

國立臺灣大學電機資訊學院電機工程學系

碩士論文

Department of Electrical Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

具備多重學習分類器的智慧型軟體測試

Intelligent Software Testing with Multiple Learning Classifiers

詹哲彰

Jhe-Jhang Jhan

指導教授：王凡 博士

Advisor: Farn Wang, Ph.D.

中華民國 100 年 6 月

June, 2011

 i

誌謝

 本論文能順利完成，首先要感謝這兩年來辛苦提攜與指導我們的王凡教授，

於求學期間提供了良好的研究環境，以及不厭其煩的指導與教誨，令學生在探索

研究之路受益良多。感謝口試委員戴顯權教授、郁方教授、陳郁方博士、張茂榮

組長以及顏嘉志主任提供寶貴的意見，使得論文能更加完善。

 接下來，要感謝在電機所兩年裡一起奮鬥的好夥伴們：胡揚、哲榮、力瑋、

雅蘭以及淑芬，無論是在課業上還是生活上，都給予了我很大的幫助。同時也謝

謝實驗室的助理、學弟們以及研究所期間認識的好朋友們，謝謝你們帶給了我豐

富的兩年碩士生活。

 謝謝國中同學們、高中同學們、大學同學們，以及所有幫助過我、關懷過我

的人，致上由衷感謝。

 謝謝婉齡這段日子以來包容我的壞脾氣，無時無刻的給我關懷與鼓勵，能夠

體諒我在忙碌的時候無法陪妳。妳的貼心與支持，是我進步的原動力。

 最後，特將本文獻給我最敬愛的父母，感謝您們無怨無悔的養育與無時無刻

的關懷照顧，還有弟弟順安平日在家時，順便幫我準備飯菜，替我能省下不少瑣

碎時間，讓我能無後顧之憂的專注於課業研究中，順利完成學業，願以此與家人

共享。

 ii

中文摘要

 測試在開發軟體的過程中佔了非常重要的一環，但是隨著時代的進步，硬體

發展快速，軟體也隨之成長，傳統的純粹依賴人力來做軟體測試也越來越花時間，

取而代之的是，結合機器學習來做軟體測試。

 在本篇文章中，我們提供了一個結合支持向量機、類神經網路與 L*等機器學

習演算法的多重分類器結構，這個結構主要分成三個部分：第一部分是提供使用

者一些函式，藉由將這些函式安插在程式中，讓使用者可以收集程式執行時的資

訊，當然這些資訊也可以由使用者自己提供；第二部分是將第一部分收集來的資

訊，分成訓練資料以及學習資料。其中，訓練資料用來建立模型而測試資料用來

測試模型的準確性。最後，我們把這些模型產生的結果利用一些組合函式產生出

更好的結果。

 我們主要研究如何在沒有規格的情況下，使用這些機器學習技術來正確產生

程式的測試準則，並在文章最後以兩個網路上的共享資源程式來做實驗，比較不

同機器學習演算法以及使用組合函式之後的準確性。

 關鍵字：軟體測試，機器學習，多重分類器，支援向量機，類神經網路，L*，

測試準則

 iii

ABSTRACT

 Testing is an essential process of software development. Along with the progress of

scientific and technological development of hardware, software systems become larger

and larger. It is time consuming to do software testing with manpower traditionally.

Using machine learning in place of labor efforts is getting more and more attractive.

 In this thesis, we present a multiple-classifier structure of software testing with

machine learning algorithms including support vector machine (SVM), neural network

(NN) and L*. The structure is composed of three phases. In the first phase, the structure

uses some functions which can insert into user programs to collect useful information as

our input data during program executions. Those input data, of course, could also be

provided by users. In the second phase, we separate the input data into training data and

testing data. The training data is used for building models and the testing data is for

testing the models we build. The last phase is that we combine the results of models to

generate a better result by using combinatorial functions.

 We investigate how to use machine learning techniques to automatically construct

test oracles for programs without reliance on explicit specifications, and experiment

with two open-source benchmarks to compare the accuracy of different learning

algorithms and the accuracy after using combinatorial functions in the end.

 Keyword: software testing, machine learning, multiple classifier, SVM, NN, L*,

test oracle

 iv

CONTENTS

口試委員會審定書 ... #

誌謝 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES ..vi

LIST OF TABLES ... viii

Chapter 1 Introduction .. 1

1.1 Motivation... 1

1.2 Research Goal ... 2

1.3 Contribution .. 2

1.4 Thesis Framework .. 3

Chapter 2 Related Work .. 4

Chapter 3 Background .. 6

3.1 Support Vector Machine ... 6

3.2 Artificial Neural Network ... 8

3.3 L* Algorithm .. 9

3.4 Unified Modeling Language ... 15

Chapter 4 Software Testing with Multiple Learning Classifiers 19

4.1 The Usage of System Structure .. 20

4.2 Workflow of System Structure ... 20

4.3 Workflow of L* training ... 23

 v

4.4 Multiple Learning Classifiers ... 25

Chapter 5 Implementation .. 28

5.1 How to Collect Trace .. 28

5.2 How to Decide Failure .. 30

5.3 How to Insert Function ... 30

5.4 Feature Selection .. 31

5.4.1 X0 ... 32

5.4.2 X1 ... 32

5.4.3 X2 ... 32

5.4.4 X3 ... 33

5.4.5 X4 ... 33

Chapter 6 Experiment ... 34

6.1 Experiment Setting ... 34

6.2 Results of Each Classifier ... 35

6.3 Results of Multiple Classifiers.. 40

Chapter 7 Conclusion and Future Work.. 42

Bibliography ... 43

 vi

LIST OF FIGURES

Fig. 3.1 Before Training ... 7

Fig. 3.2 After Training ... 7

Fig. 3.3 Neuron .. 8

Fig. 3.4 Neuron Network of Multiple Layers .. 9

Fig. 3.5 Example of Non-closed Table... 11

Fig. 3.6 Table T1 and Hypothesis Model 1 .. 12

Fig. 3.7 Table T2 ... 13

Fig. 3.8 Table T3 and Hypothesis Model 2 .. 13

Fig. 3.9 Table T4 ... 14

Fig. 3.10 Table T5 and Hypothesis Model 3 .. 14

Fig. 3.11 Actor ... 15

Fig. 3.12 Use Case ... 15

Fig. 3.13 System Box Boundary .. 16

Fig. 3.14 Include Relationship ... 16

Fig. 3.15 Extend Relationship .. 17

Fig. 3.16 Association Relationship .. 17

Fig. 3.17 Generalization Relationship.. 17

Fig. 3.18 Example of Use Case Diagram ... 18

Fig. 4.1 System Structure ... 19

Fig. 4.2 Workflow of System ... 21

Fig. 4.3 Workflow of Training ... 22

Fig. 4.4 Workflow of Testing in Different Machine Learning Algorithms 22

 vii

Fig. 4.5 Flowchart of L* algorithm .. 24

Fig. 4.6 Structure of Parallel Classifiers .. 25

Fig. 5.1 Flowchart of Deciding Failure .. 29

Fig. 5.2 Fragment of Code ... 31

 viii

LIST OF TABLES

Table 6.1 TCAS Experiment of NN .. 36

Table 6.2 TCAS Experiment of SVM ... 36

Table 6.3 TCAS Experiment of SVM with Optimal Parameter 37

Table 6.4 TCAS Experiment of L* with Teacher NN ... 37

Table 6.5 TCAS Experiment of L* with Teacher SVM .. 37

Table 6.6 Schedule Experiment of NN ... 39

Table 6.7 Schedule Experiment of SVM .. 39

Table 6.8 Schedule Experiment of SVM with Optimal Parameter 39

Table 6.9 Schedule Experiment of L* with Teacher NN .. 40

Table 6.10 Schedule Experiment of L* with Teacher SVM ... 40

Table 6.11 TCAS Experiment of Multiple Classifiers .. 41

Table 6.12 Schedule Experiment of Multiple Classifiers ... 41

 1

Chapter 1 Introduction

 Machine learning, a subfield of artificial intelligence, is an active research field in

Computer Science. It is concerned with design and development of algorithms and

statistical data. The algorithms allow computers evolving these behaviors based on

statistical data; that is, extracting the part we are interested in from the past data or

experience as training data (or feature selections [1]), building a model and defining

different parameters. Then let model execute as programs, and use a useful algorithm to

tune the parameters based on those training data. After learning is done, we could use

this model to do some predication.

 The training data are composed by input and output values. We could divide the

learning process into regression analyses and classification according to the output

value. The output of regression analyses is a continuous value. For example, predicting

the number of stock index in the future is a kind of regression analyses. The output of

classification is a lot of numbers of integers such as {-1, 1}. For example, predicting the

score is pass or fail.

1.1 Motivation

 Since the cost of software testing has escalated because of the increasing

complexity of current systems, how to reduce the cost is an important issue. There are a

lot of methods proposed to solve this problem. One of them is machine learning. There

have been several researches to solve the software testing by using machine learning

algorithms. [2] uses support vector machine to generate a test oracle in black-box testing.

[3] uses the technique bootstrapping in machine learning to promote the prediction

 2

accuracy of the model they build. [4] provides a better input to software testing by using

machine learning. [5] uses EXIST (Exploration eXploitation Inference for Software

Testing) which is developed by EDA (Estimation of Distribution Algorithm) and online

learning to maximize the number of distinct feasible paths of the process. There are

many machine learning algorithms which could be used in different kind of software

testing. However we don't know what is the best choice for a certain kind of software

testing. We build a framework which contains several machine learning algorithms and

compare their performance in software testing in order to find the most suitable machine

learning algorithm for a certain kind of software testing.

1.2 Research Goal

 We want to find an efficient way to reduce the cost of software testing by applying

efficient machine learning algorithms, and combine them to generate a better result. To

do this we propose a multiple-classifier structure of software testing with machine

learning algorithms, such as support vector machine (SVM) [6], neural network (NN)

[7], and L* algorithm [8]. We separate our input data into two sets: a training set and a

testing set. The training set is used by the machine learning algorithms to generate the

models as our classifiers to predict unknown input data. The testing set is used to test

the performance of the classifiers. The training data and testing data are gathered from

public resources.

1.3 Contribution

 The main contribution is constructing a simple framework which contains three

machine learning algorithms as classifiers. We make it easy to use, and compare

 3

performance of each machine learning algorithm. Then we combine the result of each

classifier to generate a new result by using some combinatorial functions. We could find

out that the prediction accuracy of combinatorial function is better than the result of

single classifier.

 Without specifications, SVM and NN could use input and output values to do

software testing. However, L* would ask some problems that need a teacher to tell the

answers. In the past, the answer is got through the execution of SUT or the specification

of SUT. Since there is an overhead in execution of SUTs, and no specification of SUT,

we propose a flowchart instead. The flowchart uses SVM/NN as the teacher of L*

algorithm to get fault models. Since we do not have the visualization of SVM/NN

model, we use the visualization of fault models as the visualization of SVM/NN models.

Therefore, the other contribution is that we design the flowchart of L* training to build

the fault model and do software testing.

1.4 Thesis Framework

 The remainder of this thesis is organized as follows: Chapter 2 reviews the related

work on multiple-classifier systems. Chapter 3 we give the background knowledge of

support vector machine (SVM), neural network (NN), L* algorithm and unified

modeling language. Chapter 4 describes the structure of software testing with multiple

learning classifiers. Chapter 5 presents the details of the structure implementation.

Chapter 6 shows the experimental result with two open-source programs. Chapter 7

gives conclusion and some directions of future work.

 4

Chapter 2 Related Work

 Multiple-classifier system is getting more and more popular due to their ability to

combine the output of each classifier into a better result [9]. At present, there are many

researches about how to design the multiple-classifier system. A successful design of

multiple-classifier system is related to structure and combinatorial methodology.

 [10] classifies current different structures of multi-classifier systems into three

types. They are cascading, parallel, and hierarchical. In the cascading classifier, the

result of a classifier is used as the input of the next classifier. In the parallel classifier, all

of the classifiers are executed in parallel, and then the results of classifiers are used to

obtain a new result by using combinatorial function. Hierarchical classifiers are a

combination of cascading classifier and parallel classifier.

 [11] classifies different structures of multi-classifier systems in more detail. They

are conditional, hierarchical, hybrid, and multiple (parallel) topologies. Conditional

topology first selects the result from any classifier as the final result. If the result is not

correct, another classifier is selected. All the selection is random. Hierarchical topology

is similar to conditional one. The only difference is the selection has priority. Hybrid

topology selects the best result of classifiers as the final result. Parallel topology is as

same as the parallel classifier in [10].

 [12] classifies current combinatorial methodologies into four types. The first type

is linear combination method. It uses linear functions such as summation and product to

do combination. The second type is non-linear combination method. It uses rank based

classifiers to generate final result such as majority voting. Majority voting selects the

classifier which gets the highest vote to generate final result. The third type is statistical.

 5

It uses some probabilistic functions such as Bayes rule. The last one is computationally

intelligent. It uses machine learning algorithm such as genetic algorithms for

combination.

 All the outputs of the multiple classifier mechanisms we described above are

continuous numbers, but we use discrete numbers in our experiment. Because we create

the test oracle about the pass and fail problem, the output number we define here is only

-1 and 1. The mechanisms we described above may not suitable for our experiment, so

we do a little modification to fit our experiment.

 6

Chapter 3 Background

3.1 Support Vector Machine

 Support vector machine (SVM) proposed by Vapnik and Corinna Cortes in 1995

[6], is a kind of learning method which is widely used in solving the problem of

classification or regression. The basic idea is given a group of data in a high- or

infinite-dimensional space R
d
, where d  N. finding a hyper-plane to separate those data

into two parts. After that, if there is a new data, SVM could map it into the same space

and predict which category it belongs to based on which side of the hyper-plain it falls

on.

 For example, there are people’s profiles, and we want to know which party he

belongs to. We pick the place as our training data and transfer it into longitude and

latitude such as the graph show in Fig. 3.1. Then we use SVM to find a line which

divides the map into two sides like the graph shown in Fig. 3.2. Suppose left hand side

is the Democratic Party and the other side is the Republican Party. After training, we

can use the model generated by SVM to predicate result. Suppose there is a new profile,

then we could locate the place in the map. If it locates at left hand side, then we predict

that he belongs to the Democratic Party. Otherwise he belongs to the Republican Party.

The graphs in Fig. 3.1 and Fig. 3.2 are drawn by the tool provided by C.C. Chang [14].

 Because SVM finds the hyper-plane which has the maximum margin of input data

in different categories, it builds only one solution and is a global optimal solution. The

margin is defined by the sum of the shortest distances from the closest input data in

different category to the hyper-plane.

 If you want to know more about SVM we refer you to [6], [13] for more details.

 7

Fig. 3.1 Before Training

Fig. 3.2 After Training

 8

3.2 Artificial Neural Network

 Artificial neural network [7] is a kind of statistical learning method which is

connected by artificial neurons. The model imitates the behavior of neuron network of

organism in Nature. Each neuron represents a specific function called activation

function and each transition between two neurons has a weight on it. The output of node

depends on the activity function and weight. Fig. 3.3 is an example of graphical neuron.

It has a set of input data I and a combine function c to merge those input data with a set

of weights W corresponded to input I and bias b as the input of activity function F. Then

it generates a specific output O.

 Most neuron network algorithms constitute their learning structure as three layers.

They are an input layer, one or more hidden layers and an output layer. Fig. 3.4 is the

layer structure composed by neurons. Note that the node number of each layer may not

be equivalence.

Fig. 3.3 Neuron

 9

Fig. 3.4 Neuron Network of Multiple Layers

3.3 L* Algorithm

 In 1987, Dana Angluin proposed an algorithm, L* [8], to learn from queries and

counterexample. There are two different kinds of queries called membership query and

equivalence query, and there is a teacher to answer these two queries. On a membership

query, the algorithm would ask the teacher whether the string s is accepted or not. On an

equivalence query, the algorithm would ask the teacher if the hypothesis model which

we construct is equivalence to the model M which we want to learn. If the answer is no,

the teacher would return a counterexample. The learning structure is stored by

observation table.

 The row of observation table can be divided into two sections. One of the sections

 10

is the state section S and this part locates at the upper part of table, and every unique

row of the upper part of the table represents a state from the DFA. The other part is

transitions’ section S  A, and this part locates at lower part of the table which defines

the transitions of the DFA. A state machine can be constructed according to an

observation table. The table’s columns are labeled by experiments E for distinguishing

states-rows. The observation table must satisfy two conditions. They are closed and

consistent.

 The observation table is closed means for all transition t in bottom part of the table

there exists an state s in top part of the table such that row(t) = row(s).

 The observation table is consistent means for all state s1 and s2 in top part of the

table such that row(s1) = row(s2), for all a in alphabet A, row(s1  a) = row(s2  a).

The basic steps to build up the correct observation table are:

 If the machine accepts the row label concatenated by the column label, a field in

the observation table is true. On the other hand, if the machine rejects the row label

concatenated by the column label, a field in the observation table is false. A

membership query with the concatenated string decides if a field is true or false.

 The observation table is not closed, this means the transition contains a row at the

lower part of table is different from the state contains all rows at the top part of the

table. When this situation occurs, the row from the transitions’ part which is

different from the state contains all rows at the top part of the table added as a state

row and corresponding transition rows are added. For example, in Fig. 3.5 table (a)

is not closed since row(0) is different from row(). So L* chooses to move the

string 0 to the top part of the table and then queries the strings 00 and 01 to build

new table.

 11

Fig. 3.5 Example of Non-closed Table

 The observation table is not consistent, this means two state rows are equal but

their corresponding transition rows are different. When this situation occurs, in

order to separate these two states, i.e. let the two inconsistent states have different

results, Add an additional column to the observation table and the label of the new

column is the label of an already existing column label concatenate one letter from

the alphabet. For example, in Fig. 3.7, table T2 is inconsistent since the row() =

row(0), but row(0)  row (00). In order to make the table consistent a new column

is added to the table, the label of the new column is A which is  concatenate A

from the alphabet, after that all free fields are queried.

 If a counterexample is found, add the counterexample and its prefixes into the top

part of the observation table. Then add the corresponding transitions in the lower

part of table.

 After the observation table is closed and consistent, we could use this table to build

a DFA by creating a state for every unique state row. Every state has a transition for

every possible letter from the alphabet. The transitions row, labeled equal to the

 12

origins states label concatenated the transition’s letter, determines the destination

state. The destination state is the state with the same state row as the mentioned

transitions row.

 Here runs a simple example for L* algorithm in order to show how the L* works

Initially, L* asks membership queries for the strings , 0, and 1. The initial observation

table T1 is shown in Fig. 3.6. 0 means fail and 1 means pass. This observation table is

closed and consistent, so L* builds the hypothesis model 1 shown in Fig. 3.6. We

could easily find the counterexample 00 labeled as false.

Fig. 3.6 Table T1 and Hypothesis Model 1

 To process the counterexample 00, L* adds the strings 0 and 00 to top part of the

table, and queries the strings 000, 01, and 001 to construct the observation table T2

shown in Fig. 3.7. This observation table is closed but not consistent since row() =

row(0) but row(0)  row (00).

 Thus L* adds the string 0 to E, and queries the strings 0000, 010, 0010 and 10 to

construct observation table T3 shown in Fig. 3.8. This observation table is closed and

consistent, so L* builds the hypothesis model 2 shown in Fig. 3.8.

 13

Fig. 3.7 Table T2

Fig. 3.8 Table T3 and Hypothesis Model 2

 We could easily find the counterexample 11 labeled as false. L* responds to this

counterexample by adding the strings 1 and 11 to top part of the table then queries the

strings 100, 110, 111, 1100, and 1110 to construct the observation table T4 in Fig. 3.9.

This table is found to be closed but not consistent, since row() = row(1) but row(1) 

row (11).

 14

Fig. 3.9 Table T4

Fig. 3.10 Table T5 and Hypothesis Model 3

 Thus L* adds the string 1 to E and queries the strings 0001, 011, 0011, 101, 1101,

and 1111 to construct the observation table T5 in Fig. 3.10. This table is closed and

consistent, so L* builds the hypothesis model 3 shown in Fig. 3.10. And L* terminates

with hypothesis model 3 as its output.

 15

3.4 Unified Modeling Language

 Unified Modeling Language (UML) [15] proposed by Grady Booch, Ivar Jacobson,

and Jim Rumbaugh in 1996, is a specification language that is used in the software

engineering field to describe the behavior of the target system from an external point of

view. Now, the standard is managed, and was created by, the Object Management

Group (OMG). And the latest version is UML 2.2 which has 14 types of diagrams. We

will make use of use case diagram in this thesis.

 Use case diagrams overview graphically the usage requirements (use cases) for a

system, actors, and any relationship between those use cases. This use case diagram can

only give the most basic view of a use case or a collection of use cases. So it can’t be

used to define the function of use cases. Here are some the components of use case

diagram.

 Actor in Fig. 3.11 is drawn as a human shape graph and it means a participant in

the system, which maybe a people, a system or a virtual thing such as time etc.

Note that there is no interaction among actors in the use case diagram.

Fig. 3.11 Actor

 Use case in Fig. 3.12 is drawn a horizontal oval and a sequence of actions

performed by system. It provides something of measurable value for actors.

Fig. 3.12 Use Case

 16

 System box boundary in Fig. 3.13 is displayed as rectangle around the use cases

to indicate the scope of system.

Fig. 3.13 System Box Boundary

 Include relationship in Fig. 3.14 between two use cases implies the behavior of the

included use case will be inserted into the behavior of the including one. It is

drawn as a dash arrow from including use case to included one, with label

«include». The function is like a macro expansion in program. Note that the

included use case is always required for the including use case. It means the

included use case is not optional and must be executed. For example, you may not

need to login when browsing websites of the Youtube.

Fig. 3.14 Include Relationship

 Extend relationship in Fig. 3.15 between two use cases implies the behavior of the

extending use case may be insert into the behavior of the extended one. It is drawn

as a dash arrow from extending use case to extended one, with label «extend».

Note that the extended use case may be required for the including use case. It

 17

means the extended use case is optional and may be executed. For example, you

must need to login when you want to upload a video in the Youtube.

Fig. 3.15 Extend Relationship

 Association relationship in Fig. 3.16 between actor and use case is represented as

solid line with an optional arrowhead which implies the direction of control flow. It

exists whenever an actor is participated in a behavior in the use case.

Fig. 3.16 Association Relationship

 If two use cases or two actors have common behaviors, we just need to describe

the common once and describe any difference in another case or actor. For example,

In website of the Youtube, both Guest and Member can browse videos, but only

member can upload videos. So the meaning of generalization relationship in Fig.

3.17 between two use cases or between two actors is to present the situation

describe above. It is a solid line ending in a hollow triangle drawn from the

common to the customized use case.

Fig. 3.17 Generalization Relationship

 In Fig. 3.18, we use the components mentioned above to describe a simple

message board. There are two actors, guest and member, in simple message board. Both

 18

of them can browse the message, but only member can leave a message. You must login

when leave a message.

Fig. 3.18 Example of Use Case Diagram

 19

Chapter 4 Software Testing with Multiple Learning

Classifiers

 Since software testing is getting more time-consuming, how to reduce the cost is

becoming an important issue. Many solutions has be proposed, one of them is machine

learning. Here we use three machine learning algorithms to solve software testing

problems.

Fig. 4.1 System Structure

 20

4.1 The Usage of System Structure

 Fig. 4.1 is the whole system structure we build. We make use of use case diagram

to overview the usage requirements. There are three main use cases in our system

structure. They are get traces, training and testing respectively. In the SUT, if we want to

do software testing, first we need to collect training traces and testing traces. This is the

usage of get traces. After we get traces, we need to select algorithm to train the model,

this is the usage of training and there are three algorithms for training. After training, we

need to test the accuracy of the model, this is the usage of testing and there are three

algorithms to chose as same as training.

4.2 Workflow of System Structure

 Our research workflow can be divided into three parts according to the usages. The

first part is collecting the traces from SUT which is shown in Fig. 4.2. After that, there

should generate a trace file and a dictionary which is corresponding to trace file. Then

we translate the trace file and corresponding dictionary to different input of machine

language. Due to different properties of machine learning algorithms, there are different

ways to do translation. The input of L* algorithm is similar to the trace we collect, so

we can translate it without feature extraction. The input of SVM and NN algorithms is a

vector which represents different features. So we need to do feature extraction to get the

input files of SVM and NN algorithms. After translation, we can get input files of

different machine learning algorithms. The input file is composed of training file and

testing file. And we generate a model by using training file to do training which is

shown in Fig. 4.3. Then use the model and testing file to do testing which is shown in

Fig. 4.4 to get result.

 21

Fig. 4.2 Workflow of System

 22

Fig. 4.3 Workflow of Training

Fig. 4.4 Workflow of Testing in Different Machine Learning Algorithms

 23

4.3 Workflow of L* training

 Remember that L* needs a teacher to answer membership query and equivalence

query we mentioned in Chapter 3.3. The teacher must be reliable, and usually there will

be something as a teacher. For example, the specification or result from actual system

execution. It is possible that there is an overhead while system execution or it is

possible for lack of specifications, so we choose SVM/NN which is already learned as

teacher of L*.

 Fig. 4.5 is our workflow of L* training. First, L* algorithm will check whether the

observation table is closed and consistent or not. If the observation table is not closed

and consistent, in order to make the observation table closed and consistent, there is a

trace set which the table want to know whether they are members or not, then L* will

set membership query to ask whether each trace t in trace set is a member of the model.

We let L* algorithm to check whether trace t is in the training trace T collected while

system execution. If trace t is in training trace T, L* will return the verdict which is

recorded in training trace T. Then we end up this membership query. If trace t is not in

trace T, we make L* algorithm ask SVM/NN whether it is pass or not. If it is pass, L*

will return pass and add trace t to its knowledge as pass, if it is fail, L* algorithm will

return fail and add trace t to its knowledge as fail. If the observation table is closed and

consistent, then we will set equivalence query to check whether the hypothesis model

is equal to system model M. Our method which is used for deciding the equivalence

between M and is checking whether the hypothesis model could predict all traces

in T correctly. If it could not predict all traces in T correctly, then we pick the trace

which is predicted wrongly by as counterexample and continues the L* learning.

Otherwise, we terminate the L* training and return the hypothesis model .

 24

Fig. 4.5 Flowchart of L* algorithm

 25

4.4 Multiple Learning Classifiers

 [10] categorizes current different multi-classifier systems into three categories:

Cascading, Parallel and Hierarchical. We use parallel classifiers in this thesis. The

structure for parallel classifiers is shown in Fig. 4.6. This is the most common

methodology used in multi-classifier systems. First, we operate all of the classifiers in

parallel with the input data to get the corresponding prediction data. Then the results are

obtained by using combinatorial function with those prediction data. Because all of the

classifiers need to be executed to obtain the corresponding prediction data, this

methodology incurs an overhead as it is time-consuming.

Fig. 4.6 Structure of Parallel Classifiers

 26

 The combinatorial function affects the result heavily. If we design a good

combinatorial function, the system can reach better performance. However, an

unsuitable combinatorial function may lead the system to generate poor performance.

We present four combinatorial functions in the thesis. They are maximum, summation,

weighted summation, and product.

 Maximum is the simplest implementation of combinatorial functions. the

prediction data of classifier with the highest accuracy is chosen as the output result of

the system. If the prediction data of the classifiers are denoted by Ci(x), where i =

1, . . . ,r, then the output of the maximum combinatorial function is provided in formula

(4.1).

      1max{ ,..., }MAX rf x C x C x (4.1)

 Summation uses the summation operation to generate the result by adding the

prediction data of all classifier in the system. The output of the summation function is

defined in formula (4.2).

    
1

r

SUM i

i

f x C x


 (4.2)

 Weighted summation is an advanced version of the summation. For each classifier

Ci, it is assigned a weight wi and the weight value can be varied. First, the weighted

summation let the prediction data of each classifier Ci multiply its assigned weight wi

and then sum up all the obtained value. The function is described as formula (4.3).

    
1

r

W SUM i i

i

f x C x w



 (4.3)

 We can see the formula (4.1) and (4.2) are special cases in formula (4.3). If we

have the weight wi = 1, for classifier Ci which has the highest accuracy in formula (4.3),

then we could get the same result as formula (4.1). If we have the weight wi = 1, for all i

 27

= 1,…,r, then we get the same result as formula (4.2).

 Product is similar to the summation, it multiples the values instead of summing up

the prediction data of each classifiers. The product function is presented in formula

(4.4).

    
1

r

PROD i

i

f x C x


 (4.4)

 28

Chapter 5 Implementation

 In this chapter, we describe the details about the implementation of our software

testing with multiple learning classifiers. Our program is written in C and C++, so in

this chapter, programs start in C or C++ fashion.

 This work is implemented with off-the-shelf SVM library libsvm [14], NN library

FANN [17], and L* library libalf [18]. Basically, these libraries provide complete

functions about training and testing. All we need to do is modifying the function to fit

our system framework.

5.1 How to Collect Trace

 Because we are interested in the structure of system, we want to know the

relationship of procedures in system. To get this goal, we use two functions from InTOL

and insert them into the program. These two functions will help us to collect trace when

system runs. They are:

 InTOL_set_event(char event_type, const char* event);

 InTOL_assert(bool cond);

 The fuction InTOL_set_event has two parameters. Their types are char and const

char*. First parameter is event type, and there are two kinds of event type. They are

input event and output event respectively. The other one is event which labels what

event occurs, so the function InTOL_set_event records what kind of event happened.

The function InTOL_assert has one parameter, and it is a bool type parameter which

represents the rule the system must to obey. Once the program goes against the rule, the

output trace must be failure. The test trace we collect is a sequence of events. In fact,

 29

Fig. 5.1 Flowchart of Deciding Failure

 30

there is no bound to the lengths of the test traces. However L* learning time is related to

the number of event and the length of test trace. The more number of event you use, the

more time of L* training you cost.

5.2 How to Decide Failure

 Fig. 5.1 shows the collected trace will be fail in two conditions. First, when

function InTOL_assert returns fail message, the trace must be fail. For example, when

system bumps into the function InTOL_assert, the function InTOL_assert says variable

a must equals to 1, but the variable a is 2 in practice. Second, the function InTOL_assert

returns pass, but output of oracle is fail, and then it will be failure. The trace will be pass

except these two conditions.

5.3 How to Insert Function

 How to insert function? It depends on what purpose you need. For example, if we

want to know the whole structure of system and the relationship of functions, we could

insert code into every procedure. If we want to know the most important procedure or

the procedure from revision recently, we could insert more functions to the procedure

which we focus on than others. There is an example of insert function shown in Fig. 5.2.

The three fragments of example are from same program. There are some processes

working in the program. The total number of processes is recorded in global variable

num_process. When system executes case FLUSH in line 383. The function

finish_all_processes will be called, and then it will call fuction finish_process to do their

job in line162 for every process. After job done, the process must be free, and the global

variable num_process will be decreased by 1. After these steps, the global variable

 31

num_process sould be 0, and we insert function InTOL_assert with the condition

num_process equals 0 to check the relationship is correct.

Fig. 5.2 Fragment of Code

5.4 Feature Selection

 After collect the trace from the method we mentioned above, we need to transfer

these traces into the input type of SVM and NN. How to transfer is also an important

issue. This issue is called feature selection. The machine learning algorithm could do

 32

better performance with a good feature selection. Here we use five feature sets X0, X1,

X2, X3, and X4. Then we concatenate them as an input vector. These five feature sets are

explained in the following.

5.4.1 X0

 X0 is a structure which records the last W events of trace, i.e. the X0 records events

from the tail of trace to the head of trace up to W. The W is a window size which means

the biggest capacity that X0 could record. For example, given X0 = {x0, x1, .. , xw}, and

the event index of a, b, c, d, and e in dictionary are index(a) = 1, index(b) = 2, index(c)

= 3, index(d) = 4, and index(e) = 5. If window size W = 4 and there is an trace t = abcde,

then x0 = index(e) = 5, x1 = index(d) = 4, x3 = index(c) = 3, and x4 = index(b) = 2.

5.4.2 X1

 Given the event set E, and there is a trace t which is composed of a sequence

events, each event belongs to E. For every event e1 and e2 in E, there exists a function

F(e1, e2) which means the number of e1 occurrences without any e2 event from the end

of a trace t. i.e. the number of event e1 since the last event e2. For example, given a trace

t = abbcccaabc, F(c, a) = 1, F(b, a) = 1, and F(a, c) = 0.

5.4.3 X2

 Given the event set E, and there is a trace t which is composed of a sequence

events, each event belongs to E. For every event e1 and e2 in E, there exists a function

F(e1, e2) which means the max number of e1 occurrences without any e2 event in a trace

t. i.e. the max number of event e1 before the event e2. For example, given a trace t =

 33

abbcccaabc, F(c,a) = 3, F(b,a) = 2, and F(a,c) = 2.

5.4.4 X3

 Given the event set E, and there is a trace t which is composed of a sequence

events, each event belongs to E. If there is an event e in t, then |e| means the number of

event e in trace t. For every event e1 and e2 in E, there exists a function F(e1, e2) which

means the number of e1 occurrences minus the number of e2 occurrences in a trace t. i.e.

|e1| - |e2|. For example, given a trace t = abbcccaabc, F(c,a) = 1, F(b,a) = 0, and F(a,c) =

-1.

5.4.5 X4

 Given the event set E, and there is a trace t which is composed of a sequence

events, each event belongs to E. For every event e1 and e2 in E, there exists a function

F(e1, e2) to check whether it is satisfied with all of the following three conditions or not:

 For every e1 event occurrence in trace t, there must (transitively) follow an e2 event

occurrence.

 For every e2 event occurrence in trace t, there must be (transitively) followed by an

e1 event occurrence.

 There must be an e2 event occurrence between two e1 event occurrences.

 For example, if trace t = abcaabc, F(b, c) is true and F(a, b) is false.

 34

Chapter 6 Experiment

 We use the two benchmarks (SUT) which are TCAS with bug version 10 and 28

and benchmark schedule with bug version 3 in SIR [16] to demonstrate our technique.

We present the experimental studies of different training data sizes with five different

classifiers which are L* with teacher SVM, L* with teacher NN, SVM, SVM trained

with optimal parameters and NN. The performance of constructed test oracle is

measured with prediction accuracy and time cost. The prediction accuracy is the

percentage of correctly labeled test cases of a testing data set with the constructed test

oracle. The time cost is the used time to train the test oracle and testing data. The

experimental data are collected on Intel(R) Core(TM) i7 CPU 860@ 2.8GHz with 2G

RAM, running on Ubuntu 9.10.

 To objectively demonstrate the effect of different training data size, we have the

prediction accuracy to test with a testing data set of 200 test cases. Each experiment is

run for 10 times and the average performance data is recorded. And has time limit which

is 30 minutes. Because the way to build model of L* with teacher NN or SVM is

different from the way to build model of NN and SVM. Their prediction accuracy is

totally different when it is time out. That is, L* would generate hypothesis model during

training. If it is time out, we could still use the hypothesis model to do prediction. So the

prediction accuracy of L* would not be 0. However the model of NN and SVM is

generated after training, if it is time out, there is no model for testing. The prediction

accuracy will be 0.

6.1 Experiment Setting

 Following are the settings of each algorithm mechanism we use in this experiment:

 35

1. NN: Here we use multiple layer structure. The number of neutron in input layer is

as same as the element number in vector. The number of hidden layer is 3 and each

hidden layer has 3 neurons. Because we just need to know the output is pass or fail,

the number of neutron in output layer is 1.

2. SVM: the kernel we use is radial basis function (RBF) with no parameters.

3. SVM with optimal parameter: the kernel we use is radial basis function (RBF).

And use the procedure which is provided by libsvm to find suitable parameters.

4. L* with teacher NN: Here we use the NN model from 1 to be the teacher of L*.

5. L* with teacher SVM: Here we use the SVM model from 3 to be the teacher of L*.

6.2 Results of Each Classifier

 Following we list the result of experiments in table type. The first column of table

is the size of training data set, the second one is prediction accuracy, and the last one is

average execution time.

 The experiments of benchmark TCAS is from Table 6.1 to Table 6.5. We could find

several things.

 When the size of training data set increases, the prediction accuracy will also

increase. However there is an exception in Table 6.4, we could find the time cost in

experiment of size 200 and 1000 is time out. This means the leaning is not

complete, so it could not promote accuracy to 100%. We believe it may be 100%

while increase time limit.

 It will cost much time with increment of size, except for L* algorithm. We think it

may be because L* builds hypothesis model according to the teacher. Here we

use NN or SVM as the teacher of L*. The model construction of SVM and NN is

 36

depends on the training data. If data size is too small, the information would be not

enough. If data size is too big, there would be redundant information in the data set.

It would build different size of model, although the benchmark is same and the

time is relative to the size and complexity of model.

 The experiment time of SVM with optimal parameter is much higher than that

without optimal parameter, because it costs the most part of time to find parameter.

 SVM seems more suitable to be the teacher of L* than NN, because the accuracy

of SVM is higher than accuracy of NN.

size of training data set prediction accuracy Time

200 98.8% 0.168s

400 98.8% 0.262s

600 99.2% 0.310s

800 99.4% 0.389s

1000 100% 0.413s

Table 6.1 TCAS Experiment of NN

size of training data set prediction accuracy Time

200 94% 0.109s

400 94% 0.156s

600 100% 0.284s

800 100% 0.293s

1000 100% 0.301s

Table 6.2 TCAS Experiment of SVM

 37

size of training data set prediction accuracy Time

200 100% 6.102s

400 100% 6.327s

600 100% 17.831s

800 100% 26.350s

1000 100% 35.218s

Table 6.3 TCAS Experiment of SVM with Optimal Parameter

size of training data set prediction accuracy Time

200 94% Time out

400 100% 63.776s

600 100% 18.891s

800 100% 1239.611s

1000 92% Time out

Table 6.4 TCAS Experiment of L* with Teacher NN

size of training data set prediction accuracy Time

200 100% 113.651s

400 100% 77.231s

600 100% 1392.952s

800 100% 110.710s

1000 100% 261.330

Table 6.5 TCAS Experiment of L* with Teacher SVM

 38

 The experiments of benchmark schedule are from Table 6.6 to Table 6.10. We

could find several things.

 When the size of training data set increases, the prediction accuracy will almost

increase in Table 6.6, Table 6.7 and Table 6.8 except for the size 1000. The data in

size 1000 may be more discrete than the other and does not have strong connection

with testing data. Moreover it will cost much time with increment of size as same

as experiments of benchmark TCAS.

 The accuracy in Table 6.6, Table 6.7 and Table 6.8 is lower than same strategy used

in TCAS. It may be because the schedule is more complex than TCAS and do not

collect enough information.

 In Table 6.9 and Table 6.10, the cost time is time out in every experiment. For the

higher prediction accuracy, we think it may be because the schedule program is so

complex that we do not give enough time to let it to learn. For the lower prediction

accuracy, we think it may be because the teacher NN and SVM do not get enough

prediction accuracy such that it could not give a correct answer.

 The experiment time of SVM with optimal parameter is much higher than that

without optimal parameter, and the reason is as same as experiment in TCAS.

 Here we can't figure out which one is suitable to be the teacher of L* because of

the low prediction accuracy. Due to the result of experiments in TCAS, we still

believe SVM is more suitable the NN if there are high prediction accuracy and

enough time to learn.

 We could find out that L* costs much time than the other learning algorithm from

Table 6.4, Table 6.5, Table 6.9, and Table 6.10. It may be because it needs a lot queries

to build the model and wait for teacher's respond. Because of many reasons we

mentioned above, we think L* is not suitable for such a complex system.

 39

size of training data set prediction accuracy Time

200 88.6% 1.137s

400 89.6% 2.541s

600 90.95% 3.862s

800 91.05% 4.839s

1000 90.4% 5.694s

Table 6.6 Schedule Experiment of NN

size of training data set prediction accuracy Time

200 89.6% 0.207s

400 88.5% 0.440s

600 89.5% 0.772s

800 89% 1.063s

1000 90% 1.517s

Table 6.7 Schedule Experiment of SVM

size of training data set prediction accuracy Time

200 90.5% 17.082s

400 92% 48.567s

600 94% 98.898s

800 94% 164.815s

1000 91.5% 248.747s

Table 6.8 Schedule Experiment of SVM with Optimal Parameter

 40

size of training data set prediction accuracy Time

200 82% Time out

400 88.8% Time out

600 23% Time out

800 80.5% Time out

1000 61.5% Time out

Table 6.9 Schedule Experiment of L* with Teacher NN

size of training data set prediction accuracy Time

200 41% Time out

400 89% Time out

600 33.5% Time out

800 88.5% Time out

1000 43.5% Time out

Table 6.10 Schedule Experiment of L* with Teacher SVM

6.3 Results of Multiple Classifiers

 Following we list the result of experiments in table type. The first column of table

is the size of training data set, and columns which are from the second one to the fifth

one are prediction accuracy of combinatorial functions mentioned in Chapter 4.4. Table

6.11 is the TCAS experiment which uses multiple classifiers. The weight values are

obtained according to the accuracy of each classifier. We could easily find out that

multi-classifier methodologies reach a better performance except the product. Obviously,

 41

the product function is an unsuitable combinatorial function, and it affects the

performance very much.

 Table 6.12 is the schedule experiment which uses multiple classifiers. We could

find out that the weighted summation function performs better than other combinatorial

functions and the SVM with optimal parameter.

 Although, we could get a better result by using weighted summation function, it is

time-consuming. The total cost time of combinatorial function is approximately equal to

sum up the time of each classifier.

Combinatorial

function

size of training

data set

Maximum Summation
Weighted

summation
product

200 100% 100% 100% 66.5%

400 100% 100% 100% 91%

600 100% 100% 100% 28.5%

800 100% 100% 100% 28.5%

1000 100% 100% 100% 28.5%

Table 6.11 TCAS Experiment of Multiple Classifiers

Combinatorial

function

size of training

data set

Maximum summation
Weighted

summation
product

200 90.5% 90% 91.5% 39%

400 92% 89% 92% 88.5%

600 94% 91% 94% 63%

800 94% 93.5% 94% 77.5%

1000 91.5% 92% 92% 56%

Table 6.12 Schedule Experiment of Multiple Classifiers

 42

Chapter 7 Conclusion and Future Work

 In this thesis, we present a comparison among different machine learning

algorithms and find out a better result by using combinatorial function. We also find out

that L* may not suitable for big program and we think it is more suitable in unit testing.

The performance is good when doing software testing in small program. We

successfully combine different algorithms such as L* with teacher SVM and L* with

teacher NN to build fault model and do prediction. We build the framework of using

different machine algorithms to the software testing at the same time.

 In the future, we may improve the performance of our work by finding a better way

to decide the weight of weighted summation or by collecting more machine learning

algorithm to do software testing or by tuning the parameter such as the number of

neuron and the number of layer in hidden layer in NN or by selecting more useful

feature selection. It is possible to use the model which is constructed by L* to do some

model checking, and it is also possible to use L* in unit testing to get a great

performance.

 43

Bibliography

[1] I. Guyon and A. Elisseeff, "An introduction to variable and feature selection", J.

Mach. Learn. Res. 3, pp. 1157–1182.

[2] F. Wang, J.H. Wu, C.H. Huang, and K.H. Chang, "Evolving a test oracle in

black-box testing", in Fundamental Approaches to Software Engineering, pp.

310-325, 2011.

[3] J.F. Bowring, J.M. Rehg, and M.J. Harrold, "Active learning for automatic

classification of software behavior", in International Symposium on Software

Testing and Analysis, pp 195-205, 2004.

[4] M.D. Ernst, J Cockrell, W.G. Griswold, and D. Notkin, "Dynamically discovering

likely program invariants to support program evolution", in IEEE Transactions of

Software Engineering, Vol. 27, No. 2, 2001.

[5] N. Baskiotis, M. Sebag, M.C. Gaudel, and S. Gouraud, "A machine learning

approach for statistical software testing", in Proc. International Joint Conference

on Artificial Intelligence, 2007.

[6] C. Cortes and V. Vapnik. "Support-vector networks", in Machine Learning, Vol. 20,

pp. 273-297, 1995.

[7] M. T. Hagan, H. B. Demuth, and M. Beale, "Neural Network Design", Boston:

PWS Publishing Co., 1996.

[8] D. Angluin, "Queries and concept learning", in Machine Learning, 2, pp. 319-342,

1988.

[9] T.G. Dieterich, "Machine-learning research: Four current direction", The AI

Magazine 18(4), pp. 97-136, 1998.

 44

[10] Y. Lu, "Knowledge integration in a multiple classifier system", Appl. Intell. 6(2),

pp. 75-86, 1996.

[11] L. Lam, "Classifier combinations: Implementations and theoretical issues", In MCS

2000: Proceedings of the First International Workshop on Multiple Classifier

Systems, Springer-Verlag, London, UK, pp. 77-86, 2000

[12] A.M. de P Canuto, "Combining neural networks and fuzzy logic for applications in

character recognization", PHD thesis, University of Kent, 2001.

[13] Y.-C. F. Wang and D. Casasent, "A hierarchical classifier using new support vector

machine", in ICDAR, IEEE Computer Society, pp. 851–855, 2005.

[14] C.C. Chang and C.J. Lin, "LIBSVM : a library for support vector machines". In

ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011.

Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

[15] M. Fowler, and K. Scott, "UML distilled: Applying the standard object modeling

language", New York: AddisonWesley Longman, 1997.

[16] G. Rothermel, S. Elbaum, A. Kinneer, and H. Do, "Software-artifact infrastructure

repository", at http://sir.unl.edu/portal, 2006.

[17] S. Nissen, "Implementation of a fast artificial neural network library (fann)",

Department of Computer Science University of Copenhagen (DIKU), Tech. Rep.

2003. Note http://fann.sf.net.

[18] Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker, Daniel Neider,

David R. Piegdon, "Libalf: the automata learning framework", in Proceedings of

CAV'2010. pp.360~364.

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://sir.unl.edu/portal
http://fann.sf.net/

