

國立臺灣大學電機資訊學院電機電信電子產業研發碩士專班

碩士論文

邊界標記在註解系統之應用

吳湘筠

指導教授：顏嗣鈞 教授

中華民國

 國

立

臺

灣

大

學

電
機
電
信
電
子
產
業
研
發
碩
士
專
班

Industrial Technology R&D Master Program in Electrical, Communication

and Electronics Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

 碩
士
論
文

邊
界
標
記
在
註
解
系
統
之
應
用

吳
湘
筠

撰

 Boundary Label Placement and Its Application to Text

Annotation

Wu, Hsiang-Yun

Advisor: Yen Hsu-Chun, Professor

 97 年 7 月
97
7 July, 2008

i

口試委員會審定書

ii

誌謝

當論文寫到這一頁時，表示一切已經進入尾聲。能完成這篇論文，雖然幾經

波折，但終於也看見了盡頭。我要特別感謝我的指導教授顏嗣鈞老師給予的指導

與支持，以及口試委員雷欽隆老師、郭斯彥老師、黃秋煌老師、莊仁輝老師的批

評與指教，也要感謝實驗室的每一位成員對我的支持與鼓勵，謝謝大家。

感謝實驗室的學長學弟們，在我如同熱鍋上的螞蟻時，適時給我鼓勵與安慰，

特別感謝春成學長在緊急時刻對我不離不棄，感謝學長紹祁、建良、克仁、成典、

柏源、紀憲、健生的鼓勵與支持，同學佑叡、亭遠、積瑞、昱鈞的照顧與幫助，

以及學弟秉賢、奕廷的拔刀相助，讓我終於順利地完成這篇論文。感謝我的家人

在我情緒不穩定的時期，沒有給予我莫大的壓力，反而是默默地守護者我，感謝

大學同學穎雯、嘉翎、若蘭的打氣，還有高中麻吉小光婷、趙孝的鼓勵，雖然每

個人都有不同的阻礙與困難，但是卻願意陪我聊聊排解煩悶，真的很讓人感動。

最後，要感謝的人實在太多，如有被遺忘的朋友在此亦一併感謝，感謝大家

於這兩年來對我的照顧，畢業雖不是人生的終點，卻是個完美的中場落幕。僅此

論文獻給你們，願與大家一同分享這份喜悅。

謹誌於

國立台灣大學電機工程研究所

中華民國九十七年六月

iii

中文摘要

在資訊視覺化的研究領域，邊界標記被應用在許多不同的地方。一種常見的

邊界標記形式包含一個定點及其對應的一個標籤，且這個標籤被放置在整個地圖

的外圍上。在某些邊界標記應用領域，被標示的定點可能會分成多個群組連接到

一個標籤或者一個定點連接至多個標籤亦或者多對多的情況，在這裏我們討論的

是一對一的情況。 這篇論文裡，我們討論如何使用邊界標記法來改進

的註解系統。我們提供一個多項式時間的演算法來解決單一邊界的註

解系統，此時可以藉由連結線段的彎曲來做視覺上的改進。我們也討論如何在雙

邊標記上，平均最小化標籤的高度以及最小化連結線段的長度，也就是說，這個

問題的目的是為了找出一個好的標籤排列方法，使得標籤高度最小，而連結線段

的長度也最短。我們採用的連結線段的方式是垂直-平行-垂直(由零條或兩條垂直

線段跟一條水平線段所組成)連結邊界的方式，而這個問題具有 的複

雜度。因此，我們採用了在計算數學中用於解決最優化的搜索演算法遺傳演算法

來解決這個問題。在這篇論文裡的所提及的問題，我們假設連結線段是連接在標

籤的正中間，換句話說，也就是擁有固定的連接點。這個雙邊界標記的問題是標

籤配置和圖形繪製的綜合體，是個有趣且值得探討的問題。

 在 Microsoft

Office Word

NP-complete

iv

ABSTRACT

Boundary labeling which can be found in many applications is an important field

of information visualization. A conventional boundary labeling scheme connects one

site to a unique label placed on the boundary of the drawing. In certain applications of

boundary labeling, however, sites may be grouped or separated into more than one

group and connect to an identical label on a picture or in an article with abundant

numbers of sites and labels. We consider a special formula which includes one site and

one identical label here.

 In this thesis, we try to improve the annotation system of Microsoft Office Word by

using boundary labeling solving methods. We provide a polynomial time solution to

solve one-side annotation while the leader can be wound, and rerouted to improve the

visualization. We also consider the label height minimization problem and leader length

minimization for two-side boundary labeling of the annotation system, i.e. the problem

of finding a good leader and label placement, such that the number of total label height

and total leader length is minimized. We proved that the two-side labeling problem for

type-opo leaders (rectilinear lines with either zero or orthogonal segment and one

parallel segment) is NP-complete. Then, we give a heuristic genetic algorithm and

v

analyze its properties for the problems. For all the problems in this thesis, we assume

that the connecting label ports are fixed ports, i.e. the point where each leader is

connected to the label is fixed.

These problems are interesting in that it is a mixture of a label-placement and a

graph-drawing problem.

vi

口試委員會審定書

誌謝

中文摘要

TABLE OF CONTENTS

 ..i

 .. ii

 ... iii

ABSTRACT ..iv

TABLE OF CONTENTS ...vi

LIST OF FIGURES ... viii

LIST OF TABLES ... x

Chapter 1 Introduction ... 1

Chapter 2 Preliminaries .. 9

2.1 Boundary Labeling Model .. 10
2.2 Types of Leaders .. 11

2.2.1 Straight-Line Leaders .. 11
2.2.2 Rectilinear Leaders ... 12

2.3 Two-Side Labeling and Four-Side Labeling ... 13
2.4 Modeling Two-Side Boundary Labeling .. 14

Chapter 3 One-Side Rerouted Leader and Two-Side Label Placement 17

3.1 One-Side Rerouted-Leader Label Placement ... 18
3.2 Label -Height Minimization on Two-Side Labeling 22
3.3 Leader-length Minimization on Two-Side Labeling 24

Chapter 4 Genetic Algorithm on Two-Side Labeling ... 28

4.1 Genetic Algorithm Modeling .. 30
4.1.1 Individual .. 32
4.1.2 Initialization .. 33
4.1.3 Evaluation ... 33
4.1.4 Selection ... 34
4.1.5 Recombination .. 35
4.1.6 Mutation ... 36

vii

4.2 An Example of GA on Two-Side Labeling... 37

Chapter 5 Simulation Results ... 41

5.1 Rerouted Leaders on One-Side Labeling.. 42
5.2 Genetic Algorithm on Two-Side Labeling .. 43

5.2.1 Leader Length Minimization .. 43
5.2.2 Label Height Minimization .. 47
5.2.3 Leader Length and Label Height Minimization 50

5.3 Implementation on Word .. 54
5.3.1 Rerouted-Leaders on One-Side Labeling 54
5.3.2 Genetic Algorithm on Two-Side Labeling 56
5.3.3 Comparison between Rerouted Leaders and Two-Side Labeling ... 59

Chapter 6 Conclusion and Future Work ... 61

6.1 Conclusion .. 61
6.2 Future Work .. 63

References ... 64

viii

LIST OF FIGURES

Figure 1-1: A sample article of Microsoft Office Word. .. 4

Figure 2-1: Type-s leader. .. 12

Figure 2-2: Types of leaders. ... 13

Figure 2-3: Types of many-side labeling. .. 14

Figure 2-4: Type-opo leader on two-side labeling. .. 16

Figure 3-1: Label placements that the dynamic programming algorithm takes into account
when computing , . .. 21

Figure 3-2: Transformation to two-side labeling on a line. ... 26

Figure 4-1: The basic loop of a genetic algorithm. .. 30

Figure 4-2: Four chromosomes represented as a 20-bits vector. 38

Figure 4-3: Four chromosomes represented as a 20-bits vector in iteration (i). 39

Figure 4-4: Type-opo leader of GA solution on two-side labeling. 40

Figure 4-5: Type-opo leader of optimal solution on two-side labeling. 40

Figure 5-1: Easy sample result of non-uniform rectangular label placement. 43

Figure 5-2: Type-opo leader of GA solution on two-side labeling. 45

Figure 5-3: T o u o ling. 45 ype-opo leader of optimal s l ti n on two-side labe

Figure 5-4: The GA convergence with λ1 1.0 and λ2 0.0U 46

Figure 5-5: Type-opo leader of GA solution on two-side labeling. 48

Figure 5-6: T o u o ling. 48 ype-opo leader of optimal s l ti n on two-side labe

Figure 5-7: The GA convergence with λ1 0.0 and λ2 1.0U 49

Figure 5-8: Type-opo leader of GA solution on two-side labeling. 51

Figure 5-9: T l t n s l ling. 51 ype-opo leader of optimal so u io on two- ide abe

Figure 5-10: The GA convergence with λ1 0.5 and λ2 0.5. U 53

Figure 5-11: Sample result while the number of labels is small. 55

Figure 5-12: Sample result while the number of labels is large. 56

ix

Figure 5-13: Applicable sample result of our GA algorithm. .. 58

Figure 5-14: Sample result from Figure 5-13 .. 59

x

LIST OF TABLES

Table 1: Running time for related algorithms in big-O-notation. 8

Table 2: Details of our GA algorithm and optimal solution with λ =1.0 and λ =0.0. .. 44 1 2

Table 3: Details of our GA algorithm and optimal solution with λ =0.0 and λ2=1.0. .. 47 1

Table 4: Details of our GA algorithm and optimal solution with λ1 = λ2 = .5. 50 0

Table 5: Average experiment results of minimum leader length with various λ
combinations running 1000 times. ... 53

Table 6: Details of our GA algorithm and optimal solution on Word.............................. 57

Table 7: Average results of our GA algorithm and comparison with optimal solution while
running 1000 times. .. 58

1

Chapter 1

Introduction

Label placement is one of important fields of information visualization. The

majority of map labeling algorithms are also easily applicable for graph labeling. So, in

diagrams, maps, technical or graph drawings, features like points, lines, and polygons

must be labeled to convey information. The interest in algorithms that automate this

task has increased with the advance in type-setting technology and the amount of

information to be visualized. Due to the computational complexity of the

label-placement problem, which is NP-hard in general [4], cartographers, graph drawers,

and computational geometers have suggested numerous approaches, such as expert

systems [15], zero-one integer programming [4], approximation algorithms [8],

2

simulated annealing [16] and force-driven algorithms [10] to name only a few.

At the beginning, we should distinguish between three kinds of graphical features

according to their dimension.

(a) Point Features: Like cities, summits, area features on small scale maps, and

vertices of graphs or diagrams.

(b) Line Features: Like rivers, boarders, streets, straight edges, polygonal lines, and

edges or arcs of graphs or diagrams.

(c) Area Features: Like mountains, islands, and lakes.

Point and line feature labels are arranged next to the object and area feature labels

usually placed within the boundary of the feature to be labeled.

 Some rules are devised to measure the semantic clarity of a labeling assignment.

We state three concepts that are widely accepted as the basic rules for accurate map

labeling.

Readability: The labels are of legible size.

Un-ambiguity: Each graphical feature of the map can be identified with the

corresponding label.

Avoidance of Overlaps: Labels should not overlap with other labels or other graphical

feature of the layout (map).

We denote the possible label positions of a feature as its label candidates.

3

Sometimes, a cost is assigned to an individual label candidate that reflects the quality of

this label in terms of un-ambiguity, overlap with graphical features, and preferences

between the label candidates.

Research on map labeling has been primarily focused on labeling point features,

where the basic requirement is that the labels should be pairwise disjoint. It is clear that

this is not achievable in the case of large labels. Large labels are common in technical

drawings or medical atlases where certain site-features are explained with blocks of text.

To address this problem, Bekos et al. defined boundary labeling [4] and investigated

some criteria, like minimizing the total leader length, in boundary labeling [5][6]. In

boundary labeling, labels are attached on the boundary of a rectangle R which encloses

all sites [4]. In their research, the main task is to place the labels in distinct positions on

the boundary of R so that they do not overlap and, to connect each site with its

corresponding label by non-intersecting polygonal lines, so called leaders.

 Most of the problems of boundary labeling are one feature point corresponds

to one label. And the main criteria are to place the labels in distinct positions on the

boundary of R so that they do not overlap, or minimizes total leader length, or

minimizes number of bends. But often some map or drawing not only connects exact

one feature point to exact one label, but also connects several feature points to exact one

label. Like the religion distribution in each state of a country, the language distribution

of the world, or the association or organization composed of some countries in Europe

of Asia. But, in this thesis, we deal with labeling dense point sets with large labels and

only one point can be allowed connecting to one label. The idea of this problem comes

from the annotation system of Microsoft Office Word (See Figure 1-1). In the

annotation system of Microsoft Office Word, we can easily find out that the leader of

every site is composed of two straight lines. One is underline, and other connects to the

corresponding label, and they are both dotted lines.

Figure 1-1: A sample article of Microsoft Office Word.

4

5

In some situation, this annotation system is not always good visually. Especially,

when the number of sites grows larger; the number of labels also grows larger; one

column is not enough for all of them. According to Figure 1-1, Microsoft Office Word

puts all labels in one page, and it only supports 36 labels. When we want to place more

than 36 labels, they will vanish on the page. Also, when there are lots of labels, labels

with large index number will be far away from where corresponding sites are. If this

happened, the dotted lines will be too close to recognize them. It is not a proper

placement for the annotation system.

 Our problem can be modeled as follows: we assume that we are given a set P = {p1,

p2,…, pn} of points and an axis-parallel rectangle R that contains P. Each point, or site,

pi is associated with an axis-parallel rectangular label and we only allow one point

connecting to one label. The labels have to be placed and connected to their

corresponding sites by polygonal lines, so-called leaders, such that no two labels

intersect and the labels lie outside R. We investigate various constraints concerning the

location of the labels and the type of leaders. More specifically we either allow

attaching labels to one, and two sides of R, and we either compare straight line or

rectilinear leaders. Our goal is placing labels such that crossings are not allowed. First,

we will introduce an algorithm that could minimize all the distances between a site and

its corresponding label for the annotation system. Then, we expand the problem to

6

two-side labeling problems while sites numbers are large. We show some problems in

our model are NP-complete, and propose heuristic genetic algorithm to solve them.

In this thesis, we deal with labeling dense point sets with comparatively large

labels. In the first half parts of this thesis, we try to normalize all the label size and fit

them only on one side, and in the last half parts of this thesis, we separate labels into

two groups. The same problem occurs when several locations on a map are to be labeled

with large labels that must not occlude the map. The labels have to be placed and

connected to their corresponding sites by polygonal lines, so-called leaders, such that (a)

no two labels intersect, (b) no two leaders intersect, and (c) the labels lie outside R

(boundary of the map) but touch R. We investigate some constraints concerning the

location of the labels and the type of leaders. We consider two ways for visualization.

By using rectilinear leaders, namely type-opo leader that consists of two orthogonal and

one axis-parallel segments. We show the complexity of this problem in Chapter 3. For

details refer to Chapter 4, we model two-side boundary labeling problem on the famous

heuristic algorithm “Genetic algorithm”. First, find some non-intersecting (i.e. feasible)

leader-label placement, and we also consider two natural objectives: minimize the total

length of the leaders [5][6] and minimize the total height of the labels that are too hard

to solve at the same time.

This thesis is structured as follows. In chapter 2, we introduce some preliminary

7

knowledge associating our problems, including defining and modeling general

boundary labeling problems. In chapter 3, we provide a new method by changing the

order of labels to solve one-side annotation system. We also study the problem of

minimizing total label height and total leader length when type-opo leaders are used and

the labels are placed on left and right side of R. We proved these two problems are

NP-complete. In chapter 4, we model the two-side labeling problem of minimizing total

label height and total leader length with type-opo leaders on famous genetic algorithm.

Because the number of labels on left side and right side are not fixed, the problem is

hard. We show this problem can be run on genetic algorithm under some constraints.

We show this heuristic algorithm is reasonable and suitable. In chapter 5, we simulate

the problem with different parameters which may affect the result easily. Then, we

analyze why they are accessible and compare the answer with optimal results of

minimizing total label height and leader length at the same time. In chapter 5, we also

show how these boundary labeling problems applied on Microsoft Office Word

properly. At the end of this thesis; in chapter 6; we provide conclusions and introduce

future work. All our surveys and works can be sum up in Table 1:

8

Table 1: Running time for related algorithms in big-O-notation.

Leader type LABELING TLLM TLHM

s 1-side n ε

opo 1-side nlogn

rerouted-opo 1-side n

s 2-side NPC NPC

opo 2-side NPC NPC

9

Chapter 2

Preliminaries

In boundary map labeling, the labels are placed in the boundary of the map that

encloses all sites. To describe our problem in the thesis, we define the model of

boundary labeling. We can choose what sides that the labels are placed to. The size of

labels could be uniform or non-uniform. Boundary labeling is a kind of label placement

that is usually used in cartography. However, we can also find out that it can also be

used on article annotation as described before. Boundary labeling can be defined briefly

as follow: A rectilinear map R with a lot of sites which are needed to be labeled.

10

2.1 Boundary Labeling Model

 There are several variants in the boundary labeling model [4]. We try to introduce

some below:

Side: Sides of the enclosing rectangle next to which we place labels. We can use any

sequence of N, E, W, and S (for North/East/West/South). In the cast of multiple

stacks, we use NiEjWkSl when the labels are attached to the North, East, West, and

South side of R and use i, j, k, l number of stacks, respectively. If no labels are

placed next to a side we omit the letter corresponding to that side, and if only one

stack is used we omit index 1.

LabelSize: UnifSize (all labels have the same size), MaxSize (all labels are Uniform of

MaxSize) or NonUnifSize (each label li is associated with a height hi and a

width wi).

LabelPort: FixedPorts (points where a leader can touch a label are predefined) or

SlidPorts (points can slide along the label’s edge).

LabelPos: FixedPos (labels have either to be aligned with a predefined fixed set of

points on the boundary of the rectangle) or SlidePos (labels can slide along

the rectangle’s sides)

Leader: Type of the leader (opo, po, or o). We’ll introduce it in next section.

Site: Type of the sites. Each site is a 1-point, line, rectangle, a polygon etc. In this thesis

11

we study that each site is a 1-point.

Objective: LEGAL (just find a legal label placement), TLLM (find a legal label

placement, such that the total leader length is minimum), TLHM (find a

legal label placement, such that the total label height is minimum), TBM

(find a legal label placement, such that the total number of bends is

minimum or, equivalently, the number of type-o leaders is maximum), LSM

(find the maximum label size for which a legal label placement is possible).

2.2 Types of Leaders

2.2.1 Straight-Line Leaders

Each leader is drawn as a straight line segment (see Figure 2-1). According to the

previous classification scheme, we refer to straight leaders as type-s leaders.

Figure 2-1: Type-s leader.

2.2.2 Rectilinear Leaders

A rectilinear leader consists of a sequence of axis-parallel segments that connects a

site with its label. Each leader consists of a sequence of axis-parallel segments, which

are either parallel (p) or orthogonal (o) to the side of R to which the associated label is

attached. This suggests that a leader c of type c1c2 . . . ck, where ci ∈ {o, p} consists of

an x- and y-monotone connected sequence (s1, s2, . . . , sk) of segments from the site to

the label, where segment si is parallel to the side containing the label if ci = p; otherwise

it is orthogonal to that side. Our primary focus has been on opo and po leaders

(see Figure 2-2), respectively.

In this thesis we focus on leaders of the type opo (see Figure 2-2 (a)). For each

type-opo leader we further insist that the central p-segment is immediately outside the

12

bounding rectangle R and is routed in a so-called track-routing area (see Figure 2-2 (b)).

We assume that the width of the track-routing area is fixed and large enough to

accommodate all leaders with a sufficient distance. Due to this assumption the total

length of the o-segments of all leaders is identical in all label-leader placements. Thus

we are left with optimizing the length of the p-segments. Minimizing the width of the

track-routing area for a given minimum leader distance is an interesting problem in

itself, which is not the topic of this work.

 (a) Type-po leader. (b) Type-opo leader.

Figure 2-2: Types of leaders.

2.3 Two-Side Labeling and Four-Side Labeling

Without losing generality, it is reasonable that we should not only put labels on one

13

side boundary of R. We should also think about other ways of putting them around R.

For examples, two-side labeling (see Figure 2-3 (a)), four-side labeling (see Figure 2-3

(b)), and circular labeling problems are also famous problem required to be studied. In

this thesis, we studied more about two-side labeling problem which can be commonly

used on the article annotation system, subway line labeling problem [9], and other

applications.

 (a) Type-s leader on two-side labeling. (b) Type-s leader on four-side labeling.

Figure 2-3: Types of many-side labeling.

2.4 Modeling Two-Side Boundary Labeling

We consider the following problem. Given an axis-parallel rectangle R = [lR,

rR]×[bR, tR] of width W = rR –lR and height H = tR − bR, and a set P R of n sites pi

14

15

= (xi, yi), each associated with an axis-parallel rectangular open label li of width wi and

height hi , our task is to find a legal or an optimal leader-label placement. Our criteria

for a legal leader-label placement are the following:

1. Labels have to be disjoint.

2. Labels have to lie outside R, close to the boundary of R.

3. Leader ci connects site pi with label li for 1 i n.

4. Intersections of leaders with other leaders, sites or labels are not allowed.

5. The ports where leaders touch labels may be fixed (the center of a label edge).

In this thesis we present a polynomial time algorithm to solve one-side rerouted

leader problem and a genetic algorithm that computes legal leader-label placements (for

brevity, simply referred to as labelings) for two-side labeling shown below (see Figure

2-4), but we also compare optimal placements of two-side label placement according to

the following two objective functions:

 Balance label height (minimum total label length of two side) and

 Short leader length (minimum leader length).

Figure 2-4: Type-opo leader on two-side labeling.

16

17

Chapter 3

One-Side Rerouted Leader and Two-Side
Label Placement

We consider the problem about how to improve the annotation system of Microsoft

Office Word. The criterion; total leader length; plays an important role in this problem,

because we would like to place the label as near as its corresponding site. The criterion

makes senses and it is practicable. In this chapter we focus on computing label

placements of minimum total leader length and minimum total label height. We present

an algorithm that attaches labels to one side (right) with rerouted leaders that change the

order of labels. This is a new idea different from the original label placement. In two

opposite sides (left and right), we prove that they are both NP-Complete problem for

18

satisfying either two objects described before. We also examine uniform and

non-uniform labels, and fixed or sliding ports.

3.1 One-Side Rerouted-Leader Label Placement

In this section, we focus on computing label placement with rerouted leader and

place all labels on one side (right side). The main point of our dynamic algorithm is how

to compare total leader length of all label permutation efficiently. When there is a

rerouted leader happened, we can find that the rerouted leader separates labels into three

groups (see Figure 3-1 (a)). We have to calculate the sum of leader length of these three

groups separately and compare with the length value while connecting to all labels

through the right boundary, i.e. if rerouted leaders happened, the total leader length

should be improved.

We employ a table S of size n n to maintain leader length minimization. We use

table S to save all the possible placement of the first rerouted leader. Since the location

of each label is fixed, the length of the leader to the ith label of s is determined. In

the case of fixed port we define Right(p,i) to be the distance from site p to the port of

the ith label of s . While in the case of sliding ports Right(p,i) is defined as the

distance from site p to the closest point of the ith label of s . On the other hand,

19

Left(p,i) is defined similarly. In the case of fixed port we define Left(p,i) to be the

distance from site p with rerouted leader to the port of the ith label of s . While in

the case of sliding ports Left(p,i) is defined as the distance from site p to the closest

point of the ith label of s with rerouted leader. We obtain the following results.

Theorem 1: Given a rectangle R of sufficient size, one sides r of R, a set P R of n

sites in general position and a non-uniform rectangular label for each site, there is an

O()-time algorithm that attaches the labels to r and connects the site with

non-intersecting type-opo leaders or rerouted type-opo leaders to the corresponding

leaders using fixed or sliding ports such that the total number of leader length is

minimized.

Proof: Without the loss of generality, assume that s is the right side and s is

the left side of rectangle R. We also assume that the sum of the label heights is at most

the height of constant number N (in the annotation system, we may assume N as the

height of a paper sheet) and that the sites are sorted according to increasing y-coordinate.

Recall that by p x , y we denoted the ith site, by h we denote the height of the

ith label, 1 i n, and by bR and tR we denote the y-coordinate of the bottom

right and top right corner of R, respectively. Also, we denote , as the length of

20

leader segment of kth leader in x-coordinate (orthogonal) direction and , (parallel)

as in y-coordinate direction. , is defined as all possible combination of the first

rerouted leader, i.e. we have to decide the most outside rerouted leader first, or we

cannot implement our algorithm because of unstable label positions. For example, ,

means that we choose site 8 and reroute its leader for the purpose of placing its label

into the position 3. , satisfies the following recurrence relation for 0 , . We

can get , in polynomial time when we have already decided where label

placed.

, , , , , , , ,

In this algorithm, when we know how rerouted leader placed, we can separate

labels into three groups (see Figure 3-1). The algorithm satisfies optimal substructure

property which can be proved by contradiction. We assume that , is minimum in our

solution. If there exist another , , , , is

smaller than ∑ , , , we will choose , as minimum solution. This

contradicts to our assumption. Also, the algorithm satisfies overlapping sub-problem

property (see Figure 3-1 (b) (c)). When we place the label of ith site to jth position or

when we place the label of jth site to ith position, we will count the same sub-problem

of , and , . The worse case of this algorithm happens when the leader always

reroutes to the most outside of the sub problem. So, the complexity is ∑

.

(a) (b) (c)

Figure 3-1: Label placements that the dynamic programming algorithm takes into account when

computing , .

Sometimes, we may use uniform label placement under some circumstances.

However, this problem is easier than previous one. We don’t need to add more

information about label sizes and where labels placed in this situation.

Theorem 2: Given a rectangle R of sufficient size, one sides r of R, a set P R of

n sites in general position and a uniform rectangular label for each site, there is an

O()-time algorithm that attaches the labels to r and connects the site with

non-intersecting type-opo leaders or rerouted type-opo leaders to the corresponding

21

22

leaders using fixed or sliding ports such that the total number of leader length is

minimized.

We can prove this theorem by adding more information of labels from Theorem 1.

The way of calculating , is easier. The displacement of labels is constant

when reroute happens (see Figure 3-1). We can save tiny time from previous one while

sites are little.

3.2 Label -Height Minimization on Two-Side Labeling

Without losing generality, when we try to improve the annotation system, we

would like to separate labels into two groups averagely. Which means it’s better to

separate labels into two groups, and these two groups have the same label height. In this

two-side map boundary labeling problem, we are given a map G = (S, L), S is a set of

sites, L is a set of corresponding labels, and a positive integer M= Total label height ,

a finite set H which represents all the label height in L, and a target t. As usual, we

define the problem as a language Two-Side Labeling: {<H,M,t>: there exists subsets

H′ H such that min ∑ hH′ M t }

23

Instance: A map G = (S, L), S is a set of sites, L is a set of corresponding labels, and a

positive integer M = Total label height , a finite set H which represents all

the label height in L, and a target t.

Question: Does there exist a subset of L that total height of labels is the nearest height

vale to M?

Theorem 3: Minimizing label height of Two-Side map boundary labeling with

opo-leader is NP-complete.

Proof: To show that two-side labeling is in NP, for an instance <H,M,t> of the

problem, we let the subset H′ be the certificate. Checking whether ∑ hH′ M t

can be accomplished by a verification algorithm in polynomial time. To show the

NP-hardness of this problem, we will reduce it from the subset sum problem. We will

show that SUBSET-SUM p TWO-SIDE BOUNDARY LABELING problem. When

t=0, this problem is equal to subset sum problem absolutely. We have to whether there

exists a subset H′ H such that ∑ hH′ M. While t=1,2,…,n, we also have to

check whether there exist a H′ H satisfies ∑ hH′ M t. This is also another

subset problem. If we want to solve this problem, we have to solve subset sum problem

many time until we find the minimum t. On the other hand, if we can solve this problem,

24

we can find out a corresponding subset sum problem. To sum up, TWO-SIDE

BOUNDARY LABELING is NP-hard and TWO-SIDE BOUNDARY LABELING is in

NP. TWO-SIDE BOUNDARY LABELING is a NP-Complete problem.

3.3 Leader-length Minimization on Two-Side Labeling

Leader-length minimization of two-side labeling is another criterion of our solution.

Without losing generality, when we try to improve the annotation system, we would like

to place labels as near its’ site as possible. Which means it’s better to minimize leader

length to fit the object.

Instance: Given k , and a set S of n sites on many horizontal lines of set L. Each

site has rectangular label with dimension w h . And a set R={r

the shortest length from site s to the right boundary}

Question: If there exist any legal opo-labeling with labels on left side and right side of a

boundary R, such that the total leader length is at most M?

Theorem 4: Minimizing total leader length of Two-Side map boundary labeling

with opo-leader is NP-complete.

25

Prof: In order to prove the problem belongs to NP-complete problem. We need to guess

a position of the labels on the boundary of L and also check (i) the label do not overlap

each other. (ii) all the leaders do not intersect with each other. (iii) the sum of leader

length is no more than M. We can reduce the problem of determining a legal solution of

partition model.

Given positive integers p , p , … , p , is there a subset I of J={1,2,…,2m}such

that I contains exactly one of {2i-1,2i} for i=1,2,…,m, and ∑ aI ∑ aJ/I ? We will

reduce an instance P of partition problem to an instance(S,L) of this problem such that P

can be partitioned if and only if there is a two-side boundary labeling of S with

corresponding labels to L. This problem can be reduced as a problem that there are

many sites on one vertical line, and we want to put all the labels on right side or left side.

If there are more than one sites on the horizontal line, we can assume that they are

different sites and very close on the target vertical line (see Figure 3-2). At the same

time, every site is lying on the central of the line where it is placed.

26

Figure 3-2: Transformation to two-side labeling on a line.

We can easily prove this problem by reducing partition problem to it. Giving an

integer set A={a , a , … , a } which represents the length of p-segment of every pairs of

sites and labels. Also because all the sites have the same distance to the boundary, we

can get another integer set B; while b B, and let

 b a length of L width of track routing area

Then, we can easily apply this problem to partition which is well-known as a

NP-complete problem. Whereas, and if we can find an answer of two-side boundary

labeling problem, we can also get the answer of corresponding partition problem. So,

minimizing total leader length of Two-Side map boundary labeling with opo-leader is

NP-complete.

Because both label height minimization and leader length minimization are

NP-Complete problem. And when we try to solve one of both problems, we will not

27

also get the optimal solution of the other. If we want to solve both of the problems at the

same time, it will be harder than solving one problem. So, we try to use genetic

algorithm to solve two problems at the same time and runs quickly.

28

Chapter 4

Genetic Algorithm on Two-Side Labeling

Genetic algorithms are stochastic global search methods that have proved to be

successful for many kinds of optimization problems. Genetic algorithms are categorized

as global search heuristics. These algorithms work with a population of candidate

solutions and try to optimize the answer by using three basic principles, including

selection, crossover (also called recombination), and mutation. The initial population

should be chosen randomly. Then, during subsequent generation, new candidate

solutions are produced by selecting two individuals, with higher probability of selection

for better individuals. And then, we have to recombine parts of these individual to form

one or two offspring, and mutate (change slightly) the resulting offspring. At last, the

29

new descendent is inserted back to the population and worst individual is deleted.

Genetic algorithm can be shown as follow:

Pseudo-code algorithm

1. Choose initial population

2. Evaluate the fitness of each individual in the population

3. Repeat

(a) Select best-ranking individuals to reproduce

(b) Breed new generation through crossover and mutation (genetic

operations) and give birth to offspring

(c) Evaluate the individual of the offspring

(d) Replace worst ranked part of population with offspring

4. Until termination

The basic loop is depicted in (see Figure 4-1). The implement of all steps will be

discussed in more detail in Chapter 4.

Figure 4-1: The basic loop of a genetic algorithm.

4.1 Genetic Algorithm Modeling

Genetic algorithms are implemented as a computer simulation in which a

population of abstract representations (called chromosomes or the genotype or the

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an

optimization problem evolves toward better solutions. Traditionally, solutions are

represented in binary as strings of 0s and 1s, but other encodings are also possible. The

evolution usually starts from a population of randomly generated individuals and

happens in generations. In each generation, the fitness of every individual in the

population is evaluated, multiple individuals are stochastically selected from the current

population (based on their fitness), and modified (recombined and possibly randomly

mutated) to form a new population. The new population is then used in the next iteration

of the algorithm. Commonly, the algorithm terminates when either a maximum number

30

31

of generations has been produced, or a satisfactory fitness level has been reached for the

population. If the algorithm has terminated due to a maximum number of generations, a

satisfactory solution may or may not have been reached.

Genetic algorithms find application in bioinformatics, phylogenetics, computer

science, engineering, economics, chemistry, manufacturing, mathematics, physics and

other fields.

A typical genetic algorithm requires two things to be defined:

1. a genetic representation of the solution domain,

2. a fitness function to evaluate the solution domain.

A standard representation of the solution is as an array of bits. Arrays of other

types and structures can be used in essentially the same way. The main property that

makes these genetic representations convenient is that their parts are easily aligned due

to their fixed size, which facilitates simple crossover operation. Variable length

representations may also be used, but crossover implementation is more complex in this

case. Tree-like representations are explored in Genetic programming and graph-form

representations are explored in Evolutionary programming.

The fitness function is defined over the genetic representation and measures the

quality of the represented solution. The fitness function is always problem dependent.

For instance, in the knapsack problem we want to maximize the total value of objects

32

that we can put in a knapsack of some fixed capacity. A representation of a solution

might be an array of bits, where each bit represents a different object, and the value of

the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such

representation is valid, as the size of objects may exceed the capacity of the knapsack.

The fitness of the solution is the sum of values of all objects in the knapsack if the

representation is valid or 0 otherwise. In some problems, it is hard or even impossible to

define the fitness expression; in these cases, interactive genetic algorithms are used.

Once we have the genetic representation and the fitness function defined, GA

proceeds to initialize a population of solutions randomly, and then improve it through

repetitive application of mutation, crossover, inversion, and selection operators.

4.1.1 Individual

The individual represent a candidate solution. In this problem, it represents a legal

label placement without crossing. The individuals are stored as real-valued vector. We

let the element “0” of the vector representing connecting to left side boundary. On the

other side, the element “1” means putting label to the right side boundary. Although it is

conceivable that different genetic representations influence the optimization behavior

significantly, we choose this representation instinctively. Because we only need two

33

types of groups to represent connecting to the left side or connecting to the right side, it

is obviously that binary integer representation is just what we need.

4.1.2 Initialization

At the beginning of the genetic algorithm, the individuals in the population have to

be initialized. Initially many individual solutions are randomly generated to form an

initial population. The population size depends on the nature of the problem, but

typically contains several hundreds or thousands of possible solutions. Traditionally, the

population is generated randomly, covering the entire range of possible solutions (the

search space). Occasionally, the solutions may be "seeded" in areas where optimal

solutions are likely to be found. In our case, this is done randomly. We generate a label

placement with restricted given area (including rectangle R, track routing area, and

space for labels) and let bad offspring eliminated by selection.

4.1.3 Evaluation

The choice of the evaluation function plays a crucial role in the design of a genetic

algorithm. There is a big advantage of using evaluation in genetic algorithm. One can

34

measure desired criteria on the resulting placement and weight these criteria to suit

personal preferences. Because genetic algorithm is always using in multi-purpose

problem, we can then analyze how important these criteria are.

Among the criteria we test are

• All the leaders do not cross to each other.

• All the labels do not overlap to each other.

• Total labels should be placed balanced on left side and right side.

• The longer label height on left side and right side is minimum height.

• Total leader length is a minimum length of all combination.

The result presents in Chapter 5 show some cases of legal placement.

4.1.4 Selection

Selection is important to genetic algorithm, since only selection drives the search

towards more promising regions of the search space. In our implementation, we select

individuals for reproduction (i.e. parents) according to the common linear ranking

selection scheme, i.e. individuals are selected according to their rank, with better

individuals receiving a higher chance of being selected. So that, the selective pressure of

actual fitness values, which may be important, since it is not known beforehand in

35

which range of fitness values the optimal solution is located. The algorithm is of the

steady state type, i.e. the offspring is introduced into the population, and at least fit

individual is deleted. This way, the best solution so far is never lost. Also, in our

problem, when crossing happened, the individual should not be counted in the

population.

We define fitness function as follow:

f λ
∑ c

n |tR bR| |rR lR| ε λ
|R L |
R L

 Label height of the right side. R
 Label height of the left side.

:
L :

 Track routing area width. ε:
 Top position of the boundary. t :
 : Bottom position of the boundary.

R

bR
 : Right position of the boundary. rR
 lR: Left position of the boundary.

In order to normalize the function, we divide these parameters to their intuitive

maximum value. Thus without generality, λ and λ can be chosen between 0 and 1,

and satisfy λ λ 1.

4.1.5 Recombination

36

In order to get better result, we combine two good parents into a new offspring

which may be brown better or not. The purpose of the crossover operator is to

recombining sub-placements of different individuals to produce an offspring. Since, we

expect that good parts of a placement are connected, we perform crossover by choosing

randomly a connected parts of the placement of two parents and swap the

sub-placement.

However, unfortunately, there is a problem with this operator using this method. A

combination of two good parents may yield a poor offspring. This poor offspring will be

deleted during the natural selection process.

4.1.6 Mutation

Mutation is a crucial step of genetic algorithm. While using recombination, we can

only find new combination of individuals that are already at present. We may lose some

information forever while it is not in the population. Another method called mutation

can introduce new material into the population, i.e. the slight changing of individuals. It

is necessary and reasonable to get new materials to increase the probability of getting

better answers. In out implementation, mutation is done by randomly changing binary

vector with a given small probability. We try to change one leader from the right side to

37

left side (or from the left side to the right side). This way, we will have a probability to

get a better individual through the present individual and the result is different from the

recombination (or crossover) process.

4.2 An Example of GA on Two-Side Labeling

Now, we give a simple example how we implement genetic algorithm on two-side

labeling. At the beginning, we give a fixed rectangle R which is 400 by 300 units as the

target map and also give a fixed width for the track routing area that is assumed enough

for all the leaders’ placement. Initially, we generate the number of sites, the height of

labels randomly. Also, we can get some parameters (including R width, track routing

area width and total label height) for the fitness function shown below:

f λ
∑ c

n |tR bR| |rR lR| ε λ
|R L |
R L

After that, for the fitness function, we only need to calculate the length of leader of

any possible placement generated from the algorithm and the combination of labels. We

give 4 chromosomes represented as a 20-bits vector as an example (see Figure 4.2-1).

Letting the element “0” of the vector represents connecting to left side boundary. On the

other side, the element “1” of the vector represents connecting to right side boundary.

(see Figure 4.2-1)

38

chromosome [0]=10100110011101110101 fitness = 0.1946
chromosome [1]=01001101011111000011 fitness = 0.2077
chromosome [2]=11111011011111001110 fitness = 0.2359
chromosome [3]=10111010111001011011 fitness = 0.2335

Figure 4-2: Four chromosomes represented as a 20-bits vector.

In this genetic algorithm, we have to select smaller fitness number as better

individuals, and this is different from original fitness definition. Then in iteration (i), we

choose the smallest two individuals chromosome [0] and chromosome [1] and

recombine them in order to get better offspring (see Figure 4.2-2). After recombination,

we can find out that CrossOverChromosome [2] is better than its parents. In the

program, choose a number of bits for swap process randomly. In this case, we choose

first 4 bits of chromosome [0] and swap them to the first 4 bits of chromosome [1] and

get chromosome [2] and chromosome [3]. As the result, one is better and the other is

worse. It is obviously that the worse individuals will be eliminated by the natural

selection in this iteration.

39

CrossOverChromosome [0] = 10100110011101110101 fitness = 0.1946
CrossOverChromosome [1] = 01001101011111000011 fitness = 0.2077
CrossOverChromosome [2] = 01000110011101110101 fitness = 0.1856
CrossOverChromosome [3] = 10101101011111000011 fitness = 0.2200

Figure 4-3: Four chromosomes represented as a 20-bits vector in iteration (i).

The iteration will stop when all the four individuals have the same chromosome. In

this situation, we will ignore the possibility of mutation in the future because it is not

worthy to wait for its happening. The mutation only occurs with a given small

probability. In this algorithm we choose only a bit of vector and change it. Even this

may not always useful in the algorithm, it helps when we need more different material

in the population. The GA result and optimal result show below: (see Figure 4-4 and

see Figure 4-5)

Figure 4-4: Type-opo leader of GA solution on two-side labeling.

Figure 4-5: Type-opo leader of optimal solution on two-side labeling.

40

41

Chapter 5

Simulation Results

For now, we test our algorithm on a number of example graphs with rerouted

leader on one-side labeling and genetic algorithm on two-side labeling. As described

above, there are some disadvantages of the annotation system of Microsoft Office Word.

While inputted label number is small, it is more general that users may want to enlarge

label height to see more details in the labels. On the other hand, while inputted label

number becomes larger, the system should not abandon labels easily. We provide the

following method to prove the annotation system: (i) While inputting little labels, we

enlarge label size to fit the height of paper sheet and apply the situation on rerouted

leader labeling method. However; we can also use this method to prove the

42

visualization by combining dotted lines into one. We will show the detail in the

following sections. (ii) While inputting many labels, we can also combine labels of sites

on one line. (iii) While inputting many labels, in order to provide more space for labels,

we try to reduce the space of text and provide one more column for labels in one page.

This way, we can apply the situation on two-side labeling problem. We separate them

into three basic groups to see whether two objects: minimum label height and minimum

leader length is important.

5.1 Rerouted Leaders on One-Side Labeling

Recall the details in chapter 3; we proved that the algorithm of rerouted leader

label placement of one-side labeling is run in polynomial time O(n). The total leader

length of original placement is 1880 units and rerouted leader placement is 1120 units

(see Figure 5-1). This one-side labeling problem with rerouted leaders makes the

annotation system improvable. In next section, we will show how it looks when

applying on Word.

(a) Original placement. (b) Rerouted leader placement.

Figure 5-1: Easy sample result of non-uniform rectangular label placement.

5.2 Genetic Algorithm on Two-Side Labeling

In this section, we slightly change λ and λ in order to get better visualization

of two-side labeling problem. Besides, we also want to know how these parameters

affect the final result.

5.2.1 Leader Length Minimization

In some situation, we may focus on object “leader length minimization”. We can

slightly change λ and λ to fit our destination. So, we try typical formation to see

how important they are under our constraints.

43

44

Table 2: Details of our GA algorithm and optimal solution with λ =1.0 and λ =0.0.

 Total leader length Difference of label height

GA algorithm 5842 units 44 units

Optimal solution 4710 units 48 units

Here, the site number is 20, total leader length of Figure 5-5 is 5842 units and

height difference of left labels and right labels is 44 units. Total leader length of Figure

5-6 is 4710 units and height difference of left labels and right labels is 48 units. In this

case, we assume possible maximum leader length is 16020 units and total label height is

12080 units.

Figure 5-2: Type-opo leader of GA solution on two-side labeling.

Figure 5-3: Type-opo leader of optimal solution on two-side labeling.

45

When these objectives are not both important, we may try to set with λ 1.0

and λ 0.0. This is reasonable for the normalization. We also show that the genetic

algorithm works, because the average fitness converge to optimal fitness finally

(see Figure 5-4). It converges quickly. Although in other cases, we may see some points

which are not respected, it’s because the mutation process and we still can find out the

tendency of convergence. Even though the leader length is smaller, it doesn’t look very

good because the labels of two sides are not balanced as usual.

Figure 5-4: The GA convergence with λ 1.0 and λ 0.0

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.376 0.369 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364

AVG fitness 0.411 0.385 0.373 0.367 0.364 0.364 0.364 0.364 0.364 0.364 0.364

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

GA convergence

46

47

5.2.2 Label Height Minimization

In some situation, we may focus on object “label height minimization”. We can

slightly change λ and λ to fit our destination. So, we try typical formation to see

how important they are under our constraints.

Table 3: Details of our GA algorithm and optimal solution with λ =0.0 and λ =1.0.

 Total leader length Difference of label height

GA algorithm 6478 units 28 units

Optimal solution 6232 units 0 units

Here, the site number is 20, total leader length of Figure 5-5 is 6478 units and

height difference of left labels and right labels is 28 units. Total leader length of Figure

5-6 is 6232 units and height difference of left labels and right labels is 0 units. In this

case, we assume possible maximum leader length is 16020 units and total label height is

12080 units.

Figure 5-5: Type-opo leader of GA solution on two-side labeling.

Figure 5-6: Type-opo leader of optimal solution on two-side labeling.

48

When these objectives are not both important, we may try to set with λ 0.0

and λ 1.0. This is reasonable for the normalization. We also show that the genetic

algorithm works, because the average fitness converge to optimal fitness finally

(see Figure 5-7). It converges quickly. Although in other cases, we may see some points

which are not respected, it’s because the mutation process and we still can find out the

tendency of convergence.

Figure 5-7: The GA convergence with λ 0.0 and λ 1.0

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

AVG fitness 0.014 0.008 0.004 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

GA convergence

49

50

For the annotation system, we believe that two-side labeling can solve this problem.

If we use two-side labeling for the annotation system, we must reduce the number of

words in one page, i.e. we need two column spaces for all the labels.

5.2.3 Leader Length and Label Height Minimization

In some situation, we may focus on both leader length and label height

minimization. We can slightly change λ and λ to fit our destination. So, we try

typical formation to see how they work under our assumption.

Table 4: Details of our GA algorithm and optimal solution with λ = λ = 0.5.

 Total leader length Difference of label height

GA algorithm 6274 units 28 units

Optimal solution 4756 units 8 units

Figure 5-8: Type-opo leader of GA solution on two-side labeling.

Figure 5-9: Type-opo leader of optimal solution on two-side labeling.

51

52

Here, the site number is 20, total leader length of Figure 5-8 is 6274 units and

height difference of left labels and right labels is 28 units. Total leader length of Figure

5-9 is 4756 units and height difference of left labels and right labels is 8 units. In this

case, we assume possible maximum leader length is 16020 units and total label height is

12080 units.

When these objectives are both important, we may set λ and λ are 0.5 which is

reasonable for the normalization. We also show that the genetic algorithm works,

because the average fitness converge to optimal fitness finally (see Figure 5-10). It

converges quickly. Although in other cases, we may see some points which are not

respected, it’s because the mutation process and we still can find out the tendency of

convergence. In this case, we can easily find out that these two objects are both

important for beautiful placement.

Figure 5-10: The GA convergence with λ 0.5 and λ 0.5.

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.213 0.202 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197

AVG fitness 0.222 0.215 0.205 0.199 0.197 0.197 0.197 0.197 0.197 0.197 0.197

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

GA convergence

Table 5: Average experiment results of minimum leader length with various λ combinations running 1000

times.

λ λ , 1.0,0.0 0.9,0.1 0.8,0.2 0.7,0.3 0.6,0.4 0.5,0.5 0.4,0.6 0.3,0.7 0.2,0.8 0.1,0.9 0.0,0.1

L 5954.8 5780.6 6091.4 5756.6 5950.6 6036.0 5909.8 5961.2 5928.0 6134.4 6389.6

opt 4710 4710 4710 4710 4710 4756 4756 4756 4756 4756 6232

% 0.2642 0.2273 0.2932 0.2222 0.2633 0.2691 0.2425 0.2534 0.2464 0.2898 0.0252

L 69.0 80.0 65.2 77.6 72.0 78.0 58.4 73.2 20.2 27.2 24.6

opt 48 48 48 48 48 8 8 8 8 8 0

% 0.4375 0.6666 0.3583 0.6166 0.5000 8.7500 6.3000 8.1500 1.5250 2.4000 #

Besides, we also try some other λ combinations (see Table 5). Because of

different λ combinations, optimal solutions are also different. So, when we want to

compare these data, we have to compare with their own optimal solutions. According
53

54

to Table 5, we can find out that there is a tendency that total leader length grows larger

while focusing on label height balance, and vice versa. Even though the results of our

algorithm depend on initial placement mostly, λ combinations still affect them. In fact,

the best λ combination should be defined case by case, so we do not study them a lot.

5.3 Implementation on Word

In this section, we try to apply our abstract algorithm on real Office Word. Then,

we will discuss the advantages and disadvantages of original word annotation system

and our results.

5.3.1 Rerouted-Leaders on One-Side Labeling

We provide some sample results here. In order to improve this system, we tried

many ways of using this annotation system. So, we encountered many difficulty of

telling one leader from each other while there are too many labels on one page or when

labels are far from their corresponding sites. For example (see Figure 5-11), there exists

some big labels near the bottom of the boundary. This case makes labels above are

placed higher than they expect. This placement is not easy to understand because

leaders are long and close to each other (see Figure 5-11 (a)). The main idea of our

method is that we can rearrange the order of the labels (see Figure 5-11 (b)). We

provided rerouted leaders and this method simplify the complexity of connecting pairs

of sites and labels. The result showed follow looks quite good as we expected.

(a) Original label placement of MS Word. (b) Sample result of our algorithm.

Figure 5-11: Sample result while the number of labels is small.

Another situation is that users may need to annotate more than one word on one

line (see Figure 5-12). This case is even worse on visualization than the case above. The

placement is harder to understand because leaders are too close to each other (see Figure

5-12(a)). To simply the complexity, we combine labels on the same line together

55

(see Figure 5-12(b)), and only provide one leader to the combination labels. This way,

we reduce the number of leaders and minimize total leader length which are both

important for visualization. The result showed follow looks clear and more

understandable.

(a) Original label placement of MS Word. (b) Sample result of our algorithm.

Figure 5-12: Sample result while the number of labels is large.

5.3.2 Genetic Algorithm on Two-Side Labeling

When site number grows larger, it will take too much time for searching optimal

56

57

solutions for two-side labeling placement. In this situation, we would rather choose a

solution that is not always optimal but good and got efficiently. We present a result

(see Figure 5-13) for the annotation system. We can see the detail in Table 5 below.

Table 6: Details of our GA algorithm and optimal solution on Word.

 Total leader length Difference of label height

GA algorithm 3082 units 30 units

Optimal solution 2756 units 30 units

Here, total leader length of Figure 5-13 (a) is 3082 units and height difference of

left labels and right labels is 30 units. Total leader length of Figure 5-13 (b) is 2756

units and height difference of left labels and right labels is 30 units. In this case, we

assume possible maximum leader length is 10212 units and total label height is 9240

units.

(a) Sample result of our algorithm. (b) Sample result of optimal solution.

Figure 5-13: Applicable sample result of our GA algorithm.

Table 7: Average results of our GA algorithm and comparison with optimal solution while running 1000

times.

 Total leader length Difference of label height

GA algorithm 3108 units 70 units

Optimal solution 2756 units 30 units

Difference 352 units 40 units

Now, we apply the result on the Word (see Figure 5-14). We use two column

spaces for the label placement. It becomes clearer to tell all leaders on the page. For

readers, they do not need to turn the pages to find the information about the sites.

Readability is also improved.

58

(a) Sample result of our algorithm (b) Sample result of optimal solution

Figure 5-14: Sample result from Figure 5-13

5.3.3 Comparison between Rerouted Leaders and Two-Side Labeling

The relationship between these two methods is how we want to improve the text

annotation system. Most of the time, we hate to read articles on computers because we

get tired easily. Some people may used to print them out. So, it is good to consider how

to fill one paper with most information. This way, we should not only consider the

column space for labels, but also how large they are. These two methods have their own

advantages and disadvantages that are subjective. Thus, we may be able to provide

related parameters for users. Even though there exists an article which can be applied on
59

60

one-side rerouted leader placement and two-side placement, it is hard to find objective

criteria to judge how good they are. Leader length is different because of different

column space, and we may lose the degree of freedom if we firm up the column space

first.

61

Chapter 6

Conclusion and Future Work

6.1 Conclusion

The main motivation of this thesis is that we do not satisfy with the annotation

system of Microsoft Office Word. Sometimes, it wastes some space which can be used

to shown more information about labels. There are some plug-in that support a kind of

functions that we can paste labels anywhere on one page. However, even though it is

free to move labels on a page, it takes time and it’s hard to arrange beautifully. Because

these kinds of software threat a context file as an image, we may lose some advantages

of context files. So, it is reasonable that we like to generate label placements

62

automatically. In this thesis, we provide many methods to improve this system under

various situations. We provide a polynomial time algorithm to solve one-side labeling

problem with rerouted leaders which make leaders understandable. We also proved that

two-side labeling problem is a NP-complete problem on total label height minimization

and total leader length minimization. Also, we presented a genetic algorithm to solve

two-side labeling problem for the purpose of drawing label placements automatically.

We have shown the complexity of problems of type-opo leader on two sides, we also

give the algorithm for these problems and apply the results on Microsoft Office Word.

We not only analyze the relation of minimizing total leader length and minimizing

the total label height but also discuss them respectively. Of course even though they

don’t reach the optimal value simultaneously, we can give a good result efficiently. We

try our best to balance these two criteria by changing parameter λ and λ at the same

time. That is, this algorithm cannot optimize the two objectives because of their

contradict properties but try to find a good result which is balanceable for them.

The main advantage of our genetic algorithm is that we can easily get a proper

result for the application of article annotation. When the number of sites grows larger,

we need more time to get the optimal solution, but genetic algorithm converges quickly

on this problem. To sum up, rerouted-leader label placement and genetic algorithm is a

good method to prove the annotation system.

63

6.2 Future Work

There are still many open problems of labeling problems. We can change

constraints to suit different applications or keep figuring out how to solve the problem

efficiently. It is interesting to further study the problem of type-opo leader in four sides

or even extend it into circular placement. And it can also be investigated when the type

of site is not one-point, like lines, rectangles etc. Future work in this area may include

and sum as follow:

• Extending two-side labeling into four sides or circular style.

• Extending two dimension drawings into three dimension drawings which are

reasonable.

• Changing the property of target sites, including point sites, linear sites, or

rectangular sites.

• We can also think about multi-sites to single label problem, single site to

multi-labels problem and multi-sites to multi-labels problem that are more

complicated than one site to one label problem.

64

References

[1] P. Agarwal, M. van Kreveld, and S. Suri. Label Placement by Maximum

Independent Set in Rectangles. Proc. of the 9th Canadian Conference on

Computational Geometry, pp. 233–238, 1997.

[2] J. Ahn, H. Freeman, AUTONAP—An Expert System for Automatic Map Name

Placement, in: Proc. International Symposium on Spatial Data Handling (SDH’84),

1984, pp. 544–569.

[3] M. Bekos, M. Kaufmann, A. Symvonis, and A. Wolff. Boundary Labeling: Models

and Efficient Algorithms for Rectangular Maps. Proc. of the 12th Int. Symposium

on Graph Drawing (GD’04), pp. 49-59, 2004.

[4] M. Bekos, M. Kaufmann, K. Potika, A. Symvonis. Boundary Labeling of Optimal

Total Leader Length. Panhellenic Conference on Informatics, pp. 80-89, 2005.

[5] M. Bekos, M. Kaufmann, K. Potika, A. Symvonis. Polygons Labelling of

Minimum Leader Length. In Proc. Asia Pacific Symposium on Information

Visualisation (APVIS2006), pp. 15-21, 2006.

[6] M. Bekos, M. Kaufmann, K. Potika, A. Symvonis. Efficient Labeling of Collinear

Sites. Journal of Graph Algorithms and Applications, pp. 1–21 (2007)

[7] B. Chazelle and 36 co-authors. The Computational Geometry Impact Task Force

Report. In B. Chazelle, J. E. Goodman, and R. Pollack, editors, Advances in

Discrete and Computational Geometry, vol. 223, pp. 407–463. AMS, 1999.

[8] M. Formann, F. Wagner, A Packing Problem with Applications to Lettering of

Maps, in: Proc. 7th Annual ACM Symposium on Computational Geometry

(SoCG’91), 1991, pp. 281–288.

[9] M. Á. Garrido, C. Iturriaga, A. Márquez, J. R. Portillo, P. Reyes, and A. Wolff.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Bekos:Michael_A=.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/k/Kaufmann:Michael.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Potika:K=.html

65

Labeling Subway Lines. In P. Eades and T. Takaoka, editors, Proc. 12th Annual

International Symposium on Algorithms and Computation (ISAAC’01), volume 2223, pages

649–659, 2001.

[10] S.A. Hirsch, An Algorithm for Automatic Name Placement Around Point Data,

The American Cartographer 9 (1) (1982) 5–17.

[11] E. Imhof. Positioning Names on Maps. The American Cartographer, vol.2, pp.

128-144, 1975.

[12] C. Iturriaga and A. Lubiw. NP-Hardness of Some Map Labeling Problems.

Technical Report CS-97-18, University of Waterloo, 1997.

[13] F. Wagner. Approximate Map Labeling is in Omega (n log n). Technical Report B

93-18, Fachbereich Mathematik und Informatik, Freie Universitat Berlin, 1993.

[14] F. Wagner and A. Wolff. Map Labeling Heuristics: Provably Good and Practically

Useful. Proc. of the 11th Annual ACM Symposium on Computational Geometry, pp.

109-118, 1995

[15] A. Wolff and T. Strijk. The Map-Labeling Bibliography.

http://i11www.ira.uka.de/map-labeling/bibliography/, 1996

[16] S. Zoraster, Practical Results using Simulated Annealing for Point Feature Label

Placement, Cartography and GIS 24 (4) (1997) 228–238.

[17] S. Zoraster, The Solution of Large 0–1 Integer Programming Problems

encountered in Automated Cartography, Operations Research 38 (5) (1990)

752–759.

	Chapter 1 Introduction
	Chapter 2 Preliminaries
	2.1 Boundary Labeling Model
	2.2 Types of Leaders
	2.2.1 Straight-Line Leaders
	2.2.2 Rectilinear Leaders

	2.3 Two-Side Labeling and Four-Side Labeling
	2.4 Modeling Two-Side Boundary Labeling

	Chapter 3 One-Side Rerouted Leader and Two-Side Label Placement
	3.1 One-Side Rerouted-Leader Label Placement
	3.2 Label -Height Minimization on Two-Side Labeling
	3.3 Leader-length Minimization on Two-Side Labeling

	Chapter 4 Genetic Algorithm on Two-Side Labeling
	4.1 Genetic Algorithm Modeling
	4.1.1 Individual
	4.1.2 Initialization
	4.1.3 Evaluation
	4.1.4 Selection
	4.1.5 Recombination
	4.1.6 Mutation

	4.2 An Example of GA on Two-Side Labeling

	Chapter 5 Simulation Results
	5.1 Rerouted Leaders on One-Side Labeling
	5.2 Genetic Algorithm on Two-Side Labeling
	5.2.1 Leader Length Minimization
	5.2.2 Label Height Minimization
	5.2.3 Leader Length and Label Height Minimization

	5.3 Implementation on Word
	5.3.1 Rerouted-Leaders on One-Side Labeling
	5.3.2 Genetic Algorithm on Two-Side Labeling
	5.3.3 Comparison between Rerouted Leaders and Two-Side Labeling

	Chapter 6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References

