linear functions such as summation and product to 

do combination. The second type is non-linear combination method. It uses rank based 

classifiers to generate final result such as majority voting. Majority voting selects the 

classifier which gets the highest vote to generate final result. The third type is statistical. 
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It uses some probabilistic functions such as Bayes rule. The last one is computationally 

intelligent. It uses machine learning algorithm such as genetic algorithms for 

combination. 

 All the outputs of the multiple classifier mechanisms we described above are 

continuous numbers, but we use discrete numbers in our experiment. Because we create 

the test oracle about the pass and fail problem, the output number we define here is only 

-1 and 1. The mechanisms we described above may not suitable for our experiment, so 

we do a little modification to fit our experiment. 
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Chapter 3 Background 

 

3.1 Support Vector Machine 

 Support vector machine (SVM) proposed by Vapnik and Corinna Cortes in 1995 

[6], is a kind of learning method which is widely used in solving the problem of 

classification or regression. The basic idea is given a group of data in a high- or 

infinite-dimensional space R
d
, where d  N. finding a hyper-plane to separate those data 

into two parts. After that, if there is a new data, SVM could map it into the same space 

and predict which category it belongs to based on which side of the hyper-plain it falls 

on. 

 For example, there are people’s profiles, and we want to know which party he 

belongs to. We pick the place as our training data and transfer it into longitude and 

latitude such as the graph show in Fig. 3.1. Then we use SVM to find a line which 

divides the map into two sides like the graph shown in Fig. 3.2. Suppose left hand side 

is the Democratic Party and the other side is the Republican Party. After training, we 

can use the model generated by SVM to predicate result. Suppose there is a new profile, 

then we could locate the place in the map. If it locates at left hand side, then we predict 

that he belongs to the Democratic Party. Otherwise he belongs to the Republican Party. 

The graphs in Fig. 3.1 and Fig. 3.2 are drawn by the tool provided by C.C. Chang [14]. 

 Because SVM finds the hyper-plane which has the maximum margin of input data 

in different categories, it builds only one solution and is a global optimal solution. The 

margin is defined by the sum of the shortest distances from the closest input data in 

different category to the hyper-plane. 

 If you want to know more about SVM we refer you to [6], [13] for more details. 
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Fig. 3.1 Before Training 

 

Fig. 3.2 After Training 
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3.2 Artificial Neural Network 

 Artificial neural network [7] is a kind of statistical learning method which is 

connected by artificial neurons. The model imitates the behavior of neuron network of 

organism in Nature. Each neuron represents a specific function called activation 

function and each transition between two neurons has a weight on it. The output of node 

depends on the activity function and weight. Fig. 3.3 is an example of graphical neuron. 

It has a set of input data I and a combine function c to merge those input data with a set 

of weights W corresponded to input I and bias b as the input of activity function F. Then 

it generates a specific output O. 

 Most neuron network algorithms constitute their learning structure as three layers. 

They are an input layer, one or more hidden layers and an output layer. Fig. 3.4 is the 

layer structure composed by neurons. Note that the node number of each layer may not 

be equivalence. 

 

Fig. 3.3 Neuron 
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Fig. 3.4 Neuron Network of Multiple Layers  

 

3.3 L* Algorithm 

 In 1987, Dana Angluin proposed an algorithm, L* [8], to learn from queries and 

counterexample. There are two different kinds of queries called membership query and 

equivalence query, and there is a teacher to answer these two queries. On a membership 

query, the algorithm would ask the teacher whether the string s is accepted or not. On an 

equivalence query, the algorithm would ask the teacher if the hypothesis model    which 

we construct is equivalence to the model M which we want to learn. If the answer is no, 

the teacher would return a counterexample. The learning structure is stored by 

observation table.  

 The row of observation table can be divided into two sections. One of the sections 



 

 10 

is the state section S and this part locates at the upper part of table, and every unique 

row of the upper part of the table represents a state from the DFA. The other part is 

transitions’ section S  A, and this part locates at lower part of the table which defines 

the transitions of the DFA. A state machine can be constructed according to an 

observation table. The table’s columns are labeled by experiments E for distinguishing 

states-rows. The observation table must satisfy two conditions. They are closed and 

consistent. 

 The observation table is closed means for all transition t in bottom part of the table 

there exists an state s in top part of the table such that row(t) = row(s). 

 The observation table is consistent means for all state s1 and s2 in top part of the 

table such that row(s1) = row(s2), for all a in alphabet A, row(s1  a) = row(s2  a).  

The basic steps to build up the correct observation table are: 

 If the machine accepts the row label concatenated by the column label, a field in 

the observation table is true. On the other hand, if the machine rejects the row label 

concatenated by the column label, a field in the observation table is false. A 

membership query with the concatenated string decides if a field is true or false. 

 The observation table is not closed, this means the transition contains a row at the 

lower part of table is different from the state contains all rows at the top part of the 

table. When this situation occurs, the row from the transitions’ part which is 

different from the state contains all rows at the top part of the table added as a state 

row and corresponding transition rows are added. For example, in Fig. 3.5 table (a) 

is not closed since row(0) is different from row(). So L* chooses to move the 

string 0 to the top part of the table and then queries the strings 00 and 01 to build 

new table. 
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Fig. 3.5 Example of Non-closed Table 

 The observation table is not consistent, this means two state rows are equal but 

their corresponding transition rows are different. When this situation occurs, in 

order to separate these two states, i.e. let the two inconsistent states have different 

results, Add an additional column to the observation table and the label of the new 

column is the label of an already existing column label concatenate one letter from 

the alphabet. For example, in Fig. 3.7, table T2 is inconsistent since the row() = 

row(0), but row(0)  row (00). In order to make the table consistent a new column 

is added to the table, the label of the new column is A which is  concatenate A 

from the alphabet, after that all free fields are queried.  

 If a counterexample is found, add the counterexample and its prefixes into the top 

part of the observation table. Then add the corresponding transitions in the lower 

part of table. 

 After the observation table is closed and consistent, we could use this table to build 

a DFA by creating a state for every unique state row. Every state has a transition for 

every possible letter from the alphabet. The transitions row, labeled equal to the 
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origins states label concatenated the transition’s letter, determines the destination 

state. The destination state is the state with the same state row as the mentioned 

transitions row. 

 Here runs a simple example for L* algorithm in order to show how the L* works 

Initially, L* asks membership queries for the strings , 0, and 1. The initial observation 

table T1 is shown in Fig. 3.6. 0 means fail and 1 means pass. This observation table is 

closed and consistent, so L* builds the hypothesis model   1 shown in Fig. 3.6. We 

could easily find the counterexample 00 labeled as false. 

 

Fig. 3.6 Table T1 and Hypothesis Model   1 

 To process the counterexample 00, L* adds the strings 0 and 00 to top part of the 

table, and queries the strings 000, 01, and 001 to construct the observation table T2 

shown in Fig. 3.7. This observation table is closed but not consistent since row() = 

row(0) but row(0)  row (00). 

 Thus L* adds the string 0 to E, and queries the strings 0000, 010, 0010 and 10 to 

construct observation table T3 shown in Fig. 3.8. This observation table is closed and 

consistent, so L* builds the hypothesis model   2 shown in Fig. 3.8. 

 



 

 13 

 

Fig. 3.7 Table T2 

 

Fig. 3.8 Table T3 and Hypothesis Model   2 

 We could easily find the counterexample 11 labeled as false. L* responds to this 

counterexample by adding the strings 1 and 11 to top part of the table then queries the 

strings 100, 110, 111, 1100, and 1110 to construct the observation table T4 in Fig. 3.9. 

This table is found to be closed but not consistent, since row() = row(1) but row(1)  

row (11). 
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Fig. 3.9 Table T4 

 

Fig. 3.10 Table T5 and Hypothesis Model   3 

 Thus L* adds the string 1 to E and queries the strings 0001, 011, 0011, 101, 1101, 

and 1111 to construct the observation table T5 in Fig. 3.10. This table is closed and 

consistent, so L* builds the hypothesis model   3 shown in Fig. 3.10. And L* terminates 

with hypothesis model   3 as its output. 
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3.4 Unified Modeling Language 

 Unified Modeling Language (UML) [15] proposed by Grady Booch, Ivar Jacobson, 

and Jim Rumbaugh in 1996, is a specification language that is used in the software 

engineering field to describe the behavior of the target system from an external point of 

view. Now, the standard is managed, and was created by, the Object Management 

Group (OMG). And the latest version is UML 2.2 which has 14 types of diagrams. We 

will make use of use case diagram in this thesis.  

 Use case diagrams overview graphically the usage requirements (use cases) for a 

system, actors, and any relationship between those use cases. This use case diagram can 

only give the most basic view of a use case or a collection of use cases. So it can’t be 

used to define the function of use cases. Here are some the components of use case 

diagram. 

 Actor in Fig. 3.11 is drawn as a human shape graph and it means a participant in 

the system, which maybe a people, a system or a virtual thing such as time etc. 

Note that there is no interaction among actors in the use case diagram. 

 

Fig. 3.11 Actor 

 Use case in Fig. 3.12 is drawn a horizontal oval and a sequence of actions 

performed by system. It provides something of measurable value for actors. 

 

Fig. 3.12 Use Case 
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 System box boundary in Fig. 3.13 is displayed as rectangle around the use cases 

to indicate the scope of system.  

 

Fig. 3.13 System Box Boundary 

 Include relationship in Fig. 3.14 between two use cases implies the behavior of the 

included use case will be inserted into the behavior of the including one. It is 

drawn as a dash arrow from including use case to included one, with label 

«include». The function is like a macro expansion in program. Note that the 

included use case is always required for the including use case. It means the 

included use case is not optional and must be executed. For example, you may not 

need to login when browsing websites of the Youtube. 

 

Fig. 3.14 Include Relationship 

 Extend relationship in Fig. 3.15 between two use cases implies the behavior of the 

extending use case may be insert into the behavior of the extended one. It is drawn 

as a dash arrow from extending use case to extended one, with label «extend». 

Note that the extended use case may be required for the including use case. It 
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means the extended use case is optional and may be executed. For example, you 

must need to login when you want to upload a video in the Youtube. 

 

Fig. 3.15 Extend Relationship 

 Association relationship in Fig. 3.16 between actor and use case is represented as 

solid line with an optional arrowhead which implies the direction of control flow. It 

exists whenever an actor is participated in a behavior in the use case. 

 

Fig. 3.16 Association Relationship 

 If two use cases or two actors have common behaviors, we just need to describe 

the common once and describe any difference in another case or actor. For example, 

In website of the Youtube, both Guest and Member can browse videos, but only 

member can upload videos. So the meaning of generalization relationship in Fig. 

3.17 between two use cases or between two actors is to present the situation 

describe above. It is a solid line ending in a hollow triangle drawn from the 

common to the customized use case.  

 

Fig. 3.17 Generalization Relationship 

 In Fig. 3.18, we use the components mentioned above to describe a simple 

message board. There are two actors, guest and member, in simple message board. Both 
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of them can browse the message, but only member can leave a message. You must login 

when leave a message. 

 

Fig. 3.18 Example of Use Case Diagram 
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Chapter 4 Software Testing with Multiple Learning 

Classifiers 

 

 Since software testing is getting more time-consuming, how to reduce the cost is 

becoming an important issue. Many solutions has be proposed, one of them is machine 

learning. Here we use three machine learning algorithms to solve software testing 

problems.  

 

Fig. 4.1 System Structure 
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4.1 The Usage of System Structure 

 Fig. 4.1 is the whole system structure we build. We make use of use case diagram 

to overview the usage requirements. There are three main use cases in our system 

structure. They are get traces, training and testing respectively. In the SUT, if we want to 

do software testing, first we need to collect training traces and testing traces. This is the 

usage of get traces. After we get traces, we need to select algorithm to train the model, 

this is the usage of training and there are three algorithms for training. After training, we 

need to test the accuracy of the model, this is the usage of testing and there are three 

algorithms to chose as same as training.  

 

4.2 Workflow of System Structure 

 Our research workflow can be divided into three parts according to the usages. The 

first part is collecting the traces from SUT which is shown in Fig. 4.2. After that, there 

should generate a trace file and a dictionary which is corresponding to trace file. Then 

we translate the trace file and corresponding dictionary to different input of machine 

language. Due to different properties of machine learning algorithms, there are different 

ways to do translation. The input of L* algorithm is similar to the trace we collect, so 

we can translate it without feature extraction. The input of SVM and NN algorithms is a 

vector which represents different features. So we need to do feature extraction to get the 

input files of SVM and NN algorithms. After translation, we can get input files of 

different machine learning algorithms. The input file is composed of training file and 

testing file. And we generate a model by using training file to do training which is 

shown in Fig. 4.3. Then use the model and testing file to do testing which is shown in 

Fig. 4.4 to get result.  
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Fig. 4.2 Workflow of System 
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Fig. 4.3 Workflow of Training 

 

 

Fig. 4.4 Workflow of Testing in Different Machine Learning Algorithms 
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4.3 Workflow of L* training 

 Remember that L* needs a teacher to answer membership query and equivalence 

query we mentioned in Chapter 3.3. The teacher must be reliable, and usually there will 

be something as a teacher. For example, the specification or result from actual system 

execution. It is possible that there is an overhead while system execution or it is 

possible for lack of specifications, so we choose SVM/NN which is already learned as 

teacher of L*. 

 Fig. 4.5 is our workflow of L* training. First, L* algorithm will check whether the 

observation table is closed and consistent or not. If the observation table is not closed 

and consistent, in order to make the observation table closed and consistent, there is a 

trace set which the table want to know whether they are members or not, then L* will 

set membership query to ask whether each trace t in trace set is a member of the model. 

We let L* algorithm to check whether trace t is in the training trace T collected while 

system execution. If trace t is in training trace T, L* will return the verdict which is 

recorded in training trace T. Then we end up this membership query. If trace t is not in 

trace T, we make L* algorithm ask SVM/NN whether it is pass or not. If it is pass, L* 

will return pass and add trace t to its knowledge as pass, if it is fail, L* algorithm will 

return fail and add trace t to its knowledge as fail. If the observation table is closed and 

consistent, then we will set equivalence query to check whether the hypothesis model    

is equal to system model M. Our method which is used for deciding the equivalence 

between M and    is checking whether the hypothesis model    could predict all traces 

in T correctly. If it could not predict all traces in T correctly, then we pick the trace 

which is predicted wrongly by    as counterexample and continues the L* learning. 

Otherwise, we terminate the L* training and return the hypothesis model   . 
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Fig. 4.5 Flowchart of L* algorithm 
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4.4 Multiple Learning Classifiers 

 [10] categorizes current different multi-classifier systems into three categories: 

Cascading, Parallel and Hierarchical. We use parallel classifiers in this thesis. The 

structure for parallel classifiers is shown in Fig. 4.6. This is the most common 

methodology used in multi-classifier systems. First, we operate all of the classifiers in 

parallel with the input data to get the corresponding prediction data. Then the results are 

obtained by using combinatorial function with those prediction data. Because all of the 

classifiers need to be executed to obtain the corresponding prediction data, this 

methodology incurs an overhead as it is time-consuming. 

 

Fig. 4.6 Structure of Parallel Classifiers 
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 The combinatorial function affects the result heavily. If we design a good 

combinatorial function, the system can reach better performance. However, an 

unsuitable combinatorial function may lead the system to generate poor performance. 

We present four combinatorial functions in the thesis. They are maximum, summation, 

weighted summation, and product. 

 Maximum is the simplest implementation of combinatorial functions. the 

prediction data of classifier with the highest accuracy is chosen as the output result of 

the system. If the prediction data of the classifiers are denoted by Ci(x), where i = 

1, . . . ,r, then the output of the maximum combinatorial function is provided in formula 

(4.1). 

      1max{ ,..., }MAX rf x C x C x  (4.1) 

 Summation uses the summation operation to generate the result by adding the 

prediction data of all classifier in the system. The output of the summation function is 

defined in formula (4.2). 

    
1

r

SUM i

i

f x C x


  (4.2) 

 Weighted summation is an advanced version of the summation. For each classifier 

Ci, it is assigned a weight wi and the weight value can be varied. First, the weighted 

summation let the prediction data of each classifier Ci multiply its assigned weight wi 

and then sum up all the obtained value. The function is described as formula (4.3). 

    
1

r

W SUM i i

i

f x C x w



  (4.3) 

 We can see the formula (4.1) and (4.2) are special cases in formula (4.3). If we 

have the weight wi = 1, for classifier Ci which has the highest accuracy in formula (4.3), 

then we could get the same result as formula (4.1). If we have the weight wi = 1, for all i 
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= 1,…,r, then we get the same result as formula (4.2). 

 Product is similar to the summation, it multiples the values instead of summing up 

the prediction data of each classifiers. The product function is presented in formula 

(4.4). 

    
1

r

PROD i

i

f x C x


  (4.4) 
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Chapter 5  Implementation 

 

 In this chapter, we describe the details about the implementation of our software 

testing with multiple learning classifiers. Our program is written in C and C++, so in 

this chapter, programs start in C or C++ fashion. 

 This work is implemented with off-the-shelf SVM library libsvm [14], NN library 

FANN [17], and L* library libalf [18]. Basically, these libraries provide complete 

functions about training and testing. All we need to do is modifying the function to fit 

our system framework.  

 

5.1 How to Collect Trace 

 Because we are interested in the structure of system, we want to know the 

relationship of procedures in system. To get this goal, we use two functions from InTOL 

and insert them into the program. These two functions will help us to collect trace when 

system runs. They are:   

 InTOL_set_event(char event_type, const char* event); 

 InTOL_assert(bool cond); 

 The fuction InTOL_set_event has two parameters. Their types are char and const 

char*. First parameter is event type, and there are two kinds of event type. They are 

input event and output event respectively. The other one is event which labels what 

event occurs, so the function InTOL_set_event records what kind of event happened. 

The function InTOL_assert has one parameter, and it is a bool type parameter which 

represents the rule the system must to obey. Once the program goes against the rule, the 

output trace must be failure. The test trace we collect is a sequence of events. In fact, 
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Fig. 5.1 Flowchart of Deciding Failure 
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there is no bound to the lengths of the test traces. However L* learning time is related to 

the number of event and the length of test trace. The more number of event you use, the 

more time of L* training you cost.  

 

5.2 How to Decide Failure 

 Fig. 5.1 shows the collected trace will be fail in two conditions. First, when 

function InTOL_assert returns fail message, the trace must be fail. For example, when 

system bumps into the function InTOL_assert, the function InTOL_assert says variable 

a must equals to 1, but the variable a is 2 in practice. Second, the function InTOL_assert 

returns pass, but output of oracle is fail, and then it will be failure. The trace will be pass 

except these two conditions.  

 

5.3 How to Insert Function 

 How to insert function? It depends on what purpose you need. For example, if we 

want to know the whole structure of system and the relationship of functions, we could 

insert code into every procedure. If we want to know the most important procedure or 

the procedure from revision recently, we could insert more functions to the procedure 

which we focus on than others. There is an example of insert function shown in Fig. 5.2. 

The three fragments of example are from same program. There are some processes 

working in the program. The total number of processes is recorded in global variable 

num_process. When system executes case FLUSH in line 383. The function 

finish_all_processes will be called, and then it will call fuction finish_process to do their 

job in line162 for every process. After job done, the process must be free, and the global 

variable num_process will be decreased by 1. After these steps, the global variable 
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num_process sould be 0, and we insert function InTOL_assert with the condition 

num_process equals 0 to check the relationship is correct. 

 

Fig. 5.2 Fragment of Code 

 

5.4 Feature Selection 

 After collect the trace from the method we mentioned above, we need to transfer 

these traces into the input type of SVM and NN. How to transfer is also an important 

issue. This issue is called feature selection. The machine learning algorithm could do 
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better performance with a good feature selection. Here we use five feature sets X0, X1, 

X2, X3, and X4. Then we concatenate them as an input vector. These five feature sets are 

explained in the following. 

 

5.4.1 X0 

 X0 is a structure which records the last W events of trace, i.e. the X0 records events 

from the tail of trace to the head of trace up to W. The W is a window size which means 

the biggest capacity that X0 could record. For example, given X0 = {x0, x1, .. , xw}, and 

the event index of a, b, c, d, and e in dictionary are index(a) = 1, index(b) = 2, index(c) 

= 3, index(d) = 4, and index(e) = 5. If window size W = 4 and there is an trace t = abcde, 

then x0 = index(e) = 5, x1 = index(d) = 4, x3 = index(c) = 3, and x4 = index(b) = 2. 

 

5.4.2 X1 

 Given the event set E, and there is a trace t which is composed of a sequence 

events, each event belongs to E. For every event e1 and e2 in E, there exists a function 

F(e1, e2) which means the number of e1 occurrences without any e2 event from the end 

of a trace t. i.e. the number of event e1 since the last event e2. For example, given a trace 

t = abbcccaabc, F(c, a) = 1, F(b, a) = 1, and F(a, c) = 0. 

 

5.4.3 X2 

 Given the event set E, and there is a trace t which is composed of a sequence 

events, each event belongs to E. For every event e1 and e2 in E, there exists a function 

F(e1, e2) which means the max number of e1 occurrences without any e2 event in a trace 

t. i.e. the max number of event e1 before the event e2. For example, given a trace t = 
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abbcccaabc, F(c,a) = 3, F(b,a) = 2, and F(a,c) = 2. 

 

5.4.4 X3 

 Given the event set E, and there is a trace t which is composed of a sequence 

events, each event belongs to E. If there is an event e in t, then |e| means the number of 

event e in trace t. For every event e1 and e2 in E, there exists a function F(e1, e2) which 

means the number of e1 occurrences minus the number of e2 occurrences in a trace t. i.e. 

|e1| - |e2|. For example, given a trace t = abbcccaabc, F(c,a) = 1, F(b,a) = 0, and F(a,c) = 

-1. 

 

5.4.5 X4 

 Given the event set E, and there is a trace t which is composed of a sequence 

events, each event belongs to E. For every event e1 and e2 in E, there exists a function 

F(e1, e2) to check whether it is satisfied with all of the following three conditions or not: 

 For every e1 event occurrence in trace t, there must (transitively) follow an e2 event 

occurrence.  

 For every e2 event occurrence in trace t, there must be (transitively) followed by an 

e1 event occurrence.  

 There must be an e2 event occurrence between two e1 event occurrences. 

 For example, if trace t = abcaabc, F(b, c) is true and F(a, b) is false. 
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Chapter 6 Experiment 

 We use the two benchmarks (SUT) which are TCAS with bug version 10 and 28 

and benchmark schedule with bug version 3 in SIR [16] to demonstrate our technique. 

We present the experimental studies of different training data sizes with five different 

classifiers which are L* with teacher SVM, L* with teacher NN, SVM, SVM trained 

with optimal parameters and NN. The performance of constructed test oracle is 

measured with prediction accuracy and time cost. The prediction accuracy is the 

percentage of correctly labeled test cases of a testing data set with the constructed test 

oracle. The time cost is the used time to train the test oracle and testing data. The 

experimental data are collected on Intel(R) Core(TM) i7 CPU 860@ 2.8GHz with 2G 

RAM, running on Ubuntu 9.10. 

 To objectively demonstrate the effect of different training data size, we have the 

prediction accuracy to test with a testing data set of 200 test cases. Each experiment is 

run for 10 times and the average performance data is recorded. And has time limit which 

is 30 minutes. Because the way to build model of L* with teacher NN or SVM is 

different from the way to build model of NN and SVM. Their prediction accuracy is 

totally different when it is time out. That is, L* would generate hypothesis model during 

training. If it is time out, we could still use the hypothesis model to do prediction. So the 

prediction accuracy of L* would not be 0. However the model of NN and SVM is 

generated after training, if it is time out, there is no model for testing. The prediction 

accuracy will be 0. 

 

6.1 Experiment Setting 

 Following are the settings of each algorithm mechanism we use in this experiment: 
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1. NN: Here we use multiple layer structure. The number of neutron in input layer is 

as same as the element number in vector. The number of hidden layer is 3 and each 

hidden layer has 3 neurons. Because we just need to know the output is pass or fail, 

the number of neutron in output layer is 1. 

2. SVM: the kernel we use is radial basis function (RBF) with no parameters. 

3. SVM with optimal parameter: the kernel we use is radial basis function (RBF). 

And use the procedure which is provided by libsvm to find suitable parameters. 

4. L* with teacher NN: Here we use the NN model from 1 to be the teacher of L*. 

5. L* with teacher SVM: Here we use the SVM model from 3 to be the teacher of L*. 

 

6.2 Results of Each Classifier  

 Following we list the result of experiments in table type. The first column of table 

is the size of training data set, the second one is prediction accuracy, and the last one is 

average execution time. 

 The experiments of benchmark TCAS is from Table 6.1 to Table 6.5. We could find 

several things.  

 When the size of training data set increases, the prediction accuracy will also 

increase. However there is an exception in Table 6.4, we could find the time cost in 

experiment of size 200 and 1000 is time out. This means the leaning is not 

complete, so it could not promote accuracy to 100%. We believe it may be 100% 

while increase time limit.  

 It will cost much time with increment of size, except for L* algorithm. We think it 

may be because L* builds hypothesis model    according to the teacher. Here we 

use NN or SVM as the teacher of L*. The model construction of SVM and NN is 



 

 36 

depends on the training data. If data size is too small, the information would be not 

enough. If data size is too big, there would be redundant information in the data set. 

It would build different size of model, although the benchmark is same and the 

time is relative to the size and complexity of model.  

 The experiment time of SVM with optimal parameter is much higher than that 

without optimal parameter, because it costs the most part of time to find parameter.  

 SVM seems more suitable to be the teacher of L* than NN, because the accuracy 

of SVM is higher than accuracy of NN.  

size of training data set prediction accuracy Time 

200 98.8% 0.168s 

400 98.8% 0.262s 

600 99.2% 0.310s 

800 99.4% 0.389s 

1000 100% 0.413s 

Table 6.1 TCAS Experiment of NN 

 

size of training data set prediction accuracy Time 

200 94% 0.109s 

400 94% 0.156s 

600 100% 0.284s 

800 100% 0.293s 

1000 100% 0.301s 

Table 6.2 TCAS Experiment of SVM 
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size of training data set prediction accuracy Time 

200 100% 6.102s 

400 100% 6.327s 

600 100% 17.831s 

800 100% 26.350s 

1000 100% 35.218s 

Table 6.3 TCAS Experiment of SVM with Optimal Parameter 

 

size of training data set prediction accuracy Time 

200 94% Time out 

400 100% 63.776s 

600 100% 18.891s 

800 100% 1239.611s 

1000 92% Time out 

Table 6.4 TCAS Experiment of L* with Teacher NN 

 

size of training data set prediction accuracy Time 

200 100% 113.651s 

400 100% 77.231s 

600 100% 1392.952s 

800 100% 110.710s 

1000 100% 261.330 

Table 6.5 TCAS Experiment of L* with Teacher SVM 
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 The experiments of benchmark schedule are from Table 6.6 to Table 6.10. We 

could find several things.  

 When the size of training data set increases, the prediction accuracy will almost 

increase in Table 6.6, Table 6.7 and Table 6.8 except for the size 1000. The data in 

size 1000 may be more discrete than the other and does not have strong connection 

with testing data. Moreover it will cost much time with increment of size as same 

as experiments of benchmark TCAS.  

 The accuracy in Table 6.6, Table 6.7 and Table 6.8 is lower than same strategy used 

in TCAS. It may be because the schedule is more complex than TCAS and do not 

collect enough information. 

 In Table 6.9 and Table 6.10, the cost time is time out in every experiment. For the 

higher prediction accuracy, we think it may be because the schedule program is so 

complex that we do not give enough time to let it to learn. For the lower prediction 

accuracy, we think it may be because the teacher NN and SVM do not get enough 

prediction accuracy such that it could not give a correct answer.  

 The experiment time of SVM with optimal parameter is much higher than that 

without optimal parameter, and the reason is as same as experiment in TCAS. 

 Here we can't figure out which one is suitable to be the teacher of L* because of 

the low prediction accuracy. Due to the result of experiments in TCAS, we still 

believe SVM is more suitable the NN if there are high prediction accuracy and 

enough time to learn. 

 We could find out that L* costs much time than the other learning algorithm from 

Table 6.4, Table 6.5, Table 6.9, and Table 6.10. It may be because it needs a lot queries 

to build the model and wait for teacher's respond. Because of many reasons we 

mentioned above, we think L* is not suitable for such a complex system. 
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size of training data set prediction accuracy Time 

200 88.6% 1.137s 

400 89.6% 2.541s 

600 90.95% 3.862s 

800 91.05% 4.839s 

1000 90.4% 5.694s 

Table 6.6 Schedule Experiment of NN 

 

size of training data set prediction accuracy Time 

200 89.6% 0.207s 

400 88.5% 0.440s 

600 89.5% 0.772s 

800 89% 1.063s 

1000 90% 1.517s 

Table 6.7 Schedule Experiment of SVM 

 

size of training data set prediction accuracy Time 

200 90.5% 17.082s 

400 92% 48.567s 

600 94% 98.898s 

800 94% 164.815s 

1000 91.5% 248.747s 

Table 6.8 Schedule Experiment of SVM with Optimal Parameter 
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size of training data set prediction accuracy Time 

200 82% Time out 

400 88.8% Time out 

600 23% Time out 

800 80.5% Time out 

1000 61.5% Time out 

Table 6.9 Schedule Experiment of L* with Teacher NN 

 

size of training data set prediction accuracy Time 

200 41% Time out 

400 89% Time out 

600 33.5% Time out 

800 88.5% Time out 

1000 43.5% Time out 

Table 6.10 Schedule Experiment of L* with Teacher SVM 

 

6.3 Results of Multiple Classifiers 

 Following we list the result of experiments in table type. The first column of table 

is the size of training data set, and columns which are from the second one to the fifth 

one are prediction accuracy of combinatorial functions mentioned in Chapter 4.4. Table 

6.11 is the TCAS experiment which uses multiple classifiers. The weight values are 

obtained according to the accuracy of each classifier. We could easily find out that 

multi-classifier methodologies reach a better performance except the product. Obviously, 
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the product function is an unsuitable combinatorial function, and it affects the 

performance very much. 

 Table 6.12 is the schedule experiment which uses multiple classifiers. We could 

find out that the weighted summation function performs better than other combinatorial 

functions and the SVM with optimal parameter.  

 Although, we could get a better result by using weighted summation function, it is 

time-consuming. The total cost time of combinatorial function is approximately equal to 

sum up the time of each classifier. 

Combinatorial  

function 

size of training 

data set 

Maximum Summation 
Weighted 

summation 
product 

200 100% 100% 100% 66.5% 

400 100% 100% 100% 91% 

600 100% 100% 100% 28.5% 

800 100% 100% 100% 28.5% 

1000 100% 100% 100% 28.5% 

Table 6.11 TCAS Experiment of Multiple Classifiers 

 

Combinatorial  

function 

size of training 

data set 

Maximum summation 
Weighted 

summation 
product 

200 90.5% 90% 91.5% 39% 

400 92% 89% 92% 88.5% 

600 94% 91% 94% 63% 

800 94% 93.5% 94% 77.5% 

1000 91.5% 92% 92% 56% 

Table 6.12 Schedule Experiment of Multiple Classifiers 
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Chapter 7 Conclusion and Future Work 

 

 In this thesis, we present a comparison among different machine learning 

algorithms and find out a better result by using combinatorial function. We also find out 

that L* may not suitable for big program and we think it is more suitable in unit testing. 

The performance is good when doing software testing in small program. We 

successfully combine different algorithms such as L* with teacher SVM and L* with 

teacher NN to build fault model and do prediction. We build the framework of using 

different machine algorithms to the software testing at the same time. 

 In the future, we may improve the performance of our work by finding a better way 

to decide the weight of weighted summation or by collecting more machine learning 

algorithm to do software testing or by tuning the parameter such as the number of 

neuron and the number of layer in hidden layer in NN or by selecting more useful 

feature selection. It is possible to use the model which is constructed by L* to do some 

model checking, and it is also possible to use L* in unit testing to get a great 

performance.  
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