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ABstrACT. This note surveys the definition of quasilocal mass and its posi-
tivity. In particular, we focus on Brown-York and Liu-Yau quasilocal mass.
We first present Shi and Tam’s result on the positivity of quasilocal mass in
the Riemannian case and then Liu and Yau'’s approach to the general case.
Finally, we mention a modification of Liu-Yau quasilocal mass by Wang and
Yau.

Key word: quasilocal mass, positive mass theorem, quasi-spherical, isomet-
ric embedding, Jang’s equation, static mean curvature
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1 Introduction

In this note, we survey the definition of quasilocal mass and its positivity.

We first review the history of the positive mass theorem. In Einstein’s theory of
general relativity, the spacetime is a 4-dimension Lorentzian manifold (N, g) satisfying
Einstein equation R,z — %Rgaﬁ = 8nG 1,3, where G is Newtonian constant and T, is
the (symmetric)energy-momentum tensor. Since general relativity can be viewed as an
extension of classical Newtonian mechanics, it is desirable to define the notion of mass,
energy, momentum, and angular momentum.

There are, however, several fundamental difficulties. First, the underlying manifold
is unknown. All physical obsevations up to now are only local measurements compared
with the scale of the universe and giveme information about the topology of the universe.
Second, Einstein equation isja nonlinear hyperbolieisystem of 10 degrees of freedom.
The knowledge and techmniques for stich Systemélare limited. Third, there is no precise
definition on how to relate the distribution-of matter to T w3 1t seems impossible to
treat the general case directly.

A mnatural approach is tofstart from special cases. One case, that has the longest
history and is most, extensively studied is the iselated grav1tat1ng system. Its origin
could be traced back ‘to Schwarzschﬂcfs model of ‘the gravitational field of a single
star in 1916.  Mathematically, thdis 1soluﬂi lgrﬁw atlng system is represented by an

asymptotically flat spacelike hypercurfw Iia etlme

Definition. A 3-dimensional mzi,n]fold | (I, )FIS asymptotlcally flat if for some
compact set C, M\ C/= U M, s]hclr that, eac—h M, is d)ﬁeomorphlc t0 R?\ By(R;). Under

this diffeomorphism, the.metric i 1equ1red to be oﬁ! e form=, .
| )

where a;; = O(r™1), Opaz; = OE?"_2), Kbjai; = O@w=?). Moreover, the second fundamen-
tal form p;; of M decay as pyj = O(r™ %), Oxpi; = O(r=2). The triple (M, g;;, pi;) is called

an nitial data set.

One usually requires that the energy-momentum tensor satisfies certain energy con-
ditions. We say that T,z satisfies the dominant energy condition if for any orthonormal
frame {e,|a=0,1,2,3} at p € M, with eq normal to M,

Too > Z 75), (T1)

and

Too > |Twapl- (T2)



If only (T1) holds, we say T,z satisfies the weak energy condition.
In 1962, Arnowitt, Deser, and Misner defined the total energy and total momentum
of an asymptotically flat manifold. They are defined on each asymptotically end M,

1 . i
e Jim /S ) (9ij.5 — 95.0)d2",

1 .
Py = li 2(pir — Oikp;;)dQY".
& 167TGRE>I;O/SR (pik — Oikpj;)

E, =

Remark.

1. Ej is called the ADM energy(mass) of that end. In mathematical literature, the
name mass is preferred. I.n phryslef-, hgwe:r'elr, the meaning of the mass and the
energy are different. T-}’é’ngﬂéfs's:‘is}*a -frame;if}Q?ﬁ%ggqutu‘ quantity while the energy

'Lv_@}g:‘_tor. Fﬁ?e deﬁni'tix;ﬁl_sn “1{1 section 2, the Brown-

iu-Yau onelis a quasilocal mass. For a

H;é;;tum z;n"fiiurther discussion,

DM miass, is.act
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see [M]. ! e

f
= Wk i

2. In 1986, Bartitik sh
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resénting the mass of a
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Although ADM*mass
system, the pggftivity 0
proved its posréil"vity?u-n ;
by R. Schoen and' S-T. Y

sts and mathematicians
‘ h}é_,‘p,roBIEm was settled
itten, using spinors.

using geom%anal i

. _wtzlcallg‘j-.ﬁcgt 31fﬁc.limensz'0nal man-
ifold satisfying Z‘—f.ﬂm iL__&?dcetlz(r ra Zf:"ﬁ):',an aﬂc"'}'zi end My. If B, = 0
for some | then M has 52%2?_0.'7"1,6 e;iié_-hnd M canibe isoj_mf:t{;écally embedded into four
dimensional Minkowski space‘fz'mﬁrg_s a spfzc_e_lzjke__l;yp'eifsﬂl‘fdce so that p;; is the second
fundamental form. In particular M zs"tloqﬂlol'bug&édlllgj R3.

e ::-B.I'.__ 1 Lo )
Theorem ([SYl,-iS'?Yg_I]')E':'UL‘et (MR8 pij) n asyL

Theorem ([W], see also [PT]). Let (M, gij, pi;) be an asymptotically flat 3-dimensional
manifold satisfying the dominant energy condition in a spacetime N. Then FE; > |P)| on
each end M;. If E; =0 for some | then M has only one end and M is flat along N, i.e.

Rogys|lm = 0, where Ropqs is the curvature tensor of N

Remark. For the definition of y and J, see section 4. The condition p > |J| is equivalent

to the weak energy condition(See Appendix.)



It is worth some discussion on both approaches since they form the basis of the later
proofs of various positive mass theorems. Schoen and Yau first prove the Riemannian
case. That is, the mass of an asymptotically flat Riemannian three manifolds with
nonnegative scalar curvature is nonnegative and zero only if it is isometric to R? with
Euclidean metric. They reduce the general case to the Riemannian one by constructing
a scalar flat Riemannian three manifold. This manifold is obtained by solving the Jang’s
equation and tends to the original one at the infinity. Therefore, the mass of the two
manifolds are the same. Witten divides the proof into three steps. First, he derived a
Weitzenbock formula for the spinor

[ v+ .2y 1208 =5 [ (il eV e )
M oM

The next and usually the hardest step is to_prove the existence of asymptotically
constant harmonic spinors. Witten’s purpof in t}%i§ step is mot rigorous. The full proof
is given in [PT, section5].«Fhe final step-is-to_apply thesWeitzenbock formula to an
asymptotically constant spinor and identify the bounidary integral with mapn|to|*.

Remark. Spinor is the- section of the spinor bundle over M. On-the end M, the spinor
bundle is trivial. Plckmg one tl"lVlEﬂlZ&tiOIl they JSplnor can bé, viewed as a vector-valued
function, so we ¢an define what a cgﬁstgg_sgﬂnor 1s Note that the notion of constant
spinor depends on coordinate. L e iy ; F H

In physics, it is also desirablej ta find s i’cgble Juqsilocal notions of energy and mo-
mentum. We would_like to define an ener momemtum tensor fora compact spacelike
two-surface in spacetime. The enfr y—morﬂei"i}um chtﬁor should only depend on the first
and second fundamental_fgrms a d}the connection @ pormal bundle of the two-surface.
According to Christedoulou andlS.ET. Yau'[€Y], Melissa Liu‘and S.-T. Yau [LY2], the
quasilocal mass should also .snai;isfy the following proper't:i_ésu

(1) It should be zero for the flat spacetinfe.

(2) The quasilocal mass should be equivalent to the standard definition when evalu-
ated on the spheres if the spacetime is spherically symmetric. In particular, for
the centered spheres in the Schwarzschild spacetime, the quasilocal mass should
be equivalent to the standard mass.

(3) For an asymptotically flat slice, the quasilocal energy-momentum vector of the
coordinate sphere should asymptotic to the ADM energy-momentum vector.

(4) For an asymptotically null slice, the quasilocal energy-momentum vector of the
coordinate sphere should asymptotic to the Bondi energy-momentum vector.

(5) For an apparent horizon ¥, the quasilocal mass should be no less than a (universal)
constant multiple of the irreducible mass which is y/Area(X)/167.



(6) The quasilocal energy-momentum vector should be non-spacelike and the quasilo-
cal mass should be nonnegative.

There have been many attempts to define quasilocal mass(most of them did not
give the associated momentum 3-vector). Unfortunately, none of these definition could
satisfy all required properties. In this note, we only discuss the Brown-York type
quasilocal mass. For other definitions, the readers may consult [Sz].

The rest of the note is organized as follows. In section 2, we recall the definition of
Brown-York and Liu-Yau quasilocal mass and the properties of the latter. In section
3, we describe Yu-Guang Shi and Luen-Fai Tam’s approach to proving the positivity of
quasilocal mass in Riemannian case. In section 4, we discuss how Liu and Yau solved
the general case. In section 5, we- fl&ﬂfss‘ Waﬂlg and Yau’s modification of Liu-Yau
quasilocal mass. TG i =4

: :- -‘un-,-l'_:_j.._
G vx B R

¥ =, _ij . § d“,_
2 The deﬁmtlo{f of Brov '
cal mas's

-H- ¥
R— L L |_||
Let 2 be a compacthgpac ike hypersurface with boi dary in

h

Iq
1’,-—"". =
" ,-_

a 'ﬂ_ﬁﬁe—orlented spacetime
q let X be a) connectévd component of

N with timelike 'future—rected i nerm

fundament 1 fo;m E)T'Q in N and X2

o0 with outwa'ra normal u. We de ot@ﬁ]
in Q2 by p;; angd.ﬂpab respectively, a tbn‘ﬂf = trkab -
] | ' Fad

Remark. In this note, we follow the usual convention. The Greek indices «, 3, ... =
0,1,2,3; the Latin indices ¢, 7,...=1,2,3; and a,b,... =1, 2.

We need the Weyl embedding theorem:

Theorem (Weyl embedding theorem [Ni, Po]). Let ¥ be a closed surface with a Rie-
mannian metric of positive Gauss curvature, then there exists an isometric embedding

i — R3 that is unique up to Euclidean rigid motion. Furthermore, i(X) is conver.



Suppose ¥ has positive Gauss curvature. By Weyl embedding theorem, > can be
isometrically embedded into R® € R*!. The second fundamental form (ko). of the
embedded surface is positive definite and determined by the intrinsic curvature of X.

The Brown-York quasilocal mass is defined as

1

k; — k.
87tG 0

E(E,Q) =
If in addition the mean curvature vector ﬁ of ¥ C N is spacelike, the Liu-Yau
quasilocal mass is defined as

1

EX) = 387G

ko — [H].

Remark. Brown and York proposed their definitiondin 1992 through the Hamilton-Jacobi
analysis and verified its properties except positivity. In 2002, Shi and Tam proved the
positivity of Brown=York nrags-n thetime-symmetiic casg(s"ee section 3). In 2003, based
on Yau’s work on'blackholes, Eiwand Yau proposed their déﬁnitiop out of the geometric

consideration. b ~

Liu-Yau’s quasﬂocal mass is more 1ﬁtr1n31§ becaﬁuse it is mdependent of the three
manifold ¥ encloses. It is also a go d caﬂﬁ’date 111! V1Iew of the requirements mentioned
5 Schwarzehild Spacetime, E(S,) =

r(1—4/1— 224) for r > 2M: Not% (SQM)%QM E $oo = M, which is consistent with

(2). For (3) and (4);5see [Epp]. r7( ) satl

in the introduetion® For (1), see's ctlo - the

‘Dyi Minkewski iriequality for convex
surfaces. The pesitivity of E(>) s 1scussed n sec]cl n 4.

3 The Rlemanman Case

In this section, we describe Sh1 and” Tam S proof on the positivity of quasilocal mass
[ST] for the Riemannian case.

When (2 has zero second fundamental form(p;; = 0), we say it is time-symmetric.
The weak energy condition p > |J| implies © has nonnegative scalar curvature. The
assumption that > has spacelike mean curvature vector implies > has positive mean
curvature in §2. In this case the Brown-York and Liu-Yau quasilocal mass coincide, and
the positivity of quasilocal mass reduces to a problem of Riemannian geometry.

Theorem 1 ([ST, Theorem 4.2.]). Let (Q3, g) be a Riemannian manifold of dimension
3 with compact closure with smooth boundary and with nonnegative scalar curvature.

Suppose 02 has finitely many components ; so that each component has positive Gauss



curvature and positive mean curvature H with respect to the outward normal. Then for

each %;,
/Hdag/ Héi)da.
H H

where Héi) is the mean curvature of ¥; with respect to the outward normal when it is
isometrically embedded into R®. Moreover, if the equality holds for some ;, then O

has only one component and ) is isometric to a domain in R3.

Proof(sketch)

Step1: The main idea is applying Bartnik’s quasi-spherical construction. Roughly
speaking, we turn ) into a complete asymptotically flat manifold by gluing ends to
2 and try to relate the quasﬂocT nﬁxsﬂaugie;;,ﬂ)ll\d mass of this new manifold. For
simplicity, we assume 02 ha&[.@h y one*compon 1‘0 1{ ‘the following. First we isometri-
cally embed ¥ into R? as'lb-strlctly‘édﬁwex hy face Ed*.‘ﬁ'.ﬂle position vector of the
exterior E of ¥ is ¥_ rN pOSltlpK Vé‘i}-OI‘ of >y and N is the
unit outward norm.;& of >o. ace at"dlstance r to Yg. The
Euclidean space 'ESJ,Q_e 20 iq’;r gr), where g, is
the induced me'i?mc Q_I}'f"ﬂ; (Em'yéﬁre equation

the convex

represented by

ve the

[0’ OO) 'r"
™ (2)
' ' l‘;-.
e
where ug(z) 1;‘35 positivi are the mean curvature
and scalar curﬁur@ff _,é::, I;‘\
I_!-:JE L i IH;' |
@ " 4
R3

The purpose of the above construction is to deform the Euclidean metric radially to
get an asymptotically flat metric while keeping the scalar curvature equal to zero. The
asymptotic behavior of u also gives the ADM mass of the metric.

Theorem ([ST, Theorem 2.1.]). The initial value problem (2) has a unique solution u
on Yo x [0,00) such that



w(z) =1+ % + v, where mg is a constant and v satisfies |v| = O(p'™) and

[Vov| = O(p™");

The metric ds* = u?dr? + g, is asymptotically flat with scalar curvature R = 0
outside Xy;

o The ADM mass mapwm of ds? is given by
c(n)mapm = (n — Dwp_1mp = lim Hy(1 —uYdo, = lim (Hy — H)do,,
r—00 s, r—00 5,
for some positive constant c(n), where Hy and H are the mean curvatures of 3,

with respect to the Euclzdei L m@g@dfﬁ lpectwely

Step2: 1f we view H funﬂs@ on X, the a’s&-@twn of Theorem 1, o)

H(z)
is positive on ;. We: @' ¢ the preidrl-B'ed sca urvatu;{\ tion with initial value
u(z,0) = Ho(j), anﬂ':let W
obtained by glulrﬂg;(h 9)

L)
the ] qﬁ'lemanman manifold
Note the fol]éﬁvnlg:%k

al

i) ¢ is only""illpschltz near 0S).

ii The megm.jcurvat e at Of)

1)
1)
1)
iv) The scala!:. 'cuivatu

Shi and Talzn;aré able
The Weltzenbock_ggrmulﬁkze
asymptotically conﬁglﬁirmao

23-27] Vo, L _f’ Y
e 1
Step3: The last step 18 to prove_gfxe" monoth@:y of ma?*s_expressmn

L )

iii

r for I‘%h-i's.,type of metric.
' ) The existence of
sated in [ST, pages

J"' e
Lemma ([ST, Lemma 4.2.]) '?_JFfﬁ-uj‘L T|E1
m(r) = Hy(1 —u™Ydo, is nonincreasing in r.
Py

Since m(0) = fz Ho— H, m(co) = mapym > 0, this completes the proof of Theorem



4 The General Case

Recall (£, g;;, pij) refers to a compact spacelike hypersurface with boundary in a time-
oriented four dimensional spacetime N, where g;; and p;; are the induced metric and
second fundamental form of Q. The local mass density p and local current density J?
of Q2 are

prgw sz) )

l;"é:weak enerqgy condition
\hﬁt{cted c‘amponents DI YN
ke meas ""?c-.‘_umature vector in
'O'Efn_t_a_ﬁ Ea:me «, then N 1is

Theorem 2 ([LY2, ’]ZIE.?)'
> VI, and thg%un
each of which has\ﬁo.gﬁtwe

. Then E z:ajh» Qt'f'dr
ﬂat along 2 a@@ﬁ is ¢

Proof(sketch) " » ‘
Stepl: (Construct a sca
into the Riem@ia@ _'l!g_n Wi-ﬁ‘h. Dihthet boundary

Ll

condition: -2:'-:’ |
—

2.7 ®, &
Yau showed there ex1sbs a Solutleq,tb this bo&r@ary Va.laé,problem when (€, gi;, pij)
contains no apparent horleI‘l" [‘xﬂ}fw the mai 1n [SY2, setion 3]). When
(92, gij, pij) has apparent horizons, “s!ﬁutfé nz:f)uld blow up around the apparent
horizons, but the graph of the solution in €2 X R can be compactified to get a smooth
manifold with a discontinuous metric [SY2, p.257].
Let gi;; = gij + fif; be a new metric that coincides with g;; on 9. The scalar
curvature of g satisfies

R>2|X|*-2divX,

for some vector field X (For the explicit form of X, see [LY2, p.7]) This is enough for
the existence of a scalar flat metric.



Proposition ([LY2, Proposition 5]) Suppose the scalar curvature R satisfies R >

there is a unique metric §
i
1. The metric g; @fgm m
o
2. The scalarﬁfvature ofi
T p

' [
spectwe@
“'. |

= -
where the %@j@ : . | :
Step2:(Glue end -@f@ @Ve

L LY2, L =
emma ([ emma 'ﬁ‘q?f.\_'} e i

and let

— o
Because H is assumed to be spacelike, H — (X, ) is positive. Liu and Yau next

modified Shi and Tam’s approach by solving the prescribed scalar curvature equation (2)
with initial value h(x,0) = B& 5 on B o~ 3% x x [0,00). Again m®(r) = o35 [, (H

H)do, on (E*, g* = h*dr?+g,) is nonincreasing in r. Together with the previous lemma,

1

m™(0) = 81

(Hy (1 = (X))o < o [ (15 = [Hdo = B @)

Let (M, g) be the three manifold obtained by gluing (E“, ¢%) to (2, = u'g). gis a
continuous Riemannian metric that is



1. smooth on M\ and Q, and is Lipschitz near 9.
2. asymptotically flat on each end E“.
3. scalar flat on M\0S).

Step3: In view of (3), it suffices to prove a positive mass theorem for (M, ). However,
two difficulties arise because of the discontinuity of mean curvature along 0€2. First, a
new term appears in the Weitzenbock formula:

Lemma ([LY2, Lemma 11.]). Let U be an open set of M. For any spinorn € Wy(U, S), ¢ €
WU, S), we have

loc

e o IS L o
/ (Dv. D) — ¢ W% i+ ) (X, ) 45, ),
U .» v T3 oAU - = -

where u is the confomhrl

‘ l'

AL :
rcome the

1'?:_-'1 ng inequality

Proposition (@Yﬁl position 0], PV L-'u L__I,]Jfotj;t simpler argu-

ment). Forr ';,,.}15

Liu and Yau ng the f

e ]
where D is the ﬁdml: oper ‘

£, J }r"'l i

r".l’i. ‘ ‘
Second, the za{;jj“‘ﬂ%“nh of ‘the Di pe *‘e dlsécﬁlt n%us along 0€2. Liu
and Yau modified t &gngumezzpm 3 rake m%ularlty Indeed, the

harmonic spinors lie 1n"ﬁ"11£’ (]\71‘5 1n§5€a‘ki of ce

buf' Su@{l regularity is sufficient to
prove the positive mass t ebij’p )

_l.f

ere = Ly 'L

ﬂ}?@ﬁﬁg&éjﬂﬂé?ﬁ .
lim <3w c(v)D, ) = —mS |¢o|

r—o0 Jga
T

By a calculation similar to

for a spinor asymptotic to a constant spinor 1y, where m% = lim m®(r). This finishes

T7—00

the proof of Theorem 2.
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5 A new quasilocal mass of Wang and Yau

In this fianl section, we present the recent work of Mu-Tao Wang and Yau on quasilocal
mass [WY].

The Liu-Yau quasilocal mass does not satisfy the required property (1) in the in-
troduction. In [MST], Murchadha, Szabados, and Tod construct some surfaces with
strictly positive Liu-Yau mass lying in the lightcone of R*!. In order to resolve this
inconsistency, Wang and Yau proposed to take the momentum information p;; into ac-
count. They take the reference to be an isometric embedding into R*! instead of R?.
The first task is to show the existence and uniqueness of such isometric embedding with
prescribed time function.

Theorem 3 ([WY, Theorem, 311]_ I_L“efr 2oy é aﬁwgfsurface diffeomorphic to S* with

metric o , T be a functzoal em~Z aﬁsd’l’% be a ﬁf&&tzm@lzké ﬁector in R>'. Suppose
||l- ) I..—'! —i" ‘,_

where K s the G'h:uss curva, deé%"wiﬂéﬁt of the Hessian
2h S .
of 7. Then therb Bz'.a_l.s'-.,,a ! I".;':-j-% "[mth the induced
metric o and (‘!Yﬂ, To) 7I* -
The new cfﬂ:ébsil(%cal i ) ifference of the stgtic’r?l'tean curvature
between the two isomet ' R>!. &
ey ’.:| - R W i
Definition. "!'- -?- ‘ :.I.;'.:,.‘_:u “‘*
1. [WY, Deﬁmip.on 2: F} l i: Y <= N is gnfem} dde,c%.sp&{(;'elike two-surface.
Given a smc}oth fUII'CtIQIl o)l E‘a spacelike nor“mal\eg, the static mean
curvature associa.ted wrth these ned tG'-lﬁ‘ .ﬂ'\
= '

|
.'J

™ 'EJ'
(f z; 6‘3:2’ \/1 +1|V -.Iig;I ei> -I:"ozeg,(VT)

where H is the mean curvature V‘écto%! of Y in N and o, (v) = (VVes, e4) is
the connection form of the normal bundle of ¥ in N determined by ez and the

future-directed timelike unit normal e, orthogonal to es.

2. [WY, Definition 2.2] Given an isometric embedding i : ¥ — N with spacelike

ﬁ
mean curvature vector H. Denote

B, i,7) = / B(S, i, 7, &) dvs.
>

where h(X,i,7,e3) = min{h(3, i, 7, e3)}.
es
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3. [WY, Definition 5.2] Given a spacelike embedding i : ¥ < N. Suppose the set
of admissible functions is non-empty(See [WY, Definition 5.1]). The quasilocal

mass is defined to be the infimum of
DX, ig, 7) — H(X,4,7)

among all admissible 7, where i is the unique spacelike isometric embedding of

¥ into R*! associated with 7 given by Theorem 3.

For a two-surface ¥ C R*!, i = (. If the projection of ¥ along some time direction
is a convex surface, then ¥ has zero quasilocal mass. This case covers the examples of

Murchadha, Szabados, and Tod 5
We briefly mention the i xﬂ-g "& -

of this new quasilocal mass.

For an embedded two-s s«projection onto R?. The

m{' Xf CajR%? we d‘% by
most important obserﬁér;b Wailg"’"é'hd Ya to 1de

'3&?

;;:_f,lﬂﬁ" A

=)

wormal U, and é3

n curvature of

is obtained by Mal'l'ejﬁtm

Y in R is spdt&zke lvg
fg.'ﬂh .
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Theorem 5 (WY, Theorem 4.1]). Let i : ¥ — N be a spacelike embedding. Given
any smooth function T on ¥ and any spacelike hypersurface Q0 with 02 = X. Suppose
the Dirichlet problem of the Jang’s equation over ) subject to the boundary condition
that f =7 on X is solvable. Then there exists a spacelike unit normal €5 along ¥ in N
such that the expression k — (Ve,é4, €s) + P(éy, &) (this is the familiar term H — (X, v)
in Liu and Yau’s paper) at § € > C QxR is equal to

(1+ |VT|2)_1/2h(Z, i,7,€3) at q € 3,

where ¢ = (q,7(q)) € X.

Combining these two theorems atﬁﬂéwﬁﬂgg Liu and Yau,

|-|-I

i I

‘*a f‘*‘sa;a

I;":,EI':. . k e <6e4 4, 63}_;?-::“"
LL.I}‘J Ty #.r”'ﬁ i T:;
A= T L 1;—.5',
i.:..,i‘ i .h L e
™=
Suppose t1'ﬁ; - two-surf ce in N; and has posi-

tive Gauss cur ature a

hen the’.Tassumptlons of
bl
Theorem 3 anHMq;@

‘}:_ﬁeo %42]) We can

conclude that L«, f r ,h
r".l’i. =0 & A
Theorem ([WY 'ﬂ;ro"}ﬁry 5. of Thﬂebrem% the new quasilo-

."- .
.
cal mass is nonnega ‘Zﬂﬁx [,:' "_‘_"1.1

Y

. m:f":;ﬁ _—{, X E%L-
Appendix

" r ;Flll ‘\

u.-..l‘? '?_JFl,q.-aj‘L T|E1

It is a well-known fact that the weak energy condition is equivalent to p > |J|. We just
write it down in this appendix for completion.

We first fix the notation. Let IV be a 4-manifold with a Lorentzian metric of signature
(—+++). For a point € N, and an orthonormal frame {e, | « = 0,...,3} near z, we
denote the curvature tensor by

R(ea,eg)ey = Ve, vegew - vegveae'y - v[ea,eg]e'y = Raﬁ7665’
Raﬂ'y& = gU6RaIB»yU-

13



Note Ropy0 = —Ramo. The Ricci curvature and scalar curvature are

Rag = R,Yaﬂ’y = _ROOL,BO + Rlaﬁl + R2aﬂ2 + R3a,@37
R = gaﬁRaﬁ = —Roo + Ri1 + Rap + Rss.

Suppose we have a spacelike hypersurface M C N with the induced metric. We
denote the connection and curvature of N and M by D, Rag,y(s and D, R;;i; respectively.
Let eg be the timelike unit normal of M. In the neighborhood of a fix point x € M, we
choose a normal frame {e; | i = 1,...,3} at x diagonalizing the second fundamental
form, that is, for any 4, j, D.,e;j(x) =0, p;j(z) = p(e;, €;) = kidij.

We compute the Gauss and Codazzi equations for hypersurfaces:

(R(X Y)Z, W) @}i@&' &%“ ’%%%@Y 7)+

R(X,Y)Z, ‘o “‘41" Y, x),__. Dw(%)’

Z)p(Y, W)

where XY, Z, W aﬁr"t"au
Proof. For Gauss'k_&uatlon A

- |
The computation of Tﬁ x 1
For Codazzi equat on, ""‘:I- ,

X,.Z «@5} —r(;l.'?,,zeo, Dx Y= ' (Dy.eol, _Q
Dx'ﬁ?;{-g -:z-DyZIDXe()) %éo D Y <Dy€0,DXz>
—Dyp(X, Z) (DyDxZ. eo)’ .(i;g@%}‘hu(}zeo,pyx + (Dxey, Dy Z)

Canceling the second and fourth terms and combining the third term,
<DZ60aDYX - DxY) = _<DZ€07 [X,Y]) = {eo, DZ[XJ Y]) = <60’D[X,Y]Z>a

we get the desired result.
To verify our claim, it is sufficient to show p = Ty, J; = Tp;, up to a constant. From

14



Einstein equation 1,3 = R, — %Rgag(We omit the constant 87G),

Too = Roo + §R

1

1 _ _ _ _
= §(Roo + Ry1 + Rao + Rs3)

1 _ _
= 5(231221 + 2R1331 + 2Ra332)

1
= 5(231221 + 2p11p22 + 2Ri331 + 2p11p3s + 2Rag30 + 2p2apss)
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