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中文摘要

在資訊視覺化的研究領域，邊界標記被應用在許多不同的地方。一種常見的

邊界標記形式包含一個定點及其對應的一個標籤，且這個標籤被放置在整個地圖

的外圍上。在某些邊界標記應用領域，被標示的定點可能會分成多個群組連接到

一個標籤或者一個定點連接至多個標籤亦或者多對多的情況，在這裏我們討論的

是一對一的情況。 這篇論文裡，我們討論如何使用邊界標記法來改進

的註解系統。我們提供一個多項式時間的演算法來解決單一邊界的註

解系統，此時可以藉由連結線段的彎曲來做視覺上的改進。我們也討論如何在雙

邊標記上，平均最小化標籤的高度以及最小化連結線段的長度，也就是說，這個

問題的目的是為了找出一個好的標籤排列方法，使得標籤高度最小，而連結線段

的長度也最短。我們採用的連結線段的方式是垂直-平行-垂直(由零條或兩條垂直

線段跟一條水平線段所組成)連結邊界的方式，而這個問題具有 的複

雜度。因此，我們採用了在計算數學中用於解決最優化的搜索演算法遺傳演算法

來解決這個問題。在這篇論文裡的所提及的問題，我們假設連結線段是連接在標

籤的正中間，換句話說，也就是擁有固定的連接點。這個雙邊界標記的問題是標

籤配置和圖形繪製的綜合體，是個有趣且值得探討的問題。

 

 

 

 在 Microsoft 
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NP-complete
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ABSTRACT 
 

Boundary labeling which can be found in many applications is an important field 

of information visualization. A conventional boundary labeling scheme connects one 

site to a unique label placed on the boundary of the drawing. In certain applications of 

boundary labeling, however, sites may be grouped or separated into more than one 

group and connect to an identical label on a picture or in an article with abundant 

numbers of sites and labels. We consider a special formula which includes one site and 

one identical label here. 

 In this thesis, we try to improve the annotation system of Microsoft Office Word by 

using boundary labeling solving methods. We provide a polynomial time solution to 

solve one-side annotation while the leader can be wound, and rerouted to improve the 

visualization. We also consider the label height minimization problem and leader length 

minimization for two-side boundary labeling of the annotation system, i.e. the problem 

of finding a good leader and label placement, such that the number of total label height 

and total leader length is minimized. We proved that the two-side labeling problem for 

type-opo leaders (rectilinear lines with either zero or orthogonal segment and one 

parallel segment) is NP-complete. Then, we give a heuristic genetic algorithm and 
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analyze its properties for the problems. For all the problems in this thesis, we assume 

that the connecting label ports are fixed ports, i.e. the point where each leader is 

connected to the label is fixed.  

These problems are interesting in that it is a mixture of a label-placement and a 

graph-drawing problem. 
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Chapter 1  
 
Introduction 
 

 

Label placement is one of important fields of information visualization. The 

majority of map labeling algorithms are also easily applicable for graph labeling. So, in 

diagrams, maps, technical or graph drawings, features like points, lines, and polygons 

must be labeled to convey information. The interest in algorithms that automate this 

task has increased with the advance in type-setting technology and the amount of 

information to be visualized. Due to the computational complexity of the 

label-placement problem, which is NP-hard in general [4], cartographers, graph drawers, 

and computational geometers have suggested numerous approaches, such as expert 

systems [15], zero-one integer programming [4], approximation algorithms [8], 
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simulated annealing [16] and force-driven algorithms [10] to name only a few.  

At the beginning, we should distinguish between three kinds of graphical features 

according to their dimension. 

(a) Point Features: Like cities, summits, area features on small scale maps, and 

vertices of graphs or diagrams.  

(b) Line Features: Like rivers, boarders, streets, straight edges, polygonal lines, and 

edges or arcs of graphs or diagrams.  

(c) Area Features: Like mountains, islands, and lakes.  

Point and line feature labels are arranged next to the object and area feature labels 

usually placed within the boundary of the feature to be labeled. 

 Some rules are devised to measure the semantic clarity of a labeling assignment. 

We state three concepts that are widely accepted as the basic rules for accurate map 

labeling. 

Readability: The labels are of legible size. 

Un-ambiguity: Each graphical feature of the map can be identified with the 

corresponding label. 

Avoidance of Overlaps: Labels should not overlap with other labels or other graphical 

feature of the layout (map). 

We denote the possible label positions of a feature as its label candidates. 
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Sometimes, a cost is assigned to an individual label candidate that reflects the quality of 

this label in terms of un-ambiguity, overlap with graphical features, and preferences 

between the label candidates. 

Research on map labeling has been primarily focused on labeling point features, 

where the basic requirement is that the labels should be pairwise disjoint. It is clear that 

this is not achievable in the case of large labels. Large labels are common in technical 

drawings or medical atlases where certain site-features are explained with blocks of text. 

To address this problem, Bekos et al. defined boundary labeling [4] and investigated 

some criteria, like minimizing the total leader length, in boundary labeling [5][6]. In 

boundary labeling, labels are attached on the boundary of a rectangle R which encloses 

all sites [4]. In their research, the main task is to place the labels in distinct positions on 

the boundary of R so that they do not overlap and, to connect each site with its 

corresponding label by non-intersecting polygonal lines, so called leaders. 

 Most of the problems of boundary labeling are one feature point corresponds 

to one label. And the main criteria are to place the labels in distinct positions on the 

boundary of R so that they do not overlap, or minimizes total leader length, or 

minimizes number of bends. But often some map or drawing not only connects exact 

one feature point to exact one label, but also connects several feature points to exact one 

label. Like the religion distribution in each state of a country, the language distribution 



 

of the world, or the association or organization composed of some countries in Europe 

of Asia. But, in this thesis, we deal with labeling dense point sets with large labels and 

only one point can be allowed connecting to one label. The idea of this problem comes 

from the annotation system of Microsoft Office Word (See Figure 1-1). In the 

annotation system of Microsoft Office Word, we can easily find out that the leader of 

every site is composed of two straight lines. One is underline, and other connects to the 

corresponding label, and they are both dotted lines. 

 

 

Figure 1-1: A sample article of Microsoft Office Word. 
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In some situation, this annotation system is not always good visually. Especially, 

when the number of sites grows larger; the number of labels also grows larger; one 

column is not enough for all of them. According to Figure 1-1, Microsoft Office Word 

puts all labels in one page, and it only supports 36 labels. When we want to place more 

than 36 labels, they will vanish on the page. Also, when there are lots of labels, labels 

with large index number will be far away from where corresponding sites are. If this 

happened, the dotted lines will be too close to recognize them. It is not a proper 

placement for the annotation system.  

 Our problem can be modeled as follows: we assume that we are given a set P = {p1, 

p2,…, pn} of points and an axis-parallel rectangle R that contains P. Each point, or site, 

pi is associated with an axis-parallel rectangular label and we only allow one point 

connecting to one label. The labels have to be placed and connected to their 

corresponding sites by polygonal lines, so-called leaders, such that no two labels 

intersect and the labels lie outside R. We investigate various constraints concerning the 

location of the labels and the type of leaders. More specifically we either allow 

attaching labels to one, and two sides of R, and we either compare straight line or 

rectilinear leaders. Our goal is placing labels such that crossings are not allowed. First, 

we will introduce an algorithm that could minimize all the distances between a site and 

its corresponding label for the annotation system. Then, we expand the problem to 
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two-side labeling problems while sites numbers are large. We show some problems in 

our model are NP-complete, and propose heuristic genetic algorithm to solve them. 

In this thesis, we deal with labeling dense point sets with comparatively large 

labels. In the first half parts of this thesis, we try to normalize all the label size and fit 

them only on one side, and in the last half parts of this thesis, we separate labels into 

two groups. The same problem occurs when several locations on a map are to be labeled 

with large labels that must not occlude the map. The labels have to be placed and 

connected to their corresponding sites by polygonal lines, so-called leaders, such that (a) 

no two labels intersect, (b) no two leaders intersect, and (c) the labels lie outside R 

(boundary of the map) but touch R. We investigate some constraints concerning the 

location of the labels and the type of leaders. We consider two ways for visualization. 

By using rectilinear leaders, namely type-opo leader that consists of two orthogonal and 

one axis-parallel segments. We show the complexity of this problem in Chapter 3. For 

details refer to Chapter 4, we model two-side boundary labeling problem on the famous 

heuristic algorithm “Genetic algorithm”. First, find some non-intersecting (i.e. feasible) 

leader-label placement, and we also consider two natural objectives: minimize the total 

length of the leaders [5][6] and minimize the total height of the labels that are too hard 

to solve at the same time. 

This thesis is structured as follows. In chapter 2, we introduce some preliminary 
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knowledge associating our problems, including defining and modeling general 

boundary labeling problems. In chapter 3, we provide a new method by changing the 

order of labels to solve one-side annotation system. We also study the problem of 

minimizing total label height and total leader length when type-opo leaders are used and 

the labels are placed on left and right side of R. We proved these two problems are 

NP-complete. In chapter 4, we model the two-side labeling problem of minimizing total 

label height and total leader length with type-opo leaders on famous genetic algorithm. 

Because the number of labels on left side and right side are not fixed, the problem is 

hard. We show this problem can be run on genetic algorithm under some constraints. 

We show this heuristic algorithm is reasonable and suitable. In chapter 5, we simulate 

the problem with different parameters which may affect the result easily. Then, we 

analyze why they are accessible and compare the answer with optimal results of 

minimizing total label height and leader length at the same time. In chapter 5, we also 

show how these boundary labeling problems applied on Microsoft Office Word 

properly. At the end of this thesis; in chapter 6; we provide conclusions and introduce 

future work. All our surveys and works can be sum up in Table 1: 
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Table 1: Running time for related algorithms in big-O-notation. 

Leader type LABELING TLLM TLHM 

s 1-side n ε  

opo 1-side nlogn  

rerouted-opo 1-side n   

s 2-side NPC NPC 

opo 2-side NPC NPC 
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Chapter 2  
 
Preliminaries 
 

 

In boundary map labeling, the labels are placed in the boundary of the map that 

encloses all sites. To describe our problem in the thesis, we define the model of 

boundary labeling. We can choose what sides that the labels are placed to. The size of 

labels could be uniform or non-uniform. Boundary labeling is a kind of label placement 

that is usually used in cartography. However, we can also find out that it can also be 

used on article annotation as described before. Boundary labeling can be defined briefly 

as follow: A rectilinear map R with a lot of sites which are needed to be labeled. 
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2.1 Boundary Labeling Model 

 There are several variants in the boundary labeling model [4]. We try to introduce 

some below: 

Side: Sides of the enclosing rectangle next to which we place labels. We can use any 

sequence of N, E, W, and S (for North/East/West/South). In the cast of multiple 

stacks, we use NiEjWkSl when the labels are attached to the North, East, West, and 

South side of R and use i, j, k, l number of stacks, respectively. If no labels are 

placed next to a side we omit the letter corresponding to that side, and if only one 

stack is used we omit index 1. 

LabelSize: UnifSize (all labels have the same size), MaxSize (all labels are Uniform of 

MaxSize) or NonUnifSize (each label li is associated with a height hi and a 

width wi). 

LabelPort: FixedPorts (points where a leader can touch a label are predefined) or 

SlidPorts (points can slide along the label’s edge). 

LabelPos: FixedPos (labels have either to be aligned with a predefined fixed set of 

points on the boundary of the rectangle) or SlidePos (labels can slide along 

the rectangle’s sides) 

Leader: Type of the leader (opo, po, or o). We’ll introduce it in next section. 

Site: Type of the sites. Each site is a 1-point, line, rectangle, a polygon etc. In this thesis 
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we study that each site is a 1-point. 

Objective: LEGAL (just find a legal label placement), TLLM (find a legal label 

placement, such that the total leader length is minimum), TLHM (find a 

legal label placement, such that the total label height is minimum), TBM 

(find a legal label placement, such that the total number of bends is 

minimum or, equivalently, the number of type-o leaders is maximum), LSM 

(find the maximum label size for which a legal label placement is possible). 

 

2.2 Types of Leaders  

 

2.2.1 Straight-Line Leaders  

 

Each leader is drawn as a straight line segment (see Figure 2-1). According to the 

previous classification scheme, we refer to straight leaders as type-s leaders. 

 



 

 

Figure 2-1: Type-s leader. 

 

2.2.2 Rectilinear Leaders 

 

A rectilinear leader consists of a sequence of axis-parallel segments that connects a 

site with its label. Each leader consists of a sequence of axis-parallel segments, which 

are either parallel (p) or orthogonal (o) to the side of R to which the associated label is 

attached. This suggests that a leader c of type c1c2 . . . ck, where ci ∈ {o, p} consists of 

an x- and y-monotone connected sequence (s1, s2, . . . , sk) of segments from the site to 

the label, where segment si is parallel to the side containing the label if ci = p; otherwise 

it is orthogonal to that side. Our primary focus has been on opo and po leaders 

(see Figure 2-2 ), respectively.  

In this thesis we focus on leaders of the type opo (see Figure 2-2 (a)). For each 

type-opo leader we further insist that the central p-segment is immediately outside the 

12 
 



 

bounding rectangle R and is routed in a so-called track-routing area (see Figure 2-2 (b)). 

We assume that the width of the track-routing area is fixed and large enough to 

accommodate all leaders with a sufficient distance. Due to this assumption the total 

length of the o-segments of all leaders is identical in all label-leader placements. Thus 

we are left with optimizing the length of the p-segments. Minimizing the width of the 

track-routing area for a given minimum leader distance is an interesting problem in 

itself, which is not the topic of this work. 

 

     

    (a) Type-po leader.                            (b) Type-opo leader. 

Figure 2-2: Types of leaders. 

 

2.3 Two-Side Labeling and Four-Side Labeling 

 

Without losing generality, it is reasonable that we should not only put labels on one 

13 
 



 

side boundary of R. We should also think about other ways of putting them around R. 

For examples, two-side labeling (see Figure 2-3 (a)), four-side labeling (see Figure 2-3 

(b)), and circular labeling problems are also famous problem required to be studied. In 

this thesis, we studied more about two-side labeling problem which can be commonly 

used on the article annotation system, subway line labeling problem [9], and other 

applications. 

 

        

 (a) Type-s leader on two-side labeling.             (b) Type-s leader on four-side labeling. 

Figure 2-3: Types of many-side labeling. 

 

2.4 Modeling Two-Side Boundary Labeling 

 

We consider the following problem. Given an axis-parallel rectangle R = [lR, 

rR]×[bR, tR] of width W = rR –lR and height H = tR − bR, and a set P  R of n sites pi 

14 
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= (xi, yi ), each associated with an axis-parallel rectangular open label li of width wi and 

height hi , our task is to find a legal or an optimal leader-label placement. Our criteria 

for a legal leader-label placement are the following: 

1. Labels have to be disjoint. 

2. Labels have to lie outside R, close to the boundary of R. 

3. Leader ci connects site pi with label li for 1  i  n. 

4. Intersections of leaders with other leaders, sites or labels are not allowed. 

5. The ports where leaders touch labels may be fixed (the center of a label edge). 

In this thesis we present a polynomial time algorithm to solve one-side rerouted 

leader problem and a genetic algorithm that computes legal leader-label placements (for 

brevity, simply referred to as labelings) for two-side labeling shown below (see Figure 

2-4), but we also compare optimal placements of two-side label placement according to 

the following two objective functions: 

 

 Balance label height (minimum total label length of two side) and 

 Short leader length (minimum leader length). 

 



 

 

Figure 2-4: Type-opo leader on two-side labeling. 
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Chapter 3  
 
One-Side Rerouted Leader and Two-Side 
Label Placement 
 

 

We consider the problem about how to improve the annotation system of Microsoft 

Office Word. The criterion; total leader length; plays an important role in this problem, 

because we would like to place the label as near as its corresponding site. The criterion 

makes senses and it is practicable. In this chapter we focus on computing label 

placements of minimum total leader length and minimum total label height. We present 

an algorithm that attaches labels to one side (right) with rerouted leaders that change the 

order of labels. This is a new idea different from the original label placement. In two 

opposite sides (left and right), we prove that they are both NP-Complete problem for 
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satisfying either two objects described before. We also examine uniform and 

non-uniform labels, and fixed or sliding ports. 

 

3.1 One-Side Rerouted-Leader Label Placement 

 

In this section, we focus on computing label placement with rerouted leader and 

place all labels on one side (right side). The main point of our dynamic algorithm is how 

to compare total leader length of all label permutation efficiently. When there is a 

rerouted leader happened, we can find that the rerouted leader separates labels into three 

groups (see Figure 3-1 (a)). We have to calculate the sum of leader length of these three 

groups separately and compare with the length value while connecting to all labels 

through the right boundary, i.e. if rerouted leaders happened, the total leader length 

should be improved. 

We employ a table S of size n n to maintain leader length minimization. We use 

table S to save all the possible placement of the first rerouted leader. Since the location 

of each label is fixed, the length of the leader to the ith label of s  is determined. In 

the case of fixed port we define Right(p,i) to be the distance from site p to the port of 

the ith label of s . While in the case of sliding ports Right(p,i) is defined as the 

distance from site p to the closest point of the ith label of s . On the other hand, 
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Left(p,i) is defined similarly. In the case of fixed port we define Left(p,i) to be the 

distance from site p with rerouted leader to the port of the ith label of s . While in 

the case of sliding ports Left(p,i) is defined as the distance from site p to the closest 

point of the ith label of s  with rerouted leader. We obtain the following results. 

 

Theorem 1:  Given a rectangle R of sufficient size, one sides r of R, a set P  R of n 

sites in general position and a non-uniform rectangular label for each site, there is an 

O( )-time algorithm that attaches the labels to r and connects the site with 

non-intersecting type-opo leaders or rerouted type-opo leaders to the corresponding 

leaders using fixed or sliding ports such that the total number of leader length is 

minimized. 

 

Proof:  Without the loss of generality, assume that s  is the right side and s  is 

the left side of rectangle R. We also assume that the sum of the label heights is at most 

the height of constant number N (in the annotation system, we may assume N as the 

height of a paper sheet) and that the sites are sorted according to increasing y-coordinate. 

Recall that by p x , y  we denoted the ith site, by h  we denote the height of the 

ith label, 1  i  n, and by bR and tR we denote the y-coordinate of the bottom 

right and top right corner of R, respectively. Also, we denote  ,  as the length of 
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leader segment of kth leader in x-coordinate (orthogonal) direction and  ,  (parallel) 

as in y-coordinate direction. ,  is defined as all possible combination of the first 

rerouted leader, i.e. we have to decide the most outside rerouted leader first, or we 

cannot implement our algorithm because of unstable label positions. For example, ,  

means that we choose site 8 and reroute its leader for the purpose of placing its label 

into the position 3. ,  satisfies the following recurrence relation for 0 , . We 

can get ,  in polynomial time when we have already decided where label 

placed. 

,    , ,  , , , , ,  

In this algorithm, when we know how rerouted leader placed, we can separate 

labels into three groups (see Figure 3-1). The algorithm satisfies optimal substructure 

property which can be proved by contradiction. We assume that ,  is minimum in our 

solution. If there exist another , , , ,  is 

smaller than ∑  , , , we will choose  ,  as minimum solution. This 

contradicts to our assumption. Also, the algorithm satisfies overlapping sub-problem 

property (see Figure 3-1 (b) (c)). When we place the label of ith site to jth position or 

when we place the label of jth site to ith position, we will count the same sub-problem 

of ,  and , . The worse case of this algorithm happens when the leader always 



 

reroutes to the most outside of the sub problem. So, the complexity is ∑

. 

 

               

(a)                           (b)                         (c) 

Figure 3-1: Label placements that the dynamic programming algorithm takes into account when 

computing , . 

 

Sometimes, we may use uniform label placement under some circumstances. 

However, this problem is easier than previous one. We don’t need to add more 

information about label sizes and where labels placed in this situation. 

 

Theorem 2:  Given a rectangle R of sufficient size, one sides r of R, a set P  R of 

n sites in general position and a uniform rectangular label for each site, there is an 

O( )-time algorithm that attaches the labels to r and connects the site with 

non-intersecting type-opo leaders or rerouted type-opo leaders to the corresponding 
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leaders using fixed or sliding ports such that the total number of leader length is 

minimized. 

 

We can prove this theorem by adding more information of labels from Theorem 1. 

The way of calculating ,  is easier. The displacement of labels is constant 

when reroute happens (see Figure 3-1). We can save tiny time from previous one while 

sites are little. 

 

3.2 Label -Height Minimization on Two-Side Labeling 

 

Without losing generality, when we try to improve the annotation system, we 

would like to separate labels into two groups averagely. Which means it’s better to 

separate labels into two groups, and these two groups have the same label height. In this 

two-side map boundary labeling problem, we are given a map G = (S, L), S is a set of 

sites, L is a set of corresponding labels, and a positive integer M= Total label height , 

a finite set H which represents all the label height in L, and a target t. As usual, we 

define the problem as a language Two-Side Labeling: {<H,M,t>: there exists subsets 

H′ H  such that min  ∑ hH′ M t } 
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Instance: A map G = (S, L), S is a set of sites, L is a set of corresponding labels, and a 

positive integer M = Total label height , a finite set H which represents all 

the label height in L, and a target t. 

Question: Does there exist a subset of L that total height of labels is the nearest height 

vale to M? 

 

Theorem 3:  Minimizing label height of Two-Side map boundary labeling with 

opo-leader is NP-complete. 

 

Proof:  To show that two-side labeling is in NP, for an instance <H,M,t> of the 

problem, we let the subset H′ be the certificate. Checking whether  ∑ hH′ M t 

can be accomplished by a verification algorithm in polynomial time. To show the 

NP-hardness of this problem, we will reduce it from the subset sum problem. We will 

show that SUBSET-SUM p TWO-SIDE BOUNDARY LABELING problem. When 

t=0, this problem is equal to subset sum problem absolutely. We have to whether there 

exists a subset H′ H  such that  ∑ hH′ M. While t=1,2,…,n, we also have to 

check whether there exist a H′ H  satisfies  ∑ hH′ M t. This is also another 

subset problem. If we want to solve this problem, we have to solve subset sum problem 

many time until we find the minimum t. On the other hand, if we can solve this problem, 
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we can find out a corresponding subset sum problem. To sum up, TWO-SIDE 

BOUNDARY LABELING is NP-hard and TWO-SIDE BOUNDARY LABELING is in 

NP. TWO-SIDE BOUNDARY LABELING is a NP-Complete problem. 

 

3.3 Leader-length Minimization on Two-Side Labeling 

 

Leader-length minimization of two-side labeling is another criterion of our solution. 

Without losing generality, when we try to improve the annotation system, we would like 

to place labels as near its’ site as possible. Which means it’s better to minimize leader 

length to fit the object. 

 

Instance: Given k , and a set S of n sites on many horizontal lines of set L. Each 

site has rectangular label  with dimension w h . And a set R={r

the shortest length from site s  to the right boundary} 

Question: If there exist any legal opo-labeling with labels on left side and right side of a 

boundary R, such that the total leader length is at most M? 

 

Theorem 4:  Minimizing total leader length of Two-Side map boundary labeling 

with opo-leader is NP-complete. 
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Prof: In order to prove the problem belongs to NP-complete problem. We need to guess 

a position of the labels on the boundary of L and also check (i) the label do not overlap 

each other. (ii) all the leaders do not intersect with each other. (iii) the sum of leader 

length is no more than M. We can reduce the problem of determining a legal solution of 

partition model. 

Given positive integers p , p , … , p , is there a subset I of J={1,2,…,2m}such 

that I contains exactly one of {2i-1,2i} for i=1,2,…,m, and ∑ aI ∑ aJ/I ? We will 

reduce an instance P of partition problem to an instance(S,L) of this problem such that P 

can be partitioned if and only if there is a two-side boundary labeling of S with 

corresponding labels to L. This problem can be reduced as a problem that there are 

many sites on one vertical line, and we want to put all the labels on right side or left side. 

If there are more than one sites on the horizontal line, we can assume that they are 

different sites and very close on the target vertical line (see Figure 3-2). At the same 

time, every site is lying on the central of the line where it is placed. 
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Figure 3-2: Transformation to two-side labeling on a line. 

 

We can easily prove this problem by reducing partition problem to it. Giving an 

integer set A={a , a , … , a } which represents the length of p-segment of every pairs of 

sites and labels. Also because all the sites have the same distance to the boundary, we 

can get another integer set B; while b B, and let 

 b a length of L width of track routing area  

Then, we can easily apply this problem to partition which is well-known as a 

NP-complete problem. Whereas, and if we can find an answer of two-side boundary 

labeling problem, we can also get the answer of corresponding partition problem. So, 

minimizing total leader length of Two-Side map boundary labeling with opo-leader is 

NP-complete. 

Because both label height minimization and leader length minimization are 

NP-Complete problem. And when we try to solve one of both problems, we will not 
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also get the optimal solution of the other. If we want to solve both of the problems at the 

same time, it will be harder than solving one problem. So, we try to use genetic 

algorithm to solve two problems at the same time and runs quickly. 
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Chapter 4  
 
Genetic Algorithm on Two-Side Labeling 
 

 

Genetic algorithms are stochastic global search methods that have proved to be 

successful for many kinds of optimization problems. Genetic algorithms are categorized 

as global search heuristics. These algorithms work with a population of candidate 

solutions and try to optimize the answer by using three basic principles, including 

selection, crossover (also called recombination), and mutation. The initial population 

should be chosen randomly. Then, during subsequent generation, new candidate 

solutions are produced by selecting two individuals, with higher probability of selection 

for better individuals. And then, we have to recombine parts of these individual to form 

one or two offspring, and mutate (change slightly) the resulting offspring. At last, the 
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new descendent is inserted back to the population and worst individual is deleted. 

Genetic algorithm can be shown as follow: 

Pseudo-code algorithm 

1. Choose initial population 

2. Evaluate the fitness of each individual in the population 

3. Repeat  

(a) Select best-ranking individuals to reproduce 

(b) Breed new generation through crossover and mutation (genetic 

operations) and give birth to offspring 

(c) Evaluate the individual  of the offspring 

(d) Replace worst ranked part of population with offspring 

4. Until termination 

The basic loop is depicted in (see Figure 4-1). The implement of all steps will be 

discussed in more detail in Chapter 4. 

 



 

 

Figure 4-1: The basic loop of a genetic algorithm. 

 

4.1 Genetic Algorithm Modeling 

 

Genetic algorithms are implemented as a computer simulation in which a 

population of abstract representations (called chromosomes or the genotype or the 

genome) of candidate solutions (called individuals, creatures, or phenotypes) to an 

optimization problem evolves toward better solutions. Traditionally, solutions are 

represented in binary as strings of 0s and 1s, but other encodings are also possible. The 

evolution usually starts from a population of randomly generated individuals and 

happens in generations. In each generation, the fitness of every individual in the 

population is evaluated, multiple individuals are stochastically selected from the current 

population (based on their fitness), and modified (recombined and possibly randomly 

mutated) to form a new population. The new population is then used in the next iteration 

of the algorithm. Commonly, the algorithm terminates when either a maximum number 
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of generations has been produced, or a satisfactory fitness level has been reached for the 

population. If the algorithm has terminated due to a maximum number of generations, a 

satisfactory solution may or may not have been reached. 

Genetic algorithms find application in bioinformatics, phylogenetics, computer 

science, engineering, economics, chemistry, manufacturing, mathematics, physics and 

other fields. 

A typical genetic algorithm requires two things to be defined: 

1. a genetic representation of the solution domain, 

2. a fitness function to evaluate the solution domain. 

A standard representation of the solution is as an array of bits. Arrays of other 

types and structures can be used in essentially the same way. The main property that 

makes these genetic representations convenient is that their parts are easily aligned due 

to their fixed size, which facilitates simple crossover operation. Variable length 

representations may also be used, but crossover implementation is more complex in this 

case. Tree-like representations are explored in Genetic programming and graph-form 

representations are explored in Evolutionary programming. 

The fitness function is defined over the genetic representation and measures the 

quality of the represented solution. The fitness function is always problem dependent. 

For instance, in the knapsack problem we want to maximize the total value of objects 
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that we can put in a knapsack of some fixed capacity. A representation of a solution 

might be an array of bits, where each bit represents a different object, and the value of 

the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such 

representation is valid, as the size of objects may exceed the capacity of the knapsack. 

The fitness of the solution is the sum of values of all objects in the knapsack if the 

representation is valid or 0 otherwise. In some problems, it is hard or even impossible to 

define the fitness expression; in these cases, interactive genetic algorithms are used. 

Once we have the genetic representation and the fitness function defined, GA 

proceeds to initialize a population of solutions randomly, and then improve it through 

repetitive application of mutation, crossover, inversion, and selection operators. 

 

4.1.1 Individual 

 

The individual represent a candidate solution. In this problem, it represents a legal 

label placement without crossing. The individuals are stored as real-valued vector. We 

let the element “0” of the vector representing connecting to left side boundary. On the 

other side, the element “1” means putting label to the right side boundary. Although it is 

conceivable that different genetic representations influence the optimization behavior 

significantly, we choose this representation instinctively. Because we only need two 
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types of groups to represent connecting to the left side or connecting to the right side, it 

is obviously that binary integer representation is just what we need.  

 

4.1.2 Initialization 

 

At the beginning of the genetic algorithm, the individuals in the population have to 

be initialized. Initially many individual solutions are randomly generated to form an 

initial population. The population size depends on the nature of the problem, but 

typically contains several hundreds or thousands of possible solutions. Traditionally, the 

population is generated randomly, covering the entire range of possible solutions (the 

search space). Occasionally, the solutions may be "seeded" in areas where optimal 

solutions are likely to be found. In our case, this is done randomly. We generate a label 

placement with restricted given area (including rectangle R, track routing area, and 

space for labels) and let bad offspring eliminated by selection. 

 

4.1.3 Evaluation 

 

The choice of the evaluation function plays a crucial role in the design of a genetic 

algorithm. There is a big advantage of using evaluation in genetic algorithm. One can 
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measure desired criteria on the resulting placement and weight these criteria to suit 

personal preferences. Because genetic algorithm is always using in multi-purpose 

problem, we can then analyze how important these criteria are.  

Among the criteria we test are 

• All the leaders do not cross to each other. 

• All the labels do not overlap to each other. 

• Total labels should be placed balanced on left side and right side. 

• The longer label height on left side and right side is minimum height. 

• Total leader length is a minimum length of all combination. 

The result presents in Chapter 5 show some cases of legal placement. 

 

4.1.4 Selection 

 

Selection is important to genetic algorithm, since only selection drives the search 

towards more promising regions of the search space. In our implementation, we select 

individuals for reproduction (i.e. parents) according to the common linear ranking 

selection scheme, i.e. individuals are selected according to their rank, with better 

individuals receiving a higher chance of being selected. So that, the selective pressure of 

actual fitness values, which may be important, since it is not known beforehand in 
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which range of fitness values the optimal solution is located. The algorithm is of the 

steady state type, i.e. the offspring is introduced into the population, and at least fit 

individual is deleted. This way, the best solution so far is never lost. Also, in our 

problem, when crossing happened, the individual should not be counted in the 

population. 

We define fitness function as follow: 

 

f λ
∑  c

n |tR bR| |rR lR| ε λ
|R L |
R L  

 
          Label height of the right side. R
          Label height of the left side. 

: 
L : 

           Track routing area width. ε:
           Top position of the boundary. t :
          : Bottom position of the boundary. 

R

bR  
          : Right position of the boundary. rR  
          lR: Left position of the boundary. 

 

In order to normalize the function, we divide these parameters to their intuitive 

maximum value. Thus without generality, λ  and λ  can be chosen between 0 and 1, 

and satisfy λ λ 1. 

 

4.1.5 Recombination 
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In order to get better result, we combine two good parents into a new offspring 

which may be brown better or not. The purpose of the crossover operator is to 

recombining sub-placements of different individuals to produce an offspring. Since, we 

expect that good parts of a placement are connected, we perform crossover by choosing 

randomly a connected parts of the placement of two parents and swap the 

sub-placement. 

However, unfortunately, there is a problem with this operator using this method. A 

combination of two good parents may yield a poor offspring. This poor offspring will be 

deleted during the natural selection process. 

 

4.1.6 Mutation 

 

Mutation is a crucial step of genetic algorithm. While using recombination, we can 

only find new combination of individuals that are already at present. We may lose some 

information forever while it is not in the population. Another method called mutation 

can introduce new material into the population, i.e. the slight changing of individuals. It 

is necessary and reasonable to get new materials to increase the probability of getting 

better answers. In out implementation, mutation is done by randomly changing binary 

vector with a given small probability. We try to change one leader from the right side to 
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left side (or from the left side to the right side). This way, we will have a probability to 

get a better individual through the present individual and the result is different from the 

recombination (or crossover) process. 

 

4.2 An Example of GA on Two-Side Labeling 

 

Now, we give a simple example how we implement genetic algorithm on two-side 

labeling. At the beginning, we give a fixed rectangle R which is 400 by 300 units as the 

target map and also give a fixed width for the track routing area that is assumed enough 

for all the leaders’ placement. Initially, we generate the number of sites, the height of 

labels randomly. Also, we can get some parameters (including R width, track routing 

area width and total label height) for the fitness function shown below: 

 

f λ
∑  c

n |tR bR| |rR lR| ε λ
|R L |
R L  

 

After that, for the fitness function, we only need to calculate the length of leader of 

any possible placement generated from the algorithm and the combination of labels. We 

give 4 chromosomes represented as a 20-bits vector as an example (see Figure 4.2-1). 

Letting the element “0” of the vector represents connecting to left side boundary. On the 



 

other side, the element “1” of the vector represents connecting to right side boundary. 

(see Figure 4.2-1) 
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chromosome [0]=10100110011101110101  fitness = 0.1946 
chromosome [1]=01001101011111000011  fitness = 0.2077 
chromosome [2]=11111011011111001110  fitness = 0.2359 
chromosome [3]=10111010111001011011  fitness = 0.2335 

 
Figure 4-2: Four chromosomes represented as a 20-bits vector. 

In this genetic algorithm, we have to select smaller fitness number as better 

individuals, and this is different from original fitness definition. Then in iteration (i), we 

choose the smallest two individuals chromosome [0] and chromosome [1] and 

recombine them in order to get better offspring (see Figure 4.2-2). After recombination, 

we can find out that CrossOverChromosome [2] is better than its parents. In the 

program, choose a number of bits for swap process randomly. In this case, we choose 

first 4 bits of chromosome [0] and swap them to the first 4 bits of chromosome [1] and 

get chromosome [2] and chromosome [3]. As the result, one is better and the other is 

worse. It is obviously that the worse individuals will be eliminated by the natural 

selection in this iteration. 
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CrossOverChromosome [0] = 10100110011101110101  fitness = 0.1946 
CrossOverChromosome [1] = 01001101011111000011  fitness = 0.2077 
CrossOverChromosome [2] = 01000110011101110101  fitness = 0.1856 
CrossOverChromosome [3] = 10101101011111000011  fitness = 0.2200 

 
Figure 4-3: Four chromosomes represented as a 20-bits vector in iteration (i). 

The iteration will stop when all the four individuals have the same chromosome. In 

this situation, we will ignore the possibility of mutation in the future because it is not 

worthy to wait for its happening. The mutation only occurs with a given small 

probability. In this algorithm we choose only a bit of vector and change it. Even this 

may not always useful in the algorithm, it helps when we need more different material 

in the population. The GA result and optimal result show below: (see Figure 4-4 and 

see Figure 4-5) 

 



 

 

Figure 4-4: Type-opo leader of GA solution on two-side labeling. 

 

 

Figure 4-5: Type-opo leader of optimal solution on two-side labeling. 
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Chapter 5  
 
Simulation Results 
 

 

For now, we test our algorithm on a number of example graphs with rerouted 

leader on one-side labeling and genetic algorithm on two-side labeling. As described 

above, there are some disadvantages of the annotation system of Microsoft Office Word. 

While inputted label number is small, it is more general that users may want to enlarge 

label height to see more details in the labels. On the other hand, while inputted label 

number becomes larger, the system should not abandon labels easily. We provide the 

following method to prove the annotation system: (i) While inputting little labels, we 

enlarge label size to fit the height of paper sheet and apply the situation on rerouted 

leader labeling method. However; we can also use this method to prove the 
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visualization by combining dotted lines into one. We will show the detail in the 

following sections. (ii) While inputting many labels, we can also combine labels of sites 

on one line. (iii) While inputting many labels, in order to provide more space for labels, 

we try to reduce the space of text and provide one more column for labels in one page. 

This way, we can apply the situation on two-side labeling problem. We separate them 

into three basic groups to see whether two objects: minimum label height and minimum 

leader length is important.  

 

5.1 Rerouted Leaders on One-Side Labeling 

 

Recall the details in chapter 3; we proved that the algorithm of rerouted leader 

label placement of one-side labeling is run in polynomial time O(n ). The total leader 

length of original placement is 1880 units and rerouted leader placement is 1120 units 

(see Figure 5-1). This one-side labeling problem with rerouted leaders makes the 

annotation system improvable. In next section, we will show how it looks when 

applying on Word. 

 



 

           

(a) Original placement.        (b) Rerouted leader placement. 

Figure 5-1: Easy sample result of non-uniform rectangular label placement. 

 

5.2 Genetic Algorithm on Two-Side Labeling 

 

In this section, we slightly change λ  and λ  in order to get better visualization 

of two-side labeling problem. Besides, we also want to know how these parameters 

affect the final result.  

 

5.2.1 Leader Length Minimization 

 

In some situation, we may focus on object “leader length minimization”. We can 

slightly change λ  and λ  to fit our destination. So, we try typical formation to see 

how important they are under our constraints. 
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Table 2: Details of our GA algorithm and optimal solution with λ =1.0 and λ =0.0. 

 Total leader length Difference of label height 

GA algorithm 5842 units 44 units 

Optimal solution 4710 units 48 units 

 

Here, the site number is 20, total leader length of Figure 5-5 is 5842 units and 

height difference of left labels and right labels is 44 units. Total leader length of Figure 

5-6 is 4710 units and height difference of left labels and right labels is 48 units. In this 

case, we assume possible maximum leader length is 16020 units and total label height is 

12080 units. 

 



 

 

Figure 5-2: Type-opo leader of GA solution on two-side labeling. 

 

 

Figure 5-3: Type-opo leader of optimal solution on two-side labeling. 
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When these objectives are not both important, we may try to set with λ 1.0 

and λ 0.0. This is reasonable for the normalization. We also show that the genetic 

algorithm works, because the average fitness converge to optimal fitness finally 

(see Figure 5-4). It converges quickly. Although in other cases, we may see some points 

which are not respected, it’s because the mutation process and we still can find out the 

tendency of convergence. Even though the leader length is smaller, it doesn’t look very 

good because the labels of two sides are not balanced as usual. 

 

 

Figure 5-4: The GA convergence with λ 1.0 and λ 0.0 

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.376 0.369 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364 0.364

AVG fitness 0.411 0.385 0.373 0.367 0.364 0.364 0.364 0.364 0.364 0.364 0.364

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

0.42

GA convergence
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5.2.2 Label Height Minimization 

 

In some situation, we may focus on object “label height minimization”. We can 

slightly change λ  and λ  to fit our destination. So, we try typical formation to see 

how important they are under our constraints. 

 

Table 3: Details of our GA algorithm and optimal solution with λ =0.0 and λ =1.0. 

 Total leader length Difference of label height 

GA algorithm 6478 units 28 units 

Optimal solution 6232 units 0 units 

 

Here, the site number is 20, total leader length of Figure 5-5 is 6478 units and 

height difference of left labels and right labels is 28 units. Total leader length of Figure 

5-6 is 6232 units and height difference of left labels and right labels is 0 units. In this 

case, we assume possible maximum leader length is 16020 units and total label height is 

12080 units. 

 



 

 

Figure 5-5: Type-opo leader of GA solution on two-side labeling. 

 

 

Figure 5-6: Type-opo leader of optimal solution on two-side labeling. 
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When these objectives are not both important, we may try to set with λ 0.0 

and λ 1.0. This is reasonable for the normalization. We also show that the genetic 

algorithm works, because the average fitness converge to optimal fitness finally 

(see Figure 5-7). It converges quickly. Although in other cases, we may see some points 

which are not respected, it’s because the mutation process and we still can find out the 

tendency of convergence. 

 

 

Figure 5-7: The GA convergence with λ 0.0 and λ 1.0  

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.005 0.004 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002

AVG fitness 0.014 0.008 0.004 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

GA convergence
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For the annotation system, we believe that two-side labeling can solve this problem. 

If we use two-side labeling for the annotation system, we must reduce the number of 

words in one page, i.e. we need two column spaces for all the labels.  

 

5.2.3 Leader Length and Label Height Minimization 

 

In some situation, we may focus on both leader length and label height 

minimization. We can slightly change λ  and λ  to fit our destination. So, we try 

typical formation to see how they work under our assumption. 

 

Table 4: Details of our GA algorithm and optimal solution with λ  = λ  = 0.5. 

 Total leader length Difference of label height 

GA algorithm 6274 units 28 units 

Optimal solution 4756 units 8 units 



 

 

Figure 5-8: Type-opo leader of GA solution on two-side labeling. 

 

 

Figure 5-9: Type-opo leader of optimal solution on two-side labeling. 
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Here, the site number is 20, total leader length of Figure 5-8 is 6274 units and 

height difference of left labels and right labels is 28 units. Total leader length of Figure 

5-9 is 4756 units and height difference of left labels and right labels is 8 units. In this 

case, we assume possible maximum leader length is 16020 units and total label height is 

12080 units. 

When these objectives are both important, we may set λ  and λ  are 0.5 which is 

reasonable for the normalization. We also show that the genetic algorithm works, 

because the average fitness converge to optimal fitness finally (see Figure 5-10). It 

converges quickly. Although in other cases, we may see some points which are not 

respected, it’s because the mutation process and we still can find out the tendency of 

convergence. In this case, we can easily find out that these two objects are both 

important for beautiful placement. 

 



 

 

Figure 5-10: The GA convergence with λ 0.5 and λ 0.5.  

0 1 2 3 4 5 6 7 8 9 10

Best fitness 0.213 0.202 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197

AVG fitness 0.222 0.215 0.205 0.199 0.197 0.197 0.197 0.197 0.197 0.197 0.197

0.18

0.185

0.19

0.195

0.2

0.205

0.21

0.215

0.22

0.225

GA convergence

 

Table 5: Average experiment results of minimum leader length with various λ combinations running 1000 

times. 

λ λ  , 1.0,0.0 0.9,0.1 0.8,0.2 0.7,0.3 0.6,0.4 0.5,0.5 0.4,0.6 0.3,0.7 0.2,0.8 0.1,0.9 0.0,0.1

L  5954.8 5780.6 6091.4 5756.6 5950.6 6036.0 5909.8 5961.2 5928.0 6134.4 6389.6

opt 4710 4710 4710 4710 4710 4756 4756 4756 4756 4756 6232 

% 0.2642 0.2273 0.2932 0.2222 0.2633 0.2691 0.2425 0.2534 0.2464 0.2898 0.0252

L  69.0 80.0 65.2 77.6 72.0 78.0 58.4 73.2 20.2 27.2 24.6 

opt 48 48 48 48 48 8 8 8 8 8 0 

% 0.4375 0.6666 0.3583 0.6166 0.5000 8.7500 6.3000 8.1500 1.5250 2.4000 # 

 

Besides, we also try some other   λ  combinations (see Table 5). Because of 

different λ combinations, optimal solutions are also different. So, when we want to 

compare these data, we have to compare with their own optimal solutions. According 
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to Table 5, we can find out that there is a tendency that total leader length grows larger 

while focusing on label height balance, and vice versa. Even though the results of our 

algorithm depend on initial placement mostly, λ combinations still affect them. In fact, 

the best λ combination should be defined case by case, so we do not study them a lot. 

 

5.3 Implementation on Word 

 

In this section, we try to apply our abstract algorithm on real Office Word. Then, 

we will discuss the advantages and disadvantages of original word annotation system 

and our results. 

 

5.3.1 Rerouted-Leaders on One-Side Labeling 

 

We provide some sample results here. In order to improve this system, we tried 

many ways of using this annotation system. So, we encountered many difficulty of 

telling one leader from each other while there are too many labels on one page or when 

labels are far from their corresponding sites. For example (see Figure 5-11), there exists 

some big labels near the bottom of the boundary. This case makes labels above are 

placed higher than they expect. This placement is not easy to understand because 



 

leaders are long and close to each other (see Figure 5-11 (a)). The main idea of our 

method is that we can rearrange the order of the labels (see Figure 5-11 (b)). We 

provided rerouted leaders and this method simplify the complexity of connecting pairs 

of sites and labels. The result showed follow looks quite good as we expected. 

 

 

(a) Original label placement of MS Word.             (b) Sample result of our algorithm. 

Figure 5-11: Sample result while the number of labels is small. 

 

Another situation is that users may need to annotate more than one word on one 

line (see Figure 5-12). This case is even worse on visualization than the case above. The 

placement is harder to understand because leaders are too close to each other (see Figure 

5-12(a)). To simply the complexity, we combine labels on the same line together 
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(see Figure 5-12(b)), and only provide one leader to the combination labels. This way, 

we reduce the number of leaders and minimize total leader length which are both 

important for visualization. The result showed follow looks clear and more 

understandable. 

 

 

(a) Original label placement of MS Word.             (b) Sample result of our algorithm. 

Figure 5-12: Sample result while the number of labels is large. 

 

5.3.2 Genetic Algorithm on Two-Side Labeling 

 

When site number grows larger, it will take too much time for searching optimal 
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solutions for two-side labeling placement. In this situation, we would rather choose a 

solution that is not always optimal but good and got efficiently. We present a result 

(see Figure 5-13) for the annotation system. We can see the detail in Table 5 below.  

 

Table 6: Details of our GA algorithm and optimal solution on Word. 

 Total leader length Difference of label height 

GA algorithm 3082 units 30 units 

Optimal solution 2756 units 30 units 

 

Here, total leader length of Figure 5-13 (a) is 3082 units and height difference of 

left labels and right labels is 30 units. Total leader length of Figure 5-13 (b) is 2756 

units and height difference of left labels and right labels is 30 units. In this case, we 

assume possible maximum leader length is 10212 units and total label height is 9240 

units. 

 



 

      

(a) Sample result of our algorithm.             (b) Sample result of optimal solution.  

Figure 5-13: Applicable sample result of our GA algorithm. 

 

Table 7: Average results of our GA algorithm and comparison with optimal solution while running 1000 

times. 

 Total leader length Difference of label height 

GA algorithm 3108 units 70 units 

Optimal solution 2756 units 30 units 

Difference 352 units 40 units 

 

Now, we apply the result on the Word (see Figure 5-14). We use two column 

spaces for the label placement. It becomes clearer to tell all leaders on the page. For 

readers, they do not need to turn the pages to find the information about the sites. 

Readability is also improved. 
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(a) Sample result of our algorithm             (b) Sample result of optimal solution 

Figure 5-14: Sample result from Figure 5-13 

 

5.3.3 Comparison between Rerouted Leaders and Two-Side Labeling 

 

The relationship between these two methods is how we want to improve the text 

annotation system. Most of the time, we hate to read articles on computers because we 

get tired easily. Some people may used to print them out. So, it is good to consider how 

to fill one paper with most information. This way, we should not only consider the 

column space for labels, but also how large they are. These two methods have their own 

advantages and disadvantages that are subjective. Thus, we may be able to provide 

related parameters for users. Even though there exists an article which can be applied on 
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one-side rerouted leader placement and two-side placement, it is hard to find objective 

criteria to judge how good they are. Leader length is different because of different 

column space, and we may lose the degree of freedom if we firm up the column space 

first.  
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Chapter 6  
 
Conclusion and Future Work 
 

 

6.1 Conclusion 

 

The main motivation of this thesis is that we do not satisfy with the annotation 

system of Microsoft Office Word. Sometimes, it wastes some space which can be used 

to shown more information about labels. There are some plug-in that support a kind of 

functions that we can paste labels anywhere on one page. However, even though it is 

free to move labels on a page, it takes time and it’s hard to arrange beautifully. Because 

these kinds of software threat a context file as an image, we may lose some advantages 

of context files. So, it is reasonable that we like to generate label placements 
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automatically. In this thesis, we provide many methods to improve this system under 

various situations. We provide a polynomial time algorithm to solve one-side labeling 

problem with rerouted leaders which make leaders understandable. We also proved that 

two-side labeling problem is a NP-complete problem on total label height minimization 

and total leader length minimization. Also, we presented a genetic algorithm to solve 

two-side labeling problem for the purpose of drawing label placements automatically. 

We have shown the complexity of problems of type-opo leader on two sides, we also 

give the algorithm for these problems and apply the results on Microsoft Office Word.  

We not only analyze the relation of minimizing total leader length and minimizing 

the total label height but also discuss them respectively. Of course even though they 

don’t reach the optimal value simultaneously, we can give a good result efficiently. We 

try our best to balance these two criteria by changing parameter λ  and λ  at the same 

time. That is, this algorithm cannot optimize the two objectives because of their 

contradict properties but try to find a good result which is balanceable for them.  

The main advantage of our genetic algorithm is that we can easily get a proper 

result for the application of article annotation. When the number of sites grows larger, 

we need more time to get the optimal solution, but genetic algorithm converges quickly 

on this problem. To sum up, rerouted-leader label placement and genetic algorithm is a 

good method to prove the annotation system. 
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6.2 Future Work 

 

There are still many open problems of labeling problems. We can change 

constraints to suit different applications or keep figuring out how to solve the problem 

efficiently. It is interesting to further study the problem of type-opo leader in four sides 

or even extend it into circular placement. And it can also be investigated when the type 

of site is not one-point, like lines, rectangles etc. Future work in this area may include 

and sum as follow: 

• Extending two-side labeling into four sides or circular style. 

• Extending two dimension drawings into three dimension drawings which are 

reasonable. 

• Changing the property of target sites, including point sites, linear sites, or 

rectangular sites. 

• We can also think about multi-sites to single label problem, single site to 

multi-labels problem and multi-sites to multi-labels problem that are more 

complicated than one site to one label problem. 
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