

國立臺灣大學電機資訊學院電信工程學研究所

碩士論文

Graduate Institute of Communication Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

以影像分割及邊界描述為基礎的影像壓縮技術

Image Compression by Segmentation

and Boundary Description

黃俊德

Jiun-De Huang

指導教授：丁建均 博士

Advisor: Jian-Jiun Ding, Ph.D.

中華民國 97 年 6 月

June, 2008

 i

誌謝

 能完成這篇論文，我要特別感謝我的指導教授丁建均老師，從一開始訓練我

們的英文寫作能力，接著幫助我們找到論文的方向，直到最後幾個月的密集

meeting，老師總是很有耐心的指導我們，並且在適當的時候都能提供我們一些新

的想法與在我們遇到瓶頸的時候騰出時間來幫忙解決。

 另外也要感謝實驗室的同學們：國銓、于哲、育思、汝川，在這兩年來一起

努力時對我的幫助與鼓勵。還有謝謝學弟們在口試時的幫忙，以及自恆在口試前

的幫忙審稿。

 最後要感謝我的父母，讓我在經濟上沒有後顧之憂，可以專心的學習與研究。

 iii

中文摘要

 在現有的影像壓縮技術上，如 JPEG，皆是對整張圖做相同的處理，而不會對

於不同的影像內容而有所調整，所以壓縮率有其極限。而在新一代的影像壓縮技

術中，是以影像分割為基礎，將影像盡可能的切割成數個特性或色彩值近似的區

塊，每個區塊分別有不同的形狀與色彩值。由於同區塊中的色彩值通常會有高度

相關，所以理論上可以產生更高的壓縮率。

 對於影像分割，大致上是根據像素值的兩種性質：不連續性與相似性。為了

找到不連續的像素值，我們將會介紹影像的邊緣偵測的基本技術並且提出一種結

合了傳統的微分法與希爾伯轉換法的可適性方法，叫做短時響應的希爾伯轉換。

我們也將會介紹許多其他的方法來做影像切割。我們主要的目的是找出適合的分

割結果讓壓縮可以更有效率。

 做好影像切割之後，我們會介紹 JPEG 標準中使用到的壓縮演算法，並應用在

我們提出的方法中。為了有效率的記錄每個影像區塊的輪廓，我們先介紹一些常

用的邊界描述子並提出兩種改進過後的邊界描述子。為了壓縮影像區塊的色彩

值，我們將會討論如何將一個不規則形狀的影像區塊轉換到頻域，接著我們便可

以對轉換後的頻率係數做量化及編碼來降低資料量。最後我們將結果與使用 JPEG

標準壓縮的圖片做比較，證實在可接受的失真範圍下，壓縮率的確可以增加很多。

 v

ABSTRACT

 The present technique of image compression, like the JPEG standard, makes the

same process to whole image and does not adjust the parameters based on the local

characteristics of the image. Therefore, it has a limit to its compression ratio. However,

a new compression technique called segmentation-based image compression has been

developed. It segments an image to several regions with similar characteristic or color.

Because each image segment has different shapes and color values, we compress these

regions individually. Due to the high correlation of the color values in an image segment,

we could achieve higher compression ratio in theory.

 The technique of image segmentation is based on two properties of color values:

discontinuity and similarity. To find the discontinuity of the color values, we will intro-

duce the image edge detection technique and propose an adaptive method called the

short response Hilbert transform (SRHLT) which combines the traditional differential

method and the Hilbert transform method. We will also discuss many other ways to

segment an image. The main object is to find a suitable segmented result that can be

compressed efficiency.

 After Segmentation, we will introduce the basic image compression algorithms in

JPEG standard and apply them in our proposed methods. To record the boundary of an

image segment efficiently, we will introduce some popular boundary descriptors and

propose two improved boundary descriptors. To compress the color values of an image

segment, we will discuss how to transform an arbitrary-shape image segment to fre-

quency domain. Then we can quantize and encode the frequency coefficients to de-

crease the information quantity. Finally, we will compare the result with that of JPEG

 vi

standard and prove that the compression ratio could be increase a lot under acceptable

distortion.

 vii

CONTENTS

誌謝 ..i

中文摘要 ... iii

ABSTRACT ..v

CONTENTS ... vii

LIST OF FIGURES..xi

LIST OF TABLES..xvi

Chapter 1 Introduction..1

Chapter 2 Edge Detection..5

2.1 Differentiation Method for Edge Detection..5

2.1.1 First-Order Derivative Edge Detection ...5

2.1.2 Second-Order Derivative Edge Detection...9

2.1.3 The Drawbacks of the Differentiation Method for Edge Detection....12

2.2 Hilbert Transform for Edge Detection..13

2.3 Short Response Hilbert Transform for Edge Detection................................16

2.3.1 The Definition of the SRHLT..16

2.3.2 SRHLT of the 2-D Form ...20

2.3.3 Experiments of Edge Detection Using SRHLT...................................22

2.3.4 Illustrated by Canny’s Theorem and Mathematical Analysis..............26

2.3.5 Other Possible Ways to Define the SRHLT ..29

2.4 Conclusion ..33

Chapter 3 Image Segmentation...35

3.1 Thresholding ...35

 viii

3.2 Edge Linking ..37

3.2.1 Local Processing ...37

3.2.2 Hough Transform ..37

3.3 Region-Based Segmentation...39

3.3.1 Region Growing ..40

3.3.2 Segmentation by Morphological Watersheds......................................41

3.3.3 Mean Shift Based Image Segmentation ..43

3.4 Conclusion ..45

Chapter 4 Basic Image Compression Algorithm...47

4.1 Color Space Conversion and Downsampling...48

4.2 Transform Coding...50

4.3 Quantization..52

4.4 Entropy Coding Algorithms..54

4.4.1 Huffman Coding..55

4.4.2 Difference Coding ...56

4.4.3 Zero Run Length Coding ..57

4.5 Simulation Result ...60

4.6 Conclusion ..61

Chapter 5 Boundary Description and Compression...63

5.1 Polygonal Approximation...63

5.1.1 Merging technique...63

5.1.2 Splitting Technique ...64

5.2 Fourier Descriptor...65

Chapter 6 Proposed Methods for Boundary Description and Compression......69

6.1 Second-Order Curve Descriptor ...69

 ix

6.1.1 Second-Order Polynomial Approximate to a Boundary Segment69

6.1.2 Splitting Technique with Approximate Second-Order Curve71

6.2 Fourier Descriptor of Non-Closed Boundary Segments...............................73

6.2.1 Boundary Segmentation ..73

6.2.2 Fourier Descriptor of Non-Closed Boundary Segment.......................74

6.2.3 Boundary Compression...76

6.2.4 Other Method for Fourier Descriptor of Boundary Segment..............78

6.3 Boundary Encoding of the Boundary Segments...79

6.4 Conclusion ..82

Chapter 7 Arbitrary-Shape Image Segment Compression83

7.1 Block-Filled Method...83

7.2 Arbitrary-Shape Image Transform..84

Chapter 8 Proposed Method for Arbitrary-Shape Image Segment Compression87

8.1 Arbitrary-Shape Transform with DCT Bases ...87

8.2 Quantization of the DCT Coefficients ..92

8.3 Coding Technique of the Image Segment...93

8.4 Improvement of the Boundary Region by Morphology97

8.5 Compare with the JPEG Standard ..100

8.6 Conclusion ..102

Chapter 9 Conclusion and Future Work..103

9.1 Conclusion ..103

9.2 Future Work ..104

REFERENCE ..105

 xi

LIST OF FIGURES

Fig. 1.1 Segmentation-based image compression model...2

Fig. 2.1 A 3×3 area of an image...7

Fig. 2.2 The Roberts operators...7

Fig. 2.3 The Prewitt operators..7

Fig. 2.4 The Sobel operators. ...8

Fig. 2.5 Examples of edge detection using three different operators...........................9

Fig. 2.6 Two kind of 3×3 Laplacian mask. ..10

Fig. 2.7 An 11×11 mask approximation to Laplacian of Gaussian (LOG).10

Fig. 2.8 Examples of edge detection using three different Laplacian masks.............11

Fig. 2.9 Using differentiation to detect (a) the sharp edges, (c) the step edges with

noise, and (e) the ramp edges. (b)(d)(e) are the results of differentiation of

(a)(c)(e). ..12

Fig. 2.10 Using HLTs to detect (a) the sharp edges, (c) the step edges with noise, and

(e) the ramp edges. (b)(d)(e) are the results of the HLTs of (a)(c)(e).14

Fig. 2.11 Impulse responses and their FTs of the SRHLT for different b. We can

compare them with the impulse response of the differential operation and

the original HLT..18

Fig. 2.12 Using SRHLTs to detect the sharp edges, the step edges with noise, and the

ramp edges. Here we choose b = 1, 4, 12, and 30.19

Fig. 2.13 Experiments that use differentiation, the HLT, and the SRHLT (b=8) to do

edge detection for Lena image..21

Fig. 2.14 Experiments that use differentiation, the HLT, and the SRHLT (b=8) to

 xii

detect the edges of Lena image interfered by noise......................................22

Fig. 2.15 Using the SRHLT to detect the edges of Lena image or Lena + noise when b

is chosen as 0.5 and 20. ..23

Fig. 2.16 Using adaptive threshold and overlapped section to further refined the

results of edge detection by SRHLTs. (a) is the refined results of Fig. 2.13(d).

(b) is the refined results of Fig. 2.14(d). ...24

Fig. 2.17 Using the SRHLT (b = 8) to detect the edges of Earth, Pepper, and Forest

images. Most of the edges are detected successfully....................................25

Fig. 2.18 Using the SRHLT (b = 8) to detect the edges of Ken, Shuttle, and Tiffany

images. Most of the edges are detected successfully....................................26

Fig. 2.19 Other transform pairs (defined in (2.62)~(2.74)) that can be treated as the

impulse response and the transfer function of the SRHLT. All of them satisfy

Canny’s criterion and are useful for edge detection. Here we all set b =1. ..30

Fig. 3.1 (a) An example image f(x, y) and its (b) gray-scale histogram.....................36

Fig. 3.2 (a) xy-plain. (b) ab-plain (parameter space). ..38

Fig. 3.3 (a) Normal representation of a line. (b) ρθ-plain. (b) ρθ-plain with cell.39

Fig. 3.4 Region growing. ...40

Fig. 3.5 The flooding process of the morphological watershed algorithm.41

Fig. 3.6 An example of watershed algorithm...42

Fig. 3.7 An example of watershed algorithm with noise. ..42

Fig. 3.8 The mean shift iterations to find the mode. ..43

Fig. 3.9 Attraction basins of two modes. The diamonds indicate the modes.............44

Fig. 3.10 Mean shift based filtering and segmentation for a gray-level image from

[52]. (a) Original image. (b) Mean shift paths for the pixels on the plateau

and on the line. The black dots indicate the modes. (c) Filtering result. (d)

 xiii

Clustering result..45

Fig. 4.1 Image compression model. ...48

Fig. 4.2 Three color formats. ...50

Fig. 4.3 The 8×8 DCT bases , (,)x y u vω ..51

Fig. 4.4 An example of DCT coefficients for a 8×8 block.52

Fig. 4.5 Quantization matrix. ...53

Fig. 4.6 An example of quantization for a 8×8 DCT coefficients..............................53

Fig. 4.7 Zig-zag reordering matrix...54

Fig. 4.8 Huffman code procedure. ...55

Fig. 4.9 Simulation result of the JPEG standard. ...60

Fig. 5.1 Use merging technique to find the polygonal approximation.64

Fig. 5.2 Using splitting techniques to find polygonal approximation........................65

Fig. 5.3 A digital boundary that represented as a complex sequence.65

Fig. 5.4 Reconstruction from Fourier descriptors with different reserve rate. (b)~(f)

is the reserve rate R = P / K with 50%, 30%, 20%, 10%, 5%.67

Fig. 6.1 Initial steps to a boundary segment. ...70

Fig. 6.2 The original boundary segment s3(k) and the approximate 2nd-order curve yk.71

Fig. 6.3 Find the first two points to split the boundary. ...72

Fig. 6.4 Splitting technique with approximate second-order curve.72

Fig. 6.5 Error of the original boundary points and the reconstruct ones....................74

Fig. 6.9 (a) The new boundary segment. (b) Fourier descriptor of (a).76

Fig. 6.10 (a) The reserve P−1 coefficients. (b) Recover the whole coefficients from

(a)..77

Fig. 6.11 Boundary compression with different coefficient reserve rate.....................78

 xiv

Fig. 6.12 Result of improved boundary compression. ...78

Fig. 6.13 Three methods for Fourier descriptor of a boundary segment with R = 0.1.79

Fig. 6.14 Boundary segment encoder...80

Fig. 6.15 Boundary segment decoder...80

Fig. 6.16 Point number of boundary and distance of two end points.81

Fig. 7.1 Fill the outside region with the mirror image of the internal contents. (a)

Original segment. (b) The segment size equals one half of the block size. (c)

The segment size is smaller than one half of the block size.........................84

Fig. 7.2 (a) An irregular-shape image segment in a 3×3 block area. (b) A canonical

basis of the subspace...85

Fig. 8.1 (a) An arbitrary-shape image segment f and (b) its shape matrix.88

Fig. 8.2 The 8×8 DCT bases with the shape of f..89

Fig. 8.3 Zig-zag reordering matrix...89

Fig. 8.4 The 37 arbitrary-shape orthonormal DCT bases ,'x yω90

Fig. 8.5 The 37 arbitrary-shape DCT coefficients of f. ..90

Fig. 8.6 An example of six arbitrary-shape image segments.91

Fig. 8.7 The arbitrary-shape DCT coefficients of Fig. 8.6 (a)~(f).91

Fig. 8.8 Quantization array Q(k) with Qa = 0.06 and Qc = 8.93

Fig. 8.9 The quantized DCT coefficients of Fig. 8.7(a)~(f).......................................93

Fig. 8.10 Image segment encoder. ...94

Fig. 8.11 Image segment decoder. ...95

Fig. 8.12 Number of Bytes and RMSE of the encoded image segments with different

quantization parameters. ...96

Fig. 8.13 Divide the image segment by morphological erosion.98

 xv

Fig. 8.14 Number of bytes and RMSE of the encoded image segments with different

quantization parameters in the improvement method...................................99

Fig. 8.15 Number of bytes and RMSE of the encoded image segments with different

quantization parameter in the JPEG method. ...101

 xvi

LIST OF TABLES

Table 4.1 Huffman table of luminance DC coefficients. ..57

Table 4.2 The category and bit-coded values. ..58

Table 4.3 Huffman table of luminance AC coefficients. ..59

Table 6.1 Data size and coding bytes of the example of Fig. 6.12(b).82

 1

Chapter 1

Introduction

 Because of the explosively increasing information of image and video in various

storage devices and Internet, the image compression technique becomes more and more

important. For example, if we have a 4×6 inch photo with 300 dpi, the required data

quantity can be counted as 4×6×(300)2 × 3 bytes per pixel = 6.48 megabytes. In other

words, if we do not compress these images, a CD of 650MB can only store about 100

photos. However, if we compress these photos by the general JPEG standard whose

compression ratio is about 15:1, a compressed photo could have only 432 kilobytes and

a CD can store up to 1500 photos.

 Although the compression ratio of the JPEG standard seems large, it still can in-

crease. The present technique of image compression makes the same process to a whole

image and does not adjust the parameters based on the local characteristics of the image.

Therefore, it has a limit to its compression ratio. However, a new compression tech-

nique, called the segmentation-based image compression has been developed. It seg-

ments an image to several regions with similar characteristic or color. Because each

image segment has different shapes and color values, we compress these regions indi-

vidually. Due to the high correlation of the color values in an image segment, it could

reach higher compression ratio in theory.

 The diagram of the segmentation-based image compression model is shown in Fig.

1.1. It can be divided into three parts. First of all, the image segmentation process input

an image and output its boundary and image segment of each segmented region. Then

 2

the two data are encoded by different compression processes. The two encoded data are

combined to the bit stream and the bit stream is stored in some storage.

Arbitrary-Shape
Transform Coding

Quantization &
Entropy Coding

Bit
stream

Image
Segmentation

Boundary
Transform Coding

Quantization &
Entropy Coding Image

Segment

Boundary

Transform coefficients

Boundary descriptor

An image

Boundary Compression

Image Segment Compression

Fig. 1.1 Segmentation-based image compression model.

 The technique of image segmentation is based on two properties of color values:

discontinuity and similarity. To find the discontinuity of the color values, we will intro-

duce the image edge detection technique in the Chapter 2. We will propose an adaptive

method called the short response Hilbert transform (SRHLT) which combines the tradi-

tional differential method and the Hilbert transform method. In Chapter 3, we will dis-

cuss many other ways to segment an image. The main object is to find a suitable seg-

mented result that can be compressed efficiently.

 In Chapter 4, we will introduce the basic image compression algorithms in JPEG

standard and apply them in our proposed methods.

 In Chapter 5, we will introduce some popular boundary descriptors to record the

boundary of an image segments efficiently. In Chapter 6, we will propose two improved

boundary descriptors.

 In Chapter 7, we will discuss how an arbitrary-shape image segment is compressed.

In Chapter 8, we implement the arbitrary-shape image segment compression by modi-

 3

fied DCT. We transform the color values to frequency domain and then we quantize and

encode them to decrease the information quantity. Finally, we will compare the result

with that of JPEG standard and prove that the compression ratio could be increase a lot

under acceptable distortion.

 5

Chapter 2

Edge Detection

 Local discontinuities in image intensity from one pixel to another are called edges,

which are considered as the boundaries between different textures. The edges for an

image are always the important characteristics that offer an indication for a higher fre-

quency. Detection of edges for an image may help for image segmentation described in

the next chapter, and also help for well matching, such as image reconstruction and so

on.

 Edge detection is an approach for detecting meaningful discontinuities in gray

level. The most common method for edge detection is to calculate the differentiation of

an image. The first-order derivatives in an image are computed using the gradient, and

the second-order derivatives are obtained using the Laplacian. Another method for edge

detection uses Hilbert Transform. And we have proposed a new method called short re-

sponse Hilbert transform (SRHLT) that combines the differentiation method and the

Hilbert transform method.

2.1 Differentiation Method for Edge Detection

2.1.1 First-Order Derivative Edge Detection

 We define a point in an image which is an edge point if its two-dimensional

first-order derivative is greater than a specified threshold. First-order derivatives of a

digital image are based on various approximations of the 2-D gradient. The gradient of

an image f (x, y) at location (x, y) is defined as the vector:

 6

 x

y

f
G x

fG
y

∂⎡ ⎤
⎢ ⎥⎡ ⎤ ∂⎢ ⎥∇ = =⎢ ⎥ ∂⎢ ⎥⎣ ⎦
⎢ ⎥∂⎣ ⎦

f . (2.1)

The gradient vector points are in the direction of maximum rate of change of f at coor-

dinates (x, y).

 An important quantity in edge detection is the magnitude of this vector, denoted ∇f,

where

 2 2
x yf G G∇ = ∇ = +f . (2.2)

The magnitude gives the maximum rate of increase of f (x, y) per unit distance in the

direction of ∇f.

 Another important quantity is the direction of the gradient vector. That is,

 1angle of tan y

x

G
G

− ⎛ ⎞
∇ = ⎜

⎝ ⎠
f ⎟ , (2.3)

where the angle is measured with respect to the x-axis. The direction of an edge at (x, y)

is perpendicular to the direction of the gradient vector at that point.

 Computation of the gradient of an image is based on obtaining the partial deriva-

tives of f x∂ ∂ and f y∂ ∂ at every pixel location. Let the 3×3 area shown in Fig. 2.1

represent the gray levels in a neighborhood of an image. One of the simplest ways to

implement a first-order partial derivative at point z5 is to use the following Roberts

cross-gradient operators [32]:

 9 5(xG z z)= − (2.4)

and

 8 6(yG z z)= − . (2.5)

These derivatives can be implemented for an entire image by using the masks shown in

 7

)

)

Fig. 2.2 with the procedure of convolution.

 Another approach using masks of size 3×3 shown in Fig. 2.3 which is given by

 (2.6) 7 8 9 1 2 3() (xG z z z z z z= + + − + +

and

 (2.7) 3 6 9 1 4 7() (yG z z z z z z= + + − + +

is called Prewitt operators [30]. In this operator, the difference between the first and

third rows of the 3×3 image region approximates the derivative in the x-direction, and

the difference between the third and first columns approximates the derivative in the

y-direction.

Fig. 2.1 A 3×3 area of an image.

z1 z2 z3

z4 z5 z6

z7 z8 z9

Fig. 2.2 The Roberts operators.

0 0 0

0 −1 0

0 0 1

0 0 0

0 0 −1

0 1 0

Fig. 2.3 The Prewitt operators.

−1 −1 −1

0 0 0

1 1 1

0 −1 1

−1 0 1

−1 0 1

 8

3)

3 6 9 1 4 7(2) (2)yG z z z z z z= + + − + +

−1 −2 −1

0

0 −1

 In [19], a slight variation of these two equations uses a weight of 2 in the center

coefficient:

 (2.8) 7 8 9 1 2(2) (2xG z z z z z z= + + − + +

 (2.9)

A weight value of 2 is used to achieve some smoothing by giving more importance to

the center point. Fig. 2.4, called the Sobel operators, is used to implement these two

equations.

 There are several operators developed such as Frei-Chen operator [20], Kirsch op-

erator [23], Robinson operator [34], and Nevatia-Babu operator [28]. They have their

own property and have good effect on different edge, respectively.

 After the edge gradient is formed for the differential edge detection methods, the

gradient is compared to a threshold to determine if an edge exists. The threshold value

determines the sensitivity of the edge detector. For noise-free images, the threshold can

be chosen such that all amplitude discontinuities of a minimum contrast level are de-

tected as edges, and all others are called non-edges. With noisy images, threshold selec-

tion becomes a trade-off between missing valid edges and creating noise-induced false

edges. Edge detection can be regarded as a hypothesis-testing problem to determine if

an image region contains an edge or contains no edge, see [13].

Fig. 2.4 The Sobel operators.

1

−2 0 2

−1 0

0 0

1 2 1 1

 9

(a) Original image. (b) Roberts operator.

(c) Prewitt operator. (d) Sobel operator.

Fig. 2.5 Examples of edge detection using three different operators.

2.1.2 Second-Order Derivative Edge Detection

 The Laplacian of a 2-D function f (x, y) is a second-order derivative defined as

2 2

2
2 2
f ff

x y
∂ ∂

∇ = +
∂ ∂

. (2.10)

There are two digital approximations to the Laplacian for a 3×3 region:

 2
5 2 4 6 84 ()f z z z z z∇ = − + + + (2.11)

 2
5 1 2 3 4 6 7 8 98 ()f z z z z z z z z z∇ = − + + + + + + + , (2.12)

where the z’s are defined in Fig. 2.1. Masks for implementing these two equations are

shown in Fig. 2.6.

 10

−1 −1 −1

−1 8 −1

−1 −1

Fig. 2.6 Two kind of 3×3 Laplacian mask.

 The Laplacian is usually combined with smoothing as a precursor to finding edges

via zero-crossings. The 2-D Gaussian function

2 2

22(,)
x y

h x y e σ

+
−

= − , (2.13)

where σ is the standard deviation, blurs the image with the degree of blurring being de-

termined by the value of σ. The Laplacian of h is

2

2
2 2 2

2 2
4

2(,)
r

x yh x y e σσ
σ

−⎡ ⎤+ −
∇ = −⎢

⎣ ⎦
⎥ . (2.14)

This function is commonly referred to as the Laplacian of Gaussian (LOG).

Fig. 2.7 An 11×11 mask approximation to Laplacian of Gaussian (LOG).

 After calculating the two-dimensional second-order derivative of an image, we find

0 0 0 -1 -1 -2 -1 -1 0 0 0
0 0 -2 -4 -8 -9 -8 -4 -2 0 0
0 -2 -7 -15 -22 -23 -22 -15 -7 -2 0
-1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1
-1 -8 -22 -14 52 103 52 -14 -22 -8 -1
-2 -9 -23 -1 103 178 103 -1 -23 -9 -2
-1 -8 -22 -14 52 103 52 -14 -22 -8 -1
-1 -4 -15 -24 -14 -1 -14 -24 -15 -4 -1
0 -2 -7 -15 -22 -23 -22 -15 -7 -2 0
0 0 -2 -4 -8 -9 -8 -4 -2 0 0
0 0 0 -1 -1 -2 -1 -1 0 0 0

−1
(b)

0 −1 0

−1 4 −1

0 −1 0
(a)

 11

the value of a point which is greater than a specified threshold and one of its neighbors

is less than the negative of the threshold. The property of this point is called

zero-crossing and we can denote it as an edge point.

 We note two additional properties of the second derivative around an edge: (1) It

produces two values for every edge in an image (an undesirable feature); and (2) an

imaginary straight line joining the extreme positive and negative values of the second

derivative would cross zero near the midpoint of the edge. This zero-crossing property

of the second derivative is quite useful for locating the centers of thick edges.

(a) Original image. (b) Laplacian mask of Fig. 2.6(a)

(c) Laplacian mask of Fig. 2.6(b) (d) LOG mask of Fig. 2.7(b)

Fig. 2.8 Examples of edge detection using three different Laplacian masks.

 12
0

0 50 100
-1

0

1

0 50 100
-1

0

1

0 50 100
-1
0

1

0 50 100
-1
0

1

0 50 100
-1
0

1

0 50 100
-1
0

1

(a) (b)

(c) (d)

(e) (f)

Fig. 2.9 Using differentiation to detect (a) the sharp edges, (c) the step edges with

noise, and (e) the ramp edges. (b)(d)(e) are the results of differentiation of (a)(c)(e).

2.1.3 The Drawbacks of the Differentiation Method for Edge Detection

 Differentiation is the simplest way to find the edges of a signal or an image. After

differentiation, the edge will become a peak (or a dip) and the plain will be near to zero,

as the experiments in Fig. 2.9(a)(b).

 Although using the method of differentiation or the 3×3 mask for edge detection is

very simpler, they have several drawbacks, such as:

(1) Sensitivity to noise. For example, in Fig. 2.9(c), the input is interfered by noise. Af-

ter doing differentiation, the output (in Fig. 2.9(d)) does not have obvious peaks at the

points of edges. Instead, many peaks occur at the non-edge region. Since noise usually

has higher frequency and differentiation may magnify the high frequency components,

using differentiation for edge detection has worse performance when the input is inter-

fered by noise.

(2) Not good for ramp edges. This can be seen from Fig. 2.9(e)(f), where the input is

not suddenly changed from 0 to 1 or 1 to 0. Instead, the edges have the form of:

 0 0[] () / 1 / 2 for / 2 / 2g n n n B n B n n B= ± − + − < < + . (2.15)

 13

In this case, from the results in Fig. 2.9(f), the outputs at the ramp edges will be much

smaller than those of the sharp edges in Fig. 2.9(b). If we choose the threshold as a

smaller value, the two ramp edges cannot be detected.

(3) Make no difference between the significant edge and the detailed edge. Since

differentiation only observes the variations among the adjacent pixels, it cannot observe

the longer trend of variations. When using differentiation, too many details are treated

as edges and the edges that are really significant are not stressed.

2.2 Hilbert Transform for Edge Detection

 There is another method for edge detection that uses the Hilbert transform (HLT).

The HLT is

 1() () * (), where ()Hg h x g x h x
x

τ
π

= = , (2.16)

and * means convolution. Alternatively,

 () () ()HG f H f G f= (2.17)

where G(f) = FT [g(x)] (FT means the Fourier transform), GH(f) = FT [gH (x)], and

 () sgn()H f j f= − , (2.18)

where the sign function is defined as

sgn() 1 when 0,
sgn() 1 when 0,
sgn(0) 0

f f
f f
= >
= −
=

< (2.19)

Since the HLT has longer impulse response, using it for edge detection can much reduce

the effect of noise. For the example in Fig. 2.10(c), even if the input is seriously affected

by noise, after doing the HLT, there is still a peak and a dip at the location of edge, as

Fig. 2.10(d). Thus, we can use the HLT to detect the edges that are affected by noise

 14

0 50 100
-1
0

1

0 50 100

-1
0
1

0 50 100
-1
0

1

0 50 100

-1
0
1

0 50 100
-1
0

1

0 50 100

-1
0
1

(a) (b)

(c) (d)

(e) (f)

Fig. 2.10 Using HLTs to detect (a) the sharp edges, (c) the step edges with noise, and

(e) the ramp edges. (b)(d)(e) are the results of the HLTs of (a)(c)(e).

successfully. Moreover, also due to the longer impulse response, the HLT can also suc-

cessfully detect the ramp edges, as in Fig. 2.10(f).

 However, using the HLT for edge detection has a drawback. From the experiments

in Fig. 2.10(b), although after doing the HLT, there is still a peak or a dip at the location

of the edge, the difference between the outputs of the edge and the non-edge points is

not so obvious as Fig. 2.9(b), where differentiation is used. Thus, when the SNR is high

and the edge is sharp, using the HLT for edge detection may not be better than using

differentiation.

 For a natural image, the edge is usually of the ramp form and inevitably affected by

noise. Thus, generally speaking, using the HLT for edge detection will obtain better

performance than using differentiation. It can be seen from the experiments in [39][42].

 The discrete version of the HLT is

 [] ()()[] []Hg n IDFT H p DFT g n= , (2.20)

where

 15

() []

()

1
2 /

0

1
2 /

0

[] ,

1[] [],

N
j pn M

n

N
j pn N

p

DFT g n g n e

IDFT F p e F p
N

π

π

−
−

=

−

=

=

=

∑

∑
 (2.21)

[] for 0 / 2,
[] for / 2 ,
[0] [/ 2] 0.

H p j p N
H p j N p N
H H N

= − < <
= <
= =

< (2.22)

 The 2-D form of the discrete HLT (also called as the discrete radial Hilbert trans-

form (DRHLT) [41][42]) is

 [] ()()2 2, [,] [H D Dg m n IDFT H p q DFT g m n= ,] , (2.23)

where

 () []
1 1 22

2
0 0

[,] ,
qnpmM N jj
NM

D
m n

DFT g m n g m n e e
ππ− − −−

= =

= ∑∑ , (2.24)

and

[] ()
1 1 2 2

, ,

cos (/) sin (/),
when [,] [0,0], / 2, / 2,
[0,0] [/ 2,] [, / 2] 0,

H p q

p r q r r p q
p q p M q N

H H M n H m N

θ

θ − −

= Φ

= = = +

≠ ≠ ≠
= = =

)

 (2.25)

and Φ(θ) is any function that satisfies

 () (θ π θΦ + = −Φ − . (2.26)

For example, according to [39], we can choose Φ(θ) as:

 () exp()jθ θΦ = . (2.27)

In [42], S. C. Pei and J. J. Ding discussed how to use the DRHLT for edge detection in

detail and showed that the DRHLT is not only effective for edge detection but also use-

ful for directional edge detection and corner detection.

 16

2.3 Short Response Hilbert Transform for Edge Detection

 Based on Canny’s criterion [16], we develop the short response Hilbert transform

(SRHLT), which is the intermediate of the original HLT and the differentiation opera-

tion. For edge detection, the SRHLT can compromise the advantages of the HLT and

differentiation. It can well distinguish the edges from the non-edge regions and at the

same time are robust to noise. We also find that there are many ways to define the

SRHLT. If the constraints which come from Canny’s criterion are satisfied, the resultant

SRHLT will have good performance in edge detection.

2.3.1 The Definition of the SRHLT

 We combine the HLT and differentiation to define the SRHLT. From the theorem

of the Fourier Transform,

 csch() tanh()FTx j fπ π⎯⎯→− , (2.28)

where

csch() 2 / ()
tanh() () / ()

x x

x x x x

x e e
e e e e

−

− −

= −

= − +

bπ

, (2.29)
x

Therefore, from the scaling property of the FT:

 , (2.30) 1() | | (/)FTg bx b G f b−⎯⎯→

we obtain

 . (2.31) | | csch() tanh(/)FTb bx j fπ ⎯⎯→−

 From (2.31), we can define the short response Hilbert transform (SRHLT) as:

(1) () () () (), where csch()H b bg h x g x h x bτ π= ∗ = bx , (2.32)

or

 17

() () () where () [()],

() [()], () tanh(/).
H b H H

b

G f H f G f G f FT g
G f FT g H f j f b

τ
τ π

= =
= = −

 (2.33)

[Theorem 1] When b → 0+ (0+ is a positive number very near to 0), the SRHLT be-

comes the HLT. When b → ∞, the SRHLT tends to the differentiation operation.

(proof): Note that

 / / /tanh(/) () / ()/f b f b f b ff b e e e eπ π π ππ −= − + b−

f <

/ /tanh(/) / 1 when 0f b f bf b e e fπ ππ

. (2.34)

When b → 0+, then

 . (2.35) / /0 where 0, 0 when 0f b f be f eπ π− → > →

Therefore, when b → 0+

= >

, (2.36) ≈

 . (2.37) / /tanh(/) / 1 when 0f b f bf b e e fπ ππ − −≈ − = − <

That is,

 tanh(/) sgn() where 0j f b j f bπ +− ≈ − →

0

. (2.38)

Moreover, since

 1 where xe x x≈ + ≈ , (2.39)

therefore, from (2.34), when b → ∞,

 1 / 1 /tanh(/)
1 / 1 /

f b f bf b f
f b f b b

π ππ
π π

π+ − +
≈

+ + −
= , (2.40)

 tanh(/) where fj f b j b
b
ππ− ≈ − →∞ . (2.41)

Note that the transfer function of the Hilbert transform is −j sgn(f). The FT of the dif-

ferentiation operation is

 / 2FTd dx j fπ− ⎯⎯→− (2.42)

Therefore, from (2.38) and (2.42) when b → 0+ and ∞, the SRHLT in (2.33) becomes

 18

the HLT and the differentiation multiplied by some constant, respectively.

 From Theorem 1, we can conclude that when

 0 b< < ∞ , (2.43)

the characters of the SRHLT are partially like the HLT and partially like the differentia-

tion operation. When b is small, the SRHLT is more similar to the HLT. When b is large,

the SRHLT is more similar to differentiation.

 These facts can be seen from the experiments in Fig. 2.11, where we plot the im-

pulse response of the SRHLT for different b. In the frequency domain, the transfer func-

tion of the SRHLT gradually changes from the step form into the linear form as b grows.

Moreover, in the time domain, when b is small, the SRHLT has a long impulse response.

When b is large, the SRHLT has a short impulse response.

-2 -1 0 1 2
-1

0

1

-2 -1 0 1

1

2

-1

0

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-10

0

10

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2

-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2

-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2

-1

0

1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Time domain Frequency domain

Hilbert transform

differentiation

SRHLT, b=0.25

SRHLT, b=1

SRHLT, b=4

FT

FT

FT

FT

FT

Fig. 2.11 Impulse responses and their FTs of the SRHLT for different b. We can com-

pare them with the impulse response of the differential operation and the original HLT.

 19

 The edge detection filter with longer impulse response has higher robustness to

noise and has better ability to detection the ramp edges. The edge detection filter with

shorter impulse response has sharper outputs for edges. Thus, the SRHLT with smaller b

is suitable for detecting the noise-interfered edges and ramp edges. The SRHLT with

higher b is suitable for detecting the step edge.

 In Fig. 2.12, we do several experiments that use the SRHLT to detect the step, the

step + noise, the ramp edges in Fig. 2.9(a)(c)(e).

 Note that when b is small, the SRHLT will have higher ability to detect the edges

that are interfered by noise but the outputs of the edge and the non-edge region have less

difference, as the results in Fig. 2.12(a)(c)(e) and Fig. 2.12(b)(d)(f). When b is large, the

edge corresponds to a very narrow impulse in the output (as in Fig. 2.12(g)(h)) and can

0 50 100

-1
0

1

0 50 100

-1

0

1

0 50 100

-1
0
1

0 50 100

-1

0

1

0 50 100

-1

0

1

0 50

1

0

-1

100

1

0 50 100
-1

0

0 50 100
-1

0

1

0 50 100
-1

0

1

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

0 50 100

-0.5

0

0.5

(a)

(c)

(e)

(g)

(i)

(k)

(b)

(d)

(f)

(h)

(j)

(l)

b = 1 b = 4

b = 12 b = 30

Fig. 2.12 Using SRHLTs to detect the sharp edges, the step edges with noise, and the

ramp edges. Here we choose b = 1, 4, 12, and 30.

 20

well distinguish an edge from the non-edge region. However, the results of edge detec-

tion are highly sensitive to noise, as in Fig. 2.12(i)(j). Moreover, for ramp edge detec-

tion, it is proper to choose b neither too large nor too small, as the results in Fig.

2.12(e)(f)(k)(l).

2.3.2 SRHLT of the 2-D Form

 Then, for the purpose of detecting the edge of a 2-D digital image, we convert the

SRHLT in Section 3 into the discrete form and the multiple dimensional forms.

 Analogous to the discrete Hilbert transform in (2.20)-(2.22), the discrete form of

the SRHLT can be defined as

 [] ()()[] []Hg n IDFT H p DFT g n= , (2.44)

where

[] tanh(/) for 0 / 2,
[] tanh(/) for 0 / 2,
[0] [/ 2] 0.

H p j p b p N
H N p j p b p N
H H N

π
π

= − < <
− = < <
= =

 (2.45)

 Moreover, analogous to the works in [41][42](see (2.23)~(2.27)), we define the

2-D discrete SRHLT as:

 [] ()()2 2, [,] [H D Dg m n IDFT H p q DFT g m n= ,] , (2.46)

where the 2-D DFT is defined in (2.24) and

1 1 2

[,] () ()

cos (/) sin (/),
when [,] [0,0], / 2, / 2
[,] [/ 2,] [, / 2] 0

H p q R r
2p r q r r p

p q p M q N
H p q H M n H m N

q

θ

θ − −

= Φ

= = =

≠ ≠ ≠
= = =

+

)

 (2.47)

Φ(θ) is any odd symmetric function that satisfies

 () (θ π θΦ + = −Φ − . (2.48)

 21

For example, we can also choose Φ(θ) as

 () exp()jθ θΦ = . (2.49)

Moreover

 () / / /tanh(/) () / ()r b r b r b r bR r r b e e e eπ π π ππ −= = − + /− . (2.50)

Note that the definition of the 2-D discrete SRHLT is similar to that of the 2-D discrete

HLT in (2.23)~(2.27). The only difference is now the transfer function H[p, q] is de-

pendent on r. We can use the parameter b to control R(r) and hence control the per-

formance. When b is large, the ability of detecting detail edges is well. When b is small,

the effect of noise can be reduced.

(a) Original image (b) Results of differentiation

(c) Results of the HLT (d) Results of the SRHLT, b=8

Fig. 2.13 Experiments that use differentiation, the HLT, and the SRHLT (b=8) to do

edge detection for Lena image.

 22

(a) Lena + noise, SNR = 32 (b) Results of differentiation

 (c) Results of the HLT (d) Results of the SRHLT, b=8

Fig. 2.14 Experiments that use differentiation, the HLT, and the SRHLT (b=8) to

detect the edges of Lena image interfered by noise.

2.3.3 Experiments of Edge Detection Using SRHLT

 In Fig. 2.13~Fig. 2.18, we do several experiments to show the results of using the

SRHLT to detect the edges of natural and complicated images.

 First, we do a comparison with differentiation and the HLT. When using differen-

tiation for edge detection, as Fig. 2.13(b), although some edges are detected, many iso-

lated dots are regarded as edges and some ramp edges cannot be well detected. Since

differentiation observes only the amplitude difference among the adjective pixels, it

cannot accurately determine whether a pixel is on an edge. Moreover, when the input is

interfered by noise, as Fig. 2.14(a), the result of differentiation is worse (see Fig. 2.14(b))

even if the noise is small (in Fig. 2.14(a) SNR = 32).

 When we use the HLT for edge detection, as Fig. 2.13(c), the problems that iso-

 23

lated dots is recognized as edges is avoided and the performance is better than differen-

tiation, as Fig. 2.13(c). Even if the input is interfered by noise the HLT still has better

performance, as Fig. 2.14(c). However, it can be seen from Fig. 2.13(c) that many pixels

that are near to edges will have larger outputs after doing the HLT (such as the face re-

gion).

 If we use the proposed SRHLT for edge detection, as Fig. 2.13(d), the edges are

clearer than the case where we use the HLT and the non-edge pixel seldom has large

outputs after doing the SRHLT. At the same time, he ramp edges can still be detected

successfully and the noise robustness is still higher, as Fig. 2.14(d).

(a) b = 0.5 for Lena image (b) b = 0.5 for Lena + noise

(c) b = 20 for Lena image (d) b = 20 for Lena + noise

Fig. 2.15 Using the SRHLT to detect the edges of Lena image or Lena +

noise when b is chosen as 0.5 and 20.

 Thus, if we use the SRHLT for edge detection, the advantages of differentiation

and the HLT can be compromised. Compare with differentiation and the HLT, the

SRHLT can more accurately detect the edges of an image.

 24

 (a) b = 8 for Lena image (b) b = 8 for Lena + noise

Fig. 2.16 Using adaptive threshold and overlapped section to further refined the

results of edge detection by SRHLTs. (a) is the refined results of Fig. 2.13(d).

(b) is the refined results of Fig. 2.14(d).

 To further improve the performance, we can apply the assistant techniques such as

overlapped section and adaptive thresholds. In Fig. 2.16(a)(b), we use these techniques

to make the edges detected by the SRHLT clearer. It can be seen that almost all the

edges of the original image are detected successfully and the noise nearly has no effect

when we use the SRHLT for edge detection.

 We then show the results that we adjust the parameter b of the SRHLT for edge

detection. In Fig. 2.13, Fig. 2.14, and Fig. 2.16, we choose b = 8. If we choose b = 0.5,

as Fig. 2.15(a)(b), some detailed edges are not detected successfully, If we choose b =

20, as Fig. 2.15(c)(d), the ability of noise immunity is reduced. Therefore, to achieve the

goals of detecting detailed edges and noise robustness at the same time, it is improper to

choose b neither too small nor too large.

 Then, we do several experiments in Fig. 2.17 and Fig. 2.18 to show the results of

using the SRHLT (b = 8) for detecting the edges of complicated images. We find that the

SRHLT can successfully detect most of the edges of an image, even if the image is as

complicated as Earth, Pepper, Tiffany, Ken, Shuttle, and Forest images.

 25

(a) Earth Image (b) Results of edge detection

(c) Pepper image (d) Results of edge detection

(e) Forest Image (f) Results of edge detection

Fig. 2.17 Using the SRHLT (b = 8) to detect the edges of Earth, Pepper, and

Forest images. Most of the edges are detected successfully.

 26

(a) Ken image (b) Results of edge detection

(c) Shuttle image (d) Results of edge detection

(e) Tiffany image (f) Results of edge detection

Fig. 2.18 Using the SRHLT (b = 8) to detect the edges of Ken, Shuttle, and

Tiffany images. Most of the edges are detected successfully.

2.3.4 Illustrated by Canny’s Theorem and Mathematical Analysis

 From Canny’s theorem [16], the following three factors are used for measuring the

performance of edge detection:

 1. Good detection,

 2. Good localization,

 27

dx

 3. Single response.

 To satisfy the requirement of “Good detection”, the edge detection filter should

satisfy

(a) Higher distinction: lead to very larger outputs for edges and smaller outputs for

non-edge regions. That is, if g(x) is the input and h(x) is the impulse response of the

edge detection filter,

 , (2.51) () () ()Hg h x g xτ τ
∞

−∞
= −∫

then

 () ()0 1H Hg x g x (2.52)

if x0 is at an edge and x1 is not at an edge.

(b) Noise immunity: i.e., less sensitive to noise. If g(x) is interfered by n(t) where n(t)

is noise and

 , (2.53) () () () (), []H ng h x g x n xτ τ
∞

−∞
= − +∫ dx

then

 () (), 0 , 1H n H ng x g x (2.54)

is still satisfied.

 However, (a) and (b) are a tradeoff. When we use the method of differentiation, the

edge and the non-edge regions can be distinguished very well. Nevertheless, the method

is higher sensitive to noise. When we use the original HLT, the effect of noise can be

much reduced but the method cannot distinguish the edge from the non-edge region

very well.

 In fact, to compromise the goals of “higher distinction” and “noise immunity” and

achieve the requirement of “good detection” proposed by Canny, the impulse response

 28

dx

of the edge detection filter should satisfy

(Constraint 1) The impulse response h(x) is neither too short nor too long. If we define

 , (2.55) 2| | | () |T x h x
∞

−∞
= ∫

then T should satisfy

 A1 < T < A2, (2.56)

where A1 and A2 are some thresholds. To achieve higher immunity to noise, T should be

larger than a certain threshold A1. To make the filter have higher ability for distinguish-

ing the edge from the non-edge region, T should be smaller than a certain threshold A2.

 Now, we propose the SRHLT. We can adjust the parameter b in (2.33) and (2.50) to

control the length of impulse response. If b is chosen properly, (2.55) would be satisfied

and the resultant SRHLT can compromise the goals of “higher distinction” and “noise

immunity” at the same time. Therefore, the SRHLT can achieve the goal of “good de-

tection” proposed by Canny.

 In addition to “good detection”, there are another two requirements for edge detec-

tion proposed by Canny.

 To achieve the goal of “Good localization”, the impulse response of the edge de-

tection filter should have a peak around x = 0:

(Constraint 2) { } ()0| () |Max h x h x= (2.57)

where x0 = 0 or x0 is very close to 0.

To achieve the goal of “Single response”, the absolute value of the impulse response of

the edge detection filter should be a strictly descending function (or near to a strictly

descending function):

(Constraint 3) () ()1h x h x> 2 if |x2| > |x1| ≥ |x0|, (2.58)

or although in some conditions the impulse response is not strictly descending but the

 29

local peak is much smaller than the global peak |h(x0)|.

() ()1 2 2

2 0

,

but () () .

h x h x x x

h x h x
1< >

 (2.59)

Moreover, an edge detection filter should be an odd operation:

(Constraint 4) h(x) = −h(−x). (2.60)

If the impulse response of an edge detection filter satisfies all the four constraints in

(2.55), (2.57), (2.58), and (2.60), then the edge detection filter will satisfy the three

requirements proposed by Canny [16] and have good performance for edge detection.

 Now, we can observe the impulse response of the SRHLT. If b is chosen properly,

hb(x) in (2.32) satisfies (2.55). Moreover, no matter what the value of b is,

 { } () ()Max | () | 0 0bh x h h+ −= = →∞ . (2.61)

 Furthermore, it is obviously that hb(x) in (2.32) is an odd function and strictly de-

creases with |x|. Therefore, if b is chosen properly, the SRHLT satisfy all the constraints

in (2.55), (2.57), (2.58), and (2.60). From Canny’s theorem, the SRHLT can be a very

effective tool for edge detection.

2.3.5 Other Possible Ways to Define the SRHLT

 In Section 6, we illustrated that the proposed SRHLT in (2.32) satisfies all the four

constraints in (2.55), (2.57), (2.58), and (2.60) and hence satisfies Canny’s criterions. It

makes the SRHLT defined in (2.32) good for edge detection.

 In fact, there are many alternative ways to define the SRHLT. In addition to (2.32),

there are also other functions that satisfy Canny’s criterions and can be treated as the

impulse responses of SRHLTs. For example, from the theorem of Fourier Transform,

 30

(2)

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1
0

1

-2 -1 0 1 2
-1
0

1
-2 -1 0 1 2

-1
0

1

-2 -1 0 1 2
-1
0

1

-2 -1 0 1 2
-1
0

1

-2 -1 0 1 2
-1
0

1

-2 -1 0 1 2
-1
0
1

-2 -1 0 1 2

-0.5
0

0.5

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

-2 -1 0 1 2
-1

0

1

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Time domain Frequency domain

FT

FT

FT

FT

FT

FT

(m) (n)

(o) (p)

FT

FT

Fig. 2.19 Other transform pairs (defined in (2.62)~(2.74)) that can be treated as the

impulse response and the transfer function of the SRHLT. All of them satisfy Canny’s

criterion and are useful for edge detection. Here we all set b =1.

2
| |

1 2
4 sgn()

1 (2)
FT b fb x je f

b x
π
π

−
−

− ⎯⎯→−
+

 (2.62)

 (The transform pair is plotted in Fig. 2.19(a)(b)),

where sgn(f) is defined in (2.19), it is no hard to prove that the impulse response

4πb−2x/[1+(2π b−1x)2] satisfies all the constraints in (2.55), (2.57), (2.58), and (2.60).

Therefore, we can also define the SRHLT as the form of (2.62) and use it for edge de-

tection. Moreover,

2

1 2
4

1 (2)
b x
b x x

π 1
π π

−

− ≈
+

 when b ≈ 0, (2.63)

That is, when b → 0, (2.62) becomes the original HLT pair.

 Moreover, in addition to (2.32) and (2.62), from pages 575-591 in [16] and the

 31

scaling property of the FT,

 , (2.64) 1() | | (/)FTg bx b G f b−⎯⎯→

we find that the following transform pairs satisfy all the four constraints in (2.55), (2.57),

(2.58), and (2.60) (i.e., satisfy Canny’s criterions) and can be treated as the SRHLTs are

(Here we constrain b to be a positive real number):

(3) () (11 2/ 2 2FTbx i Si b f
x

π
π π

−Π ⎯⎯→−) , (2.65)

where
0

sin()
x tSi x dt

t
= ∫ . (2.66)

 (The transform pair is plotted in Fig. 2.19(c)(d))

(4) 5
sin () ()FTc bx H f

b xπ
⎯⎯→ , (2.67)

where sinc(x) = sin(π x)/(π x), (2.68)

 (2.69) 5 5

5

() for / 2, () for / 2,
() 2 / for / 2 / 2

H f j f b H f j f b
H f j f b b f b

= < − = − >
= − − ≤ ≤

 (The transform pair is plotted in Fig. 2.19(e)(f))

(5)
2

6
sin () ()FTc bx H f

b xπ
⎯⎯→ , (2.70)

where

 (2.71)
6 6

1 2
6

1 2
6

() for , () for ,

() (1) for 0,

() (1) for 0 ,

H f j f b H f j f b

H f j j b f b f

H f j j b f f b

−

−

= < − = −

= − + − ≤ <

= − + − ≤ <

>

 (The transform pair is plotted in Fig. 2.19(g)(h))

(6)
2

| / |
2

2 1 (1)sgn()
1 (2) 2

FT f bb x i e f
bx x

π
π π

−− ⎯⎯→− −
+

. (2.72)

 (The transform pair is plotted in Fig. 2.19(i)(j))

 32

(7)
3

| / |
2 2 2 2

8
(1 4)

FT f bb x i f e
b x

π
π

−⎯⎯→−
+

. (2.73)

 (The transform pair is plotted in Fig. 2.19(k)(l))

(8) ()5
sin () 2 | | sin (2)

2
FTc bx x b c bf H f

x bπ
⎛ ⎞Π ⎯⎯→ ∗⎜ ⎟
⎝ ⎠

, (2.74)

where Π(f) = 1 for -1/2 < f < 1/2, Π(±1/2) = 1/2, (2.75)

 Π(f) = 0 otherwise,

and * means convolution. (The transform pair is plotted in Fig. 2.19(m)(n))

(9)
2 2 2 2/

2| | FTb x f bfb xe i e
b

π π− −⎯⎯→− (2.76)

(10) ()1 sin(2)1 / sgn()
2

FTbx j x b x
x bx

π
π π

⎛ ⎞− ⎯⎯→− Λ⎜ ⎟
⎝ ⎠

, (2.77)

where Λ(x)= 1− |x| when |x| < 1, Λ(x)= 0 otherwise.

The edge detection filters defined in (2.73) and (2.74) have the advantages of finite

impulse response, which is an important benefit for implementation.

 It is no hard to prove that in all the cases the constraints in (2.55), (2.57), (2.58),

and (2.60) are satisfied. That is, all of the above forms of SRHLTs satisfy Canny’s cri-

terions and can be used for edge detection.

 Note that, in all the cases we can use the parameter b to control the performance. If

b is near to zero, the resultant edge detection filter will have higher ability for noise

immunity but the have lower ability to distinguish the edge and the non-edge regions.

When b is large the edge detection filter can well distinguish the edge and the non-edge

regions but is highly affected by noise.

 We can extend the above 1-D edge detection filter into the 2-D form. We can also

define the 2-D edge detection filter as the form in (2.46)~(2.50). The only difference is

that R(r) can be changed into other forms.

 33

2.4 Conclusion

 In this chapter, we introduce the SRHLT which can be viewed as the medium be-

tween the differentiation operation and the Hilbert transform (HLT) for edge detection.

As the HLT, the SRHLT has higher robustness for noise and can successfully detect

ramp edges. At the same time, the SRHLT can avoid the pixels that near to an edge be

recognized as an edge pixel, which is usually an important problem when using the HLT

for edge detection. We also do several experiments and show that the SRHLT can suc-

cessfully detect the edges of a complicated image. Moreover, directional edge detection

(i.e., detect the edges with certain direction) are also the possible applications of the

SRHLT.

 35

Chapter 3

Image Segmentation

 The segmentation technique divides an image into several regions for some appli-

cations. The algorithms generally are based on two properties which are the discontinu-

ity and the similarity of color values. We can partition an image based on sudden

changes in color values, such as edges in an image. On the other hand, we partition an

image into regions that are similar according to a set of predefined criteria.

3.1 Thresholding

 Because of the intuitive properties and simplicity of implementation, image

thresholding is important in image segmentation. The gray-level histogram of an image

f(x, y) is shown in Fig. 3.1(b), where the dark part is background and the light part is

object. One obvious way to extract the objects from the background is to select a

threshold T that separates these two parts. Then any points (x, y) for which (x, y) > T is

called an object point and the other points is called background point.

 A thresholded image g(x, y) is defined as

1 if (,)

(,)
0 if (,)

f x y T
g x y

f x y T
>⎧

= ⎨ ≤⎩
 (3.1)

Thus, pixels labeled 1 correspond to objects, and pixels labeled 0 correspond to the

background.

 36

T

0 50 100 150 200 250
0

1000

2000

3000

4000

5000

6000

7000

Threshold
T

(b) (a)

Fig. 3.1 (a) An example image f(x, y) and its (b) gray-scale histogram.

 The simplest of all thresholding techniques is to partition the image histogram by

using a single global threshold T. Segmentation is then accomplished by scanning the

image pixel by pixel and labeling each pixel as object or background depending on

whether the gray level of that pixel is greater or less than the value of T.

 The following algorithm can be used to obtain T automatically:

1. Select an initial estimate for T.

2. Segment the image using T. This will produce two groups of pixels: G1 consisting

of all pixels with gray level values >T and G2 consisting of pixels with values ≤ T.

3. Compute the average gray level values μ1 and μ2, for the pixels in regions G1 and

G2.

4. Compute a new threshold value: / 21 2()μ μ= + .

5. Repeat steps 2 through 4 until the difference in T in successive iterations is smaller

than a predefined parameter T0.

 An appropriate initial value for T is the average value of the maximum and mini-

mum gray levels. The parameter T0, is used to stop the algorithm after changes become

small in terms of this parameter.

 37

3.2 Edge Linking

 The term edge segment generally is used if the edge is short in relation to the di-

mensions of the image. A key problem in segmentation is to assemble edge segments

into longer edges.

3.2.1 Local Processing

 One of the simplest approaches for linking edge points is to analyze the character-

istics of pixels in a small neighborhood about every point (x, y) in an image that has

been labeled an edge point. Al1 points that are similar are linked, forming an edge of

pixels that share those criteria.

 The two principal properties used for establishing similarity of edge pixels in this

kind of analysis are (1) the strength of the response of the gradient operator used to

produce the edge pixel, and (2) the direction of the gradient vector. The two property is

given by the value of ∇f, as defined in (2.2). If the difference of the gradient of an edge

pixel and its neighbor is less than a threshold, they are similar in gradient. The direction

of the edge at (x, y) is perpendicular to the direction of the gradient vector at that point.

 A point in the predefined neighborhood of (x, y) is linked to the pixel at (x, y) if

both magnitude and direction criteria are satisfied. This process is repeated at every lo-

cation in the image. A record must be kept of linked points as the center of the

neighborhood is moved from pixel to pixel. A simple bookkeeping procedure is to as-

sign a different gray level to each set of linked edge pixels.

3.2.2 Hough Transform

 If there are n edge points in an image, we want to find subsets of these points that

 38

lie on straight lines. Hough proposed an alternative approach, commonly referred to as

the Hough transform. Consider a point (xi, yi) and the general equation of a straight line

in slope-intercept form, yi = a xi + b. There are infinite lines pass through (xi, yi), but

they all satisfy the equation yi = a xi + b for varying values of a and b. However, writing

this equation as b = −xi a + yi and considering the ab-plane (also called parameter space)

yields the equation of a single line for a fixed pair (xi, yi). Furthermore, a second point

(xj, yj) also has a line in parameter space associated with it, and this line intersects the

line associated with (xi, yi) at (a', b'), where a' is the slope and b' the intercept of the line

containing both (xi, yi) and (xj, yj) in the xy-plane. In fact, all points contained on this

line have lines in parameter space that intersect at (a', b'). Fig. 3.2 illustrates these con-

cepts.

x

y

y = ax + b

(xj, yj)

b

b = −xja + yj

b = −xia + yi

(a', b')

a
(a) (b)

(xi, yi)

Fig. 3.2 (a) xy-plain. (b) ab-plain (parameter space).

 A problem with using the equation y = a x + b to represent a line is that the slope

approaches infinity as the line approaches the vertical. One way around this difficulty is

to use the normal representation of a line:

 cos sinx yθ θ ρ+ = (3.2)

Fig. 3.3(a) illustrates the geometrical interpretation of the parameters used in this equa-

tion. Instead of a straight line, however, the location is a sinusoidal curve in the

 39

ρθ-plane.

 The computational attractiveness of the Hough transform arises from subdividing

the parameter space into so-called accumulator cells, as illustrated in Fig. 3.3(b), where

(ρmax, ρmin) and (θmax, θmin) are the expected range of ρ and θ. Initially, we set all cells

with an accumulative value to 0. If a sinusoidal curve passes across the cell, its accu-

mulative value will be added to 1.

y

x

y

(c)

ρmin

ρmax

y

ρ

θ

xj cosθ + yj sinθ = ρ

xi cosθ + yi sinθ = ρ

x

0

0°θmin θmax

θ
ρ

(xj, yj)

(xi, yi)

x
(b)(a)

Fig. 3.3 (a) Normal representation of a line. (b) ρθ-plain. (b) ρθ-plain with cell.

 Finally, we find the local maximum cumulative value in the ρθ-plain. The position

(ρ, θ) with a local maximum cumulative value means a line of (3.2) in the xy-plain that

pass through relatively more edge pixels in an image.

3.3 Region-Based Segmentation

 Let R represent the entire image region. We may view segmentation as a process

that partitions R into n sub-regions, R1, R2, ..., Rn, such that

(a)
1

n

i
i

R R
=

=∪ .

(b) Ri is a connected region, i = 1, 2, ... , n.

(c) for all i and j, i ≠ j. i jR R∩ =∅

 40

LE

(d) P(Ri) = TRUE for i = 1, 2, ... , n.

(e) for any adjacent region Ri and Rj. () FASi jP R R∪ =

Where P(Rk) is a logical predicate defined over the points in set Rk and ∅ is the null set.

3.3.1 Region Growing

 Region growing is a procedure that group pixels or sub-regions into larger regions

based on predefined criteria. A simple method is to start with a set of seed points and

groups its neighboring pixels that have properties similar to the seed. It is an iterative

process where each seed pixel grows iteratively until every pixel is processed. Finally it

generates different regions and it can be a result of segmentation.

Fig. 3.4 Region growing.

 The main problem is how to find the seed points correctly. If the image has pure

background color like black, the seeds can be chosen from the points with the intensity

value larger than a threshold. That is, we have to analysis the characteristic of the image

first and it is hard to apply to arbitrary images.

 41

3.3.2 Segmentation by Morphological Watersheds

 The main idea of watersheds is based on visualizing an image f(x, y) in three di-

mensions. Therefore, we get a topographic interpretation of the image f(x, y). The object

is to find the watershed lines. If we see the regional minimum locations as valleys, we

could let each valley be flooded with water. When the flooding water reaches some

ridges, a dam is built to prevent the two valleys be merged. After the entire topography

is flooded under the water, the built dams are the watersheds we want. Fig. 3.5 illus-

trates the flooding process in a cross-sectional view.

flooding dam

(a) (b)

(c) (d)

Fig. 3.5 The flooding process of the morphological watershed algorithm.

 In the watershed based segmentation, we often apply the watershed segmentation

to the gradient of an image rather than to the image itself. It is because gradient is an

important feature when extracting edges or discontinuities.

 Because the algorithm provides promising efficiency and accuracy, it is one of the

most popular methods in image segmentation. However, it is sensitive to noise and

cause the over segmenting problem.

 42

(a) Original image

(b) Gradient of (a)

(c) topographic interpretation of (b)

(d) Watersheds of (c)

Fig. 3.6 An example of watershed algorithm.

(a) Original image + noise + smooth

(b) Gradient of (a)

(c) topographic interpretation of (b)

(d) Watersheds of (c)

Fig. 3.7 An example of watershed algorithm with noise.

 43

3.3.3 Mean Shift Based Image Segmentation

 We would describe the mean shift based image segmentation because its robust

performance and convenience of specifying the parameters. It is widely used in com-

puter vision. Comaniciu and Meer [52] proposed an image segmentation method using

the mean-shift Algorithm, which is proposed in 1975 by Fukunaga, and Hostetler [53].

 The mean shift algorithm technique is introduced in [52] and is a technique based

on the feature space analysis. It includes two steps: a mean shift filtering of the original

image data, and clustering of the filtered data points.

 The filtering step of the algorithm consists of analyzing the probability density

function (PDF) underlying the image data in the feature space. One example of the fea-

ture space is a five dimension space consists of the image location (x, y) of each pixel

and the pixel color (L*,u*,v*) in the L*u*v* color space [76]. The modes of the PDF un-

derlying the image data in this space are the locations with highest data density, and data

points close to these modes can be clustered together to form a segmentation.

Feature space Feature space Feature space
Center of mass
in the kernel

(a)

Mean shift
vector

(c) (b)

Mode

Fig. 3.8 The mean shift iterations to find the mode.

 As shown in Fig. 3.8, for every data point in a uniform kernel, the gradient esti-

mate of the PDF is computed and the center point of the kernel is moved in that direc-

tion. This movement in position is called the mean shift vector. The kernel is moved it-

 44

erating until the gradient is less than a threshold. The resulting points are the modes

which have gradient approximately equal to zero. Each data point is then replaced by its

corresponding mode. The region for which all trajectories lead to the same mode is

called the attraction basin as illustrated in Fig. 3.9. The process helps us to smooth the

image while preserving discontinuities.

 The clustering step is to reduce the number of modes. A simple way is to group the

modes that are less than one kernel radius apart and merge their attraction basins. This

step converts the filtered points into a segmented image.

Feature space Feature space

(a) (b)

Fig. 3.9 Attraction basins of two modes. The diamonds indicate the modes.

 Fig. 3.10 is an example in [52]. Fig. 3.10(a) is an image whose feature space is a

three dimension space consists of the position (x, y) and the gray-level. Fig. 3.10(b)(c)

show the filtering result. Note that the number of modes is too much on the plateau and

on the line. Fig. 3.10(d) show the clustering result to group these redundant modes and

it can be the segmentation of the image.

 45

Fig. 3.10 Mean shift based filtering and segmentation for a gray-level image from [52].

(a) Original image. (b) Mean shift paths for the pixels on the plateau and on the line.

The black dots indicate the modes. (c) Filtering result. (d) Clustering result.

3.4 Conclusion

 We have introduced many methods to segment an image. They are design for im-

ages with some characteristic individually. It is hard to find a common way to segment

various images and all of the results have good performance. However, the reason for us

to segment an image in this thesis is only to apply to compression. The incorrect seg-

ments do not cause serious problem. Therefore, we concentrated on compression and

paid scant attention to segmentation. In the following chapters, we only use simple im-

 46

age which has pure background color and some geometric image segments to ignore the

effect of segmentation.

 47

Chapter 4

Basic Image Compression Algorithm

 Image compression is a process of reducing the quantity of data required to repre-

sent an image. In digital image compression, the process eliminates the correlation

component and truncates the part that is unobvious to human vision. Then encode the

result to reduce the code redundancy. The compressed code would be store in storage or

use to transfer on channel. When we need to load this image, the code is decompressed

to reconstruct the original image or an approximation of it.

 Data redundancy is a central issue in digital image compression. It is not an ab-

stract concept can be a mathematically quantification. If N1 and N2 denote the number of

bytes in two data sets that represent the uncompressed image and the compressed code,

the compression ratio can be defined as

 1

2
R

NC
N

= . (4.1)

The distortion of the original image f1 and the reconstructive image f2 can be calculated

as

 []2
1 2

1 1

(,) (,) / ()
H W

y x

RMSE f x y f x y H W
= =

= −∑∑ × (4.2)

where H and W are the height and the width of the images respectively.

 JPEG (Joint Photographic Experts Group) is an international compression standard

for continuous-tone still image, both grayscale and color. This standard is designed to

support a wide variety of applications for continuous-tone images. The JPEG standard

 48

specifies the DCT-based method for lossy image compression and has been widely used

today. In this chapter, we will introduce the basic compression algorithms in JPEG

standard. Fig. 4.1 shows the diagram of the image compression model and we will dis-

cuss each step in the following sections.

Encoder
Color

Component
of an Image

Transform Coding Quantization
Entropy
Coding

Bit
stream

Bit
stream

Transform Decoding
Entropy

Decoding
Color

Decoder

Component

Fig. 4.1 Image compression model.

4.1 Color Space Conversion and Downsampling

 In order to achieve good compression performance, correlation between the color

components is first reduced by converting the RGB color space into a uncorrelated color

space. In JPEG standard, a RGB image is first transformed into a lumi-

nance-chrominance color space such as YCbCr. The advantage of converting the image

into luminance-chrominance color space is that they are much uncorrelated between

each other. Moreover, the chrominance channels contain much redundant information

and can easily be sampled without sacrificing any visual quality for the reconstructed

image. The transformation from RGB to YCbCr is

 . (4.3)
0.299000 0.587000 0.114000 0
0.168736 0.331264 0.500002 128

0.500000 0.418688 0.081312 128
b

r

Y R
C G
C B

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 The value Y = 0.299R + 0.587G + 0.114B is called the luminance. It is the value

 49

C

used by monochrome monitors to represent an RGB color. Physiologically, it represents

the intensity of an RGB color perceived by the eye. The formula is like a weighted-filter

with different weights for each spectral component. The eye is most sensitive to the

Green component then it follows the Red component and the last is the Blue component.

The values Cb and Cr are called chrominance values and indicate how much blue and

how much red are in that color, respectively. Accordingly, the inverse transformation

from YCbCr to RGB is:

 (4.4)
1.0 0.0 1.40210
1.0 0.34414 0.71414 128
1.0 1.77180 0.0 128

b

r

R Y
G
B C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 Because the eye seems to be more sensitive at the luminance than the chrominance,

luminance is taken in every pixel while the chrominance is taken as a medium value for

a 2×2 block of pixels. And this way will result a good compression ratio with almost no

loss in visual perception of the new sampled image. There are three color formats in

JPEG standard as illustrated in Fig. 4.2:

1. 4:4:4 format: The chrominance components have identical vertical and horizontal

resolution as the luminance component.

2. 4:2:2 format: The chrominance components have the same vertical resolution as

the luminance component, but the horizontal resolution is half one.

3. 4:2:0 format: Both vertical and horizontal resolution of the chrominance compo-

nent is half of the luminance component.

Note that, in 4:2:2 format, the data quantity can be one half of the original image and

the distortion is unobvious in human vision.

 50

Y H

Cb H

Cr H Cr

W W

H

Cb

W W

H

Y

W W

H

Cb

W

H
W

H

Cr

Y

W

H

(a) 4:4:4 (b) 4:2:2 (c) 4:2:0

Fig. 4.2 Three color formats.

4.2 Transform Coding

 To apply the transform coding in the JPEG standard, the image is divided into 8×8

blocks of pixels and then calculate the discrete cosine transform (DCT) indivdually. If

the width or height of the original image is not divisible by 8, the encoder should make

it divisible. The 8×8 blocks are processed from left-to-right and from top-to-bottom.

 The purpose of the DCT is to transform the value of pixels to the spatial frequen-

cies. These spatial frequencies are much related to the level of detail present in an image.

High spatial frequencies correspond to high levels of detail, while lower frequencies

correspond to lower levels of detail. The mathematical definition of the forward DCT is

1 1

0 0

2 (2 1)(,) () () (,)cos cos
2 2

for 0,..., 1 and 0,..., 1 ,

1 / 2 for 0where 8 and () .
 1 otherwise

N N

x y

(2 1)x u yF u v C u C v f x y
N N

u N v N

kN C k

π π− −

= =

+ + v
N

⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

= − = −

⎧ =⎪= = ⎨
⎪⎩

∑∑
⎦

, (4.5)

The inverse DCT is

 51

1 1

0 0

2 (2 1)(,) () () (,)cos cos
2 2

for 0,..., 1 and 0,..., 1 where 8.

N N

u v

(2 1)x u yf x y C u C v F u v
N N

x N y N N

π π− −

= =

+ + v
N

⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

= − = − =

∑∑
⎦ (4.6)

The F(u,v) is called the DCT coefficient, and the DCT basis is

 ,
2 () () (2 1) (2 1)(,) cos cos

2 2x y
C u C v x u y vu v

N N
π πω + +

N
⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

. (4.7)

Then we can rewrite the inverse DCT to

 . (4.8)
1 1

,
0 0

(,) (,) (,) for 0,...,7 and 0,...,7
N N

x y
u v

f x y F u v u v x yω
− −

= =

= =∑∑

 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 4.3 The 8×8 DCT bases , (,)x y u vω

 52

(a) f (x, y) : 8×8 values of luminance. (b) F(u,v) : 8×8 DCT coefficients.

Fig. 4.4 An example of DCT coefficients for a 8×8 block.

 The transformed 8×8 block now consists of 64 DCT coefficients. The first coeffi-

cient F(0,0) is the DC component and the other 63 coefficients are AC component. The

DC component F(0,0) is essentially the sum of the 64 pixels in the input 8×8 pixel block

multiplied by the scaling factor (1/4)C(0)C(0)=1/8 as shown in equation 3 for F(u,v).

4.3 Quantization

 The next step in the compression process is to quantize the transformed coeffi-

cients. In JPEG standard, each of the 64 DCT coefficients is uniformly quantized. The

64 quantization step-size parameters for uniform quantization of the 64 DCT coeffi-

cients form an 8×8 quantization matrix. Each element in the quantization matrix is an

integer between 1 and 255. Each DCT coefficient F(u,v) is divided by the corresponding

quantization matrix Q(u,v) and rounded to the nearest integer as:

 (,)(,)
(,)q

F u vF u v Round
Q u v

⎛
= ⎜

⎝ ⎠

⎞
⎟ (4.9)

 The JPEG standard does not define any fixed quantization matrix. It is the preroga-

tive of the user to select a quantization matrix. There are two quantization matrices pro-

48 39 40 68 60 38 50 121 699.25 43.18 55.25 72.11 24.00 -25.51 11.21 -4.14

149 82 79 101 113 106 27 62 -129.78 -71.50 -70.26 -73.35 59.43 -24.02 22.61 -2.05

58 63 77 69 124 107 74 125 85.71 30.32 61.78 44.87 14.84 17.35 15.51 -13.19

80 97 74 54 59 71 91 66 -40.81 10.17 -17.53 -55.81 30.50 -2.28 -21.00 -1.26

18 34 33 46 64 61 32 37 -157.50 -49.39 13.27 -1.78 -8.75 22.47 -8.47 -9.23

149 108 80 106 116 61 73 92 92.49 -9.03 45.72 -48.13 -58.51 -9.01 -28.54 10.38

211 233 159 88 107 158 161 109 -53.09 -62.97 -3.49 -19.62 56.09 -2.25 -3.28 11.91

212 104 40 44 71 136 113 66 -20.54 -55.90 -20.59 -18.19 -26.58 -27.07 8.47 0.31

 53

vided in Annex K of the JPEG standard for reference, but not requirement. These two

quantization matrices are shown in Fig. 4.5.

 (a) Luminance quantization matrix. (b) Chrominance quantization matrix.

Fig. 4.5 Quantization matrix.

 (a) F(u,v) : 8×8 DCT coefficients. (b) Fq(u,v) : After quantization.

Fig. 4.6 An example of quantization for a 8×8 DCT coefficients.

 The quantization process has the key role in the JPEG compression. It is the proc-

ess which removes the high frequencies present in the original image. We do this be-

cause of the fact that the eye is much more sensitive to lower spatial frequencies than to

higher frequencies. This is done by dividing values at high indexes in the vector (the

amplitudes of higher frequencies) with larger values than the values by which are di-

vided the amplitudes of lower frequencies. The bigger values in the quantization table is

44 4 6 5 1 -1 0 0

-11 -6 -5 -4 2 0 0 0

6 2 4 2 0 0 0 0

-3 1 -1 -2 1 0 0 0

-9 -2 0 0 0 0 0 0

4 0 1 -1 -1 0 0 0

-1 -1 0 0 1 0 0 0

0 -1 0 0 0 0 0 0

699.25 43.18 55.25 72.11 24.00 -25.51 11.21 -4.14

-129.78 -71.50 -70.26 -73.35 59.43 -24.02 22.61 -2.05

85.71 30.32 61.78 44.87 14.84 17.35 15.51 -13.19

-40.81 10.17 -17.53 -55.81 30.50 -2.28 -21.00 -1.26

-157.50 -49.39 13.27 -1.78 -8.75 22.47 -8.47 -9.23

92.49 -9.03 45.72 -48.13 -58.51 -9.01 -28.54 10.38

-53.09 -62.97 -3.49 -19.62 56.09 -2.25 -3.28 11.91

-20.54 -55.90 -20.59 -18.19 -26.58 -27.07 8.47 0.31

17 18 24 47 99 99 99 99 16 11 10 16 24 40 51 61
18 21 26 66 99 99 99 99 12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56 24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99 14 17 22 29 51 87 80 62
99 99 99 99 99 99 99 99 18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92 99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99 49 64 78 87 103 121 120 101
99 99 99 99 99 99 99 99 72 92 95 98 112 100 103 99

 54

the bigger error introduced by this lossy process, and the smaller visual quality.

 Another important fact is that in most images the color varies slowly from one

pixel to another. Therefore, most images will have a small quantity of high detail to a

small amount of high spatial frequencies, and have a lot of image information contained

in the low spatial frequencies.

4.4 Entropy Coding Algorithms

 After doing the DCT transform and quantization over a block of 8x8 values, we

have a new 8×8 block. Then, this 8×8 block is traversed in zig-zag shown in Fig. 4.7:

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

Fig. 4.7 Zig-zag reordering matrix

 After traversing the 8×8 matrix in zig-zag order, we have now a vector with 64 co-

efficients (0,1,...,63). The reason for this zig-zag traversing is that we traverse the 8×8

DCT coefficients in the order of increasing the spatial frequencies. Therefore, we get a

vector sorted by the criteria of the spatial frequency. In consequence in the quantized

vector at high spatial frequencies, we will have a lot of consecutive zeroes.

 We divide the coefficients to the first value (DC-term) and the second to the 64th

values (AC-term). The two terms is encoded in different way that will be described in

this section.

 55

4.4.1 Huffman Coding

 Huffman coding is the most popular technique for removing coding redundancy.

When coding the symbols of an information source individually, Huffman coding makes

the smallest possible number of code symbols per source symbol. In the noiseless cod-

ing theorem, the resulting code is optimal for a fixed value of n, while the source sym-

bols are coded one at a time.

 The first step in Huffman's approach is to create a series of source reductions by

ordering the probabilities of the symbols under consideration and combining the lowest

probability symbols into a single symbol that replaces them in the next source reduction.

Fig. 4.8 illustrates this process for binary coding. The hypothetical set of source sym-

bols and their probabilities are ordered from top to bottom in terms of decreasing prob-

ability values. To form the first source reduction, the bottom two probabilities, 0.06 and

0.04, are combined to form a "compound symbol" with probability 0.1. This compound

symbol and its associated probability are placed in the first source reduction column so

that the probabilities of the reduced source are also ordered from the most to the least

probable. This process is then repeated until a reduced source with two symbols is

reached.

 Original source Source reduction

Symbol Probability 1 2 3 4 code

 a2 0.4 0.4 0.4 0.4 0.6 1
 a6 0.3 0.3 0.3 0.3 0.4 00
 a1 0.1 0.1 0.2 0.3 011

Fig. 4.8 Huffman code procedure.

 a4 0.1 0.1 0.1 0100
 a3 0.06 0.1 01010
 a5 0.04 01011

0
0 1
10

0 1
1

 56

 The second step in Huffman's procedure is to code each reduced source, starting

with the smallest source and working back to the original source. The minimal length

binary code for a two-symbol source is the symbols 0 and 1. Fig. 4.8 shows that these

symbols are assigned to the two symbols on the right. As the reduced source symbol

with probability 0.6 was generated by combining two symbols in the reduced source to

its left, the 0 used to code it is now assigned to both of these symbols, and a 0 and 1 are

arbitrarily appended to each to distinguish them from each other. This operation is then

repeated for each reduced source until the original source is reached. The final code ap-

pears at the far right in Fig. 4.8. The average length of this code is

Lavg = 0.4×1 + 0.3×2 + 0.1×3 + 0.1×4 + 0.06×5 + 0.04×5 = 2.2 bits/symbol,

and the entropy of the source is 2.14 bits/symbol.

4.4.2 Difference Coding

 Because the DC coefficients contain a lot of energy, it usually has much larger

value than AC coefficients, and we can notice that there is a very close connection be-

tween the DC coefficients of adjacent blocks. So, the JPEG standard encode the differ-

ence between the DC coefficients of consecutive 8×8 blocks rather than its true value.

The mathematical represent of the difference is:

 Diffi = DCi − DCi-1 (4.10)

and we set DC0 = 0. DC of the current block DCi will be equal to DCi-1 + Diffi . There-

fore, in the JPEG file, the first coefficient is actually the difference of DCs. Then the

difference is Huffman encoded together with the encoding of AC coefficients. The

Huffman table of the DC coefficients in JPEG standard is shown in Table 4.1.

 57

Table 4.1 Huffman table of luminance DC coefficients.

category code length code word
0 2 00
1 3 010
2 3 011
3 3 100
4 3 101
5 3 110
6 4 1110
7 5 11110
8 6 111110
9 7 1111110
10 8 11111110

4.4.3 Zero Run Length Coding

 After quantization, we have the vector with a lot of consecutive zeroes. We can ex-

ploit this by run length coding of the consecutive zeroes. Let us consider the 63 AC co-

efficients in the original 64 quantized vectors first. For example, we have

57, 45, 0, 0, 0, 0, 23, 0, -30, -16, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ..., 0

 We encode for each value which is not 0, than add the number of consecutive ze-

roes preceding that value in front of it. The run length coding is

(0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-16) ; (2,1) ; EOB

 EOB (End of Block) is a special coded value. If we have reached in a position in

the vector from which we have till the end of the vector only zeroes, we'll mark that po-

sition with EOB and finish the run length coding of the quantized vector. Note that if the

quantized vector does not finishes with zeroes (the last element is not 0), we do not add

the EOB marker. Actually, EOB is equivalent to (0,0), so we have

(0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-16) ; (2,1) ; (0,0)

 We give another example. For the quantized vector as

57, eighteen zeroes, 3, 0, 0, 0, 0, 2, thirty-three zeroes, 895, EOB

 58

The JPEG Huffman coding makes the restriction that the number of previous 0's to be

coded as a 4-bit value, so it can not overpass the value 15 (0xF). So, this example would

be coded as

(0,57) ; (15,0) ; (2,3) ; (4,2) ; (15,0) ; (15,0) ; (1,895) ; (0,0)

(15,0) is a special coded value which indicates that there are 16 consecutive zeroes.

 The JPEG standard specifies that we store the minimum size in bits in which we

can keep that value (it is called the category of that value) and then a bit-coded repre-

sentation of that value like Table 4.2.

Table 4.2 The category and bit-coded values.

Category Values Bits for the value
1 -1,1 0,1
2 -3,-2,2,3 00,01,10,11
3 -7,-6,-5,-4,4,5,6,7 000,001,010,011,100,101,110,111
4 -15,...,-8,8,...,15 0000,...,0111,1000,...,1111
5 -31,...,-16,16,...31 00000,...,01111,10000,...,11111
6 -63,...,-32,32,...63 000000,...,011111,100000,...,111111
7 -127,...,-64,64,...,127 0000000,...,0111111,1000000,...,1111111
8 -255,..,-128,128,..,255 ...
9 -511,..,-256,256,..,511 ...
10 -1023,..,-512,512,..,1023 ...
11 -2047,...,-1024,1024,...,2047 ...

 In consequence for the previous example of AC coefficients

(0,57) ; (0,45) ; (4,23) ; (1,-30) ; (0,-8) ; (2,1) ; (0,0)

We encode only the right value of these pairs as category and bits for the value, except

the pairs that are special markers like (0,0) or (15,0). For example, 57 is in the category

6 and it is bit-coded 111001, so we will encode it as 6,111001. And we write again the

string of pairs

(0,6,111001) ; (0,6,101101) ; (4,5,10111); (1,5,00001) ; (0,4,0111) ; (2,1,1) ; (0,0)

The first 2 values in bracket parenthesis can be represented on a byte because of the fact

 59

that each of the 2 values is 0,1,2,...,15. In this byte, the higher 4-bit represents the num-

ber of previous 0s, and the lower 4-bit is the category of the value which is not 0.

Table 4.3 Huffman table of luminance AC coefficients.

run/category code length code word
0/0 (EOB) 4 1010
15/0 (ZRL) 11 11111111001
0/1 2 00
...
0/6 7 1111000
...
0/10 16 1111111110000011
1/1 4 1100
1/2 5 11011
...
1/10 16 1111111110001000
2/1 5 11100
...
4/5 16 1111111110011000
...
15/10 16 1111111111111110

 The final step is encoding this byte using Huffman coding. For example, if the

Huffman code of byte (0,6) is 1111000, and the Huffman code of byte (4,5) is

1111111110011000, and so on. The final stream of bits written in the JPEG file on disk

for the previous example of 63 coefficients is

 1111000 1111001 , 111000 101101 , 1111111110011000 10111 ,

 11111110110 00001 , 1011 0111 , 11100 1 , 1010

 60

4.5 Simulation Result

 (a) Original image

(b) Qm = 1, Downsampling : 444

CR = 11.83, RMSE = 6.83

(c) Qm = 1, Downsampling : 420

CR = 16.95, RMSE = 8.08

(d) Qm = 4, Downsampling : 444

CR = 27.67, RMSE = 11.56

(e) Qm = 4, Downsampling : 420

CR = 35.88, RMSE = 12.46

Fig. 4.9 Simulation result of the JPEG standard.

 61

 Fig. 4.8 shows the simulation result of the JPEG coded image with different com-

pression parameters. The Qm means the multiple of the quantization matrix. We can see

that the type 420 downsampling type can decrease the compression ratio with little vi-

sion error. If Qm increase to 4, it can also decrease the compression ratio but generating

the clear characteristic 'blocky and blurry' artifacts.

4.6 Conclusion

 We have introduced the basic compression methods of JPEG standard. Although

this standard has become the most popular image format, it still has some properties to

improvement, especially to the 'blocky and blurry' artifacts problem. The intuitive way

is to divide the region by the edges rather than 8×8 block. The method will describe in

the following chapters. The algorithms in JPEG standard will be modified to apply in

our proposed methods.

 63

Chapter 5

Boundary Description and Compression

 The segmentation technique outputs the boundaries in the form of pixels along a

shape. These data sometimes are used directly to describe the shape of an image seg-

ment. In practice, we use some other representation, called descriptor, to describe the

boundaries. In this chapter, we will introduce some popular boundary descriptors to re-

cord the boundary of an image segments efficiently.

5.1 Polygonal Approximation

 The simplest way to reduce the data size of boundary is polygonal approximation.

It only adopts some critical points which can be linked to a polygon to approximate the

original boundary. There are two basic techniques to find the critical points: merging

technique and splitting technique.

5.1.1 Merging technique

 Merging technique is to merge points along a boundary to a straight line until the

least square error exceeds a threshold. When this condition occurs, the parameters of the

line are stored. Then the procedure is repeated to merging new points along the bound-

ary until the error again exceeds the threshold. At the end of the procedure the intersec-

tions of adjacent line segments form the vertices of the polygon. One of the principal

difficulties with this method is that vertices in the resulting approximation do not al-

ways correspond to the corners of the original boundary, because a new line is not

 64

started until the error threshold is exceeded. For instance, if a long straight line were

being tracked and it turned a corner, a number of points past the corner would be ab-

sorbed before the threshold was exceeded. However, the splitting technique may be

used to alleviate this difficulty.

Fig. 5.1 Use merging technique to find the polygonal approximation.

5.1.2 Splitting Technique

 The splitting technique is to subdivide a segment successively into two parts until a

specified criterion is satisfied. For instance, a requirement might be that the maximum

perpendicular distance from a boundary segment to the line joining its two end points

not exceeds a preset threshold. If it does, the farthest point from the line becomes a ver-

tex, thus subdividing the initial segment into two sub-segments. This approach has the

advantage of seeking prominent corner points. For a closed boundary, the best starting

points usually are the two farthest points in the boundary. For example, Fig. 5.2(a)

shows an object boundary and a subdivision of this boundary about its farthest points.

The point marked c is the farthest point from the top boundary segment to line ab.

Similarly, point d is the farthest point in the bottom segment. Fig. 5.2(b) shows the re-

sult of the second splitting procedure. Then the procedure is repeated until no point in

the new boundary segments has a perpendicular distance that exceeds the threshold. The

procedure terminates with the polygon shown in Fig. 5.2(c).

 65

a a
cc

Fig. 5.2 Using splitting techniques to find polygonal approximation.

5.2 Fourier Descriptor

 Fig. 5.3 shows a K-point digital boundary in the xy-plane. Starting at an arbitrary

point (x0, y0), coordinate pairs (x0, y0), (x1, y1), ..., (xK−1, yK−1) are encountered in trav-

ersing the boundary in the counterclockwise direction. These coordinates can be ex-

pressed in the form x(k) = xk and y(k) = yk. With this notation, the boundary itself can be

represented as the sequence of coordinates s(k) = [x(k), y(k)], for k = 0, 1, 2, ..., K−1.

Moreover, each coordinate pair can be treated as a complex number so that

 () () ()s k x k jy k= + (5.1)

for k = 0, 1, 2, ..., K−1. That is, the x-axis is treated as the real axis and the y-axis as the

imaginary axis of a sequence of complex numbers. This representation is great that re-

duces a 2-D problem to a 1-D problem.

Fig. 5.3 A digital boundary that represented as a complex sequence.

 The Discrete Fourier transform (DFT) of s(k) is

x0 x1

y0 y1

x

jy

Real axis

Imaginary
axis

(a) (b) (c)
b d bd

 66

1

2 /

0

1() ()
K

j uk K

k
a u s k e

K
π

−
−

=

= ∑ (5.2)

for u = 0, 1, 2, ... , K−1. The complex coefficients a(u) are called the Fourier descriptors

of the boundary. The inverse Fourier transform of these coefficients restores s(k). That

is,

 (5.3)
1

2 /

0
() ()

K
j uk K

u
s k a u e π

−

=

= ∑

for k = 0, 1, 2, ... , K−1. If we do not use of all the Fourier coefficients, only the first P

coefficients are used. This is equivalent to setting a(u) = 0 for u > P−1 in (5.3). The re-

sult is the approximation to s(k):

 (5.4)
1

2 /

0

ˆ() ()
P

j uk K

u
s k a u e π

−

=

= ∑

for k = 0, 1, 2, ... , K−1. Although only P terms are used to obtain each component of

, k still ranges from 0 to K−1. That is, the same number of points exists in the ap-

proximate boundary, but not as many terms are used in the reconstruction of each point.

In Fourier transform theorem, high-frequency components account for fine detail, and

low frequency components determine global shape. Thus the smaller P becomes, the

more detail that is lost on the boundary.

ˆ()s k

 Fig. 5.4(a) shows four boundaries and Fig. 5.4(b)~(f) is the results of using (5.4) to

reconstruct these boundaries for various values of P. Note illustration of that the per-

centage of reserve descriptors has to be about 20% before the reconstructed boundary

looks more like its original. Thus, a few low-order coefficients are able to capture gross

shape, but many more high-order terms are required to define accurately sharp features

such as corners and straight 1ines. This result is not unexpected in view of the role

played by low- and high-frequency components in defining the shape of a region.

 67

(a) original image

(b) R = 50% (c) R = 30%

(d) R = 20%

(e) R = 10% (f) R = 5%

Fig. 5.4 Reconstruction from Fourier descriptors with different reserve rate.

 69

Chapter 6

Proposed Methods for Boundary Description

and Compression

 We have introduced several methods to describe a boundary in the previous chapter.

In this chapter, we propose two methods to improve the vision effect and compression

ratio of the boundary description. One is second-order curve descriptor which combined

with the splitting technique. The other is modified Fourier descriptor which segments

the boundary and then computes the Fourier transform of the boundary segments.

6.1 Second-Order Curve Descriptor

 In the splitting techniques for polygonal approximation of a boundary which is de-

scribed in section 5.1, it finds several nodes in a closed boundary and uses straight lines

to link these nodes. This method gives us an idea to propose a new boundary descriptor

called second-order curve descriptor. In this method, we add a second-order parameter

to each boundary segment and make it a second-order curve instead of a straight line.

6.1.1 Second-Order Polynomial Approximate to a Boundary Segment

 First, we divide a closed boundary to several non-closed boundaries. For instant,

we can directly cut the boundary to one half. Then, we find second-order polynomials

approximate to each boundary segment. For a boundary segment s1(k), for k = 0, 1, ...,

K−1, we shift it to make its first point s1(0) locate at origin. That is,

 70

 (6.1) 2 1 1() () (0), for 0,1,..., 1.s k s k s k K= − = −

And then we rotate s2(k) an angle θ to make its final point s2(K−1) locate at x-axis. The

angle θ can be calculated by

 1 1 0

1 0

tan K

K

y y
x x

θ − −

−

⎛ ⎞−
= ⎜ −⎝ ⎠

⎟

− (6.3)

 (6.2)

where (x0, y0) is the first point of s2(k) and (xK−1, yK−1) is the final point of s2(k). And

then every point (xk, yk) of s2(k) is multiply a rotation matrix that

' sin cos

, for 0,1,..., 1
' cos sin
k k

k k

x x
k K

y y
θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
= =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

,

where (x'k, y'k) is the k-th point of the rotated boundary segment s3(k).

Fig. 6.1 Initial steps to a boundary segment.

 After these steps to a boundary segment, it can be treat as a function of xk and can

be approximated as a second-order polynomial that

 . (6.4) 2 , for 0,1,..., 1.k k ky Ax Bx C k K= + + = −

Because the first point is located at the origin, the constant C can be set to zero. If the (x,

y) of (6.4) is substituted for the final point (xK−1, 0) of s3(k), we can get that the coeffi-

cient B = −A xK−1. Then we can rewrite (6.4) to

 (6.5) 2
1 , for 0,1,..., 1.k k K ky Ax Ax x k K−= − = −

(a)

y y

xθ

ys1(k)
s3(k)

s2(k)

x

(b) (c)

xK−1

s1(0)

s1(K−1)

 71

)1

Now we need to find the coefficient A in order to approximate s3(k) most closely using

(6.5). Therefore, we count the sum of error E that

 . (6.6) (
1 22

3
0

() ()
K

k K k
k

E s k Ax Ax x
−

−
=

= − −∑

The value of E is least when its derivatives of A is zero, that is

()(

() ()

() ()

1
2 2

3 1 1
0
1 22 2

3 1 1
0
1 1 22 2

3 1
0 0

2 ()

2 ()

2 () 2

0

K

k K k k K k
k
K

k K k k K k
k
K K

k K k k K k
k k

E s k Ax Ax x x x x
A

s k x x x A x x x

s k x x x A x x x

−

− −
=

−

− −
=

− −

− −
= =

∂ ⎡ ⎤= − + − +⎣ ⎦∂

⎡ ⎤= − + + − +⎢ ⎥⎣ ⎦

⎡ ⎤= − + + − +⎣ ⎦

)

1

=

∑

∑

∑ ∑

. (6.7)

And we can get

()

()

1
2

3 1
0

1 22
1

0

()
K

k K k
k

K

k K k
k

s k x x x
A

x x x

−

−
=

−

−
=

⎡ ⎤− +⎣ ⎦
= −

− +

∑

∑
. (6.8)

Now, we can use only two end points and a parameter A to approximate a boundary

segment.

y
s3(k)

Fig. 6.2 The original boundary segment s3(k) and the approximate 2nd-order curve yk.

6.1.2 Splitting Technique with Approximate Second-Order Curve

 In the splitting technique described in section 5.1, we have to find the longest dis-

tance between any two points first. However, in this section, we can use the sec-

x
xK−1

2
1k k K ky Ax Ax x−= −

 72

ond-order curve described above to find the two points. Initially, we directly split the

closed boundary to one half and produce two non-closed curves. After calculating the

two approximate second-order curve of the two non-closed curves, we find two points

that have the largest error between the original curve and the approximate curve. Use

the two points to split the original closed boundary and find the most two error points

again. Repeat the procedure several time and we can get the appropriate two points to

split the closed boundary first, as illustrate in Fig. 6.3.

(a) (b) (c)

Fig. 6.3 Find the first two points to split the boundary.

 After finding the first two node points, we continue to find the point with largest

error between the original boundary and the approximate second-order curve. Then we

set this point to the third node that splits the boundary to three segments. Calculate the

approximate second-order curve of the two boundary segment by the side of the third

node. Repeat the procedure until the largest error is less than a threshold, as illustrate in

Fig. 6.4.

(a) (b) (c)

Fig. 6.4 Splitting technique with approximate second-order curve.

 73

6.2 Fourier Descriptor of Non-Closed Boundary Segments

 Due to the problem of the Fourier descriptor, that is, the angle of the shape will be

smooth when the reserve rate of coefficient is lower than 20%. We proposed a new

method to improve the Fourier descriptor. We find the corner points and segment the

boundary by these points first. Then we convert these boundary segments to Fourier

descriptors which are redefined for a non-closed boundary segment.

6.2.1 Boundary Segmentation

 First of all, we have to find the proper corner points. An intuition way is to make

use of the original Fourier descriptors described in Section 5.2. We compute the Fourier

descriptors and only reserve the first 20% coefficients. Then we reconstruct the new

boundary points. As illustrated in Fig. 6.5(a)(b), the blue line is the original boundary

and the green line is the reconstructed boundary. Then we compute the error of the two

boundary, as illustrated in Fig. 6.5(c)(d). The corner points are at the regional maximum

place of the error value. In our experiment, we define the corner points are at the place

that error value is greater then 0.5 and is the maximum in the near 10-point region. This

definition ensures that the number of corner points is not too many and the obvious

corner points can be found. As illustrated in Fig. 6.5, the red points are the corner points

we found.

 74

(a) A square-shape boundary.

20 25 30 35

12

14

16

18

20

22

24

26

28

30

32

(b) A star-shape boundary.

35 40 45 50 55 60 65

35

40

45

50

55

60

65

(c) Error of (a) (d) Error of (b)
0.8

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0 20 40 60 80 100 120
0

0.5

1

1.5

Fig. 6.5 Error of the original boundary points and the reconstruct ones.

6.2.2 Fourier Descriptor of Non-Closed Boundary Segment

 We segment the boundary with the corner points and then we compute the Fourier

descriptor of the boundary segments. However, if we do not use the whole coefficients,

the reconstructed boundary segment will be closed due to the discontinuous two end

points which is shown in Fig. 6.6.

a(u)
truncate

uP K0
DFT Inverse

ReconstructedBoundary Fourier DFT
boundary segment descriptor

Fig. 6.6 Use Fourier descriptor to a non-close boundary segment.

 To solve the non-closed problem, we adapt the following steps:

 75

1)
(1)

1. Record the coordinates of the two end points, s1(0) and s1(K−1) of the boundary

segment s1(k) for k = 0,1,...,K−1.

2. Shift the first point to the origin, and the other points shift the same distance.

 (6.9) 2 1 1() () (0), for 0,1,..., 1.s k s k s k K= − = −

3. Shift the end point to the origin, and the other points shift linearly according to its

point number k. If (xk, yk) is a point of the boundary segment s2(k), for k = 0, 1, ...,

K−1, it will be shifted to (xk', yk') of s3(k) where

 1

1

' / (
' /

k k K

k k K

x x x k K
y y y k K

−

−

= − × −

= − × −
. (6.10)

s1(k)

s3(k)

4. Add a boundary segment which is odd symmetry to the original one. Then the new

boundary segment is closed and is smooth in the two end points. If the linearly

shifted boundary segment in step 3 is s3(k), the new boundary segment is

 . (6.11) 4 3 3() () (), for 1, 2,...,0,1,..., 1s k s k s k k K K K= − − = − + − + −

5. Compute the Fourier descriptor to the new boundary segment s4(k). That is,

1

2 /
4

1

1() () , for 0,1,...,2 2
K

j uk K

k K
a u s k e u K

K
π

−
−

=− +

= ∑ = − . (6.12)

Boundary
segment Shift

Linearly
shift

Fig. 6.7 Linearly shift the two end points to the origin.

s1(0)

s1(K−1) s2(k)

s2(K−1)

s2(0)

 76

)

s3(k) s4(k)

By the property of DFT, if a(u) is the DFT of s(k),

 . (6.13) () (DFTs k a u− − ⎯⎯⎯→− −

Therefore, if the signal s(k) is odd symmetry, its DFT a(u) is odd symmetry, too.

 . (6.14) () () () ()DFTs k s k a u a u= − − ⎯⎯⎯→ = − −

Moreover, because the central point of s3(k) is origin, the DC-term (the first coefficient

of DFT) is zero. There is, we only need to record the second to the K-th coefficient of

the Fourier descriptors, as illustrated in Fig. 6.9.

Fig. 6.9 (a) The new boundary segment. (b) Fourier descriptor of (a).

6.2.3 Boundary Compression

 Now we can truncate the high frequency coefficients without worrying the discon-

tinuous two end points. As shown in Fig. 6.10(a), we can only reserve the P−1 coeffi-

Add an odd sym-
metry segment

Fig. 6.8 Add an odd symmetry boundary segment

to make the two end points smooth.

Linearly shifted
boundary segment

odd symmetry
|a(u)|

u
0

useless

K

s3

DFT
2K−2

DC-term is zero

 77

cients and truncate the other coefficients. We recover the whole coefficient by stuffing

zeroes and then copy to the odd symmetry part, as shown in Fig. 6.10(b).

only reserve P−1
coefficients |a(u)||a(u)|

Fig. 6.10 (a) The reserve P−1 coefficients. (b) Recover the whole coefficients from (a).

 In Fig. 6.11, we use the modified Fourier descriptor method to an entire boundary

and compare to the original Fourier descriptor described in the previous chapter. In the

original Fourier descriptor, we can observe that the boundary which has sharp corner

will be distortion obviously when R is less than 20%. However, if we use the modified

Fourier descriptor method that has split the boundary at the corner point to several

boundary segments, the sharp corner can be preserve when R is less.

 We can see that, when R = 10%, the result of the original Fourier descriptor

method is obvious distortion. However, in the modified Fourier descriptor method, the

characteristic of corners can be preserved and some longer boundary segments are not

distorted obviously. The problem is that the shorter boundary segments are stretched

from a curve due to the fact that the preserve coefficients are less than one. Therefore,

we force the reserve coefficient number is greater than three, where the three coeffi-

cients can represent the most characteristic in our experiment. The improved result is

shown in Fig. 6.12.

u
0 K−1

odd symmetry

P−1

truncate

P−1
u

0 2K−2

 78

 Original image R = 20% R = 10% R = 5%

Original
Fourier

descriptor

(a) (b) (c) (d)

Modified
Fourier

descriptor

(e) (f) (g) (h)

Fig. 6.11 Boundary compression with different coefficient reserve rate.

(a) Original boundary

(b) Reconstructed boundary with R = 10% and
number of coefficients is greater than 3

Fig. 6.12 Result of improved boundary compression.

6.2.4 Other Method for Fourier Descriptor of Boundary Segment

 We compare the three methods for Fourier descriptor of a boundary segment with

the coefficient reserve rate R = 0.1. Fig. 6.13(b) only linearly shifts to links the two end

points. We can find that the distortion at the two end points is obvious. Fig. 6.13(c)

traces back at the end point. In other words, it only adds another even symmetry bound-

ary segment. It improves the end point distortion but increase the mean error. Fig.

 79

6.13(d) is the method we proposed above that not only linearly shifts to link the two end

points but also adds another odd symmetry boundary segment. It has a good effect that

not only avoids the end point distortion but also significantly decrease the mean error.

Therefore, the method we proposed is truly better than the other methods proposed be-

fore.

(a) Original boundary segment.

(b) Linearly shift to link the two end points.

the mean error = 0.4545

(c) Add an even symmetry.

the mean error = 0.4949

(d) Linearly shift and add an odd symmetry.

the mean error = 0.3793

Fig. 6.13 Three methods for Fourier descriptor of a boundary segment with R = 0.1.

6.3 Boundary Encoding of the Boundary Segments

 In the previous sections, we introduce two boundary descriptors which are both

based on boundary segment. They are similar because they both need to record the co-

ordinates of corners and some coefficients of each boundary segment. In this section,

we introduce our method to encode these data in order to save more space. Fig. 6.14 and

Fig. 6.15 are the block diagram of encoder and decoder, respectively. We will explain

them and focus on the Fourier descriptor.

 80

Segment number
of each boundary

Difference &
Huffman encoding

Fig. 6.14 Boundary segment encoder.

 In the boundary segment encoder, we have four data to record: the segment number

of each boundary, the coordinates of each corner, the point number of each boundary

segment, and the coefficients of each boundary segment. The first three data are arrays

with positive numbers, and we suppose that the adjacent number in these arrays will be

near. Therefore, we can use the difference encoding described in Section 4.4.2 and then

use the Huffman encoding.

Fig. 6.15 Boundary segment decoder.

Coordinates
of each corner

Coefficients
of each segment

Point number
of each segment

Truncate and
quantization

Corner distance

Zero-run length &
Huffman encoding

Difference &
Huffman encoding

Difference &
Huffman encoding Σ

−

+

Bit stream

Corners &
boundary
segments

Difference &
Huffman decoding

Segment number
of each boundary

Bit stream

Difference &
Huffman decoding

Zero-run length &
Huffman decoding

Difference &
Huffman decoding

Coordinates
of each corner

Corner distance

Point number
of each segment Σ

+

+

Coefficients
of each segment

Stuff zeroes to
original length

Corners &
boundary
segments

 81

)

 In the third data, we record the difference of the point number and the distance of

two end points of each boundary segment. The distance we used here is the sum of the

two distances of the x-axis and y-axis. Compared with Euclidean distance, it is integer

and often closer to point number of segment.

Fig. 6.16 Point number of boundary and distance of two end points.

 As illustrated in Fig. 6.16, we have vector n of the point number of each boundary

segment. Similarly, dx and dy are vectors that record the distances of the x-axis and

y-axis, respectively. Therefore, we can get the difference vector d where

 (= − +d n dx dy . (6.15)

The value difference vector d is close to zeroes and is appropriate to encode with Huff-

man encoding. In the decoder as shown in Fig. 6.15, we can recover n that

 ()= + +n d dx dy , (6.16)

where dx and dy can be calculated by the corners.

 In the fourth data, we combine the coefficients of each boundary segment in a

whole boundary and encode them with zero-run length and Huffman coding described

in Section 4.4.3. When the boundary segment is a straight line, its coefficients of Fou-

rier descriptor will be all zeroes. Therefore, it is appropriate to use the zero-run length

coding when many boundary segments are straight lines.

Point number of
boundary segment

d1 = n1 − (dx1 + dy1) n1

n2

dy1
d2 = n2 − (dx2 + dy2) dx1

dy2 Output …

dx2

 82

 Because we have recoded the point number of each boundary segment, we can

calculate the reserved coefficient number and split the combined coefficient array cor-

rectly. And then we can recover the original coefficients by stuffing zeroes to the trun-

cated position.

 Finally, we encode the boundary segment of Fig. 6.12(b) as an example. The data

size and the bytes after encoding are list in Table 6.1. Note that the coefficients of each

segment have been truncated to three complex numbers. The coding technique can only

reduce some information quantity. The major compression quantity is truncating coeffi-

cients described before.

Table 6.1 Data size and coding bytes of the example of Fig. 6.12(b).

data name data size after encoding
Segment number of each boundary 6 4 bytes
Coordinates of each corner 23×2 38 bytes
Point number of each segment 23 13 bytes
Coefficients of each segment 69×2 102 bytes
sum 223 157 bytes

6.4 Conclusion

 We have described the methods to record a boundary efficiently. We have proposed

two boundary descriptions: the second-order curve descriptor and the modified Fourier

descriptor. In our experiment, the former has more complexity and needs to cut more

boundary segment than the latter does. Therefore, we adopt the modified Fourier de-

scriptor in our entire compression system.

 83

Chapter 7

Arbitrary-Shape Image Segment

Compression

 A complete representation of the arbitrary-shape image segment includes two parts:

shape and internal contents. The former represents the boundary information of the im-

age segment, and the latter represents the internal color intensity value. Both these two

components are required to represent an arbitrary-shape image segment. In the previous

chapter, we described the methods to record the boundary information efficiently. In this

chapter, we focus on designing efficient representation of the image contents to achieve

good compression and image quality.

 In particular, we use transform coding of the image contents, such as the widely

used discrete cosine transform (DCT). The advantage of using the transform coding is

that existing codec hardware can be used to process arbitrary-shape image segment, as

well as traditional rectangular image.

7.1 Block-Filled Method

 After segmentation, image segments are placed in blocks. For arbitrary-shape im-

age segments, boundary blocks usually have part of the pixel values defined only. Let

P(x, y) represent the pixel values within an N×N pixel block area, called R. Let B repre-

sent the occupied region within the block. An irregular shaped image segment has P(x, y)

defined within region B only. The block-filled transform coding technique fills up the

 84

redundant area outside the boundary and then utilizes the traditional transform coding.

 The approach to filling the region outside the boundary with optimal redundant

data provides a freedom for us to optimize the transform spectrum. The simplest method

to augment a partially defined image segment into a full block image is by stuffing ze-

roes outside the image boundary. But it is well known this method may introduce sharp

edges on the boundary and high-frequency components in the transform spectrum. A

more promising method is to extend the image segment with its “mirror image” outside

the boundary. Fig. 7.1 shows a simple example in one dimension. In general, the support

of the original image sequence is not exactly one half of the block size, we may need to

duplicate the image sequence several times and truncate it at the block boundary. For a

2D image segment, we can apply this 1D mirror image extension technique in one di-

rection first and then once again in another direction.

block size block size

(a) (b) (c)

Fig. 7.1 Fill the outside region with the mirror image of the internal contents.

(a) Original segment. (b) The segment size equals one half of the block size.

(c) The segment size is smaller than one half of the block size.

7.2 Arbitrary-Shape Image Transform

 Instead of filling data outside the image boundary and applying the full-block rec-

tangular transform, we can focus on the defined image contents only. Mathematically,

we define SR as the linear space spanned over the whole square block R, SB as the sub-

 85

i B

space spanned over the irregular region B only. As illustrate in Fig. 7.2(a), space SR has

a dimension equal to 9, while the dimension of subspace SB equals to 6 only. One possi-

ble basis for subspace SB is shown in Fig. 7.2(b). Each basis matrix has a single

non-zero element only.

Fig. 7.2 (a) An irregular-shape image segment in a 3×3 block area.

(b) A canonical basis of the subspace.

 Every arbitrary-shape image segment can be considered as a vector P(x, y) in SB.

To represent this vector completely, we can find a set of independent vectors bi in SB and

describe the image segment as a linear combination of bi’s. The distinction between this

approach and that in the previous section is that the whole problem domain now is con-

fined in the subspace SB only. If we still want to use traditional block-based transform

bases fi, we can project these basis functions into subspace SB,

 ˆ Project(,)if f S= , (7.1)

and describe vector P(x, y) as a linear combination of îf ’s. Actually, the above projec-

tion is very simple. It just removes the components of fi outside subspace SB.

 An important issue remains now is how to find optimal basis functions in subspace

SB such that we can use the least number of coefficients to reconstruct the image seg-

ment vector with satisfactory errors. The above formulation does provide a very flexible

0 0 0
1 0 0
0 0 0

0 1 0
0 0 0
0 0 0

0 0 0
0 1 0
0 0 0

0 0 1
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

0 0 0
0 0 0
0 0 1

3×3 pixels

image segment SB

SR

(a) (b)

 86

platform to derive new transform bases and evaluate their performance.

 87

Chapter 8

Proposed Method for Arbitrary-Shape

Image Segment Compression

 In this chapter, we implement the process to compress the contents in an arbi-

trary-shape image segment. We modify the DCT bases to the arbitrary-shape by the

Gram-Schmidt process. After transforming, we quantize the coefficients and then en-

code them. Finally, we combine the encoded coefficients with the code of boundary in

the whole compression system.

8.1 Arbitrary-Shape Transform with DCT Bases

 The mathematical definition of DCT for an N×N image block is showed in (4.5)

and (4.6). However, the height and width of an image segment is usually not the same.

Therefore, we redefine the DCT as

Forward DCT:

1 1

0 0

2 () () (2 1) (2 1)(,) (,)cos cos
2 2*

for 0,..., 1 and 0,..., 1

1 / 2 for 0()
 1 otherwise

W H

x y

C u C v x u y vF u v f x y
W HH W

u W v H

kC k

π π− −

= =

+ +⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

= − = −

⎧ =⎪= ⎨
⎪⎩

∑∑
⎦

 (8.1)

Inverse DCT:

 88

1 1

0 0

2 (2 1)(,) () () (,)cos cos
2 2*

for 0,..., 1 and 0,..., 1

1 / 2 for 0()
 1 otherwise

W H

u v

(2 1)x u yf x y C u C v F u v
W HH W

x W y H

kC k

π π− −

= =

+ + v⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣

= − = −

⎧ =⎪= ⎨
⎪⎩

∑∑
⎦

 (8.2)

where W and H is the width and height of the image segment, respectively. The F(u,v) is

called the DCT coefficient, and the DCT basis is

 ,
2 () () (2 1) (2 1)(,) cos cos

2 2*x y
C u C v x u y vu v

W HH W
π πω + +⎡ ⎤ ⎡= ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

1 1

,
0 0

(,) (,) (,) for 0,..., 1 and 0,..., 1
W H

x y
u v

f x y F u v u v x W y Hω
− −

= =

= = − = −∑∑

. (8.3)

Then we can rewrite the inverse DCT to

 . (8.4)

 To compare with the 8×8 DCT, we use an image segment whose height and width

are both eight for an example, as shown in Fig. 8.1(a). Fig. 8.1(b) is its shape matrix by

filling with one’s in the position inside the boundary of the shape and filling with zeroes

otherwise.

Fig. 8.1 (a) An arbitrary-shape image segment f and (b) its shape matrix.

 Similar to the 8×8 DCT, we can get the H×W bases of the image segment f. We

multiplying the H×W DCT bases shown in Fig. 4.3 by the shape matrix shown in Fig.

8.1(b) and the result is shown in Fig. 8.2. Because the point number M of is less than

0 0 0 0 1 1 0 0
1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 0
0 0 0 1 1 1 0 0
0 0 0 1 1 0 0 0

 75 96

105 98 99 101 73 85 66 60
100 97 89 94 87 64 55

 84 94 90 81 71 66
 93 86 94 81 70

 86 86 81 72

 98 97 78

 105 104

 89

H×W, we can know that the H×W bases are not orthogonal. Before we use the

Gram-Schmidt process to reduce the bases to M orthogonal ones, we reorder the H×W

bases by the zig-zag reordering matrix which is shown in Fig. 8.3. The reason to reorder

is that the low frequency components concentrate on the left-top position and is more

important to the high frequency components which concentrate on the right-bottom po-

sition. After reordering and the Gram-Schmidt process, we get the M orthogonal bases

,'x yω for the image segment f, as shown in Fig. 8.4.

 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

Fig. 8.2 The 8×8 DCT bases with the shape of f.

0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 50 56 59 61
35 36 48 49 57 58 62 63

Fig. 8.3 Zig-zag reordering matrix.

 90

=

,
1

(,) () ' () for 0,1,..., 1 and 0,1,..., 1.
M

x y
k

f x y F k k x W y Hω
=

= = − = −∑

1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37

Fig. 8.4 The 37 arbitrary-shape orthonormal DCT bases ,'x yω .

Finally, we define the forward DCT for an arbitrary-shape image segment as

 , (8.5)
1 1

,
0 0

() (,) ' () for 1,2,...,
W H

x y
x y

F k f x y k k Mω
− −

= =

= ∑∑

and the inverse DCT for an arbitrary-shape image segment is

 (8.6)

The M DCT coefficients of f are show in Fig. 8.5. Fig. 8.6 has six arbitrary-shape image

segments and their DCT coefficients are shown in Fig. 8.7.

0 5 10 15 20 25 30 35 40
-100

0

100

200

300

400

500

600

Fig. 8.5 The 37 arbitrary-shape DCT coefficients of f.

 91

(b) (e)

(c)
(f)

(a)

(d)

Fig. 8.6 An example of six arbitrary-shape image segments.

Fig. 8.7 The arbitrary-shape DCT coefficients of Fig. 8.6 (a)~(f).

0 100 200 300 400 500
-400
-200

0
200
400

(a)

0 100 200 300 400 500
-400
-200

0
200
400

(b)

0 100 200 300 400 500
-400
-200

0
200
400

(c)

0 100 200 300 400 500
-400
-200

0
200
400

(d)

0 100 200 300 400 500
-400
-200

0
200
400

(e)

0 100 200 300 400 500
-400
-200

0
200
400

(f)

 92

8.2 Quantization of the DCT Coefficients

 After transforming, we quantize the transformed coefficients to integers. On the

8×8 DCT coefficients, we divided them by a quantization matrix. But on the arbi-

trary-shape DCT coefficients, the length of coefficients is not fixed. Therefore, we de-

fine an unfixed quantization array Q(k) as an increasing line:

 , (8.7) () , for 1,2,...,a cQ k Q k Q k M= + =

where the two parameters Qa and Qc are the slope and the intercept of the line respec-

tively and M is the length of the DCT coefficients. Then each DCT coefficient F(k) is

divided by the corresponding quantization array Q(k) and rounded to the nearest integer

as:

 ()() , where 1,2,...,
()q

F kF k Round k M
Q k

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
= . (8.8)

The parameter Qc is important because it effects the quantization quantity of the DC

term and the low frequency components whose value is usually greater than the high

frequency components. The other parameter Qa leads the quantization quantity more

and more from the first DCT coefficient to the last one. It is because that the high fre-

quency components of an image segment is not visible in human vision and can tolerate

more distortion.

 Now we quantize the DCT coefficients of the six image segments in Fig. 8.7. The

quantization array Q(k) is shown in Fig. 8.8 where the parameter Qa is set to 0.06 and

Qc is set to 8. Then we quantize the DCT coefficients by (8.8). The result is shown in

Fig. 8.9. We can see that the value of the quantized DCT coefficients is much smaller

than the original ones. The other effect is that a lot of coefficients in the higher fre-

quency part are reduced to zeroes.

 93

0 100 200 300 400 500 600
5

10

15

20

25

30

35

40

45

Fig. 8.8 Quantization array Q(k) with Qa = 0.06 and Qc = 8.

100

Fig. 8.9 The quantized DCT coefficients of Fig. 8.7(a)~(f).

8.3 Coding Technique of the Image Segment

 In the final step, we encode the quantized coefficients to bit stream and combine

with the code of boundary in the whole compression process. By the result of the quan-

tization process, the quantized coefficients are serial integer numbers with a large value

0 100 200 300 400 500 600
-100

(a) 0

100

0 50 100 150 200 250 300 350 400
-100

(b) 0

100

0 50 100 150 200 250 300 350 400
-100

(c) 0

100

0 50 100 150 200 250 300 350
-100

(d) 0

100

0 50 100 150 200 250 300 350 400 450 500
-100

(e) 0

100

0 50 100 150 200 250 300 350
-100

(f) 0

 94

in the first place and have a lot of zeroes in the back. This characteristic is similar to the

coefficients of the 8×8 DCT and we can use the same way to encode them. That is, we

divide the first value and the other ones which are called the DC-term and the AC-term,

respectively. We encode the difference of the present DC-term and the previous one and

encode the AC-term by zero-run length coding and the Huffman coding. The detail

process is described in Section 4.4.

 After encoding the DCT coefficients of each image segment, we combine them di-

rectly to the bit stream of all image segments. Note that in the zero-run length coding,

we truncate the successive zeroes in the end of the coefficients, and replace with an

end-of-bit (EOB) symbol in this position. Therefore, we can divide the bit stream to

each image segment by the EOB symbol in the decoding process. The diagram of the

encoding and decoding process is illustrated in Fig. 8.10 and Fig. 8.11.

Quantizing
& encodingImage segments DCT coefficients

Fig. 8.10 Image segment encoder.

 Note that we do not need to record the length M of DCT coefficients of each image

segment because it can be got by the boundary. Therefore, in the decoding process, we

decode the bit stream of boundaries first. Then we count the point number inside a

boundary. The number is exactly the length M of DCT coefficients to the corresponding

image segment. Further, we have to compute the DCT bases based on the shape of each

1010101011011111

100111101010

101010111111111001

111000111000101011111

EOB

EOB

EOB

boundary
encoding

M1

M2DCT
M3

combine
bit stream of
boundaries

bit stream of image segments
100111101010 1010101111111110

111000111000101011111
EOB

EOB01 EOB

 95

image segment from the decoded boundaries. Finally, we get the reconstructed image

segments by combining the DCT bases with the DCT coefficients as illustrated in Fig.

8.11.

Fig. 8.11 Image segment decoder.

 Fig. 8.12(a) is an example image with six image segments. Fig. 8.12(b)~(f) show

five reconstructed images with different quantization parameters Qa and Qc. The number

of bytes after encoding and the root mean square error (RMSE) with the original image

are marked below the images. Note that the number of bytes does not include the bit

stream of boundaries whose length is 157 bytes calculated in Section 6.3. In these fig-

ures, we can observe that when the quantization parameters are larger and larger, the

texture in an image segment is smoother and smoother. The smooth effect in a complex

color image segment is not visible in the human vision. But when the color in an image

segment is almost identical, the reconstructed quantized image segment would produce

some noise which is like spots or ripples. The effect is a major problem because it is

clear in the human vision and we will solve it in the next section.

1010101011011111

bit stream of
boundaries

100111101010 1010101111111110
111000111000101011111

EOB
EOB EOB 01

bit stream of image segments

boundary
decoding

100111101010

101010111111111001

111000111000101011111

EOB

EOB

EOB

M1

M2
M3

point number of
each coefficients
(M1, M2, and M3)

Divide code by EOB

Decoding

Inverse
DCT

DCT coefficients

shape of each
image segment

 96

(a) Original image

The number of points of all

image segments is 2438

(b) Qa = 0.06, Qc = 8

Number of bytes: 590

RMSE: 2.0621

(c) Qa = 0.1, Qc = 10

Number of bytes: 473

RMSE: 2.5027

(d) Qa = 0.2, Qc = 10

Number of bytes: 379

RMSE: 2.6846
(e) Qa = 0.4, Qc = 15

Number of bytes: 268

RMSE: 3.1419

(f) Qa = 0.8, Qc = 20

Number of bytes: 180

RMSE: 3.3576

Fig. 8.12 Number of Bytes and RMSE of the encoded image segments

with different quantization parameters.

 97

8.4 Improvement of the Boundary Region by Morphology

 The reason of the noise to an identical color image segment is that its color has a

lot of variation in the boundary region. When we compute the DCT, its high frequency

coefficients would take more components. If we truncate its high frequency components,

the noise which is like spots or ripples would appear.

 To avoid this effect, we could segment the image more detailed. However, it will

produce more boundary information that need to record. Since we know the variation is

around the boundary region, we could divide the image segment into boundary region

part and the internal part. Then we compute their DCT and encode them separately.

Note that we do not need to record the boundary of the internal part because it can be

calculated by the original boundary in the decoding process. Fig. 8.13 shows the dia-

gram of the dividing process.

 The way that we divide the image segment is by morphological erosion. For two

binary image set A and B, the erosion of A by B, denote A B, is defined as

 { }| ()zA B z B A= ⊆ , (8.9)

where the translation of set B by point z = (z1, z2), denoted (B)z, is defined as

 { }() | , for zB c c b z b B= = + ∈ . (8.10)

In words, the erosion of A by B is the set of all points z such that B which is translated

by z is contained in A. Base on the definition described above, we erode the shapes of

image segments by a 5×5 disk-shape image and we get the shape of the internal region.

Then we subtract it from the original shape and we get the shape of boundary region.

The process is illustrated in Fig. 8.13.

 98

Boundaries Original image

Fig. 8.13 Divide the image segment by morphological erosion.

 Fig. 8.14 is the simulation result of the improved image segment compression with

the same quantization parameter of Fig. 8.12. We can observe that the noise of the in-

ternal regions have been eliminated and the RMSE is much less than the original

method. Although the number of bytes with the same quantization parameters is a little

more, we can use larger quantization parameters with similar RMSE and reach higher

compression ratio.

Segmentation

B origin

Fill

Σ
+ −

Shapes B Shapes Internal region

Erosion

Boundary region

 99

(a) Original image

The number of points of all

image segments is 2438

(b) Qa = 0.06, Qc = 8

Number of bytes: 577

RMSE: 1.4071
(c) Qa = 0.1, Qc = 10

Number of bytes: 496

RMSE: 1.8671

(d) Qa = 0.2, Qc = 10

Number of bytes: 417

RMSE: 2.0866
(e) Qa = 0.4, Qc = 15

Number of bytes: 299

RMSE: 2.5444

(f) Qa = 0.8, Qc = 20

Number of bytes: 220

RMSE: 2.9153

Fig. 8.14 Number of bytes and RMSE of the encoded image segments

with different quantization parameters in the improvement method.

 100

8.5 Compare with the JPEG Standard

 In this section, we compare the arbitrary-shape image compression method to the

JPEG compression method. The JPEG compression process has been described in

Chapter 2. We divide the image into 8×8 blocks and transform these blocks to frequency

domain by DCT. Then we quantize these 8×8 DCT coefficients by the quantization ma-

trix Q(u,v) which is shown in Fig. 4.5(a). The method to modulate the compression ratio

in the JPEG standard is to multiply a quantization parameter Qm by the quantization

matrix. Finally, we encode the quantized DCT coefficients by the same coding algo-

rithm of the arbitrary-shape image compression.

 Fig. 8.15(b)~(f) show the results of the decoded image with different quantization

parameter Qm. We can observe that the number of bytes is much larger than the number

of bytes of the arbitrary-shape image compression which include boundaries and image

segment information. That is because the JPEG method produce a lot of 8×8 blocks and

many of them cross the background and the image segments. That causes its high fre-

quency coefficients take more components and need more bytes to record. If we in-

crease the quantization parameter, the high frequency components would be lost.

Therefore, there are many obvious blocky and blurry artifacts around the boundary of

the image segments.

 101

(a) Original image

The number of points of all

image segments is 2438

(b) Qm = 0.3

Number of bytes: 1902

RMSE: 1.5085
(c) Qm = 0.4

Number of bytes: 1686

RMSE: 1.8530

(d) Qm = 0.5

Number of bytes: 1525

RMSE: 2.0339
(e) Qm = 0.7

Number of bytes: 1295

RMSE: 2.3850

(f) Qm = 1

Number of bytes: 1099

RMSE: 2.6986

Fig. 8.15 Number of bytes and RMSE of the encoded image segments

with different quantization parameter in the JPEG method.

 102

8.6 Conclusion

 We implemented the arbitrary-shape image compression process. However, the

modified DCT bases need to use Gram-Schmidt orthogonal process whose complexity

is O(n2). If the number of points of an image segment is large, it would cost a lot of

computational time. Therefore, we can segment the image more detail to avoid the

number of point of an image segment been too large. On the other hand, if the number

of points of an image segment is large, it means that its values of points are approximate

and can not be segmented more detailed. Therefore, the number of bases can be chosen

smaller than the dimension of the image segment to avoid n being too large in the

Gram-Schmidt process.

 We showed three kinds of results by different compression method. When we use

the image which has pure background and some geometric figures, the result of JPEG

method is poorer than the arbitrary-shape method because it can not adapt to the char-

acteristic of the image. If we adopt the improved arbitrary-shape method, we can reach

higher compression ratio with acceptable RMSE. Therefore, the arbitrary-shape image

compression method is indeed excellent to compression an image.

 103

Chapter 9

Conclusion and Future Work

9.1 Conclusion

 We discussed a lot of subjects about the segmentation-based image compression.

The first subject is to segment an image with similar characteristic. Edge detection algo-

rithm is one of the methods to segment an image. We proposed an adaptive method

called the short response Hilbert transform which combines the traditional differential

method and the Hilbert transform method. We also discussed many other ways to ana-

lyze and segment an image. The main object is to find a suitable segmented result to

compress.

 The basic image compression algorithm in JPEG standard was introduced. We

modified its DCT algorithm, quantization algorithm, and coding algorithm in order to

use them in our proposed methods. The next subject is how to record the boundaries of

the image segments efficiently. We discussed some popular boundary descriptors and

proposed two improved boundary descriptors. By the robust theory, we chose the modi-

fied Fourier descriptor to implement and encode in our experiment.

 After segmenting the image and recording the boundaries, we compressed the im-

age segments. We modified the DCT which can only transform an N×N block so it can

transform any arbitrary-shape image segment. The modified arbitrary-shape DCT pre-

serves the property that the preceding coefficients correspond to the low frequency

components. Therefore we can encode them by the same way of the JPEG standard. In

our experiment, the increased compression ratio can be up to twice more than that of the

 104

traditional JPEG compression method.

9.2 Future Work

 Due to the effect of the new compression technique correlated to the characteristic

of the images, we use only simple geometric image with black background in our ex-

periments. To achieve a better compression ratio on various images using the proposed

compression technique, we have to improve the effect of the image segmentation.

 Although the compression ratio was significantly increased, we believe that it still

has some room for improvement. In the boundary compression, the boundary segmenta-

tion still needs to be improved. The more accurate of the corner points are, the more ef-

ficient the boundary descriptor can be. In the arbitrary-shape image segment compres-

sion, we can find some other bases which can centralize the coefficients more or can be

obtained without orthogonalization.

 If we apply the compression technique to a color image rather than a gray level

image, maybe we can design some method to record the three color component more

efficiently due to the high correlation of the color values in an image segment. For ex-

ample, we calculate the average color value of an image segment and then we translate

each color value to the difference of the average color value.

 105

REFERENCE

A. Digital Image Processing

[1] R. C. Gonzolez, R. E. Woods, Digital Image Processing Second Edition, Prentice

Hall, New Jersey, 2002.

[2] R. C. Gonzolez, R. E. Woods, S. L. Eddins, Digital Image Processing Using Mat-

lab, Prentice Hall, New Jersey, 2004.

[3] T. Acharya, A. K. Ray, Image Processing Principles and Applications, John Wiley

& Sons, New Jersey.

[4] W. K. Pratt, Digital Image Processing Third Edition, John Wiley & Sons, Man-

hattan, 2002.

[5] R. M. Haralick and L. G. Shapiro, Computer and robot vision volume I, Addi-

son-Wesley, New York, 1992.

B. Image Compression

[6] 酒井善則、吉田俊之 共著，白執善 編譯，“影像壓縮技術＂，全華，2004。

[7] G. K. Wallace, “The JPEG Still Picture Compression Standard,” Communications

of the ACM, vol. 34, issue 4, pp. 30-44, 1991.

[8] C. Cuturicu, “A note about the JPEG decoding algorithm,” available in

http://www.opennet.ru/docs/formats/jpeg.txt, 1999.

[9] ITU-T Recommendation T.81, “Digital compression and coding of continu-

ous-tone still images - Requirements and guidelines,” available in

http://www.itu.int/rec/T-REC-T/e.

[10] The Independent JPEG Group, C source code of JPEG Encoder research 6b, 1998.

 106

[11] B. E. Usevitch, “A Tutorial on Modern Lossy Wavelet Image Compression:

Foundations of JPEG 2000,” IEEE Signal Processing Magazine, vol. 18, pp.

22-35, Sept. 2001.

C. Edge Detection

[12] J. J. Ding, S. C. Pei, J. D. Huang, G. C. Guo, Y. C. Lin, N. C. Shen, and Y. S.

Zhang, “Short Response Hilbert Transform for Edge Detection,” CVGIP, 2007.

[13] E. Abdou and W. K. Pratt, "Quantitative Design and Evaluation of Enhance-

ment/Thresholding Edge Detectors," Proc. IEEE, vol. 67, pp. 753-763, May 1979.

[14] E. Argyle, "Techniques for Edge Detection," Proc. IEEE, vol. 59, pp. 285-287,

Feb. 1971.

[15] J. Canny, "Finding Edges and Lines in Images," Massachusetts Institute of Tech-

nology 1983.

[16] J. Canny, "A Computational Approach to Edge Detection," IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 8, pp. 679-698, Nov. 1986.

[17] D. Demigny and T. Kamie, "A Discrete Expression of Canny's Criteria for Step

Edge Detector Performances Evaluation," IEEE Trans. Pattern Analysis and Ma-

chine Intelligence, vol. 19, pp. 1199-1211, Nov. 1997.

[18] L. Ding and A. Goshtasby, "On the Canny edge detector," Pattern Recognition,

vol. 34, pp. 721-725, 2001.

[19] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis. New York,

1973.

[20] W. Frei and C. Chen, "Fast Boundary Detection: A Generalization and a New Al-

gorithm," IEEE Trans. Computers, vol. 26, 10, pp. 988-998, Oct. 1977.

[21] C. Harris and M. Stephens, "A Combined Corner and Edge Detector," in Pro-

 107

ceedings of The Fourth Alvey Vision Conference, Manchester, 1988, pp. 147-151.

[22] M. Hueckel, "An Operator Which Locates Edges in Digital Pictures," J. Associa-

tion for Computing Machinery, vol. 18, pp. 113-125, Jan. 1971.

[23] R. Kirsch, "Computer Determination of the Constituent Structure of Biomedical

Images," Computers and Biomedical Research, vol. 4, pp. 315-328, 1971.

[24] D. G. Macleod, "Comments on Techniques for Edge Detection," Proc. IEEE, vol.

60, p. 344, Mar. 1972.

[25] D. Marr and E. Hildrith, "Theory of Edge Detection," Proc. Royal Society of

London, vol. B207, pp. 187-217, 1980.

[26] H. Moon, "Optimal Edge-Based Shape Detection," IEEE Trans. Image Processing,

vol. 11, no 11, Nov. 2002.

[27] V. S. Nalwa and T. O. Binford, "On Detecting Edges," IEEE Trans. Pattern

Analysis and Machine Intelligence, vol. 6, pp. 699-714, Nov. 1986.

[28] R. Nevatia and K. R. Babu, "Linear Feature Extraction and Description," Com-

puter Graphics and Image Processing, vol. 13, pp. 257-269, Jul. 1980.

[29] P. Paplinski, "Directional Filtering in Edge Detection," IEEE Trans. Image Proc-

essing, vol. 7, pp. 611-615, Apr. 1998.

[30] M. S. Prewitt, "Object Enhancement and Extraction," in Picture Processing and

Psychopictorics, B. S. Lipkin and A. Rosenfeld, Eds. New York: Academic Press,

1970.

[31] R. Rao and J. Ben-Arie, "Optimal Edge Detection Using Expansion Matching and

Restoration," IEEE Trans. Paitern Analysis and Machine Intelligence, vol. 16, no.

12, Dec. 1994.

[32] G. Roberts, "Machine Perception of Three-Dimensional Solids," in Optical and

Electro- Optical Information Processing, J. T. T. e. al., Ed. Cambridge, MA: MIT

 108

Press, 1965, pp. 159-197.

[33] G. S. Robinson, "Color Edge Detection," Proc. SPIE Symposium on Advances in

Image Transmission Techniques, vol. 87, Aug. 1976.

[34] G. S. Robinson, "Edge Detection by Compass Gradient Masks," Computer

Graphics and Image Processing, vol. 6, pp. 492-501, Oct. 1977.

[35] L. Rosenthaler, F. Heitger, O. Kiibler, and R. v. d. Heydt, "Detection of general

edges and key points," Proc. 2nd European Conf: on Comp. Vis., Italy, pp. 78-86,

May 1992.

[36] V. Torre and T. A. Poggio, "On Edge Detection," IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 8, pp. 147-163, Mar. 1986.

[37] D. Ziou and S. Tabbone, "Edge Detection Techniques An Overview," 1998.

D. Edge Detection Based on the Hilbert Transform

[38] W. Lohmann, D. Mendlovic, and Z. Zalevsky, "Fractional Hilbert transform," Opt.

Lett., vol. 21, pp. 281-283, Feb. 1996.

[39] M. Livadas and A. G. Constantinides, “Image Edge Detection and Segmentation

Based on the Hilbert Transform,” ICASSP, vol. 2, pp.1152-1155, 1988.

[40] K. Kohlmann, “Corner Detection in Natural Images Based on the 2-D Hilbert

Transform,” Signal Processing, vol. 48, no. 3, pp. 225-234, 1996.

[41] J. A. Davis, D. E. McNamara, and D. M. Cottrell, “Image Processing with the Ra-

dial Hilbert Transform: Theory and Experiments,” Opt. Lett., vol. 25, no. 2, pp.

99-101, 2000

[42] S. C. Pei and J. J. Ding, “The Generalized Radial Hilbert Transform and Its Ap-

plications to 2-D Edge Detection (Any Direction or Specified Directions),”

ICASSP, vol. 3, pp. 357-360, Apr. 2003.

 109

[43] J. K. T. Eu and A. W. Lohmann, “Isotropic Hilbert Spatial Filtering“, Opt. Com-

mun., vol. 9, no. 3, pp. 257-262, Nov. 1973.

E. Segmentation

[44] R. M. Haralick and L. G. Shapiro, "Image Segmentation Techniques," Computer

Vision, Graphics, and Image Processing, vol. 29, pp. 100-132, Jan. 1985.

[45] T. Kanade, "Region Segmentation: Signal vs. Semantics," Computer Vision,

Graphics, and lmage Processing, vol. 13, Aug. 1980.

[46] E. M. Riseman and M. A. Arbib, "Computational Techniques in the Visual Seg-

mentation of Static Scenes," Computer Vision, Graphics, and lmage Processing,

vol. 6, pp. 221-276, Jun. 1977.

[47] S. W. Zucker, "Region Growing: Childhood and Adolescence," Computer Vision,

Graphics, and lmage Processing, vol. 5, pp. 382-389, Sep. 1976.

[48] K. S. Fu and J. K. Mui, "A Survey on Image Segmentation," Pattern Recognition,

vol. 13, pp. 3-16, 1981.

[49] N. R. Pal and S. K. Pal, "A Review on Image Segmentation Techniques," Pattern

Recognition, vol. 26, pp. 1277-1294, 1993.

[50] J. S. Weska, "A Survey of Threshold Selection Techniques," Computer Vision,

Graphics, and Image Processing, vol. 7, pp. 259-265, 1978.

[51] B. Sankur, A. T. Abak, and U. Baris, "Assessment of Thresholding Algorithms for

Document Processing," Proc. IEEE International Conference on Image Process-

ing, pp. 580-584, Oct. 1999.

[52] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach toward Feature

Space Analysis,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24,

pp. 603-619, 2002.

 110

[53] K. Fukunaga, L. Hostetler, “The estimation of the gradient of a density function,

with applications in pattern recognition,” IEEE Trans. Information Theory, vol. 21,

pp. 32-40, 1975.

[54] R. Unnikrishnan, C. Pantofaru, and M. Hebert, “Toward Objective Evaluation of

Image Segmentation Algorithms,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 29, no. 6, Jun. 2007.

F. Segmentation-Based Image Compression

[55] M. J. Biggar, O. J. Morris, and A. G. Constantinides, "Segmented-image coding:

performance comparison with the discrete cosine transform," IEEE Proceedings,

1988.

[56] M. Kunt and M. Kocher, "Second-Generation Image-Coding," Proceedings of the

IEEE, pp. 549-574, 1985.

[57] O.-J. Kwon and R. Chellappa, "Segmentation-Based Image Compression," Opti-

cal Engineering, vol. 32, pp. 1581-1587, Jul. 1993.

[58] F.-C. Leou and Y.-C. Chen, "A Contour-Based Image Coding Technique with Its

Texture Information Reconstructed by Polyline Representation," Signal Process-

ing, vol. 25, pp. 81-89, 1991.

[59] L. Shen and R. M. Rangayyan, "A Segmentation-Based Lossless Image Coding

Method for High-Resolution Medical Image Compression," IEEE Trans. on

Medical Imaging, vol. 16, no 3, pp. 301-307, Jun. 1997.

[60] J. Vaisey, "Image Compression with Variable Block Size Segmentation," IEEE

Trans. on Signal Processing, vol. 40, no 8, pp. 2040-2060, Aug. 1992.

[61] M. Bi, S.-H. Ong, and Y.-H. Ang, “A Hybrid Shape-Adaptive Orthogonal Trans-

form for Coding of Image Segments,” IEEE trans. circuits syst. video technol, Vol.

 111

10, No. 8, Dec. 2000.

G. Boundary Description and Compression

[62] F. W. Meier, G. M. Schuster and A. K. Katsaggelos, “An Efficient Boundary En-

coding Scheme Which Is Optimal In The Rate Distortion Sense,” IEEE, 1997.

[63] G. M. Schuster and A. K. Katsaggelos, “An Optimal Polygonal Boundary Encod-

ing Scheme in the Rate Distortion Sense,” IEEE Trans. on Image Processing, vol.

7, no. 1, Jan. 1998.

[64] H. Wang, G. M. Schuster, A. K. Katsaggelos, and T. N. Pappas, “An Optimal

Shape Encoding Scheme Using Skeleton Decomposition,” IEEE, 2002.

[65] M. S. Schmalz and G. X. Ritter, “Boundary Representation Techniques for Ob-

ject-Based Image Compression,” Proceedings of SPIE, vol. 5208, 2004.

[66] T. A. El Doker and P. A. Mlsna, “Efficient Region Boundary Approximation Us-

ing Adaptive Smoothing and Second-Order B-Splines,” IEEE, 2002.

[67] A. J. Pinho, “Encoding of Closed Boundaries Using Transition Points,” IEEE,

1998.

[68] B. J. Mealy, “Region Boundary Generation and Compression,” IEEE, 2001.

[69] R. Tello, “Fourier Descriptors for Computer Graphics,” IEEE Trans. on Systems,

Man, and Cybernetics, vol. 25, no. 5, May 1995.

[70] H. Jia, M. Xie, “Improvement of Fourier Descriptor Using Spatial Normaliza-

tion,” IEEE Proceedings of ISCIT, 2005.

[71] P.-C. Wang, K.-P. Lin, T.-S. Chen, and P.-T. Hung, “Sectional Contour Interpola-

tion Using Fourier Descriptor,” IEEE Proceedings of Medicine and Biology Soci-

ety, vol. 20, no. 2, 1998.

 112

H. Arbitrary-Shape Region Compression

[72] W. K. Ng and Z. Lin, “A New Shape-Adaptive DCT for Coding of Arbitrarily

Shaped Image Segments,” ICASSP, vol. 4, pp. 2115-2118, 2000.

[73] Shen, B. Zeng, and M. L. Liou, “Arbitrarily Shaped Transform Coding Based on

A New Padding Technique,” IEEE trans. circuits syst. video technol, vol. 11, no. 1,

Jan. 2001.

[74] B. Mi, C. W. Kuen, and Z. Z. Hang, “Discrete Cosine Transform on Irregular

Shape for Image Coding,” IEEE tencon, 1993.

[75] S. F. Chang and D. G. Messerschmitt, “Transform Coding of Arbitrarily-Shaped

Image Segments,” Proceedings of the first ACM international conference on Mul-

timedia, pp. 83-90, Aug. 1993.

I. Other Technique

[76] J. Kasson and W. Plouffe, "An Analysis of Selected Computer Interchange Color

Spaces," ACM Trans. on Graphics, vol. 11, no. 4, pp. 373-405, 1992.

	誌謝
	中文摘要
	ABSTRACT
	CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Chapter 1 Introduction
	Chapter 2 Edge Detection
	2.1 Differentiation Method for Edge Detection
	2.1.1 First-Order Derivative Edge Detection
	2.1.2 Second-Order Derivative Edge Detection
	2.1.3 The Drawbacks of the Differentiation Method for Edge Detection

	2.2 Hilbert Transform for Edge Detection
	2.3 Short Response Hilbert Transform for Edge Detection
	2.3.1 The Definition of the SRHLT
	2.3.2 SRHLT of the 2-D Form
	2.3.3 Experiments of Edge Detection Using SRHLT
	2.3.4 Illustrated by Canny’s Theorem and Mathematical Analysis
	2.3.5 Other Possible Ways to Define the SRHLT

	2.4 Conclusion

	Chapter 3 Image Segmentation
	3.1 Thresholding
	3.2 Edge Linking
	3.2.1 Local Processing
	3.2.2 Hough Transform

	3.3 Region-Based Segmentation
	3.3.1 Region Growing
	3.3.2 Segmentation by Morphological Watersheds
	3.3.3 Mean Shift Based Image Segmentation

	3.4 Conclusion

	Chapter 4 Basic Image Compression Algorithm
	4.1 Color Space Conversion and Downsampling
	4.2 Transform Coding
	4.3 Quantization
	4.4 Entropy Coding Algorithms
	4.4.1 Huffman Coding
	4.4.2 Difference Coding
	4.4.3 Zero Run Length Coding

	4.5 Simulation Result
	4.6 Conclusion

	Chapter 5 Boundary Description and Compression
	5.1 Polygonal Approximation
	5.1.1 Merging technique
	5.1.2 Splitting Technique

	5.2 Fourier Descriptor

	Chapter 6 Proposed Methods for Boundary Description and Compression
	6.1 Second-Order Curve Descriptor
	6.1.1 Second-Order Polynomial Approximate to a Boundary Segment
	6.1.2 Splitting Technique with Approximate Second-Order Curve

	6.2 Fourier Descriptor of Non-Closed Boundary Segments
	6.2.1 Boundary Segmentation
	6.2.2 Fourier Descriptor of Non-Closed Boundary Segment
	6.2.3 Boundary Compression
	6.2.4 Other Method for Fourier Descriptor of Boundary Segment

	6.3 Boundary Encoding of the Boundary Segments
	6.4 Conclusion

	Chapter 7 Arbitrary-Shape Image SegmentCompression
	7.1 Block-Filled Method
	7.2 Arbitrary-Shape Image Transform

	Chapter 8 Proposed Method for Arbitrary-ShapeImage Segment Compression
	8.1 Arbitrary-Shape Transform with DCT Bases
	8.2 Quantization of the DCT Coefficients
	8.3 Coding Technique of the Image Segment
	8.4 Improvement of the Boundary Region by Morphology
	8.5 Compare with the JPEG Standard
	8.6 Conclusion

	Chapter 9 Conclusion and Future Work
	9.1 Conclusion
	9.2 Future Work

	REFERENCE

