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Abstract

In hard-real-time environment, scheduling periodic tasks upon multipro-
cessors is one of the most popular problems where uniform multiprocessor
scheduling is a well-known one. In uniform multiprocessor scheduling, execution
time of each task in one processor is proportional to the computing capacity of
this processor. From previous works, there are only approximate feasible solu-
tions for on-line scheduling on uniformmultiprocessors. In this thesis, with task
migration, we first present a novel modetl r‘balled'T—Ler plane for uniform mul-
tiprocessors to describe the behavior of tasks and processors, and two optimal
algorithms based on T-L., plane fo schedule dynamic-priority real-time tasks
on uniform multiprocessors. To miake: :rﬁ"praptlcal and reduce context switches,
we also present a polynomial- tlme}%lgor}thm to bound the times of rescheduling
or task migration in a T-Lg;7 plane and.give| an experimental evaluation for it.
Since task migration is easiet in §0¢ multlcore processors, our result might be

applicable and adapted to many asymmetric multicore platforms.

Keyword: real-time, uniform, multiprocessors, optimal, on-line, algo-

rithm, precaution, greedy, cut.
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Chapter 1

Introduction

Multi-core processor represents a major evolution in computing technology re-
cently [1]. Many operating systems, are now benefiting from multi-core proces-
sors. It offers cost-effective technolegy rather than single-core processor and give
users the ability to keep Working while running tasks‘in the background. Multi-
threaded applications also benefit froﬁgﬁéﬁd result inperformance increases. It
has lots of advantages than SingleJcPre jg;iocéssors, sO.many enterprises support

it and develop many technologies.* i»

Asymmetric multicore platformr(AMPﬁ), which consists of lots of process-
ing units on one or several chips, is capable of executing the same instructions
on each processing unit with different performance levels. AMP may ease the
transition for software developers from platforms containing a few large, pow-
erful cores to platforms containing tens or hundreds of smaller, simpler cores
where parallelism exploiting will be required in order to improve performance.

Thus scheduling on AMP may be an important problem for current enterprises,



where many people tried to adapt real-time tasks on this platform and to en-
hance the total utilization, reducing number of context switching, and improve
performance. Calandrino et al. [5] focused on the soft real-time scheduling on
AMPs. They implemented their work on both schedsim (Linux scheduler simu-
lator) and Linux kernel, supported periodic real-time tasks, and provided good

performance for non-real-time tasks in the presence of a real-time workload.

To schedule multi-core processor, we consider the architecture in hard-real-
time environment — multiprocessors, similar to multi-core processor. If we could
schedule on multiprocessors, the, scheduling. algorithm might be adapted on
multi-core processors. Theré are three major kinds of multiprocessor platforms

as follows.

Identical parallel machine§: z/glthe processors are identical and con-

tain the same computing-power. | Fauﬂgh [2] had presented a strong fairness

scheduling algorithm called “P:fair,| where e'aéh task is scheduled resources in
proportion to its weight and it 1s an-optimal scheduling for identical multipro-
cessors. Due to its strong fairness, and quantum-based, it will reschedule many
times and have lots of context switches. Holman and Anderson [11] also dis-
cussed about P-fair and presented the idea of fluid schedule, where each task
executes at a constant rate, ideally but impractical because there will be too

much rescheduling. In 1969, Muntz and Coffman [17] had presented a level

algorithm for identical multiprocessors. They schedule the tasks in the highest



level first until all the tasks finish their jobs. The tasks in the same level will
be scheduled on some processors and evenly share the computing power of the
processors. Dertouzos and Mok [8] presented Lazity and Computation plane
(L-C plane) as shown in Figure 1.1. The laxity of a task is a measurement of its
urgency, represented on the x-axis. The computation is the remaining execution
time, represented on the y-axis. Clearly, the task, 17, with zero laxity must be

executed immediately and without interruption.

Cho et al. [7] based on P-fair and L-C plane, extended their idea, created
Time and Local Ezxecution Time Planes (or:T-L planes) with time represented
on the x-axis and execution'time represenféd on.the y-axis, a token represents
task status, and token movement over time in"TsL plane forms a line, as shown

in Figurer 1.2. T-L plane could show theexecutlon behayvior of tasks and make it

\ ‘—.r?_’v-'*

possible for us to envision that enﬁl e sotleduhng over time is just the repetition
of T-L planes, so that optimal: schpduhng in .a single T L plane implies optimal
scheduling over all. They prov1ded Largest: Local Remaining Execution Time
First (or LLREF) scheduling algorithm based on T-L plane and proved it is an
optimal on-line scheduling algorithm for identical multiprocessors. It reduces
the times of rescheduling, defines their own urgency task, and only invokes
the scheduler before the emergency of each task. Thus, the performance is

optimized.

Uniform parallel machines: Each processor is characterized by its own
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computing capacity, with the interpretation that a job that executes on a pro-
cessor of computing capacity s for ¢ time units completes s x ¢ units of execution.
Each task can migrate to all processors, execution requirement of task is a con-
stant, and execution time of task upon processors is proportional to the com-
puting capacity of each one. Horvath et al. [12] had extended the idea from the
level algorithm for identical multiprocessors to uniform multiprocessors. They
scheduled non-periodic tasks by level algorithm, used the idea of shared sched-
ule, and proved the minimal length schedule (or makespan problem). Gonzalez
and Sahni [3] had given the off-line optimal O(mlogm) scheduling algorithm
with the sorted time and no‘more than (m— 1) preemptions, where m is the

number of processors.

There are many works on on—line-g,g&eduling upon uniform multiprocessors.
Hochbaum and Shmoys [10] preseritfd ;Epﬂolynomial approximation scheme, try-
ing to let the last job finish as qiuickl;-as ]i)pssible. In static priority on-line
scheduling, based on RM (Ratex Mongtonic) scideduling algorithm [15], Baruah
and Goossens [4] tried to adapt RM“scheduling algorithm upon uniform multi-
processors, they based on the idea of greedy scheduling algorithm, gave higher-
priority jobs upon faster processors, and got an RM-feasibility test for this prob-
lem, which is the first nontrivial feasibility test for RM scheduling algorithm
upon uniform multiprocessors. In dynamic priority on-line scheduling, based

on EDF (Earliest Deadline First) scheduling algorithm [15], Funk et al. [9] pre-

sented a feasibility condition for periodic task upon uniform multiprocessors, all



the sets of tasks and processors need to satisfy this condition to be schedulable.
We call it FG condition in this thesis. They also presented an efficient test to
determine whether any instance of hard-real-time jobs known to be feasible on
a particular platform can be scheduled by EDF to meet all deadlines upon an-
other platform. They derived a sufficient condition to verify a periodic task set
to successfully meet all deadlines when scheduled using EDF, and got a EDF-
feasible condition. However, no quick algorithm could schedule any feasible task
set under the FG condition. From the definition of AMP and uniform multipro-
cessor [5], we know the scheduling algorithm for uniform multiprocessor could
be adapted to AMP easily. Thus, if'we could find'a good scheduling algorithm
for uniform multiprocessers, this algorithm might also have high performance

on AMP to achieve better parallelisms_r 1

|
|

Unrelated parallel machif@ S: rtheré is an execution rate r; ; associated
with each task-processor ordered ﬂgaﬂir (TZ , Pj), withithe interpretation that task
T; completes (r; ; x t) units of ekécution by exeéution on processor P; for ¢ time
units. To minimize the makespan of ‘this problem, Lenstra [14] presented a
polynomial algorithm with no longer than twice of optimum and a polynomial
approximation scheme, Jansen and Porkolab [13] also give fully approxima-
tion algorithm for this problem. Srivastava [18] presented a tabu search based
heuristic for minimizing makespan that can provide good quality solution for

practical size problem with a reasonable amount of computational time.
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In this thesis, we focus on dynamic-priority on-line scheduling for uni-
form multiprocessors. From introduction above, there were only approximately
feasible solution, EDF-feasible, and there is not an optimal dynamic-priority on-
line scheduling algorithm in terms of feasibility condition. Figure 1.3(a) shows
an example for EDF schedule in uniform multiprocessors, task 77 = (8, 10),
(execution_time, deadline), Ty = (7,10), processor P; with speed = 1, P, with
speed = 0.5, where P, runs 50 percentage as fast as P;. Based on the FG con-
dition, the set of tasks and processors is feasible, but not using EDF-feasible.
At time 0, the deadline of T} is equal to. 15, we assign 177 to P and Th to Ps.
At time 8, 7 finishes its jobi'based.on EDF, we assign Tb to Pi. At time 10,
the remaining execution requirement of T5"1s 1’ T5 misses its deadline. This
example shows that even the set of tasks and processors is feasible, it might
miss deadline by EDF-feasible SC}deﬁfg algorlthm However, the task set is

schedulable as shown in Flgure 1.8

b) using|quz optlmal scheduling algorithm,
1 1

the details will be discussed later:

Therefore, we would like to derive an‘optimal scheduling algorithm such
that for any task set satisfying the FG consition, it is always schedulable. To
derive an optimal scheduling algorithm, based on the concept of T-L plane
for identical multiprocessors, we create Time and Local Ezxecution Requirement
plane (or T-L,, plane) for uniform multiprocessors. T-L., plane can describe the
execution behavior of each task on uniform multiprocessors. It is different from

processor budget that processor budget consider about the work that processor



can provide [16], but T-L., plane is focus on the remaining work of each task.
To discuss the characteristics of uniform multiprocessors, we create a concept
of processor boundary in T-L,, plane. It is the critical boundary of processors,
where rescheduling might be needed when some tokens meet the boundaries.
With proper ”precaution” ahead to do the rescheduling, that is before current
task status might violate the FG condition, we can find the optimal scheduling

algorithm.

Based on T-L., plane, we derive two optimal on-line scheduling algorithms,
the first one is Precaution Greedy (or PG) scheduling algorithm. To achieve
optimum, we always reschedule-at some e{'fénts precautionously before the FG
condition is violated. This is beeause it might not b_e schedulable if we do not

reschedule until the most urgent eyent=occurs as the LLREF does. When we

| = |

reschedule, we always assign greedily th task with.the largest local remaining
" o T :

execution requirement the fagtest processor. However, the number of reschedul-

ing might be indefinitely.

Based on PG, the second one is Precaution Cut Greedy (PCG) schedul-
ing algorithm. The difference between PCG and PG is when rescheduling, local
remaining execution requirement of some task will be equal to the computing
capacity of some processor. We can assign the task to the processor all the way
to the end of T-L,, plane without affecting the schedulability. PCG dramat-

ically decrease the times of rescheduling with a upper bound of n + 1 in one

10



T-L,, plane, where n is the number of tasks.

Our contributions are as follows:

e We introduce a novel abstraction for reasoning about execution behavior of

tasks and processors on uniform multiprocessors, called T-L,, plane.

e We first present an optimal on-line scheduling algorithm for uniform multi-
processors called Precaution Greedy scheduling algorithm. There were only

approximate feasible solutions for this problem.

e We present an optimal on=line schedufihg algorithm for uniform multipro-
cessors called Precaution, Gut Greedy schedulingalgorithm, where the times

of rescheduling in one T-L., plaﬁé;s';;bpupded within n.
| | '1 |
The rest of this thesisis orgah zed as follows The next chapter introduces

SR |
the problem definitions and assumptlons and the fea&blhty condition on uni-

form multiprocessors. In chapter 3; we present a new model called T-L,, plane
for scheduling on uniform multiprocessors and describe the difference from T-L
plane. In chapter 4, we present the PG and PCG scheduling algorithms and
prove the optimality. We also derive the upper-bound for PCG algorithm in
one T-L.,. plane. In chapter 5, we analyze the performance of our scheduling

algorithms. This thesis is concluded in chapter 6.

11



Chapter 2

Definitions, Assumptions, and
Feasibility Condition for Uniform
Multiprocessors

Before we discuss the details of PGtand PCGisclieduling algorithms on uniform
multiprocessors, we introdtice our fask model.

(T
—

2.1 Definitions and Assumptifons‘ﬁr‘

We discuss the problem that dynamie-priority Scheduling of hard-real-time sys-

tems on a uniform multiprocessors platform of m processors with n tasks.

For system environment, we have the following definitions:

e On-line scheduling - makes scheduling decisions at each time-instant based

on the characteristics of tasks.

e Static scheduling - operates on a fixed set of tasks and produces a single

schedule fixed at all time.

12



e Dynamic-priority scheduling - executes tasks with arbitrarily priorities at

run-time

e Preemptive scheduling - allows task preemption at any time.

A processor P, is characterized by speed or computing capacity, s;, and
computing capacity in a period of time t. W.l.0o.g., we assume s are indexed in a
decreasing manner: s; =1, s; > s;.1,1 <1 < n, all the values are proportional
to speed, positive, and larger than zero. S; = 22:1 si represents the sum of
speed from processor 1 to processor :. W.l.o.g., we assume m = n, that is the
number of tasks is equal to the number of processors, because when m > n,
the slower processors will never be used, and Whén m < n, we can add dummy

processors with speed equal to 0. NI/

A task T; = (¢;, p;) is chavact rlze,il by an executlon requirement ¢; and a
period p; - all the tasks is perlod& and gene,‘rate a JOb at each integer multiple
of p; and each has an execution requlremernt ‘of ¢ execution units and must
complete by a deadline equal to the next integer multiple of p;,. We define

u; = ¢;/p; to represent the utilization of task i and C; = 2221 ¢ to represent

the sum of execution requirement from task 1 to task 1.

For each task, we have the following assumptions.

e Periodic and the deadline is equal to period.

e Independent task - tasks do not share resources or have any precedences.

13



e Full migration - tasks are allowed to arbitrarily migrate across processors

during their execution.

As Funk and Goossens [9] presented, we define the work-conserving schedul-

ing algorithm in the following conditions:

e No processor is idled while there are active jobs awaiting execution

e If at some instant there are fewer than n active tasks awaiting execution,

then the active tasks are executed upon the fastest processors.

2.2 Feasibility Condition for Uniform Multiprocessors

Recalled there are many works on uniform multiprécessors, Horvath et al. [12]

presented the minimal length schekdul‘e:ﬁ*set of tasks and processors. Funk et
| [

al. [9] had based on them and preﬁ nted-the| fea81b111ty condition upon uniform

multiprocessors. We 1ntroduce thelr theorems here and use the FG condition

to prove PG and PCG are optimal Scheduling algorithms.

Theorem 1 (Horvath et al. [12]) The level algorithm constructs a minimal
length schedule for the set of independent tasks T with service requirements
c1 > Cco > ...>c, on the processing system m = (31 >89 > ... > sm), m < n.

The schedule length 1s given by

%) (2.1)



Theorem 2 (Funk et al. [9]) Consider a set T ={T1,...,T,} of periodic tasks
indezed according to non-increasing utilization (i.e.,u; > u;q for alli, 1 <i <
n,where u; = 1% ). Let U; = Z;Zl uj for alli, 1 <i<n. Let m denote a system
of m < n uniform processors with speeds si, So, ..., Sm, S;i = S;v1 for all 7,
1 <@ < m. Periodic tasks system T can be scheduled to meet all deadlines on

uniform multiprocessor platform m if and only if the following constraints hold:

U, < S, (2.2)
e el LT S "

P o
@ 2L F R

&
U@? Si-1 L5, %ﬁ (2.3)
%‘, b ‘-ﬁ' Sl =
& .

i
e

. 'qﬁrlif:
'I o .'
%
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Chapter 3

Model and T-L., Plane

Now, we are ready to introduce our new model for scheduling tasks on uniform

multiprocessors.

3.1 P-fair and Fluid Schedule

o N
y

| e ||
In the fluid scheduling model, eaCthaS'l&m tihe sehedule executes at a constant

rate, but the cost of context. switc ing:énd;the times of rescheduling are sig-

1 u
nificant [11]. Based on fluid. scheduling model; P-fair scheduling algorithm is

optimal in identical multiprocessors with the basic idea fairness. P-fairness is a
strong notion of fairness which ensures at any instant, the absolute value of dif-
ference between the expected allocation of execution and the actual allocation
of execution to every task always be strictly less than 1 (or fluid schedule) [6].
Our idea is also based on P-fair and fluid schedule and extends to uniform

multiprocessors.
We know P-fair is optimal in identical multiprocessors, to build an opti-

17



mal scheduling algorithm, we use the concepts of fluid schedule, fairness, and
urgency in P-fair, let the time quantum be as small as possible, and schedule
urgent task first. The urgent task means if we do not schedule the task to
execute right now, it will miss deadline. The idea of fluid schedule for identical
multiprocessors could also work on uniform multiprocessors because it considers
the minimum time quantum for each processor, and the computing capacity of
all processors could accumulate virtually, and then assign to every task based

on their execution requirements.

3.2 T-L, Planes

From Chapter 1, we know#1-L plane can..present .the behavior of tasks for

identical multiprocessors. In I-L planﬁs Eaiecutzon Time is represented on the

"’ |

y-axis, Ttme is represented. on tﬂéﬁ X—élms Wé replace Lizecution Time with
‘ »

Ezecution Requirement, extend the model for uniforin multiprocessors, and call

it Time and Local Execution Réquz’rement :plcmes (or T-L,, planes), based on

T-L plane and L-C plane [7, 8].

To build a 2D plane for uniform multiprocessors, as shown in Figure 2.1,
T; arrive at time t; and its deadline is at time ¢; 4+ p;. The dotted line from
(0, ¢;) to (t1+p;, 0) indicates the fluid schedule, the slope can be indicated by u,.
Tasks assigned to different processors will have different execution rates. Since

the computing capacity of P, is larger than P, tasks have higher execution rate

18



£ £ £
B B B
/
/
/ \
/ /
/ |
/ 1
/ /
\\ 1
/ \
/ |
/ | o]
/ | (<]
AN | o Q
............. E R . s T SR>
s p—
/ | \ =
/ | g
/ | >
/ I | =}
::-:-.\ ||||||||||||||| \: |||||||| - ..lZ_HV
/ i I
/ 1 I
/ | |
\ I I
|
/ / I o
A AR F-=q---—- {-1r---- +
/ | |
/ I |
/ | I
/ I ]
/ ] ]
/
|
/ 1
/ 1 |
/ 1
/ I
/ i
\\ !
/ \ (BN
5 =
=l
[3) ~
C 3\ [
T see T

Execution Requirement

o
\\\\ gl
/
\w\\ =
/
1
7
\\\\IKH
\\\\ _H_
s
Vawam|
/7 /|

Figure 3.1: T-L,, Planes

19



on P;. Thus, the slope of task while assigned to P; is larger.

Now we consider n tasks, their fluid schedules can be constructed as shown
in Figure 3.1. As T-L plane, a right isosceles triangle (Recalled we assume s;
to be the biggest and its value is equal to 1, any task assigned to s; will move
diagonally down) can be found between every two consecutive scheduling events,
end of periods. Here we divide all the T-L,, planes by the periods of all tasks,
the deadline of every task is not within any two consecutive scheduling events
and n triangles of each task between every two consecutive scheduling events
can be overlapped together. It means 'we can schedule in one T-L.. plane

without consider the deadline of each task, just consider the local execution

k

o, where £

requirement of each task. We called the k" iseseeles triangles as T'L

is simply increasing over tim¢. The bottom side of the triangle represents time.
| 2 ||
The vertical side of the triangleyre ‘;resqpts

tasks, which we call local rematning ea:ecutz'bn requirement. Fluid schedule for

remaining execution requirement of

each task can be constructed as foverlapped_ in ‘each TLF plane with the same
slope, and the local remaining execution requirement of task s in k' T-L plane
is equal to w; - 5. If we finish all the jobs before the end of T-L,, plane, we

could give an optimal scheduling algorithm.

20



3.3 Definitions in One T-L.,. Plane

In the T-L., plane, we define [; ; to represent the remaining execution require-
ment of task 7; at time ¢;, the value of [; is equal to u; - tf It shows that
lio > lit10,71,1 < i < n. We also define r; ; = lm/(t’} — ;) to represent the
local utilization of task ¢ at time ¢;, the value of 7; o is equal to u;. To distinguish
from r and to verify the set of tasks and processors is still feasible in the T-L,,
plane, we define rg,j to represent the r;; at the time ¢; sorted in decreasing

order. Therefore, the order of rg,o in a T-L,, plane is equal to [; o at time 0.

3.4 T-L. Plane vs T-L Plane

As we introduced, T-Lg, planes are %peated ove'r time. Giving a feasible
scheduling algorithm for one =L} plaﬁe wil 1 also schedule other T-L., planes.
As shown in Figure 3.2, a good scigeduhng a],g,orlthm should keep all the tokens
move to t%, make sure all the rerhailiing executién requirement of tasks are equal
to 0 at time t*: in other words, they finish their jobs. As T-L plane, the dashed
line represents the fluid schedule for each task, every task is represented by a
token. Now we would like to discuss the details of a T-L., plane, and describe

the innovation inspired from T-L plane.

Firstly, in T-L plane, execution time is represented on the y-axis, but
in T-L., plane, it is replaced by execution requirement. Thus, local remaining

execution time is replaced by local remaining execution requirement for uniform

21
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multiprocessors. Secondly, the each processor between the time from 0 to t’}

can construct a fluid schedule path of a task with full utilization described by
solid line. We call it processor boundary, indicating it is the critical boundary
of processors, where rescheduling might be needed when some tokens meet
the boundaries. The slope of the processor boundary for each processor P, is
proportional to s;. For example, as shown in Figure 3.2, there are two processors
P, and P, in this T-L., plane, s; and sy are 1 and 0.5 respectively. They
have solid lines to represent the remaining computing capacity and connect all
the way to t’}. Thirdly, in T-L., plane; tasks could be assigned to different
processors and move downward in different slopes.. For example, as shown in
Figure 3.2, when task 2 /s assigned to progessor 1, its token would move 45

degrees downward, when task 3 [is-as _s;gned to processor 2, its token would

move 22.5 degrees downward due tT tﬁi speed of P2 1s 0.5.
|

In T-Le, plane, we observe that there are threekinds of time instants where
rescheduling is needed. Firstly, ‘\"N‘:hen the local remaining execution requirement
of a task is equal to 0, it would hit ‘the bottom of a T-L.,. plane. As T-L
plane, we call it bottom hitting event (or event B). Secondly, when the local
remaining execution requirement of a task is equal to e; (the computing capacity
of processor P;), it would hit the ceiling of a T-L, plane. As T-L plane, we call
it ceiling hitting event (or event C). We should assign this task to processor P,
otherwise, it could not finish in this T-L., plane. Thirdly, there is a new event

in uniform multiprocessors. When execution requirement of a task is equal to
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the computing capacity of processor ¢, it will hit the processor boundary of
processor i. We call it floor hitting event (or event F). Although, when event
F occurs, it is not necessary to reschedule to satisfy FG condition, it is the
precaution time instant to reschedule for our optimal scheduling algorithms.
Whenever any of these three events occurs, we will reschedule all the tasks in

our optimal scheduling algorithms.
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Chapter 4

Optimal Scheduling Algorithms for
Uniform Multiprocessors

Our scheduling algorithms for uiniform multiprocessors are based on the idea
of "precaution”. That is'we teschedule preeautionously when the C, F, and
B events occur before the “FG condition is wiolated.* When we reschedule, we
always assign greedily thestask with jf.r_,'fi;fe;‘.laulrgest local remaining execution re-
quirement the fastest processor. T_her(jfore,the tworscheduling algorithms we
are going to present are called P:recaution VGr}eedy (PG) and Precaution Cut
Greedy (PCG) scheduling algorithms. * The name ”Cut” in PCG scheduling
algorithm is because we cut the times of rescheduling dramatically. We will

present the two scheduling algorithms in the following sections and prove its

optimality:.
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Algorithm Precaution Greedy

Input: A set 7 of n tasks { 11,75, ..., T,, } with Utilization uy, us, ..., u

, P, } with Speed {s1, s9, ..., sp}.
ﬁ@i@&

i ':' -

A set 7 of n processors { P, P, ..

= .:gnL"?-.[

e
w't“r:' j‘?:,

while (any event [C'|F

while (there are ng'aéﬁé )
assign task W]ﬂl lar

requirement tq;;h.%

} L X
1{_‘1'

A

Figure 4.1: PG Scheduling Algorithm
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4.1 Precaution Greedy (PG) Scheduling Algorithm

Based on the FG condition, it is easy to check whether a task and processor set is
feasible. However, the problem is when to do rescheduling so that the feasible set
is schedulable and how to minimize the number of rescheduling. We know that
it might not be schedulable if we do not reschedule until the most urgent event
occurs as the LLREF does. To achieve optimum, we would like to reschedule at
some events precautionously before the FG condition is violated. Fortunately,
we find that before the FG condition is violated there must be some events
occur earlier. Therefore, PG scheduling algorithm schedules greedily the task
with largest local remaining execution requiténtent first to the fastest processor
and reschedules when any W gtcurs until theresds not any idle task or idle
processor. It is described in Eigure 4?%’ndan example is given in Figure 4.3.
Although PG is simple, it is the ﬂ\rsLt 0;.)t1ma1 schediling algorithm for uniform
multiprocessors. However, it mlgiqt have 1ndeﬁn1te times of rescheduling. We

will prove its optimality later and propose a-more efficient optimal scheduling

algorithm.

4.2 Precaution Cut Greedy (PCG) Scheduling Algorithm

Based on PG, PCG scheduling algorithm is also a precaution based scheduling
algorithm to reduce the number of rescheduling. It reschedules when event

[B|C|F] occurs as shown in Figure 4.2 and an example is given in Figure 4.4.
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Algorithm Precaution Cut Greedy

Input: A set 7 of n tasks { Ty, 75, ...,

© ©® N o ote W o=

—_
=

A set 7 of n processors { Py, P, ...,

while (any event [C|F|B] occurs s at time tr) {

if s; =rjp .
assign 1T to P uﬁ-ﬁli fﬁe “plane
remove P; from mh "T; v

"'-.l LT =

else rj; = 0 *-«' N . B

Rl =

remove 7 frorﬁ;T ] b B
?P i ‘ AL ﬁ{

while (there are reé;dygba l o &

-"' -
assign task with lar'g 'ﬁ“revmammg e @%u‘t‘?'on
requirement to the fastes% ﬂlﬂ prdce"ssor

T, } with Utilization uy, us, ..., uy,
P, } with Speed {sy, s9, ...

Figure 4.2: PCG Scheduling Algorithm

28



When any event occurs, there exists a task on a processor boundary in T-L,,
plane or the execution requirement of this task is equal to 0. PCG removes
the task and the processor and the remaining task and processor set is still
feasible. PCG also schedules greedily the remaining tasks with largest local
remaining execution requirement first to the fastest processors and reschedules
when any event occurs until there is not any idle task or idle processor. With
the removal of task and processor, the number of rescheduling in PCG decreases

dramatically. Its optimality will be proved later.

PCG gives better performancerthan PG, as shown in Figure 4.3 and Fig-
ure 4.4 with 3 tasks and 2 processors, Whéfe Tr=15 =T = (4.6,10), s; = 1,
sy = 0.5. Obviously, by, PCG,#he times of reseheduling is 4, but by PG, the

times of rescheduling is much more| thanPCG! At time 0, if the values of rq o, 72,0,

|

and 73 are closer to sg, the times ogf_;nﬁéscﬂ‘eduling Will increase dramatically.

The worst, the times of resch_edul*ng might be cloge to oo.
4.3 Proof of Optimality

Here, we will prove the optimality of PG and PCG scheduling algorithms. In
T-L., plane, we will reschedule when any event [B|C|F] occurs. Actually, all
the events occur when the execution requirement of some task is equal to the
computing capacity of some processor or 0. To prove the optimality of the

algorithm, we define the task order to be the decreasing sequence of task local
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U

o

T, T, T

1172,

1[13[118J[1’1b9.1 Uo1ndaxa 8[1[11[12(113.1 [€307]

Figure 4.3: Exéinple of PG Scheduﬁ:ng Algorithm

remaining execution requirement. Aseach task consumes processor computing
capacity differently, the task order in a T-L., plane are changed dynamically.
Therefore, it is not necessarily equal to the mapping of tasks assigned to proces-
sors. As shown in Figure 4.5, at time 0, task 1 has larger remaining execution
requirement than task 2, but at time ¢;, the order exchanges. However, the
task assignment is still the same. If we can guarantee that at any event the FG

condition holds according to the local remaining execution requirements in the
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1[13[119.1[1’1[’)9.1 UO0IINd9Xo 8[1[11[9(119.1 [€307]

Figure 4.4: Ekéf;lple of PCG Schedﬁfing Algorithm

task order, by the definition of FG condition, the task set is feasible.

Theorem 3 When any event occurs, the set of tasks and processors is feasible

by PG and PCG scheduling algorithms.

Proof. Since both PG and PCG reschedule when any event [B|C|F] occurs,
the feasibility condition is the same at this moment. In the beginning, the time

is 0, suppose the event occurs after time ¢, lapses. Both PG and PCG assign
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Fiéure 4.5: Task Ordé;
T; to P, Vi, 1 <1 < n. Let rg’g to represent the new r;, at time ¢,, actually
lip — si-tg, Vi, 1 <1i <mn, sorted in decreasing order. As we can see that the

/ : / ? / /
order of r; , might change. Moreover, we let R} represent > ,_, 7 and T;

represent the new ith task at time ¢, in the order of r{ .

We show that any event occurs earlier than FG condition is violated. Ac-

cording the definition of FG condition, before it is violated, at time ¢,, there
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must exist that

S; > R;

i Vi, 1<i<n, 38, =R, 1<k<n (4.1)
This is to say the FG condition would be violated if we do not reschedule when,

s > Vi, 1 <i<k/(orevent C occurs), and s; < T;ag (because Sp_1 >

1 g’
1 ; and S = R}, g). To derive the time ¢, when condition 4 holds, we can

solve the following equation:

k
Z Z%a /(tf_t)lﬁij_1<ij§n
J=1 j=1

Therefore, we can find seme 17, 1 Sz <k, & {T;|]1 < j <k}, or we
could not solve ¢, that means the EG oondli;cion still holds. That is there exists
T, € {T}]1 < j < k} and e {T’[l <7\ < ki corresponsively, and T, ¢
(i <j<k}and Ty & {I]]1 & ];;—k} If 53 > 1, > s;, T, would hit
processor boundary of P, and F entIF oéours (because Skl > T +14 When
Sy = R}, ) If s, >1rqy9 >0, T b, Wbuld hit processor boundary of P, and event

F occurs (because 1y, is smaller than Tdg and Sk)-

Therefore, there exists an event occurs before FG condition is violated
while scheduling by PG or PCG. In other words, rescheduling when any event
occurs, the set of tasks and processors will be feasible using PG and PCG

scheduling algorithm. 0

Theorem 4 For a feasible set of n tasks and n processors, the PG scheduling

algorithm is optimal and feasible for uniform multiprocessors.
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Proof. Since the set of tasks and processors is feasible, it follows the FG
condition. Since PG reschedules at any events, according to Theorem 3, the
new task set is still feasible in the T-L., plane. Since each T-L., plane is
independent, the while schedule is feasible. Therefore, any feasible task set can

be schedulable using PG. That is PG scheduling algorithm is optimal. O

Theorem 5 When any event occurs, there exists a task on a processor boundary
in T-Le- plane or the execution requirement of this task is equal to 0. If we
remove the task and the processor, the remaining set of tasks and processors

will still be feasible.

Proof. According to theorem 24the FG condition, we know if

S; > U; land 6, > Rbykat'Gime Vi, 1<i<n, (4.2)

| g |

the set of tasks and proeessors is ﬂe%&sibfk. By tleorem 3, we know rescheduling

when any event occurs, the set'?of tasks and ptdcessors are still feasible, therefore
condition 5 still hold. Suppose‘x‘v:hen'event [ |F] occurs at time ¢,, we assume
task Tj hits processor boundary of F;,; ' 1'<7,7 <n, and when event B occurs,
we assume task 7Tj finishes its job. Suppose when Tj is removed from the task

Y

set 7, the new r;,” will be reindexing as r}Hl,g, V7 < k < n, The relationship

between s; and 7’3 g before removal can be classified into four cases:
b
. o / .
Case 1: sz—rj’g,lgz—jgn

By condition 5, after removal, we can derive the FG condition of new task and
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processor set as
Sp> Ry, VE 1<k <i—1
Sk> Ry, —71i,Vki<k<n
With proper reindexing, the FG condition still hold.

Case 2: sizr},g,1§j<i§n

By condition 5, after removal, we can derive the FG condition of new task and

processor set as

S > BegiVh ¥ <, — 1
Vo 8§ e

-'""..—E:“w = )
and for 1 <k<j<i<m< nfs = Ly 'g?r;f‘,We can derive that
A A

b
Ok 2 2) |
= h
; =

and -—Salﬂ?_— fkhg )
:;ln | "" I?“'--
| | ! the B Ll L7
With proper reindexing, t’he"iF 4 dw;
.'_}.. o= o . % N -
._--.-' . —i,'-‘l & 1"?— ~,l :_j_—llr._. 5
< j:'j_-j ; .‘j o] il

Case 3: sizr;’g,1§i<j§n

By condition 5, after removal, we can derive the FG condition of new task and
processor set as

Sk:_SiER?g’g_ Vk,j<k§n

/
Tj.g90

/

. / 0
Since Sy > Ry, and sp < s;=1;, <1, 0,

Ve,i—1<k<n,Vml<m<j—1
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We can derive that
Sk — 8 = Rgc,g o r;c,g7Vk77: < k< ]
Finally, as we showed above
Sk > Rk,g,Vk,l <k<1

With proper reindexing, the FG condition still hold.

Case 4: One task finishes, we assume 7";- g =0

This indicates j equals to n. With proper reindexing after removal, the FG

condition still hold. 2 0

Theorem 6 For a feasible set of n tq!g@_s and n proc'ejrssors, the PCG scheduling

—

| e | | :
algorithm is optimal and feastble ]\”0:7’ m?fform mudtiprocessors.

Proof. Since the set of ta'sks: afnd proceséér_g is” feasible, it follows the FG

condition. Since PCG reschedulés at any events, according to Theorem 3 and
Theorem 5, the new task set is still feasible in the T-L., plane. Since each T-
L., plane is independent, the while schedule is feasible. Therefore, any feasible
task set can be schedulable using PCG. That is PCG scheduling algorithm is

optimal. -

In PCG scheduling algorithm, when any event happens, the number of

tasks and processors will decrease by 1 respectively. Therefore, the maximal
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number of rescheduling in one T-L., plane is n. The times of rescheduling will

be dramatically less than PG and fluid schedule.
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Chapter 5

Experimental Evaluation

5.1 Input Generator

We construct simulation-based experiments for PG and PCG scheduling algo-
rithms. Before simulation, We ‘give an input generator which will generate set
of tasks and processors randomly, and_cheek whether they are feasible by FG
condition. Because our simulatiopis \%:gsv'éd on_multiprocessors, we would like
to discuss about the precautionaiy utiiizatjon for éull processors as shown in
Figure 5.1. As we known, the coﬁiputing capa'city of each processor might be
different, it could not be sure the utilizationjof each processor before scheduling,
we consider C),/F, to represent the precautionary utilization, the value is only

for foreseeing.

5.2 PG and PCG Performance Evaluation

To give a comparison for PG and PCG, we implement EDF according to the

following rules presented by Funk [9]:
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04 +

03

precautionary utilization

0.2

0.1

1 11 21 31 41 51 61 71 81 91

number of tasks

Figure 5.1:4Input iGenerator

e No processor is idled while/théfe is an AGtive job awaiting execution.

F ]

e When fewer than m jobs are acﬁf,’ge,.'lime'“y are xréquired to execution upon

the fastest processors while tHe slvomérsjc %ﬂe idled.

T

e Higher priority jobs are .(é'Xecu!t%ed on fas’ﬁelr Processors.

To analyze the schedulability ofE.EDF OI; uniform multiprocessors, as shown
in Figure 5.2, we generate 1000000 set of tasks and processors for each pair of
tasks and processors. In Figure 5.2(a), the number of tasks and processors is
equal, in Figure 5.2(b), the number of tasks is 10. It is easy to show while the
number of tasks and processors increase, EDF will miss deadline because the
complexity of assignment raising. EDF only considers about the deadline of

each task, it will miss deadline while the urgent tasks have not be executed.
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g Lper) LS
Figure 5.2: Sched]illalbility‘ of EDF oh-uniform. multiprocessors
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Figure 5.3: Schedulability of PG

To analyze the schedulability of PG and PCG on uniform multiprocessors,
as shown in Figure 5.3 and Figure 5.4, we generate 1000000 set of tasks and

processors for each pair of tasks and processors. In Figure 5.3(a), the number
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schedulable percentages
schedulable percentages

number of tasks and processors number of processors

(a) the number of tasks and processors is equal (b) the number of tasks is fixed

Figure'5.4:- Schedulability of PCG

of tasks and processors is equél, in Figure 5.3'(15), :the number of tasks is 10.
In Figure 5.4(a), the number of taé?_s?‘and{'éfbcessofé" is equal, in Figure 5.4(b),
o I

the number of tasks is 10. PG anc} @F%'Ebuljfi schedule all the set of tasks and
L\t

A ]
T

Processors. l |
i 1
)}

ey A L

Although PG and PCG is éChedulable for all céses on uniform multiproces-
sors, the times of context switches 1S increasing based on the number of T-L,
planes. As shown in Figure 5.5 and Figure 5.6, we generate 100000000 set for
each pair of tasks and processors. In Figure 5.5(a), the number of tasks and
processors is equal, in Figure 5.5(b), the number of tasks is 10. In Figure 5.6(a),
the number of tasks and processors is equal, in Figure 5.6(b), the number of
tasks is 10. We could figure out the times of context switching by PG and PCG

is larger than EDF, While the number of tasks and processors increase, the
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Figure 5.6: Performance Analysis of PCG while Comparing to EDF

times of context switching will increase, too. This is because We generate all

the tasks randomly, the period of them is different, PG and PCG will generate

lots of T-L,, planes and have lots of

scheduling within each plane. It shows
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although the schedulability of PG and PCG is optimal, the time complexity of

them is larger, too.
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Figure 5.8: Performance Analysis between PCG and PG
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Now we want to discuss about the performance between PG and PCG as
shown in Figure 5.7 and Figure 5.8. In Figure 5.7(a), the number of tasks and
processors is equal, in Figure 5.7(b), the number of tasks is 10. In Figure 5.8(a),
the number of tasks and processors is equal, in Figure 5.8(b), the number of
tasks is 30. It shows that PCG give better performance than PG, and when the
number of tasks and processors increase, PCG will not give better performance.
This is because the number of T-L,, planes is significant, although PCG give an
upper bound n in a T-L., plane, when the number of T-L., planes even larger,

it could not be sure the performance of it is still good.

While we are based on the concept 8f T-L. planes, the bottleneck of our
scheduling algorithm is the-number of T-L.“planes: When the period of each

task is harmonic, the number/ of T' Lepoplanes will decrease. On the other hand,
| <= | |
when the period of each task 18 divierse, ‘ut'he number of T-L., planes will increase
" - TE 1 [

dramatically. =y | ]
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Chapter 6

Conclusions

Although feasible on-line scheduling algorithm for uniform multiprocessors is
difficult, we provide a novel T-L., plane model for uniform multiprocessors to
observe the behavior of task and processo,r. easily. 'We present the Precaution
Greedy algorithm, which is thé first ‘optimal dynamic-priority scheduling algo-
rithm for uniform multiprecessors anfﬁ-he }‘Precaution Cut Greedy scheduling
algorithm, which is also optimal sz V(g._t(h the times, of rescheduling decreased
dramatically. We also prové ':thei Optimalit}lfiqf the above algorithms and an
upper bound n of the times of‘ réschéduling in ‘a T-L., plane. Finally we give
an experimental evaluation for PG, PCG, and EDF scheduling, prove PCG will
give better performance than PG. We believe the results might be applicable
to current asymmetric multicore platforms of similar uniform multiprocessors,
where the processing units are capable of executing the same instruction with
different rates, rising the performance in parallel and decreasing the times of

context switching. Because the simplicity of our results, it might be also appli-
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cable to the most complicated unrelated parallel machines while each task T;
completes (7 ; X t) units of execution by executing on processor P; for ¢ time
units, the execution work for each task will be an constant value, therefore, we

might migrate the same model on unrelated multiprocessors.
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