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ABSTRACT

In this thesis, we study the spline collocation method (SCM), radial spline
collocation method (RSCM) and spline collocation element method (SCEM) for solving
engineering problems. beam, beam-column, frame, and plate problem. The popularity of
the collocation method is in part due to their conceptual simplicity, wide applicability,
and ease of implementation. In comparison to finite element difference methods, the
CM provides approximations to the solution and its spatial derivatives at mesh point of
the domain of problems. The obvious ad\)ant__a'ge of collocation method over Galerkin
methods is that the calculation of _t-he coeffic?enfs in the system of algebraic equations
determining the approximate solutien |sv§:§f&s nee no integrals need to be evaluated
or approximated. Moreover, numerlcal exber'if*ngenfs illustrate that the collocation
method provide high order accuracy and super-convergence feature for a wide range of
physical and engineering problems.

Keyword : collocation method, spline collocation method (SCM), radia spline

collocation method (RSCM), spline collocation element method (SCEM)
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Chapter 1 Preliminaries

1.1 Introduction

In this thesis, we study the spline collocation method (SCM), radial spline collocation method
(RSCM) and spline collocation element method (SCEM) for solving engineering problems: beam,
beam-column, frame, and plate problem. The popularity of the collocation method is in part due to
their conceptual simplicity, wide applicability, and ease of implementation. In comparison to finite
element difference methods, the CM provides approximations to the solution and its spatial
derivatives at mesh point of the domain of problems. The obvious advantage of collocation method
over Galerkin methods is that the calculation of the coefficients in the system of algebraic equations
determining the approximate solution is very _fast since no integrals need to be evaluated or
approximated. Moreover, numerical experiments illu-'strat'ethat the collocation method provide high
order accuracy and super-convergence feature for _é wide range of physical and engineering

-

problems.

Alt

B-spline functions were initially adopted for da!ta fitting, curve fitting, surface fitting and

e,

interpolation. They were then extendéd for _approxj'_rr;éte solutions of differential equations and
structural analyses (Schoenberg, 1946; Bert and Sheu, 1996; Prenter, 1975). Spline functions
possess higher smoothness than piecewise Lagrange interpolation and Hermite interpolation. The
stability of spline functions was proven by Prenter (1975).

Commonly, this incorporates the use of cubic B-splines which were presented by Mizusawa et
al. (1979) for investigation of vibration of skew plates, Shen and Wang (1987) for linear static
analysis of cylindrical shells, Gupta et al. (1991) for linear finite element analysis of axi-symmetric
shells and others. Weller (19933, b) employed B-splines to study post-buckling behavior of infinite
length cylindrical panels subjected to combined thermal and mechanical loading, and they were
incorporated into collocation method for the same analysis problem.

When spline functions are combined with collocation method which can significantly simplify

the solution procedure of differential equations, it is called spline collocation method (SCM)
1



(Prenter, 1975). Recently, researches have been developed, such as Bert and Sheu (1996) for linear
static analysis of beam and plates, Wu and Chen (2003a, b) for linear static analysis of continuous
beam and frame.

The use of OCM in the engineering literature can be traced back at least to Lanczos (1938,
1956). In their research, Tchebycheff polynomials collocating at Gaussian knots were used to
approximate solution to initial value problems. Chemists (Horvay and Spiess, 1954; Wright, 1964,
Villadsen and Stewart, 1967; Ferguson and Finlayson, 1970; Finlayson, 1971; Ferguson, 1971) used
OCM extensively to solve one and two dimensional initial and boundary value problems arising in
reactor dynamic and other systems. Boor and Schwartz (1973) proved the unigueness of solution.
They also showed the errors of one dimensional OCM using splines was better than using full
polynomials (Prenter, 1975).

1.2 Outline

A brief outline of thisthesisis as fIC)i|OW55:' Iﬁgbépta 2 .\;\_/e introduce basis functions and some
formulas of spline collocation method (SCM)r;‘or sblving beam, beam-column, 2D-frame, plate
problems. In Chapter 3, we introduce bééis_.l‘:unctions ér:ld;sdme formulas of radial spline collocation
method (RSCM) for solving beam problem. Fi nally, |n Chapter 4, we introduce basis functions and

some formulas of spline collocation element method (SCEM) for solving 2D-frame problem.



Chapter 2 Spline collocation method

2.1 Spline collocation method

2.1.1 Introduction

By the finite difference method (FDM) or the finikéement method (FEM), a large
number of discretized points in the computationaindin have to be manipulated in
order to obtain solutions withhigh accuracy. Thenpatational effect may be alleviated
by using the differential quadrature method (DQMHhich was first introduced by
Bellman and Casti (1971). Solutions with reasonadeuracy can be obtained in an
economical and time-saving way by DQM where theegowmg equations are used
directly without the necessity of ‘energy formulati(Bert et al., 1993; Chen, 1997).
However, when this method .is éppli_ed to t_he prol_slmﬁstructural mechanics, some
weak points are found in D.QM (St'ri_ag;qig_," .1994; Bert and Sheu, 1996). Loss of
efficiency and simplicity arise from-'%:'-mébping the ypical domain onto the
computational domain and |t .is';:difficult to :cmbdeismbntinuous loads by using
continuous basis functions. One boundary conditgoapplied at the exact boundary
while the other boundary condition is applied anall distanceds from the boundary
in the solutions of systems of fourth-order or leiglorder differential equations.
Because ofs at the boundary, the solution matrix become ihaitioned and
oscillation of the solutions is induced due to nuoad instability (Bert and Sheu,
1996).

B-spline functions were initially adopted for dditiing, curve fitting, surface
fitting and interpolation. They were then extendfedt approximate solutions of
differential equations and structural analyses t{Berd Sheu, 1996; Prenter, 1975).
Spline functions possess higher smoothness thaewise Lagrange interpolation and
Hermite interpolation. The stability of spline fuimms was proven by Prenter (1975).

3



The spline collocation method (SCM) basically isisterpolation method in which the
solution of the governing differential equation daa approximated in terms of spline
functions multiplied by the corresponding weightiogefficients. The spline functions
can be derived systematically from FDM no matteretnbr forward, backward or
central finite difference is used. In general, sipdine functions should be at least one
order higher than that of the governing differengguation so that accuracy and
smoothness of the approximate solution can be gteed. Since the governing
equation of a generalized beam is a fourth-orddmary differential equation (ODE),
the solution of the governing ODE is approximateg the spline function with
polynomial of at least fifth degree. A _quintic Blge function is a piecewise fifth
degree polynomial which is four-_timé cont'i-rlgouslﬁeientiable and an exact solution
can be achieved by using this:appreximatien methogiece-wise linearly distributed
loading. A B-quintic spline function"ié%'?'-ﬁc.)lynomiaf degree five so that the sixth
order forward difference with eyenly' spa'éed :knollizbe equal to zero. Therefore, the
interpolatory function (B-spline fuﬁction) IS non;}ae)nly within the considered interval
of seven consecutive knots. As a whole, at leasth-mirder forward difference
expression is needed for the derivation of splimection (Prenter, 1975). Since the
exact boundary conditions are directly used inSkM without the necessity of using a
small distances from the boundary, the problem of singularity doest exist.
Moreover, not only structures under distributeddi®aan be solved by the SCM but also
those under patch and point loads. The latter Ima¢ebeen analyzed successfully by
using the conventional DQM. No matter how simplecomplicated the problem is,
higher accuracy can be achieved by the SCM thrausyjig more nodal points in the
domain without encountering numerical instabilithile the DQM fails to do so (Bert

and Sheu, 1996).



2.1.2 Theory

The collocation method is a method for the numérsalution of ordinary
differential equation, partial differential equatgand integral equations. The idea is to
choose a approximate function and a number of kinatise domain (called collocation
points), and to select that solution which satssfiee given equation at the collocation
points.

According to spline collocation method (SCM), thgpeoximate function and its

derivatives are represented by a linear combinatidspline functions as

For 1D V\(x):Zq B (X, i:nV\(x):Zaji:n B (¥ (2.1.1a)

For 2D w(xy)= zza,a()s(y) d(n 0 Zza]k (x);ma(y) (2.1.1b)

o

where a s and a; s are the coeffici_é:ﬂt-‘_s'_'. to be determined aBdXx), B(y)

L
B

B-spline function. A B-spline of ardek ‘is made up of a polynomial of orddr and
has a compact support consisting:lb#_z knets. ;

2.1.3 Cubic B-spline function

The cubic B-spline function is a cubic polynomiadaC? continuous, define as

(Prenter, 1975)

(6620 Gasi<,

1 (§_§i+2)3_4(§_§i+1)3' é Sgﬁfwl

BEO)=1E-8oP -4 +66-5), §u<8<g (2.12)
(§_§i+2)3_4(§_§i+1)3+66_§i )3_ 4€_§i—1)31 égifzgéggégifl

0, otherwise

We can see that the values of cubic B-spline fanctanish outside the interval
[£.,.&.,] - Note that B(£) and BY(&) are symmetric functions \B/(E) s

anti-symmetric functions as shown in Figure 2.1The values of cubic B-spline



function and and its derivatives are listed in €bl1.1.
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(a) Cubic B-spline function.
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Figure 2.1.1 The Cubic B-splinesfunction (h=1).

Table 2.1.1 Cubic spline values at knots

(c) Second order derivate of Cubic B-spline furatio

gi—Z gi -1 gi gi +1 §i+2

B () 0 1 4 1 0

B(£) 0 E 0 2 0
6

BE) 00 o g w0




2.1.4 Quintic B-spline function

The quintic B-spline function is a quintic polynahand C* continuous, define
as (Bert and Sheu, 1996)

€69 G.5¢<G,

€5 0L Gas6<G.,

1 (§_§+3)5_a§_ i+2)5+]5€_§i+1)51 g <£ Ségwl

BO= | €65 EP-DEET, &6 213
(ST (SRR L= Sy .V Suclh L Gl PP i)

(§_§+3)5_a§_ 42)5_’_]55_‘;;&)5_12:_& )S"‘ H_gi—l );_ q_éiz 5 ’ éisgég Ségifz

0 ahewse

We can see that the values of quintic B-splinection vanish outside the interval
[£.3:&.5]- Note that B (&), B'(£)wand B@(£) are symmetric functions B'(£)

and B'(¢) are anti-symmetric funGtions ashshown: in Figurg.2. The values of

quintic B-spline function and and its decrl'_.yé_ti'vee asted in Table 2.1.2.

L
B

By(2)

éi-?) E.Ji-Z E,\i-l E,\i E.\i+1 E.\i+2 §i+3

(a) Quintic B-spline function.
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(b) First order derivate of quintic B-spline furwcti
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(c) Second order derivate of quintic B-spline fumat
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(d) Third order derivate of quintic B-spline furani
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(e) Fourth order derivate of quintic B-spline fuinot
Figure 2.1.2 The quintieéB-splines function (h=1).
Table 2.1°2 Quintic stIine'values at knots
fj fifs éi—z : §i'11 é:l . §i+l §i+2 §i+3
B () 0 1 26 66 26 1 0
' 5 50 50 5
B(S; 0 = — 0 —— - 0
<) h h h h
, 2 4 120 4 20
B'(¢;) h? h? h? h? h?
60 120 120 60
ey ° 0w o w % W ow°
120 480 720 480 120
(4) 0 — - — - — 0
B™ () h* h* h* h* h*




2.2 Flexural Vibration Analysis of a Geometrically Nonlinear Beam

2.2.1 Introduction

Large amplitude of vibrating beams is nonlineartelys so the small deflection
theory is no longer applicable in nonlinear proldenthe geometric non-linear or
large-amplitude vibrations of beams had been siudi¢ many scholars using the
approximately analytical and numerical methods sashfinite difference and finite
element methoatc. A comprehensive survey of such works had beesepted by
Sathyamoorthy (1982). Woinowsky-Krieger (1950) istigated the problem of simply
supported beams with immovable ends using elliptiegrals. Evensen (1968) studied
the non-linear vibrations of ‘beams for  differentubdary conditions using a
perturbation method. Sriniva_sgn- (1965) us_éd a Q_ﬂk—}rkin technigue to obtain the
non-linear free vibration responsef '_Efr:f;.-‘._-'_s.i'_rnply suppadr beams and plates with
immovable ends/edges. The n_on-Iineaﬁ:'vibrhtory wehaof beam with pinned ends
was presented by Ray and B.e.rt3:'(=1969) witr;1 testltses@ wealth of information on
non-linear systems and non-linear vibrations haehbgrovided by Nayfeh and Mook
(1979) and Chia (1980). The non-linear free vilmatresponse of beam had been
studied by Mei (1973), using a finite element metho

2.2.2 Formulation

A Bernoulli-Euler beam oscillating with large antpie on immovable ends is
considered here. The governing equation for nogalinvibrations of beams can be

described as (Bhashyam and Prathap, 1980)

o'w  0*w
El -N +mw=0
ox* ox? (2.2.1)
where w, E, |, A, and m are the deflection, Young’s modulus, moment oftiae

of the cross-section, area of the cross-sectiahilz mass per unit length, respectively.
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Assuming that the ends are axially immovable, i&0,t)=u(L,t)=0, it is
evident that the axial forceN is independent of x and thus depends only on time

(Bhashyam and Prathap, 1980),

a2 Ao EA oWy’
N(X’t)_EA{aﬁz[axj }N(t)_ 2 O(GXJ dx (2.2.2)

For a simply supported beam, it is reasonable 4arae that (Sarma, 1983)
W(X,t) = av(x)cosot (2.2.3)
The governing equation for simply supported beaars loe developed using the

Ritz—Galerkin technique (Singh, et. al), i.e.,

4 Eﬂaz 2
g V—§{ IL[d—Vj dx}i\;:a)zmv
dx dx

dx* 4| 212 4 - (2.2.4)
Its dimensionless form is:»
a3 1a ifhon” G Tdb o
det 4| 2 odg) 7 | deP I (2.2.5)
where
é—é (a)*)z—a)zm_l_“ r2—|_
L BT A (2.2.6)
For a simply supported beam, the boundary conditeam be written as
d®v
v=0 and 4z =0 at £=0,1 (2.2.7)

As noted by some researchers (Evensen, 1968; Mék;1Rajuet al., 1976), on
the framework of the moderately large bending thetine non-linear vibration of
simply supported beams would admit a variable-sdparsolution, but the beams with
clamped-clamped end or hinged-clamped end wouldRmtbeam with a clamped end,
it is usually assumed (Ragt al., 1976) that maximum amplitude of each point om th
beam exists during the vibration and that is als@oint of reversal of motion. Assume

10



that the maximum amplitude of each point on vilm@gtibeam is reached, the
configuration of the beam is represented Wy and there exists (Ragi al., 1976)
W=-0’W, W=0 (2.2.8)
Substituting the above expression into governingaggn (2.2.1) results in the
differential equation

d'w | 1a° pafdw) ., |dW .2
e’ {57 (d_éj dg} g ) (229

where £, (»’)* are given in Eq. (2.2.6).
The corresponding dimensionless boundary condigoas

clamped-clamped :

w=0 at& =0, 1. (2.2.10a)

az 6__,,_:_;: ), | (2.2.10b)
hinged-clamped :

W-0rat £-0,1 (2.2.11a)

W 5 a0 (2.2.11b)

i 2.

dw

—=0 até=1

ae 4 (2.2.11c)

2.2.3 Approach by spline collocation method

Considering a set of equi-spaced knots is seleated normalized interval

£e[0,1], ie.,
50201 énzl’ §j+l_§j:hi jZO,...,n—l (2212)
where h is distance of equi-spaced knots. In order toyapgp SCM (Prenter, 1975;

Bert and Sheu, 1996), one needs to extend two akluets$ (fictitious) & ,, £, and

11



¢4, &,.., ateachend of beam, respectively (shown in Figu2el).

S i
0 Sia g

572 571 ‘f én ‘f n+1 §n+2
— —
fictitious

fictitious

Figure 2.2.1 Partitions of beam.
Then the nonlinear normal mode of a geometricatlglinear beam with simply
supported ends and a clamped end, respectively, fléowral vibration can be
approximated by using the quintic B-spline functi&SF) (Prenter, 1975; Bert and

Sheu, 1996) as follows

V&)= 3 4B) op (&) ~ 3 6B(E) (2.2.13)

g )
g -

where ¢, s are the coefficients to be det'_é::r._mihed aBds) is QSF.
Substituting the approximatiq_rfs of nonlir:lqar' normalde of a beam, that are Eq.

(2.2.13), into the governing equations'in Eq. &.2nd Eq. (2.2.9) can obtain

ini:zq[B.“”(f)‘N(f)aﬂ(é)]:(w*)ziqa@) (2.2.15)
where
O3l B .

Note that N(¢) can be evaluated by Gauss integration method.

Similarly, the boundary conditions in Eq. (2.2.E). (2.2.10) and Eq. (2.2.11) can

obtain,

12



clamped-clamped :

n+2

V(fo) = Zun(fo) =0

n+2

V(&) = X GBI(&) =0

S-S e -0

dv(f) nch.’(fn)=0

hinged- hinged :

n+2

EEDIT (fo)_fo |

V€ J= niqa(f) 0

1 =
-c--“_'
-

d V(é:O) nif C B’!(fo) 0

d(: ; ,ﬂ_z

hinged-clamped :
n+2

V(fo) = Zun(fo) =0

n+2

V&) = X GBI(&) =0

dzv(go) _ & l/ _
dfz —Z:ZC.B.(SO)—O

dv(f ) nch.’(én) ~0

(2.2.17a)

(2.3.17b)

(2.2.17¢)

(2.2.17d)

(2.2.18a)

(2.2.18b)

(2.2.18c)

(2.2.18d)

(2.2.19a)

(2.2.19b)

(2.2.19¢)

(2.2.19d)

In general, after substituting the coordinateshef h+1 knots, &, i=0,1... n,
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into the governing equation in Eq. (2.2.14) or E42.15), and coupling the four given
boundary conditions in Eq. (2.2.17) to Eq. (2.2.49he ends,£, and £, one obtains

the following simultaneous equations.

1st B.C. atf, 0 |

2nd B.C. at, 0

Ist B.C. att, 0

2nd B.C. att, 0
n+2 @) 3 y n+2
zc[s (&) N(S)B(fo} | () ZeB&) (22,20
Zq[a‘“(«:l)—zl\l(f)a”(fl)} (o) ni 6B (&)
,”iq[&“‘)(«;)—%\l(é)&"(@) o)’ "ic.B.(é)

1st B.C. at, AR -0 |

2nd B.C. atf, i o 0

ist B.C. at*, 0

2nd B.C. at, 0
2.6 B - NGB o )Z B (%) (2.2.21)
Sa[BOC-NEBE)] | (o) XeBE
Y a[BOE)-NEOBE)]| |(0) ”ic.B.(é)

Matrix EqQ. (2.2.20) and Eg. (2.2.21) are eigen-gghwoblem of the following form

S, Sullc . 0 0 |[c
{ b de b}:(a) )2{ H “} (2.2.22)
Sdb Sdb Cd M db M dd C
C, Cpy CnojeR', ci={c, c, - c,}eR™, R™ denotes

where ¢, ={c_,

n+1 dimensional vector space, etc., subscripts b addndte the two fictitious knots
at each end and all internal knots, respectivelyntthe right hand side of Eq. (2.2.22)

the S,, and S,, can be decomposed into the linear part and narlipart as

14



Sy = (Sdb)L -N (f) (Sdb)N

Sug = (de)L -N (é)(sdd)N

where subscriptsL. and N denote the linear part and nonlinear part.

Multiplying out Eq. (2.2.22), obtains
SpuCy +Spa=0
2
Sdbcb+sdcpd:(a) ) (M af M & c)
From Eq. (2.2.24a),
Cp = _SbtlJSbcpd

Substituting Eqg. (2.2.25) into the Eg:(2.2.241¢)ds

where

0p]

= [(de)L -N (é)(sdd)wj _[(Sdﬁ)t' _N (§)I(Sdb)N Jsié be

M =—M d.k;sbisbd—i_ M dc ;

(2.2.23a)

(2.2.23b)

(2.2.24a)

(2.2.24b)

(2.2.25)

(2.2.26)

(2.2.27a)

(2.2.27h)

The Eg. (2.2.26) is a generalized eigen-value neali problem. In order to solve

the fundamental dimensionless frequensy of nonlinear vibrating beam, an iterative

scheme can be applied and described by the follpwincedure.

Given the initial value of dimensionless stretchfagce N© (&) is zero into Eq.

(2.2.27a) firstly, it means that the correspondingar problem of vibrating beam is

considered, then the eigen-value problem equatiokq. (2.2.26) can be solved for

eigen-value (0*)® and eigen-vectorc”’. Consequently, the initial linear mode®

or w® can be determined. Further, the value of dimemessn stretching force

N®(£) can be computed by using Eq. (2.2.16) .
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In place of the initial value of dimensionless &thing force N©(£) by N®(¢&),

and this process is repeated till convergencehgaed to the required accuracy for the

fundamental dimensionless frequency of nonlinebrating beam(»*) and nonlinear

mode shapes’ or w. (See flow chart Figure 2.2.2)

Stepi=0, NO()=0,

v

Calculate »*” and ¢ for Eqg. (2.26)

Y

Calculate v or W for Eq. (2.13)

Calculate NV (&) for Eq. (2.16)

T

i=i+1

Figure 2.2.2 Flow-chart of iterative scheme.

2.2.4 Numerical Results

The numerical examples including linear and nomlingbrating beam, three types
of boundary conditions: clamped-clamped, hingedyathand clamped-hinged end of

beam, the amplitude of vibratioa/r =0.1,0.2,0.4,0.6,0.8,1.0,1.5,Z for nonlinear

cases.

From the numerical examples for linear vibratingaroe the dimensionless
fundamental natural frequenc(/a)l*)L is shown in Table 2.2.1. The convergence

analysis of using SCM can be shown in Figure 202sed on Table 2.2.1, and the order
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of convergence a);act—a)*‘:O(hq) for clamped-clamped, hinged-hinged and
clamped-hinged of linear vibrating beam amg=2.01, q=185, q=1.97,

respectively.

Table 2.2.1 Fundamental natural frequencies (w;)  for linear vibrating beams

No. of knots @) Boundary conditions

hinged-hinged clamped-clamped hinged-clamped
3 10.9545 23.4216 17.0238
6 10.0338 22.8167 15.7135
11 9.9103 22.4872 15.4922
21 9.8798 22.4019 15.4367
51 9.8712 22.3778 15.4212
101 9.8700 22.3744 15.4189
201 9.8697 22.3736 15.4184
Exact 9.8696 22.3733 15.4182
* Woinowsky-Krieger (1950)
10g 10g
1 :_ hinged-hinged beams . E_
= ol I
g : e o1g
e B = 001p
£ 0001 & E
0.0001 _ 0.001
JE-005Mur it Luiii Ly 0,000 bwreis o Loniw v buiey |
1 0.1 0.01 0.001 1 0.1 0.01 0.001
h h
(a) hinged-hinged (b) clampedigied
10
1t
;Sj o.1;—
“— 0.01L
g F
o.oo1;—
0.0001 b v L v by
1 0.1 0.01 0.001

h
(c) hinged -clamped
Figure 2.2.3 Convergence analyses for linear vibrating beams.
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Figure 2.2.4 shows that four numerical methods, SGMQM (Guo and Zhong,

2004), DOQM (Feng and Bert, 1992), and FEM (Mei, 2Q7@ll can reach appropriate

high accurate results for non-linear frequencwrat[‘/(a)j)L of hinged-hinged beam,

however, Table 2.2.2 shows that the most accuestdts is SCM.

20

1.8

1.6

1.4

1.2+ . ‘
. u hinged-hinged beams
310 N Exact

0.8 O SCM

0.6 + SDQM

0.4 ©  DQM

0.2 v FEM

00% | | | | |

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35

((D*l)/(ﬂ)*l)L
Figure 2.2.4 Dimensionless amplitude;’f};équmcy curves of hinged-hinged beam.

Table 2.2.2 Fundamental natural frequenicy ratio a)l*/(a)j)L for hinged-hinged

¢ “lbeams,

a/r Exact SCM SDOM DQM FEM

0.1 1.0009 1.0009 1.0009 1.0010 1.0009
0.2 1.0037 1.0038 1.0037 1.0043 1.0037
0.4 1.0149 1.0149 1.0149 1.0170 1.0148
0.6 1.0332 1.0332 1.0332 1.0384 1.0339
0.8 1.0583 1.0584 1.0583 1.0673 1.0578
1.0 1.0897 1.0898 1.0897 1.1030 1.0889
1.5 1.1924 1.1926 1.1924 1.2045 1.1902
2.0 1.3229 1.3232 1.3229 1.3170 1.3022

Figure 2.2.5 shows that five numerical methods, BRBhashyam and Prathap,

1980), SCM, SDQM (Guo and Zhong, 20045EM, and ASM (Evensen, 1968) all

approach to the same results for non-linear frequematio a)l*/(a)j)L of

clamped-clamped beam, but only DQM has slight deneof results which increasing

with a/r, are listed in Table 2.2.3.
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1.8
1.6 —
1.4 clamped-clamped beams
121 SCM
= 10b & GFEM
B .
L A SDOM
0.8~ o DQ
0.6 ~ v FEM
04 X ASM
f“:
0.0% \ | |
1.00 1.05 1.10 1.15

(0" (o),
Figure 2.2.5 Dimensionless amplitude-frequency curves of clamped-clamped beam.

Table 2.2.3 Fundamental natural frequency ratio a)l*/(a)j)L for clamped-clamped
beams.
a/r  GFEM SCM . .~ SDOM—__DQM FEM ASM
0.1 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003
0.2 1.0012 1.0012" 1.0012 1:0011 1.0012 1.0012
0.4 1.0048 1.0048 109,__48 1.0044 1.0048 1.0048
0.6 1.0107 1.0108 10?1%08 || «1.0100 1.0107 1.0107
0.8 1.0190 1.0190 1.0190 || 10178 1.0190 1.0190
1.0 1.0295 1.0296+ ~.11.0296 ||~ '1.0278 1.0295 1.0296
1.5 1.0650 1.0652 . < 1.0652 . " 1.0628 1.0650 1.0653
2.0 1.1127 1.1129 1:.1129 1.1119 1.1127 1.1135

Figure 2.2.6 shows that four numerical methods, BFECM, FEM, and ASM all

approach to the same result for non-linear frequenatio a)l*/(a)j)L of

hinged-clamped beam, but only SDQM has slight d®naof result which increasing

with a/r, are listed in Table 2.2.4.
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1.2 )
N r hinged-clamped beams
310 SCM

0.8~ & GFEM

0.6 A SDQM

0.4 O FEM

0_2 v ASM

\ \ | \ \

1.00 1.05 1.10 1.15 1.20 1.25

(™)™
Figure 2.2.6 Dimensionless amplitude-frequency curves of hinged-clamped beam.

Table 2.2.4 Fundamental natural frequency ratio a)l*/(a)j)L for hinged-clamped

beams.

a/r GFEM SCM SDQM FEM ASM

0.1 1.0006 1.0007 1.0006 1.0006 1.0006
0.2 1.0026 11,0027 /. 11.0024 1.0026 1.0026
0.4 1.0106 1.0109 === | 1.0097 1.0106 1.0106
0.6 1.0237 1.0242 ~ . |1.0218 1.0237 1.0238
0.8 1.0416 1.0425 = 11.0383 1.0416 1.0418
1.0 1.0641 1.0655 1.0592 1.0641 1.0647
1.5 1.1378 1.1406 1:1284 1.1378 1.1404
2.0 1.2318 1.2361° " 1.2179 1.2319 1.2385

Figure 2.2.7 shows that SCM result for non-line@qfiency ratiowl*/(a)j)L of

three types of boundary conditions: hinged-hingedamped-clamped, and
hinged-clamped ends of beam, the physical chaisiitsrare :

1. The more amplitude of vibratiom/r, the larger non-linear frequency ratio
a)l*/(a)j)L for each type of boundary condition of beam.

2. For the same amplitude of vibratioa/r , the order of amplitude of
non-linear frequency raticwf/(a)j)L is hinged-hinged, hinged-clamped, and

clamped-clamped ends of beam.

3. The more amplitude of vibratiom/r, the larger the non-linear frequency
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ratio o, / (a)j )L change for each type of boundary condition of heam

2.0
18
1.6
1.4
12
S 10
0.8
0.6

SCM
—&— hinged-hinged beams
—HB— clamped-clamped beams

0.4 -=/ —2— hinged-clamped beams
0.20
000 1 | \ | \ \ \ |
1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
(")),
Figure 2.2.7 Dimensionless amplitude-frequency curveswith different boundary

conditions:
Figure 2.2.8 shows that the fist three normal mgtiapes of three types of
boundary conditions: hinged’-hinged_,_glqmped-clafnpmftd hinged-clamped ends of

beam.

A=W

G——< 15 Mode
A—te—ah 21d Mode

>—o—= 37 Mode

0.0 0.2 0.4 0.6 0.8 1.0
(a) hinged-hinged
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—o—=< 1 Mode
At nd Node

G——-6 3¢ Mode

0.8 ”
0.4 __ c
A, <
A
-1.2 1 I 1 I 1 | 1 | 1 I
0.0 02 0.4 0.6 0.8 1.0
g
(b) clamped-clamped
—o—=< 1 Mode
At nd Node
G——-6 3¢ Mode

(¢) hinged'-clamped
Figure 2.2.8 Fist three'normal.mede'shapesby SCM (a/r = 2.0).

2.2.5 Nomenclature

A

B,($)

N($)

area of the cross-section
quintic B-spline function
coefficient to be determined

Young’s modulus

distance of equi-spaced knots
moment of inertia of the cross-section
mass per unit length

dimensionless stretching force

order of convergence
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1% nonlinear mode shapes
w deflection
w nonlinear mode shapes
X coordinate system
X : : .

& :I dimensionless coordinate system
® fundamental frequency of nonlinear vibratingroea

. mL* . . L
O =0 = fundamental dimensionless frequency of nonlinéamating beam
(a)l* )L dimensionless fundamental natural frequencynefdr vibrating beam
alr amplitude of vibration (&= 5

\
e

p—

-
L

| B |
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2.3 Elastic Analysis of Rectangular Thin Plates

2.3.1 Introduction

Spline functions, introduced by Schoenbegghpenberg, 1946for approximation
purposes, were extended to solve differential egnstt Commonly, this incorporates
the use of cubic B-splines which were presentedMigusawa et al. (1979) for
investigation of vibration of skew plates, Shen andng (1987) for linear static
analysis of cylindrical shells, Guptt al. (1991) for linear finite element analysis of
axi-symmetric shells and others. Weller employedpBres to study post-buckling
behavior of infinite length cylindrical panels setied to combined thermal and
mechanical loading Weller and Patlgshenk9,19)93and they were incorporated into
collocation method for same analysis‘probléeller and Patlashenko,1993

The SCM is proposed to énalyz_,é_ _t_h__in_ blate ﬁfbble‘ﬁm transverse deflection of
the plate is expressed in term-of sph;1e functiohsset of algebraic equations is
established to solve the coeﬁiéienté forsplinactions from the governing equations
and boundary conditions. THe f:ea'sibility“of SCM pmtate analysis is studied by
considering different plate problems with variousubdary conditions and loading
patterns. Moreover, the rapid convergence progeudied accuracy of the SCM are

demonstrated through comparison of the numericallt®with the corresponding exact

solutions.
2.3.2 Formulation

An rectangular plate with dimensionsx d is considered as shown in Figure 2.3.1. The
governing equations of a uniform thin plate sulgdd a distributed loading can be derived as
(Timoshenko and Woinowsky-Krieger, 1959) :

34W+2 o*'w +8"W
ox'  9*x0%y oy!

=q(x,y) (2.3.1)
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where w is the transverse deflectiorD:Eh3/[12(1—1/2)], E and v are the plate

flexural rigidity, Young’s modulus and Poisson’stioa respectively; q is the surface load

intensity.

d/2

d/2

c/2

A
A 4

v
Figure 2.3.1 Configuration of thin plate.

Themomentsand shear forces are€xpressed.as:

MX:—D ax (2.3.2a)
a’ZW aZW
M, ==D Foud (2.3.2b)
o*w
M, =-M, =D 1/)8 S (2.3.2¢)
xay
o*'w  0°w
Q=-— x| e oy (2.3.2d)
o*w  9*w
Q=- oyl e oy (2.3.2€)

The boundaryconditions considered herein are divided intogtkmds. For example, for

an edge withx=¢/2, they are:

(a) Built-in edge (B) :

25

(2.3.3)



(b) Simplysupportecedge (S) :

2 2
w=o; W, 9W_q (2.3.4)
OX ay
(c) Freeedge(F) :
83 o*w 0w
T T (2— 0; + =0. 2.35
(2 )882 a2 ay? (2.3.5)

2.3.3 Approach by spline collocation method

The analyzed domain is takefN, +1)x (Ny +1) knots inthex and y directions as

shown in Figure 2.3.2, respectively. Extend SCMothe(Prenter, 1975) to two dimension
problem, the transverse deflection is approximated

Nyt2 Ny +2

WX, )= 37 B(X)B (Y)ay (2.3.6)

i=—2 i)

where B (x)'s and B;(y)'s gre quintic;EE!iP'e_ functions, a; 's are coefficients to be

L
| L]

determined

(e}
ooo0O

oo
o000

® knot O fictitious knot

Figure 2.3.2 Distribution knots of thin plate.

The discrete governing equation takes the follovdisgrete form:
N, +2 Ny+2

DY~ >~ [BY (0B (y)+2B% (B (y)+ B (x)B"(y)ja, = q(x,y) (2.3.7)

i=—2 j=——2
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Similarly, the moments and shear forces can be discretized a

—_D z Z[ B®(x)B;(y) +B (0 BP(y)|a, (2.3.8)
-D z Z[ B (9B, () + B (0B*(y)]a, (2.:3.80)
M, =-M, =D(- V).i,Ni]Bm x)B"(y)|a, (2.3.8¢)
:—Di?i]B(e’)(x)B (v) +BP(0B(y)] 3 (2.3.8d)
—_D z ,Ni[B(Z)(X) B<1’(y)+ B ()B(y)|a, (2.3.8¢)

Taking the edgex=c/2 as an example, the.three kinds of boundary camditcan be

discretizednto the following forms:

=\l

Ny +2 Ny +2

® > > [B(c/28B, (y)] | & || (2.3.9a)

i=—2 j=—2

Ny +2 Ny+2

>y BY(c/2)B, (y)] ' (2.3.9h)

i=—2 j=—2

N, +2 Ny +2

(S) Z Z B(c/2)B; (y)]a; = (2.3.10a)

f:z Z [B®(c/2)B, (y)+vB (¢/2)BP (y)|a; = (2.3.10b)
(F) _Niz Z [B(c/2)B, (y)+ (2—v)B® ¢/ 2B (y)|a; = O, (2.3.11a)
f:z Z [B?(c/2)B, (y)+vB (/2B (v)|a, = (2.3.11b)

Since both the discretized governing equations and the digedk boundary conditions

are written out on a spline function basis, thecmiszed governing equations and the
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discretized boundary conditions should be satisietultaneously. In order to get solutions for
the problems, virtual knots are assigned beyondattadyzed domain to satisfy the boundary
conditions (Figure 2.3.2). Thus, solutions of thelglems are acquired by solving a set of linear

algebraic equations, which consist @fi, +1)x (N, +1) governing equations at all the knots,
and 4(N,+1)+ 4(N, + 1)- 4 boundary conditions at the edge knots. It havedtice, there

using three virtual knots for four corners to regsosingular matrix problem (Bert and Sheu,

1996).
2.3.4 Numerical Results

To investigate the applicability, convergence aocugacy of the SCM for plate problems,
plateswith different combinations of free (F), simply supeort(S) and fixed (B) boundaries
are calculated. The rectangular! plates. subjectedinearly distributed load and cosine

distributed loadare shown in Figure 2.3.3.The boundary-conditidrth® plates are denoted by
four letter symbols, the first symbol relat'e's':?:“fgl_th'ﬂ-: —¢/2 edge, the second symbol relates
to the Xx=c/2 edge, the third symbol relates to: the=""d/2 edge and the fourth symbol

relates to they =d/2 edge. The-Poiéso_n ratio, -is taken to be0.30 for all cases.

a(x, y) =g, (¥ 2+ x/c) q(x, y) = g, cosfr/c)
M , W
| > I >
X
v v
w w
(a) line distributed load (b) cosine distributed load

Figure 2.3.3 Loading pattern of thin plate.
In order to investigate the convergence pattethedifferent plates, deflections for plates
with various length-to-width ratio(d/c) subjected to various combinations of boundary

conditions are presented. Table 2.3.1 to Table32pBesent results of deflections of plates
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subjected to linearly distributed load witth/c=0.5, 1.0, 2.(. Table 2.3.4 to Table 2.3.6

present

results of deflections of plates subjected cosine distributed

load with

d/c=0.5, 1.0, 2.( The proposed method provides rapid convergedyand accurate results

for all the cases as the number of knots increases.

Table 2.3.1 Center deflection W in rectangular plates subjected to line distributed
load. (W =wD/q,d*, d/c=0.5)

knots

9x5

21x11

41x 21

61x 31

EXACT

B-B-B-B
B-B-B-S
B-B-B-F
B-B-F-F
S-S-B-B
S-B-S-S

S-S-S-S

0.13091E-02
0.23417E-02
0.71620E-02
0.22011E-01
0.13281E-02
0.46409E-02

0.12735E-02

0.12683E-020.12673E-02 0.128E-02
0.22599 E-02 0.22484 E-02 0.22462E-02

0.68274 E-02 0.67551 E-02 0.67380E-02
0.21185 E-01 0.21026 E-01 0.2988 E-01
0.13096 E-02 0i13065,E-02 0.13059E-02
04491202 0.44699 E-02 0.44659E-02
0.52041E-02 0.50865 £-02. 050698 |E-02 0.50668E-02

0.45E-02

i
w

Table 2.3.2 Center deflection W inlrectangular plates subjected to line distributed

load. (w" = wD/q,c*, 'd/c=1.0)

knots 5x5 11x11 21x 21 31x 31 EXACT
B-B-B-B 0.74093E-03 0.64766E-03 0.63634E-03 0.63429E-03 0.63E-03
B-B-B-S 0.89840E-03 0.80181E-03 0.78933E-03 0.78705E-03 -
B-B-B-F  0.10257E-02 0.95994E-03 0.94917E-03 0.94682E-03 -
B-B-F-F  0.13237E-02 0.12902E-02 0.12831E-02 0.12811E-02 -
S-S-B-B 0.10692E-02 0.97597E-03 0.96290E-03 0.96049E-03 -
S-B-S-S  0.14140E-02 0.13045E-02 0.12893E-02 0.12865E-02 0.13E-02
S-S-S-S 0.21969E-02 0.20560E-02 0.20373E-02 0.20338E-02 -
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Table 2.3.3 Center deflection W in rectangular plates subjected to line distributed
load. (W =wD/q,c*, d/c=2.0)

knots 5x9 11x 21 21x 41 31x 61 EXACT
B-B-B-B 0.13091E-02 0.12735E-02 0.12683E-02 0.12673E-02 -
B-B-B-S 0.13186E-02 0.12916E-02 0.12874E-02 0.12866E-02 -
B-B-B-F 0.13010E-02 0.12837E-02 0.12814E-02 0.12811E-02 -
B-B-F-F  0.12918E-02 0.12939E-02 0.12946E-02 0.12948E-02 -
S-S-B-B 0.44233E-02 0.42546E-02 0.42305E-02 0.42261E-02 -
S-B-S-S  0.22583E-02 0.22135E-02 0.22068E-02 0.22055E-02 0.23E-02
S-S-S-S  0.52041E-02 0.50865E-02 0.50698E-02 0.50668E-02 -

Table 2.3.4 Center deflection w  in rectangular plates subjected to cosine
distributed load. (W.=wD/q,d*, d/c=0.5)

knots 9% 5 _21%11 & 41x 21 61x 31

B-BBB  0.23305£-02 . 0/20653E-02%, _022563E02  0.2F502
B-B-B-S  0.40435E-02 | 0.39224E°02 | 0.39060E-02  0.38302
B-B-B-F  0.12058E-01 _ (10.11608E-01 | 011506E-01  0.1E461
B-B-F-F  0.36737E-01 " 0.85767E-0L /7 0.35562E-01  0.3502
S-S-B-B 0.23486E-02 ©0.23019E:02  0.22955E-02  0.289%3
S-B-S-S  0.79695E-02  0.77867E-02  0.77616E-02  0.7HEWD
S-S-S-S  0.84746E-02  0.83422E-02  0.83241E-02  0.832%

Table 2.3.5 Center deflection w in rectangular plates subjected to cosine
distributed load. (W =wD/q,¢*, d/c=1.0)

knots 5x5 11x 11 21x 21 31x 31
B-B-B-B 0.12081E-02 0.10916E-02 0.10790E-02 0.1&/62
B-B-B-S 0.14558E-02 0.13474E-02 0.13345E-02 0.18302
B-B-B-F 0.16566E-02 0.16133E-02 0.16050E-02 0.16009
B-B-F-F 0.21270E-02 0.21654E-02 0.21669E-02 0.2E662
S-S-B-B 0.16501E-02 0.15565E-02 0.15447E-02 0.16423
S-B-S-S 0.23832E-02 0.22877E-02 0.22751E-02 0.22-@8
S-S-S-S 0.33192E-02 0.32408E-02 0.32308E-02 0.32:220
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Table 2.3.6 Center deflection w in rectangular plates subjected to cosine
distributed load. (W =wD/q,c*, d/c=2.0)

knots

5x9

11x 21 21x 41 31x 61
B-B-B-B 0.21039E-02 0.21368E-02 0.21411E-02 0.2E092
B-B-B-S 0.21190E-02 0.21668E-02 0.21731E-02 0.2E7a3
B-B-B-F 0.20912E-02 0.21542E-02 0.21636E-02 0.2E62
B-B-F-F 0.20767E-02 0.21715E-02 0.21860E-02 0.2E882
S-S-B-B 0.66476E-02 0.66676E-02 0.66709E-02 0.66/05
S-B-S-S 0.38522E-02 0.39387E-02 0.39507E-02 0.329¥D
S-S-S-S 0.78048E-02 0.79639E-02 0.79868E-02 0.910

2.3.5 Nomenclature

&

B (x),B;(y)

D = Eh*/[12(1—1*)

E

N, +1

N, +1

q

w

w = wD/q,c*

coefficients to'be determined

quinticspline funetians

plate flexural rigiciity

Young’s modulus

knots in thex directions

knots in they directions

surface load intensity

transverse deflection

dimensionless transverse deflection

Poisson’s ratio
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2.4 Shear Buckling of Rectangular Thin Plates

2.4.1 Introduction

The critical shear buckling load of a thin elasectangular plate is an important
design factor for applications in aeronauticaljlcwmechanical, and marine structures. It
is essential for the critical shear buckling loddaothin plate to be large enough to
endure a safe design. This paper uses the clagsichhoff thin plate theory to analyze
the critical shear buckling load of a thin rectalagyplate. Although the same problem
was analyzed previously by numerous researchers, shéutions were limited to
relatively few cases of boundary conditions (Timodteeand Gere, 1961; Roark and
Young, 1975; Japan, 1971). Conventionally, theetstiC, S, and F have been used to
denote the clamped, simply _spﬁport_ed, and free-_d_l_munconditions, respectively, of
each edge of the plate. Research on;tﬁ},'s.-‘._fbpiocmked out by NASA (Stein and Neff,
1947; Batdorf and Stein, 1947; Budiaﬁ%ky and Conhé48) in the late 1940's, but
only approximate results for sir.n.p}'yls_upport,(_ec;l (SB88l clamped (CCCC) plates were
mentioned. The upper and lower bounds of the clipcae shear buckling loads of
clamped plates were approximated by NASA (Budiaresky Connor, 1948) using the
Lagrangian multiplier method (LMM). The shear buegl loads for SSSS plates of
several aspect ratios were analyzed by Smith (19€6Yy the finite element method
(FEM). The critical shear buckling loads of thimtgds were solved for various boundary
conditions (CCCC, CSCS, SSSS, CCFF, and CFCF) ¢sarehers using the extended
Kantorovich method (EKM) (Yuan and Jin, 1998; Eiserger and Alexandrov, 2003;
Shufrin and Eisenberger, 2005; Shufrin and Eisegeye2007).

The main objective of this paper is to present lyigitcurate solutions for a thin
elastic rectangular plate with various combinati@isboundary conditions (CCCC,

CSCS, SSSS, CCFF, and CFCF), aspect ratios, und @ardirectional
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compressive/tensile loadings. The results obtam#idoe compared with the published

results by FEM, LMM, EKM, etc.

2.4.2 Formulation
Elastic shear buckling of a rectangular thin platdh in-plane normal forcesN, ,

N, and shear forceN,, are considered, as shown in Figure 2.4.1.

a
T< '
y N,
T T 1 3 N
ar . - . ——
] A\
\E = —N, | b
— 4 )
‘_ v _’ 4»

T A i A S

Figure 2.4.1 System coordinates of rectangular thin plate.

According to the classical Kirchhoff thin plate tihgothe governing equation of

the plate under in-plane forcegieddy, 1999)

4 4
p| TW o TW 0w\ OW \ TW oy, W (2.4.1)
OX oxoy: oy OX oy oXoy

where w(x,y) is the elastic lateral buckling displacement, abdis the flexural
rigidity of the plate given by

Et®
D :m (2.4.2)
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Here, E is Young's modulus,t is the thickness, and is Poisson’s ratio of the
plate.

For the purpose of description, notations will ld@@ated as follows. Any edge of
the plate can have one of the three boundary donditclamped (C), simply supported
(S), and free (F). The symbolism SCSF will dendie plate boundary conditions with
the edgesx=0, x=a, y=0, y=b having simply supported, clamped, simply
supported, and free boundary conditions, respdygtivetc. The clamped, simply

supported, and free boundary conditions at edge0 or a can be sequentially given

as follows:
=gy (2.4.3)
-OX £
2 > ¥ .
w=0/ ‘ZX—‘Q’}va—_"Z"-.:o (2.4.4)
0 \2/+V6—V2V=O, a—'\;\/Jr"(Z—v) 63W2 =0 (2.4.5)
OX oy .@x 1 axay

Similarly, the clamped, simpiy Supporfed, and fbeeindary conditions at edge

y=0 or b can be sequentially given as follows:

ow
w=0, 5:0 (2.4.6)
2 2
w=0, gyvngxvjzo (2.4.7)
2 2 3
gy‘;vng"z":o, %ﬂ(z—v)—;;‘g’y:o (2.4.8)

For a corner point of a rectangular plate with boéighboring edges clamped,
or simply supported, or free, the boundary condgican be sequentially expressed

as follows:

34



ow . ow
w=0, —=0, —=0 2.4.
OX oy ( 9)
2 2
w=0, TW_o, TV _g (2.4.10)
OX oy
2 2 2, 2 2,
OW _g, OW, ,OW_ W W _, (2.4.11)
oxoy OX oy ox- oy

When a plate is simply supported edgexat 0 or a, the boundary conditions

of the two corner points(x,y)=(0,0),(0b) or (x,y)=(a,0),(@,b), can be given as

=0, ££=0 (2.4.12)

From Eq. (2.4.12), we. can obta_irﬁzw/é'yzzo , o°w/ox*=0, and

*w/oxoy?=0. Therefore, if Eq. (2.4.12) is satisfied then E(x4.4) and (2.4.5)

-

are satisfied automatically. .Consequ'érréﬂ)-/,' Eq:.(2)% holds regardless of the types
of boundary conditions at ed-g-eﬁto and b'whenever the edge ax=0 or a

is simply supported.

Similarly, when a plate is simply-supported edgeyat 0 or b, the boundary

conditions of the two corner pointgx,y) =(0,0),@,0) or (x,y)=(0,b),@,b), are

2
w=0, a—W:O, a\gv
0 oy

0. (2.4.13)

2.4.3 Approach by spline collocation method
A rectangular thin plate with sizaxb has been assigned, and n, inner
knots with equal-spaceh, and h, in the x- and y- directions, respectively, as

shown in Figure 2.4.2. The serial numbers of tiieiirknots are defined as
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=0, X, ,=a, X,-X=h=2a/(n-1), j=3...n+1 (2.4.14)
¥:=0, ¥, ,=b, y,,-y,=h =b/(n,-1), j=3...,n+1 (2.4.15)
The total number of inner knots ig,n,. The governing equation in Eq. (2.4.1)
must be satisfied for each inner knot of the plate.
Fictitious knots are needed in order to satisfylitbandary conditions of physical

problem. One needs two fictitious knots outside piete to satisfy two boundary

conditions of one set equations of Eq. (2.4.3) ¢o 2.4.8) for each boundary knot of

the plate, except the four corner knot&,ys,) , (x3,yny+2), (X120 Ya)

and(x, ,,, ¥, ..) - Therefore, the total number of fictitious knots the boundary knots,

excluding the four corner knots; is[(nx—Z)Jr_ ;- 2)] Each corner knot has three

boundary conditions, which are rega-rdg_ci;_z_a\é'onefsi"éq. (2.4.9) to Eq. (2.4.13). Thus,

— N

the total number of fictitiou.s knots fo&four corgeis 12. Consequently, the total
number of boundary fictitiou5"kn:c_)‘tsl for the’p{lam 4(n, +n,)—4, which is exactly
equal to the total number of boundéry coﬁditionshazf problem. The total number of
knots including fictitious knots for the whole gais nn, +4(n, +n,)—4, as shown in
Figure 2.4.2.

The elastic lateral buckling displacemenix,y) of a rectangular thin plate

subjected to in-plane forces can be approximateaasing the QSFs as follows:

n+4 ny+4

wWx,y)= >, > B(XB; () (2.4.16)

i=1 j=1
where g; s are the coefficients to be determined, noting t§a=0 exists for no knots
when i=Ln+4 , j=1,2,3n+2n+ 3+ ¢ and i=2,3n+2n+3 ,

j=1,n+4.
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X X X3 ] X, H)_(S X : X Xg X X
@ inner knots @ bounld:_a?:_r_y knots O fictitious knots
Figure2.4.2 Distribdtior; :of knots of thé plate (n,=6,n, =5).
The partial derivatives fom(x, y) "canbe given as
al\lr, nX+4ny+4r
I UCLI 2417
OX i=1 j=1
a,\ls’ nx+4ny+4 .
()Z N > BB ()3 (2.4.18)
éy i=1 j=1
Mr+s)(x,y) n+4n,+4 0 ©
- X)B; . 2.4.19
Xy ;;3()1(3’)6‘1 ( )

Substituting the displacement of thin rectangulatgpand its partial derivatives in

Eq. (2.4.16) to EqQ. (2.4.19) into the governing &en in Eq. (2.4.1), one can obtain

the field equation as:
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Z - [B098, () 2B(00B] () B 00" ()]

(2.4.20)

n+4n,+4
> > [NB&B ¢ »NB B ¢+ NB KB ¥ )a
i=1 j=1
Similarly, the boundary conditions in Eq. (2.4.8)Eq. (2.4.13) can be discretized
and reduced as the same way.

Clamped boundary conditions at edge-0 or a:

w= nifnyi B(X)B;(y)a; =0 (2.4.213a)
Z—W_ Z Z B'(x)B (V)a; = (2.4.21Db)

Simply supported boundary cohditions atedge 0 or a:

neafiyrat .
w=>" > B(9B(y)a|=0 (2.4.223)
[-1e if1 | =525 ||
oPw otw et :

SRl ) 1[a(x)8(y)+va(x)8 (v) & = (2.4.22b)

Free boundary conditions at edge=0 or a:

aax\;v+ gy Zl] JZ;[B”(X)B (y)+vB ()B(y) |a = (2.4.23a)
a\2/+(2—V) A » [ B(X)B; (y)+ (2-v)B/ (x)B] (y) | = 0 (2.4.23b)

oxy* =4

Clamped boundary conditions at edge=0 or b:

n,+4ny+4
w=> > B(XB(y)a =0, (2.4.24a)
i=1 j=1
8W n,+4ny+4
—= B(X)B/(y)a, =0 (2.4.24b)
é'y i=1 j=1

Simply supported conditions at edge=0 or b:
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w=>"S B(XB,(y)a =0 (2.4.253)

|
i=1 j=1

62 82 nX+4ny+4 ) .
v =3 S [B(0BI(Y) +vB(0B, () |3, =0 (2.4.25b)

+v
2 2
oy OX =1 j-1

Free boundary conditions at edge=0 or b:

e =2 [ BO0BI) +vBTOB, (1) Jay =0 (2.4.263)
aSW 83W n+4ny+4 . . ,
oY +(2-v) oy jl[B. (X)B]'(y)+ (2-v)B(X)B; (y) |a; = O (2.4.26b)

Boundary conditions of a corner point of a rectdaguplate with both

neighboring edges clamped:

nx+4ny+4 j .
W= B(X)B;(y)a, =0, (2.4.27a)
i=1 =1 AL A ]
ow n,+4n, 4 , -1E | :
= B/(x)Bjy)a, =0 (2.4.27b)
oX = iz .| 1P
ow nx+4n;,+4 " 5 ) =
9 B (X)Bi{(y)a, =0 (2.4.27¢)
é'y i=1 j=1

Boundary conditions of a corner point of a rectdaguplate with both

neighboring edges simply supported:

nX+4ny+4
w=> > B(XB(y)a =0 (2.4.28a)
i=1 j=1
02w MAntA )
7 = B(x)B;(y)a; =0 (2.4.28b)
OX i1 j-1
02w MAntA )
7 = B (X)Bj(y)a; =0 (2.4.28¢)
é'y i=1 j=1

Boundary conditions of a corner point of a rectdaguplate with both
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neighboring edges free:

82W n+4ny+4
= B/(X)B!(y)a, =0 2.4.29a
ooy & (X B](y)a; ( )
aZW aZW n+4ny+4 ) )
+y—— = [ BB, (y) +vB (X)B](y) |]a; =0 (2.4.29b)

[ B()B(y)+vB'(X)B;(y) |a, =0 (2.4.290)

14
2 2
oy ox* T3

Boundary conditions of two associated corner poirftsy)=(0,0),(0p) or

(x,¥)=(a,0),(@,b), and simply supported edge at=0 or a:

nX+4ny+4
w=> > B(X)Byy)a; =0 (2.4.30a)
i=1 j=1 -
02w nx+4ny+4i : : .
> =242, BB (y)a =07 (2.4.30b)
5X i=1 j:1 pe \ e \'.. =
ow i M|
= B (x)Bi(Y)a; =0 (2.4.30c)
ay 152y Sk £ 1 %

Boundary conditions of. two. associated corner poirfts y) = (0,0),@,0) or

(x,¥)=(0,b),(@,b), and simply-supported edge &t=0 or b:

nx+4ny+4
w=> > B(XB(y)a =0 (2.4.31a)

i=1 j=1
&N nx+4ny+4 ,
= B'(X)B;(y)a; =0 (2.4.31b)
6X i=1 j=1
02w MrAnA .

7 = B (X)B(y)a, =0 (2.4.31c)

oy i=1 j=1

By substituting the coordinates of the all inneotenwith a total number ofh,n,
into the field equation in Eq. (2.4.20), and thadethe boundary knots with a total

number of 4(n, +n,)—4 into the boundary conditions in Eq. (2.4.21) ta E44.31),

40



then a well defined linear system of ordinary ddfaial equations in the matrix form
Ax =/Bx can be obtained, which is referred to as the eigdue problem. More
details will be given below.

From the field equation in Eq. (2.4.20), the follag/can be derived:

Bac, Bdca'd:[Nx(BNX) dbt Ny(BNy) db™ ny(Bny) dga b

, (2.4.32)
N BE N, BY )N, B wfac

where a, and a, are column vectors of the undetermined coeffisentatrix

[a,]={a, a,} , with subscripts b and d denoting the fictitiousots and all inner

knots, respectively.
Also, from the boundary conditions m Eq. (2.4.24)Eq.(2.4.31), the following
can be derived: .

-Bbbab+B';oéf§%-d | (2.4.33)
where the first 12 equations are 9btai';i.éd _f::rom_ @44.27) to Eq. (2.4.31), and the
remaining 4[(nX -2)+(n, - 2)} : eqaations fr'om:;Eq. (2.4.21) to Eq. (2.4.26). h b=
seen that Egs. (2.4.32) and (2.4.33) form a simattas matrix equation with unknown
matrices a, and a,.

From Eqg. (2.4.33), the following can be solved:
a,=-B,B,A, (2.4.34)
Substituting Eq. (2.4.34) into Eqg. (2.4.32) yieddgeneralized eigen-value problem

Ax = ABx as follows:
Ba, = N,B, a,. (2.4.35)
where N, , a, are the required eigen-values and eigen-vectespectively. TheB

and ENW matrices are defined as
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B= _|:Bdb - NX(BNX)db_ Ny(BNy)db:| BibltB bd
: (2.4.36a)
+[de -N, B(lx dd)— Ny(BNy)dd:|
ENxy = _(BNxy )aoBotB pat (B ny) da- (2.4.36b)
Consequently, the eigen-value¥,, and eigen-vectors,, can be determined by

solving the eigen-value problem in Eq. (2.4.35) diwven matricesB and ENW. The

value N, is exactly the shear buckling load of the thint@laThen, a, can be
determined from Eq. (2.4.34). Finally, the sheacking mode shapes can be obtained
by Eq. (2.4.16), where it is noted thpa,] = {a, a,) .

2.4.4 Numerical Results

2.4.4.1 Definition of Parameters:

The stability of rectangular thin plaﬂtgg.with diffet in-plane loads are studied here
using the extended SCM. In-the fo]lovﬁhg numerieadmples, Poisson’s ratio is

taken as 0.3, the plate aspect _faim'ihe ratio of applied force to buckling load, and

dimensionless critical shear buckling lod®], "are defined as

y :% (2.4.37)
a= N, or a= N, (2.4.38)
Ncrx Ncry o
2
P, = N[;v; (2.4.39)

where N, and N, indicate that the critical buckling loads of thiatp with the
same boundary conditions due to the compressiv@inigan the x- and y -direction,
respectively; N, ,, indicates the critical shear buckling load of hete with the same
boundary conditions, but due to pure shear lo&fs (N, =N, =0).
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2.4.4.2 Conver gence Study

The convergence characteristics of the dimensssnteitical shear buckling loads
P, of the square plates&1) for five types of boundary conditions, CCCC, CSCS
SSSS, CCFF, and CFCF, are shown in Table 2.4.larl¢lethe convergence

characteristics by SCM are very good. In additione observes that using0x 60

inner knots are enough to obtain stable and aceuesults.

Table 2.4.1 Convergence of the dimensionless shear buckling load B, .
Inner knots (n,xn,) CCCC CSCS SSSS CCFF CFCF

10x 10 14.9513  11.9370 9.4852 7.5744 0.6340
20x 20 14.6866  11.7731 9.3647 7.5385 0.6328
30x 30 14.6774  11.7437 9.3423 7.5104 0.6319
40x 40 14.6620  11.7331 9.3345 7.4994 0.6308
50x 50 14.6548 ¢+ 11.7282 9.3309 7.4952 0.6303
60x 60 14.6509. 11.7256 9.3290 7.4922 0.6300

2.4.4.3 Uni-directional ForcesActing on a Plate

A SSSS plate subjected ito cdns;‘ﬁénf' uniform* umetional compressive/tensile

w

forces N, in the x-direction and jshear forcél,..is shown in Figure 2.4.3. The

magnitude of the applied constant uniform-forbg is taken asaN, ,, where N

crx?

is the critical shear buckling force of the plaBased on Eqg. (2.4.35) and Eq. (2.4.36),

one can find the solution of the eigen-valdé, and eigen-vectora for the case with
N, =0. Consequently, the uni-directional compressiveftenforces N, acting on a
plate can be solved. In Table 2.4.2, the dimensgmtritical shear buckling loadg

for the SSSS plates are presented and comparedewigting ones for several aspect

ratios y (=1.0,1.2,1.4,2.0,4.(, and load factorsx (= 0.0,£0.5, The values ofP,

solved by the SCM are slightly lower than the othexsept the one by EKM.
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Figure 2.4.3 Square plates with uni-directional in-plane loading for SSSS.

Table 2.4.2 Dimensionless critical shear buckling loads B, for SSSSplates.
y(=a/b) 1.0 12 14 20 10 10 20 20 40 40
a(=N,/N,,) 00 00 00 00 -0505 -05 05 -05 05

* 9.40 8.40 7.30 6.60 — — — 4.63 7.75
i 935 800 — 7659 — — — — —
ol — — &° — 6.62.11.56 4.66 7.89 4.10
EKM 9.32 7.98 7.29 6.55 6.59 11.56 4.63 7.78 4.07 6.88
SCM 9.33 7.99 47.29 /6.55 /6,56 11.50 4.62 7.79 4.07 6.89

*Column Research Committee of Japan 1971; **Séeid Neff, 1947
*** Batdorf and Stein, 1947

i
Ll

Similarly, a CCCC " plate .sUbjé'c':-ted to--.constant unifo uni-directional

compressive/tensile forcedl in the ‘X-diréction‘and shear forcé\,, is shown in
Figure 2.4.4. Table 2.4.3 shows the dimensionletisadrshear buckling loads?, for

the CCCC plates with constant uniform forcés(=aN,,) in the x-direction. As

cr,X

can be seen, thd  values approach to each other for the SCM and EkiMtions in

most cases.
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Figure 2.4.4 Square plates with uni-directional in-plane loading for CCCC.

Table 2.4.3 Dimensionless critical shear buckling loads B, for CCCC plates.

a(=N,/N; ,) =05 a=0.0 a=-05
7(=a/b) SCM EKM ScM EKM SCM EKM
2.0 12.74 12.71 10.26 10.25 7.23 7.22
3.0 11.75 1174 9:55 9.53 6.80 6.78
4.0 11.42 + 3/14.39 9.32% 7. 9.30 6.58 6.56
6.0 11.19 11.16~.. /9.14 9.12 6.47 6.46
10.0 11.09 11.06 = --9.06 9.03 6.41 6.39

%
w

Comparisons with results_ by the 6’fher 'met_hods arengin Table 2.4.4 for the
plates with four types of boundary conditions, SSEECC, CCSF, and CCFF, and

several aspect ratiog (=1.0~2.0. Here one can see that except for the EKM results,
the solutions given by SCM for the dimensionlesscal shear buckling loads?,, are

slightly lower than the other ones. Evidently, theuits obtained by the, SCM are quite

accurate.
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Table 2.4.4 Dimensionless pure critical shear bucklingload B, for plateswith
various boundary conditions.

y(=a/b)  SCM EKM FEM EKM Timoshenko
SSSS 1.0 9.3290 9.3245 9.3250 9.3257 9.3400
15 7.0763 7.0700 7.0700 — 7.1000
2.0 6.5531 6.5460 6.5460 — 6.6000
3.0 5.8479 5.8402 5.8400 — 5.9000
CCCC 1.0 14.6509 14.6420 14.6400 14.6428 14.7100
15 11.4722 11.4583 11.4600 — 11.5000
2.0 10.2604 10.2480 10.2500 — 10.3400

CCSF 1.0 8.4402 8.4289 8.4330 — —
2.0 2.3678 2.3501 2.3510 — —
CCFF 1.0 7.5002 7.4869 7.4920 — —
2.0 2.7827 1.7703 1.7720 — —

2.4.4.4 Aspect Ratio Effects of ThinPlates

The variations of the dimensionless.critical"shbackling loads B, for three

aspect ratios ¥=1.0,2.0,4.() of'a SS_SS plate are ‘shown in Table 2.4.5 and &igur

o

2.4.5. Note that all the dimensionless;d_ritiéalaihbuckling loadsP, =P, € P,
are normalized with respect to 'the_.bne for pu;rtashmding only, i.e.,B . The results
of analyses indicate that the larger the'aspert rat is, the smaller the dimensionless

critical shear buckling load®,. One can also see that for three plate aspedsrati

(¥=1.0,2.0,4.0, the same behaviors can be observed, namely,rly fieaar relation
exists in the range-0.4<« < 1.0, and a sharp drop occurs as the compressive force

N,(=aN,,) in the x-direction approaches the critical buckling lodd, , (i.e.

a ——-1.0).

46



Table 2.4.5 Dimensionless critical shear loading P, for three aspect ratios y .

SSSS plates
a(=N,/N,,) r=1.0 y=20 y=40
1.0 22.071 14.889 13.239
0.8 20.713 14.051 12.545
0.6 19.303 13.177 11.813
0.4 17.833 12.260 11.039
0.2 16.289 11.293 10.215
0.0 14.655 10.261 9.326
-0.2 12.901 9.144 8.350
-04 10.980 7.907 7.219
-0.6 8.795 6.483 5.883
-0.8 6.088 4,703 4,162

P xy/ P Yo

—_—
o)}

: G—6—90 y=20
f( 04 ] At y=s0| |
J Il | Il ‘ Il | Il | 0.0 | Il | Il ‘ Il ‘ Il | Il
-10 -08 -06 -04 -02 00 02 04 06 08 1.0

OL(ZN\/ N cr,x)
Figure 2.4.5 Normalized dimensionless critical shear loadings versusdifferent «
for three plate aspect ratios y .

The critical buckling modes of SSSS plates for fieenstant uniform

uni-directional loadsN,(=aN,,), «=1.0,0.5,0.0; 0.5; 1, and three aspect ratios

cr,X

(=1.0,2.0,4.0 are shown in Figure 2.4.6. It is seen that as ¢iheefchanges from

tension to compression, the number of waves inhbpesincreases.
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Figure2.4.6 Crltlcal buckllng modesfor SSSSplates with variable uni-directional
Ioadmg

For a CCCC plate, the varlatlons_.ot rhe constanfb[m uni-directional loading
) of the thin plates for| tpre@ aspect ratlo&(l 0,2.0,4.() are shown in

N, (=aN

cr,X

Table 2.4.6 and Figure 2.4.7. \

Table 2.4.6 Dimensionle&criticél shear loading B, for threeaspect ratios y.

CCCC plates
a(=N,/N,,) r=10 =20 =40
1.0 13.389 8.913 7.948
0.8 12.659 8.476 7.555
0.6 11.896 8.025 7.125
0.4 11.095 7.557 6.661
0.2 10.244 7.069 6.168
0.0 9.331 6.556 5.640
-0.2 8.333 5.873 5.066
-04 7.212 5.078 4,429
-0.6 5.893 4,145 3.656
-0.8 4,177 2.937 2.603
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Figure 2.4.7 Normalized dimensionless critical shear loadings versusdifferent «
for three plate aspect ratios » .

The critical buckling modes—af CCCC" plates for fivenstant uniform

0

uni-directional loads N, (=aN_5) , a‘l"_

-.i.O,-O.S,O.CF, 0.5; 1., and aspect ratios

o g

(»=1.0,2.0,4.0 are shown in-Figure 2.4.8.1As for the CCCC pldtés Been that as

the force changes from tension to 'compression,ntmaber of waves in the shape
increases. The variation of the critical shear dards similar to that of the simply

supported plates, which need not be repeated here.
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Figure 2.4.8 Critical buckling modes for CCCC plates with variable uni-directional
' _#loadingis

Square plateqy =1.0) with 'four'-_:ch_n_t_):ir.'lationé"of boundary conditions, GFC

CSCs, FFCC, and FFFC, are @alsq solled by SCM (&pees 2.4.9). In Table 2.4.7,

1] | /
the results for the dimensionless.critical.sheadiongs P, of the square plate with

different levels of constant uniform compressivegie loadingsN,(=aN,,) are

cr,x
presented. It is sufficient to mention that the elsionless critical shear buckling loads

determined by the SCM are very close to the EKMiltss

NX = aNCr,&_ 4_ 4_ ny NX = aNCr X 4_ 4_ 4_ NXy

“@ 1y o -

— Té " } — Tg S R

—] TéC F l — Tgc Si l —p

14 110 i) 0

N — NS —»
N N N
W o—s —> —> N =gN_, —> —> —» T *
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Figure 2.4.9 Square plates with uni-directional in-plane loading and with different
boundary conditions.

Table 2.4.7 Dimensionless critical shear bucklingloads B, for square plates.

a CFCF CSCS FFCC FFFC
(=N,/N,,) SCM EKM SCM EKM SCM EKM SCM EKM
1.0 1.1145 1.1023 17.1201 17.1015 9.8283 9.8184 0.5528 0.5561
0.8 1.0133 1.014316.1310 16.1257,9.3915 9.3848 0.5283 0.5275
0.6 0.9282 0.9235 15,1238 15;1095 8.9528 8.9382 0.4985 0.4973
0.4 0.8315 0.8295, 14.1613 14.04508.4923 8.4765 0.4679 0.4652
0.2 0.7346 0.7318 /12.9414 12.9207 ‘8.0101 7.9964 0.4382 0.4307
0.0 0.6308 0.6298 | 11.7256-14/7197, 7.5083 7.4927 0.3969 0.3932

-0.2 0.5238 0.5226 110.4322,10.4146 6.5639 6.9566 0.3583 0.3517
-0.4 0.4093 0.4087 '8.9723°-8.9579  6.3901 6.3712 0.3081 0.3045
-0.6 0.2894 0.28667 7.2688.4. 7.2532°5.7205 5.7005 0.2498 0.2486
-0.8 0.1573 0.1520° 5:0618 5.0478 ©4.3914 4.3726 0.1738 0.1758
-1.0 0.0801 0.0794 3.5006._3.4885 3.1419 3.1298 0.1282 0.1243

2.4.4.5 Bi-directional ForcesActing on a Plate
Thin plates with two types of boundary conditionsSSBCCCC subjected to

constant uniform bi-directional compressive/tenddeces N,, N, , and shear force

y!

N, are shown in Figure 2.4.10.

The values of the dimensionless critical shear hugkioads of the SSSS and

CCCC plate with variable bi-directional loads,(=aN, ,)/N, (=aN, ) and three

cr,X cry

aspect ratios(y =1.0,2.0,4.0 obtained by the SCM are listed sin Table 2.4.8 and

Table 2.4.9, respectively. We like to point outtthiae critical shear buckling loads

obtained by the SCM are very close to that by tKME
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Figure 2.4.10 Plates with bi-directional in-plane loads.

Table 2.4.8 Dimensionless critical shear Buckling loads B, for SSSSplates.

y=a/b 1.0 2.0 4.0 10 2.0 4.0

Ny, (pureshear) 92.031 6460755512 92.031 64.607 55.512
N, /7> 2,000, 2,000 |20007 2.000 2000  2.000

N, /7 2.000 />1.063"~ 1004 6.000 2.063 1.254

1.00 9.309 5.979 5.318 16.81110.193 8.465
0.75 8.704 5.661 5.027 15.5959.697  8.099
0.50 8.058 5.332 4.725 14.3179.188  7.716
e N, ) 0.25 7.358  4.990 4.410 12.9618.572  7.316
N 0.00 6.585  4.633 4.079 11.5017.790 6.896
-0.25  5.709 4.260 3.647 9.892 6.859  6.405
-0.50 4.670 3.865 3.157 8.041 5.697 5.799
-0.75 3.311 2.871 2.583 5.688 4.099 4.918
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Table 2.4.9 Dimensionless critical shear buckling loads B, for CCCC plates.

7(= a/b) 1.0 2.0 4.0 1.0 2.0 4.0
N, , (pureshear) 144.513101.145 91.740 144513 101.145 91.740
N, /7’ .5.037 -3.934 -3.604 5037 3934 3.604
N, /7 5569 3.921 3.891 12772 5656  4.338
100 14.628 10344 9602 27.641 17.383 15.127
0.75 13558 9.673 8.916 25546 16.299 14.282
050 12.430 8.946 8180 23.352 15150 13.392
o Ny 025 11230 8115  7.404 21039 13964 12.438
N,,’ 000 9934 7.227 6.585 18574 12.723 11.431
025 8504 6268 5708 15901 11.382 10.351
050 6.858 5215 4674 12.915 9.433  9.087
-0.75 4790 4019 3430 9.353  6.748  7.582

2.4.5 Nomenclature

a,,8y
g
B (X),B;(y)

Et®

D:12(1—v2)

column veectors of the.undetermined coeffisamitrix

coefficients tq-b_e_,d‘etérminéd

—

quinticspline funttions

flexural rigidity

Young’s modulus
equal-space in thex directions
equal-space in thg directions

inner knots in thex directions

inner knots in they directions

dimensionless critical shear buckling load

thickness of the plate

critical shear buckling load of the plate
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NX
Ny
NX}’
W(X, y)
Nx Ny

a = a =

Ncr,x cry
y=2

b
14

in-plane normal forces in th& directions
in-plane normal forces in thg directions
shear force

elastic lateral buckling displacement

ratio of applied force to buckling load

plate aspect ratio

Poisson’s ratio
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2.5 Buckling Analysis of Rectangular Thin Plates

2.5.1 Introduction

The buckling problem of a thin rectangular elagilate subjected to in-plane
compressive and/or shear loading is important énaincraft and automotive industries.
Bert and Devarakonda (2003) gave a brief historeakw recently on this subject . As
is noticed that there have been very few previabstions for the case of nonlinearly
distributed edge loadings. The possible reason eihgps due to the additional
complexity of having to first solve a problem irapé-stress elasticity for obtaining the
in-plane stress distributions, then to solve thekbng problem. The first work in this
field was due to van der Ne(it958). A uniaxial compressive loading with a hsitie
distribution was considered._l_lat-er, _Benoy_(l%Q)_g:drdn‘red a uniaxial compressive
loading with a parabolic distributioﬁ_@iﬁd"_obtainadsolution by using the energy
method. It is pointed out, however, that-"i-joth warkdiered several serious deficiencies
(Bert and Devarakonda, 2003.).. R:ec_:ently, ,Bé—:i‘t and B&emda (2003) presented an
analytical solution for in-plane stresses for tlasecof a half-sine load distribution on
two opposite sides. As can be seen that the irepk&tness distributions are more
realistic, showing a decrease (diffusion) in asgtakss as the distance from the loaded
edges is increased. The buckling loads are theunleéd using Galerkin method. Much
more accurate buckling load is obtained for a regiiéar plate simply supported along
all edges. Xinwei2006) used differential quadrature method (DQM) tmlgsis
buckling loads of thin rectangular plates under -nariorm distributed in-plane
loadings. It indicates that the DQM can be emplofgdobtaining buckling loads of
plates with other combinations of boundary condsgiosubjected to non-uniform
distributed loadings.

SCM is used herein for the first time for buckliagalysis of thin rectangular
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plates subjected to non- uniform distributed inAelaloadings. Formulations and
procedures are worked out in detail and two nomeum in-plane loading cases are
studied. SCM results are well compared with exis@mglytical solutions DQM and
finite element method (FEM). Some conclusions arawd based on the results

presented herein.
2.5.2 Formulation

Consider a problem of in-plane elasticity, an igpic rectangular thin plate with
length a and width b subjected to a uniaxial non-uniform distributeeplane edge

load as shown in Figure 2.5.1.

A
y a
- -
b
X y J
(@) o, =-0,(1-2y/3)
A
y a
- -
A
Zy P
O, _’ Oy b
v, x

(b) o, =—0,cosizy/b)

Figure 2.5.1 Rectangular plates under uni-axial edge compressions.
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The governing differential equation can be exprésse

(2.5.1)

5 {84\,\/():, Y), 5 84w2(x, 2/) . a“woi, y)} _oh azw(xz,y)
OX ox“oy oy OX

where w(x,y) is the normal deflectionD is the flexural rigidity of the plate given
by

En?
D :m (2.5.2)

in which E is the Young’s modulush is the plate thickness and is Poisson’s

ratio. The internal forces of plate are given by

__pl WOy, 2twix y) |
M, (XYy)= D_ - +v v (2.5.3)
Vx(xiy)_ D_ aX3_ +(2 V)axayZ | (255)
o L O*w(X, Y) o Ow(x, y) |
V, (X y) = D_—é’y3 +(2 V)—8y6x2 | (2.5.6)
F.(x y):—2D(1—V)M (2.5.7)
Cc ! axay .

where M _(x,y), V,(X,y), F.(x,y) are bending moment, effective transverse force

per length, and concentrated force produced at @acter, respectively, etc.
Two types of boundary conditions (BCs) are congidexs follow :
(1) simply supported (SSSS) BC :

w(x,y)=M, (X,y)=0 atedgex=0,a (2.5.8a)

w(x y)=M, (x,y)=0 atedgey=0,b (2.5.8b)
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(2) clamped (CCCC) BC:

=0 atedgex=0,a (2.5.9a)

w(x, ) = )

W(X, y)

wW(X,y) = =0 atedgey=0,b (2.5.9b)

Note that corner conditions are automatically fiatisfor both BCs.
Each corner point of a thin rectangular plate hasd degrees-of-freedom (DOFs),

namely, w, ow/ox, ow/dy. Each point of the remaining boundaries has twoO
w, ow/ox at edges parallel to the -axis, andw, ow/dy at edges parallel to the
X -axis, respectively. Each inner point of plate baly one DOF w.
2.5.3 Approach by spline collocation method
A rectangular thin plate_ Iwith $izeaxb_.has l_)__een assigned, and n, inner
knots with equal-spacen, and.h, |n tﬁ@‘x and y - directions, respectively, as
shown in Figure 2.3.1. The serial nufnb(;:;; o_f.:tlnrerimnots are defined as
X =0, X, ,=8, XX ;m: a/(n;—ls, j=3....n +1 (2.5.10)
¥:=0, ¥, ,=b, y,,-y,=h =b/(n,-1), j=3...,n+1 (2.5.11)
The total number of inner knots ig,n, . The governing equation in Eq. (2.5.1)

must be satisfied for each inner knot of the plate.
The fictitious knots should be based on, and reguio satisfy the BCs. One needs
two fictitious knots outside the plate to satisfyotBCs for each boundary knot of the

plate except for four corner knots. Therefore, tbi@l number of fictitious knots for
boundary knots, excluding four corner knots,4E(nx—2)+ (ny—Z)] Each corner

knot has three BCs. Thus, the total number oftiets knots for four corners is 12.

Consequently, the total number of boundary fictiioknots for the plate are
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4(n,+n,)—4, which exactly equal to the total number of BCéeTotal number of
knots including fictitious knots for the whole gais nn, +4(n, +n,)—4, as shown in

Figure 2.4.2.
The displacementw(x, y) of a rectangular thin plate subjected to in-pléorees

can be approximated by using the QSF as follows
n+4ny+4
w(x,y)= 2 > B (XB, ()W, (2.5.12)
i=1 j=1
where W; s are coefficients to be determined, note thgt=0 for no knots
i=Ln+4, j=1,23n+2n+ 3n,+ ¢« and i=2,3n,+2n+3, j=L,n+4.

Therefore, the partial derivatives for(x; y) -inen as

MPrS) X, \ ng4n,+4 r . 2\
—8xr5(ys Y > Jz; 5098 ()% (2.5.13)
Substituting Eq. (2.5.12)and Eq. (2,5.1’3) into eyovng equation in Eq. (2.5.1),
generalized forces in Eq. (2.5._3) tp" Eq. (2.5.'7:i)i BCs in Egs. (2.5.8) and Egs.(2.5.9),
respectively , can obtain.

Governing equation:

D3 BB, () + 28R () + B (OB ()], =
- s (2.5.14)
o> S EAB (W
Generalized forces:
M, (x)=-D3 ¥ [ BB (y)+ VB 0B/ (Y) |, (2.5.15)
M, (6 y)=-DY 3 [VvBI(B, (y)+ B 0B/ |W, (2.5.16)

i=l j=

[y
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n,+4ny+4
V, (% y)=-D [VB"(X)B, (y)+ (2-v)B (X)B] (¥) |W, (2.5.17)
i=1 j=1
n,+4ny+4
V,(xy)=-DY X" [VB (B(y)+(2-v)B'()B| (v)|®, (2.5.18)
i=1 j=1
n+4ny+4
F.(xy)==2D(1-v)Y X B/ (B8] (v)#, (2.5.19)
i=1 j=1
Boundary conditions:
(1) SSSS BC:
n+4ny+4
W(X,Y) = B (X)B;(y)w, =0 at edgex=0,a (2.5.20a)
i=1 j=1
n,+4ny+4
M, (x,y)=-D [ B'(¥)B, (¥)+vB(X)B{(y) |W;=0 atedgex=0,a (2.5.20b)
i=1 j=1 ; .
n+4n,+4 o : f
wW(X, Y) = B (X)B; (Y)W, =0:at edgey =0,b (2.5.20c)
i-1 j-1 < |
n,+4 ny+4 y I ¢
M, (x,y)=-D [ VB'()B;(y)+ BL9)Bi(y) |, =0 at edgey=0b  (2.5.20d)
i=1 j=1 : ¥ o i
(2) cccc BC:
n+4ny+4
W(X,Y) = B (X)B;(y)w, =0 atedgex=0,a (2.5.21a)
i=1 j=1
a,\(x ) n+4ny+4
NXY) _ B(X)B,(y)w; =0 at edgex=0,a (2.5.21b)
OX i=1 j=1
n+4ny+4
W(X,Y) = B (X)B;(y)w, =0 atedgey=0,b (2.5.21¢)
i=1 j=1
a,\(x ) n+4ny+4
T’y: B (X)B|(y)W =0 atedgey=0,b (2.5.21d)
i=1 j=1

In general, after substituting the coordinates é @ll inner knots into the

governing equation in Eq. (2.5.14), and boundamt&mto the BCs in Egs. (2.5.20) or
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Egs.(2.5.21), then a well determined linear eigelwe system of matrix form can be

obtained, and expressed as

By Bal(W By By l|/W
E db  ad N b =G, b “ad - b (2.5.22)
h[ By, B Wy 0 0 Wy

where W, and W, are column vectors of undetermined coefficient®ssripts b and
d denote the fictitious knots and all inner kneéspectively. The firstn,n, equations

are obtained from governing equation in Eq. (2.pd4d the remaining equations are
obtained from BCs in Egs. (2.5.20) or Egs.(2.5.Ft9)m Eq. (2.5.22) can obtained as
W, =-B. B, W (2.5.23)

Substituting Eq. (2.5.23) into thg Eq. (2.5.22)tanred an generalized eigen-value

problem as follow

E_Wd & Glsh E*u || (2.5.24)
where o h/D, W, are the require,_d' eig;n-\_/élues and eigen-vectespectively, B
and B" defined as follow ‘
B=-B,B.B,,+B., B =-B,B.B,,+B (2.5.25a,b)

Consequently, eigen-values, and eigen-vectorsv, can be found easily from
solving the Eq. (2.5.12).
2.5.4 Numerical Examples and Discussions

In following numerical examples, Poisson’s ratio is taken as 0.3, the plate

aspect ratioy and buckling coefficientk are defined, respectively, as

7/:% (2.5.26)
o,hb?
k=50 (2.5.27)



where o, is maximum stress for uniaxial non-uniform distitéed in-plane edge load.

In this paper, two non-uniform distributed loadtases are studied.

2.5.4.1 Linearly Varying Distributed L oad

Consider a rectangular plate under linearly varydimgjributed compressive load,
o, =-20,/3(1-y/b), shown in Figure 2.5.1(a). Since, =-20,/3(1-y/b) and

o,=1,=0 everywhere in the plate, solutions for bucklingds are available for

designers (Aircraft design manual, 2001; Young andiyBas, 2002). This example
serves as a check of both the formulations as wehe&computer program.

Two boundary conditions, i.e., all edges are simgpported or clamped and
denoted by SSSS or CCCC, are conside_r_gad. Tablg &bws the convergence study

for the buckling load witha/b=1.4As canibe<seen that converged results can be

obtained with N =11. Table 2..5I.2 sho\Aghsh-vt__he.'SCM fésults for variougeispatios. It is
found that differences are observed _bt-e;'ﬁy_ee.n the alztained by SCM, DQM (Warej

al., 2006), FEM (Wangt al., 2006) andcited from ' manual (Aircraft design omain
2001). Consequently, SCM can obtai.n gooclj. accurdiriens.

Table 2.5.1 Convergence for square thin platesunder linearly varying compressive

load.
n, xn
B.C. x Y
10x 10 20x 20 30x 30 40x% 40
SSSS 5.9842 5.9685 5.9657 5.9647
CCcCC 15.2477 15.0349 14.9953 14.9811

Table 2.5.2 Buckling load k of ssimply supported rectangular thin platesunder
linearly varying compressive load.

y=a/b 0.4 0.6 0.75 0.8 1.0 15
SCM 12.24 7.60 6.45 6.25 5.96 6.45
DQM 12.24 7.60 6.45 6.25 5.96 6.45
FEM 12.23 7.59 6.44 6.25 5.96 6.45

Manual 10.80 7.10 6.10 6.00 5.90 6.10
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2.5.4.1 Non-uniformly Distributed L oad

Consider a rectangular plate under non-uniformistridiuted compressive load,

X =-o,cosxy/b) , shown in Figure 2.5.1(b). For this loading case,
o, #—0,c0s@y/b), o,#20 and 7z, #0 within the plate. This makes analytical

solutions be difficult to be obtained if not impidss. Relatively accurate buckling
loads are only available recently for plates withealges simply supported (Bert and
Devarakonda, 2003).

Table 2.5.3 shows the convergence study for thé&limgcload of rectangular plates
with three different aspect ratios. As can be dsah converged results are obtained.
Table 2.5.4 shows the SCM results witth :_15 for three different aspect ratios. It is
found that differences are observed .betwe.en the alatbined by SCM and results cited
from literatures (Bert and Devérakohd_g_, \2003; Vé'h Meut, 1958; Benoy, 1969). To
check the data, finite element analy.ség;;é gla‘orpeed by MSC-NASTRAN. There
are difference between SCM.'da}ta‘ an-(.l-l- soMions bieréa method in (Bert and
Devarakonda, 2003). The poésibie reasons té) cédneseliscrepancy are that a minor
error exists in their derivations and the stressnbary conditions are not satisfied to
obtain their inplane stress solutions. Data in (\d@n Neut, 1958; Benoy, 1969) are

obviously too small and are not accurate, as amgtgub out by Bert and Devarakonda

(2003).
Table 2.5.3 Convergence for rectangular thin plates under half-cosine compressive
load.
B.C. y=a/b My
10x 10 20x 20 30x 30 40x 40
0.5 7.3539 7.3244 7.3189 7.3170
SSSS 1.0 4.7205 4.7087 4.7064 4.7056
3.0 4.7986 4.7280 4.7150 4.7104
0.5 22.2457 21.8098 21.7289 21.7007
CCcCC 1.0 11.5205 11.3467 11.3143 11.3029
3.0 10.8380 10.3469 10.0615 9.9622
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Table 2.5.4 Buckling load k of simply supported rectangular thin platesunder

half-cosine distributed compressive load.

y=a/b

0.5
1.0
3.0

SCM DQM FEM

7.317 7.452 7.409 7.841 7.08
4.706 5.419 5.383 5.146 4.59
4.710 5.849 5.818 5.748 4.53

Bert Benoy
(2003) (1969)

Van Der Neut
(1958)

4.68

2.5.5 Nomenclature

F.(X,Y)
h

h,

h

y

M, (X Y)

V, (X y)

<

length of rectangular thin plate

width of rectangular thin plate

flexural rigidity of the plate

Young’s modulus

concentrated force

plate thickness

\ e 4L
S

equal-space in thg( -I(rj_’i::r__(-acﬁons
equal-space_'.i'n ;;-ﬁey direc.:t'i:ons.

bending moment

effective transverse force per length

inner knots in thex directions

inner knots in they directions

normal deflection

column vectors of undetermined coefficients
is coefficients to be determined

Poisson’s ratio

plate aspect ratio
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buckling coefficient

maximum stress
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2.6 Vibration Analysis of Beams on Pasternak Elastic Foundation

2.6.1 Introduction

The initial stress in a structural member can $icgmtly affect its dynamic
behaviour. Vibration characteristics of beams ost&aak elastic foundation without
initial stress were studied by Franciosi and Ma9i93). However, a study of the effect
of initial stress on the dynamic behaviour of beamsPasternak elastic foundation is
not available in literature. The purpose of thesprg note is to study the vibration
characteristics of beams on Pasternak elastic ftiomd under initial stress using the
spline collocation method.

2.6.2 Formulation
The elastic foundation, .in a'simplified form, cae tepresented as a continuous
layer of independent linear éléstic s‘p._r‘:&'ggh_s-.'(WinkIéBG?). The relation between the
pressure and the deflection of the foyr;é'?a_fiohe is
_b('x):.": K)o (2.6.1)
where K is the foundation modulu;s,, known as the Winkleunigation parameter
and x is the axial coordinate of the beam.
As this foundation model cannot represent the ooptis elastic medium, the

following pressure displacement relationship isdulee the present study:

0(X) = Kw(x)— K, (;’)‘Z(ZX) (2.6.2)

where the second parametr, , represents the stiffness of the shearing laygu(e

2.6.1) connecting the top of the Winkler springbisiphysical model with constantk

and K, , is known as the Pasternak model (Pasternak, 1954)
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Shearing layer
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Figure 2.6.1. Pasternak elastic foundation.

For a uniform beam of length., moment of inertial , Young’s modulusE
subjected to an end concentrated loA@dand executing harmonic oscillations resting

on an elastic foundation characterized by Eq. 22.8he governing equation is given by

d*w(x)

d2w(x)
o S

1oy
0

+ Kw(x) - K,

— 2, W(X) =0 (2.6.3)

Nondimensionalizing all‘the length quantities in. £2.6.3) by the length of the

-

column L, we get ' <
dW(X) - _ aWX) . dAW(X
x(“ )+KW(X)—K1.' d)i(z ) pa dx(z )—lfW(X):O (2.6.4)
where
_ 4 2
W(X):W(X), :1’ K:KL, 1:K1L,
L El 7 2El
(2.6.5)
y
2 4,42
P f{mLa) }
El El

The deflection slope, bending moment and sheaefare

_ dw(X)
O(X) == (2.6.6)
M (X) = El da\’;’((}) (2.6.7)
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dW(X)

V(X)=—El E (2.6.8)
The boundary conditions can be divided into thioWing two kinds:
clamped (C):
W=0, 6=0 (2.6.9)
Hinged (H):
W=0, M=0 (2.6.10)

at the extremity X =0, 1.

2.6.3 Approach by spline collocation method

Since the governing equation of a uni_form beam$asternak elastic foundation
is a fourth-order ordinary differe_ntiail equétionD{E)), the solution of the governing
ODE can be approximated by the spline function$i walynomial at least fifth degree.
A quintic spline functions (QSFs) ig.-%zﬁ'i'“lééewisﬁhfidegree polynomial which is
belonging to C*. -

Considering a set of equi-gpaced knot; IS seleated normalized interval
X e[0,1], i.e.,

X,=0, X,=1, X ,—-X,=h, j=0,..,n-1 (2.6.11)

where h is distance of equi-spaced knots. In order to yapipe SCM, one needs to

extend two added knots (fictitiousX ,, X, and X ,, X,., at each end of beam,

respectively (Figure 2.6.2).

h
=
X, X Xi 1 X X, X X

o]
X*Z 1 n+1 n+2
fictitious fictitious

Figure 2.6.2. Partitions of beam into n sectionswith two added knots at each end.

Then the uniform beams on Pasternak elastic foiordé&ar flexural vibration can
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be approximated by using the Q@&enter, 1975as follows

W(X) = f B(X)a (2.6.12)

where ¢ s are the coefficients to be determined aBd¢) is QSF.

Substituting Eq. (2.6.12), into the governing equa in Eq. (2.6.4) can obtain
n+2 _ _
> [ B(X)+KB (X)-K,B" (X)+B(X)-4B(X)]a =0 (2.6.13)
i=-2

Similarly, the two kinds of boundary conditionskiu. (2.6.9) and Eq. (2.6.10) to

Eq. (2.6.12) can obtain,

clamped (C):
f B (X)a=0, | f BL(X)a=0 (2.6.14)
Hinged (H): 7 .
n+2 | n-;z__«.
> B (X)a =0,/ 3B (X)a-0 (2.6.15)
i=—2 | i~z |

In general, after substituti_hg tﬁe coordin:ateshasf h+1 knots, X, i=0,1,.. n,
into the Eq. (2.6.13), and coupling the four ginundary conditions in Eq. (2.6.14)

and Eq. (2.6.15) at the ends, and X, , one obtains the following simultaneous

equations.

1st B.C. aiX,
2nd B.C. ai,
1st B.C. aiX,
2nd B.C. aX

STBO(X,) + KB (X0) —K,BY (X0)+ AB(X - 4B (X ]
S [BOx)+ KB (X))~ KB (X,)+ AB(X,)- 4, B(X,)]a

i—2

=0 (2.6.16)

iz [BO(X,)+KB (X,)-K,B' (X,)+4B(X,)- 4B (X,)]a

Li=-2 _
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Matrix equations in Eq. (2.6.16) of the followingrin
[KI{a}+H{Fl{a}+1G {a}-A] M {a}0 (2.6.17)
where [K], [F] and [G] are the assembled elastic stiffness matrix, fotioda
matrix and geometric stiffness matrix respectively. is the load parameter
representing the initial stress in the beam ahd is the frequency parameter
(eigenvalue). Eq. (2.6.17) can be solved using atandard algorithm to obtain
eigen-values and eigen-vectors

2.6.4 Numerical Examples and Discussions
Frequency parameted, is evaluated fory=0.0, 0.2, 0.4, 0.6 and 0.8r is

defined as the ratio between the Ioad"'paramelerand the stability parameter

A, (¥ = A/ 4,) . Stability parametetl, (PL2/EL) is,obtained by using Eq. (2.6.17) by

b

neglecting the fourth term and replaéin%j?f)g'/- Ilb A

Convergence of the stability pérar;-(-eté,;: 9f beams K =0 and K, =0) for
three types of boundary condi.tion:s, HH C;C, an@ Hare shown in Table 2.6.1. It is
sufficiently to indicate that the convergences I§Msare very good, and observe that

using inner 301 knots are enough to obtain stafdevary accurate results.

Table 2.6.1 Variation of stability parameter A, (PL?/El) with K=0 and
K, =0 for vibrating beams.

No. of knots 1) H-H C-C H-C
21 9.8899 39.8042 20.2758
51 9.8729 39.5304 20.2043
101 9.8704 39.4914 20.1941
201 9.8698 39.4816 20.1916
301 9.8697 39.4799 20.1911
401 9.8697 39.4792 20.1911

The above formulation is employed to obtain thejdency parameterl, of a

uniform beam for various values df and K, for the H-H, C-C, and H-C beams.

The beam is idealized into 301 knots of equal lengt
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The variation of 4, and A, is given in Table 2.6.2 to Table 2.6.4, and Table
2.6.5 to Table 2.6.7, respectively, for the valoésK - 0.0, 1.0,102, 10*, 10° and

K, =0.0,0.5, 1.0, 2.5 for H-H, C-C, and H-C beams.

From the numerical results presented in the TaBlés, 2.6.7, and 2.6.8, the

following observations have been made:

(&) A, decreases with increasing for a given K and IZl;
(b) reduction in A, with increasingy is more for lower values oK ;
(c) reductionin A, with increasingy is small for simply supported beam compared

to clamped beam for a giveK_and'K;

(d) the values of 4, , are almost/the same for sim_ply supported and déainiqeams for
stong foundation (i.e. hig.her valdgg;@)".for a g.i\./en K and K, ;

(e) foragiven K and y, the vglugs omf in!_crea_lse with increasingKl ;

() theincrease inA,, with inc'rea:éing IZl , 1S m:;ore for lower values oK ;

(g) for a given IZl , and y, the values of4, , increase with increasingz;

(h) The increase iR, , with increasing IZl is more for lower values oK .

Table 2.6.2. Variation of stability parameter 1, for H-H beam.

Kl
K 0.0 1.0 10 102
0.0 9.8697 10.8699 19.8699 109.8698
1.0 9.9710 10.9712 19.9712 109.9712
102 20.0039 21.0036 30.0037 120.0036
10 201.4158 202.4140 211.4146 301.4150
10° 2001.0728 2002.0747 2011.0743 2101.0738
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Table 2.6.3 Variation of stability parameter A, for C-C beam.

Kl
K 0.0 1.0 10 102
0.0 39.4799 40.4805 49.4808 139.4805
1.0 39.5567 40.5567 49.5566 139.5568
102 47.0099 48.0104 57.0099 147.0105
10* 233.8066 234.8077 243.8067 333.8063
108 2039.6859 2040.6860 2049.6861 2139.6860
Table 2.6.4 Variation of stability parameter A, for H-C beam.
K,
K 0.0 1.0 10 10?
0.0 20.2758 21.1918 30.1919 120.1918
1.0 20.2745 21.2745 30.2744 120.2745
102 28.3095 29.3090 38.3092 128.3087
10* 208.9871 209.9880 218.9885 308.9884
10¢ 2010.6861 2011.6811 2020.6882 2110.6925
Table 2.6.5 Variation of freguency parameter. A, for H-H beam.
o ~ K,
K y 0,0 (=D 10 102
0.0 0.0 3.1416 T 3.2183 3.7422 5.7384
0.2 2.9711 =3.0437 3.5391 5.4271
0.4 2.7650 2.8824° 3.2935 5.0505
0.6 2.4984 2.5594 2.9760 4.5636
0.8 2.1009 2.1522 2.5025 3.8375
1.0 0.0 3.1496 3.2258 3.7469 5.7398
0.2 2.9787 3.0508 3.5436 5.4283
0.4 2.7720 2.8390 3.2977 5.0516
0.6 2.5048 2.5654 2.9798 4.5647
0.8 2.1063 2.1571 2.5057 3.8384
102 0.0 3.7484 3.7944 4.1482 5.8664
0.2 3.5450 3.5885 3.9231 5.5481
0.4 3.2989 3.3394 3.6509 5.1631
0.6 2.9809 3.0175 3.2989 4.6653
0.8 2.5070 2.5372 2.7739 3.9230
104 0.0 10.0243 10.0267 10.0487 10.2608
0.2 9.9077 9.9261 9.9442 10.1202
0.4 9.4177 9.5736 9.6341 9.9735
0.6 8.5837 9.0820 9.1290 9.5643
0.8 5.9770 7.7437 7.8284 8.5551
108 0.0 31.6235 31.6236 31.6243 31.6313
0.2 31.3160 31.3169 31.3262 31.4182
0.4 30.2909 30.2929 30.3102 30.4809
0.6 28.2934 28.2962 28.3213 28.5683
0.8 24.4913 24.4940 24.5184 24.7589
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Table 2.6.6 Variation of frequency parameter A, for C-C beam.

Kl

K y 0.0 1.0 10 102

0.0 0.0 4.7300 4.7588 4.9957 6.4025
0.2 4.4803 4.5077 4.7331 6.0714
0.4 4.1764 4.2021 4.4132 5.6683
0.6 3.7808 3.8041 3.9965 5.1426
0.8 3.1856 3.2054 3.3688 4.3467

1.0 0.0 4.7324 4.7611 4.9977 6.4035
0.2 4.4826 4.5099 4.7350 6.0723
0.4 4.1785 4.2041 4.4150 5.6693
0.6 3.7827 3.8060 3.9981 5.1434
0.8 3.1872 3.2070 3.3702 4.3474

10° 0.0 4.9504 4.9755 5.1852 6.4957
0.2 4.6909 417148 4.9144 6.1616
0.4 4.3747 43972 4.5845 5.7548
0.6 3.9625 319829 4.1539 5.2238
0.8 3.3409"  3.3583 3.5038 4.4191

10 0.0 10.1229 | A\ 16,1258 10.1522 10.3960
0.2 9.9757 || =-9.9784 10.0185 10.2183
0.4 9.7972 1.9.7999 9.8640 10.0194
0.6 9.15101 | 9.1578 9.4538 9.7523
0.8 8.1464/ 8:1519 8.6765 8.6366

106 0.0 31.6267- 31.6268 31.6277 31.6361
0.2 31.3434 31.3446 31.3643 31.4560
0.4 30.3465 30.3486 30.4083 30.5519
0.6 28.3781 28.3806 28.5113 28.6242
0.8 24.6045 24.6072 24.9308 24.8665
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Table 2.6.7 Variation of frequency parameter A, for H-C beam.

Kl

K /4 0.0 1.0 10 102

0.0 0.0 3.9266 3.9733 4.3313 6.0483
0.2 3.7169 3.7622 4.1022 5.7317
0.4 3.4619 3.5057 3.8237 5.3476
0.6 3.1298 3.1723 3.4615 4.8487
0.8 2.6290 2.6719 2.917 4.0974

1.0 0.0 3.9307 3.9772 4.3344 6.0494
0.2 3.7218 3.766 4.1051 5.7328
0.4 3.4679 3.5092 3.8265 5.3487
0.6 3.1380 3.1758 3.4641 4.8499
0.8 2.6428 2.6746 2.9192 4.0983

102 0.0 4.2869 4.3231 4.6107 6.1583
0.2 4.0618 4.0961 4.3697 5.8381
0.4 3.7880 3.8201 4.0774 5.4500
0.6 3.4313 314605 3.6943 4.9459
0.8 2.8936" 2.9185 . 3.1176 4.1865

104 0.0 10.059 | ~..10.062 10.087 10.319
0.2 9.9298 57:?"-9.9327 9.9572 10.163
0.4 9.6418 19,6487 9.7086 9.9896
0.6 9.0307 || 9.0879 9.1015 9.6206
0.8 7.8933::. 79016 7.9743 8.5581

106 0.0 31.625 - 31.625 31.626 31.633
0.2 31.314 31.315 31.326 31.428
0.4 30.293 30.295 30.315 30.498
0.6 28.312 28.315 28.338 28.567
0.8 24.521 24.524 24.548 24.787

2.6.5 Nomenclature

B (&) quinticspline functions

o is the coefficients to be determined
E Young’s modulus

h distance of equi-spaced knots

[ moment of inertia
K foundation modulus

K, second parameter
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L

M (X)

P

V(X)

X

0(X)

A

Ay

A

yo
Ay

uniform beam of length
dimensionless bending moment
concentrated load

dimensionless shear force

axial coordinate of the beam
dimensionless coordinate system

dimensionless deflection slope
load parameter representing the initial stnreshe beam

stability parameter

frequency parameter

frequency ratio
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2.7 Vibration Analysis of Timoshenko Beam-Columns on Paster nak
Elastic Foundations

2.7.1 Introduction

Many problems related to soil-structure interactvam be modeled by means of a
beam or a beam-column on an elastic foundationctieah examples of these are
railroad tracks, highway pavements, continuouslppsuted pipelines, and strip
foundations. The free flexural vibrations of beaams continuous elastic foundations
have been analyzed by a number of investigatore dffiect of a partial elastic
foundation on the natural frequencies of beamsiles pvas examined by Doyle and
Pavlovic (1982), Eisenberger er al. (1985), Valéangand Pradhanang (1987), Laura
and Cortinez (1987). The exact dynamie sti_ffnesstrimzs for free vibration

calculations of a uniform beam on an:gl_ast'ic fotiotawere developed by Williams

L

and Kennedy (1987). | 25

The problems of bending'\(iﬁrations of -uniform beaaors nonuniform elastic
foundations were solved by Pavlovic and..V\lyIie (9&isenberger and Clastornik
(1987), Filipichet al. (1988), De Rosa (1993), Kukla (1991) and Zhou9®)9 The
similar problem for stepped beams on uniform edafstundations was treated by Wang
(1991). The free vibrations of nonuniform beamstings on nonuniform elastic
foundation with general elastic end restraints vatuelied by Lee and Ke (1990). In the
aforementioned studies, the elastic foundation wieslized by a Winkler model
(one-parameter model) for mathematical simplic&jthough the Winkler model is
quite simple, it does not represent accurately ¢characteristics of many practical
foundations. In order to eliminate the discontineiauature of this model, several
two-parameter foundation models that are more ateuhan the Winkler model and

simpler than semi-infinite elastic continuum founida models (see, Richast al.
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(1970)) have been reported in the literature. Titeation and buckling of beams on
variable Pasternak elastic foundations were distldsy/ Eisenberger and Clastornik
(1987). The same problems for beams on an elastiiespace or a two-parameter
elastic soil were considered by Karamanlidis arak&sh (1988), and De Rosa (1989).
The free vibration analysis of a beam on a two-metar elastic soil was performed by
Franciosi and Masi (1993) using a matrix displacein@proach. The influences of the
partial elastic foundation and the magnitude ofakial force on the natural frequencies
of beam-columns lying on Pasternak models were iefucdy Valsangker and
Pradhanang (1988). All of the foregoing work hasrbeonducted within the framework
of the elementary Euler-Bernoulli beam theory axélral vibration, which is not
applicable to moderately short _and' thick'.-b_eamsorIGier to evaluate the effects of
transverse shear deformation;and rotatory.inertighe:dynamic behavior of beams, the
lateral vibrations of Timoshenko begms I.(see Timokbeet al. (1974)) laid on
Pasternak foundations (or twp_—pa._ramé:t:ér f:c;)unda)ti(wsre analyzed by Wang and
Stephens (1977), Wang and Gaénon (197-8),:; Yokoyd87(, Filipich and Rosales
(1988). The transverse vibrations of curved Timogbe beams on the Winkler
foundations were investigated by Panayotounakos Hmebcaris (1980), and Issa
(1988). A transfer matrix method for the vibratiand buckling analysis of an axially
loaded Timoshenko beam on a Winkler foundation dexeloped by Djodjo (1969).
The exact dynamic stiffness matrices for an axidlpded Timoshenko member
embedded in the Winkler-type foundation were detilig Capron and Williams (1988).
The vibration analysis of Timoshenko beam-columm&lastic media was presented by
Cheng and Pantelides (1988) using the dynamimes# approach. In their work, the
elastic media were replaced by a constant Winkbemdiation and the effect of the

partial elastic foundation was not taken into actou
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The present paper describes a spline collocagiomiique for determining the free
vibration characteristics of a uniform Timoshenkeatm-column on Pasternak elastic
foundation. The beam-column is divided lengthwis® ia number of knots of equal
length. The influences of axial force, foundatidiffreess parameters, transverse shear
deformation and rotatory inertia are incorporatet ia spline collocation model. The
governing matrix equation for small-amplitude, fng@brations of the beam-column on
the elastic foundation is derived by applicationHamilton’s principle. The numerical
results for the natural frequencies and the coaeding mode shapes of the classical
Euler-Bernoulli and Timoshenko beam-columns onelastic foundations are provided
and compared with the exact solutions or the abtgleesults in the published literature.

The advantages and limitations assdciated withetlenique are discussed.

2.7.2 Formulation

3 R

partially sugebain an elastic foundation as

=\

Consider a Timoshenko beam-colu

depicted in Figure 2.7.1 The elasti¢ 'foundatiq'rdésalized as a constant two-parameter
model characterized by two rhodule‘, i.e. the Wink@rndation modulusk and the

shear foundation moduluk;. In the casek; =0 this model reduces to the usual

Winkler model.

g
Y
Figure 2.7.1. A Timoshenko beam-column supported on an elastic foundation.
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Figure 2.7.2 shows a Timoshenko beam element withxaal force P, resting on
Pasternak elastic foundation model. The beam eleomsists of two nodes and | ;
each node has the degrees of freedom ofalatisplacementv and
bending rotation (or slopey. In the present formulation, it is assumed thatthe
beam material is isotropic, homogeneous and ligeatastic; (i) the vibration
amplitudes of the beam are sufficiently small) (ihe cross-sections initially normal to
the neutral axis of the beam remain plane, butamgdr normal to that axis during
bending; (iv) the normal inertia and damping of fbandation are negligible; and (v)

bonding between the beam and the foundation iggpierf

0 >

PAAAAA
SHEAR ++¢¢+¢+

LAYER

Yy

SPRING k

7/

Figure 2.7.2. Timoshenko beam element with an axial force, resting on
Pasternak-type elastic foundation.

The strain energyJ of the beam of lengthL including the effects of both

transverse shear deformation and elastic foundatiay be written as

2 2
U :EILEI (%j dx+—1jLK'GA(a—V—9j dx
270 OX 270 OX
, (2.7.1)
1.t 2 1L oV
+§j0 k(v) o|x+—2jO ke[&j dx

where E is Young’s modulus;| the second moment of area’ the shear
coefficient depending on the shape of the crossese¢see Cowper, 1996)G the
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shear modulus;A the cross-sectional area; and the local coordinate along the axis
of the beam element.
The kinetic energyT of the beam allowing for the rotatory inertia effés given

by

10 (v . 1, (00
U=— A — | dx+—= [l — | dx 2.7.2
ke [atj X+2I°p[6tj &72)

in which p is the mass density of the beam material, and the time.

The W work done by a compressive axial forée (positive in tension) can be

represented as

2
wo_1 PIL[@);dx (2.7.3)
2 9% Ox
Summation of the individual”energies and.the wovkrahe entire beam-column
using Egs. (2.7.1)-(2.7.3) gives the tbtéﬁ;ﬁtéi&!ﬁergy IS given by
m=uU- T+ || (2.7.4)
Taking variation the governiﬁg equation for Timaske beam-column partially

supported on Pasternak elastic foundation can ae&ed as

020 ov 020
El 2 xGA 6-Z |+ pl 2 =0
2 K [ aner o2 (2.7.5a)
2 2
Al Y0 ik DY _p OV, AN g (2.7.5b)
oX?  0OX oX? 0X? ot?

If the assembled displacement assumed to be hacmantime with circular
frequency o, i.e. v(xt)=v(x)et and &(x,t)=8(x)e't, after incorporation of the
appropriate end conditions, Egs. (2.7.5) becomesganvalue problem of the form

dzo
dx?

av
dx

El —K'GA[H— j+p|a)2920 (2.7.63)
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, d2v dd dav _du
KGA(@—&j—kV-F kG@_ P@‘FIOACOZV: 0 (2.7.6b)

Nondimensionalizing all the length quantities insEq2.7.6) by the length of the
column |, and following mechanical and geometric propemiethe Timoshenko beam

used by Cheng and Pantelides (1988) are chosethdéomnalysis: Poisson’s ratio:

v=14(or G/E=2/5), shear coefficientc’=2/3 (for rectangular cross-section),

slenderness ratit/r, =10, we get

d? 80( . 1dv) 1
S0 2V, Lo
dx 2 3[ dej 100 (2.7.7)
80( oA/ 06 o, LY,
E(W—L&]—ﬂﬂwﬁ-ﬂeﬁzaxz.._—Rﬂ'zaxz-i-CA/:O (277b)
where
kLA k== pLe PALS
Vv, x=2 2= e - . c2= 02
V=1 L B @ ek || Ve El (2.7.8)

The boundary conditions éan:fde divided into thievang two kinds:

clamped (C):
V=0, 6=0 (2.7.9)
Hinged (H):
de
V=0, —=0 2.7.10
ax ( )

at the extremity X =0, 1.
Alternatively, when the shear deformation parameteroV/oX is set equal to
zero and the rotatory inertia magd is neglected, the resulting model is identical to

the classical Euler-Bernoulli beam-column modelRasternak elastic foundation used

by Karamandilis and Prakash (1989).
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dyv da da
dx4—Z7r4V+ﬂG7r2dX2—Prﬂzdxzz—cz\/ (2.7.11)

2.7.3 Approach by spline collocation method

Since the governing equation of a Timoshenko bealmmn partially supported
on Pasternak elastic foundation is a second-oraBnary differential equation (ODE),
the solution of the governing ODE can be approxaddby the spline functions with
polynomial at least fifth degree. A cubic splinendtions (CSFs) is a piecewise third
degree polynomial which is belonging ©°.

Considering a set of equi-spaced knots is selantachormalized interval
X e[0,1], i.e.,

X,=0, X =1, xm—'xj:h", j=0..n-1 (2.7.12)

where h is distance of equi;space(:!'_ _kD_ots__.'-In ord'er toyappe SCM, one needs to

at each end of beam, respectively

In-+1

extend two added knots (fictitiousX |, a.-nd X

(Figure 2.7.3).

h
s
e/ . /R
Xfl xo xi—l Xi X X

n n+1
fictitious fictitious
Figure 2.7.3 Partitions of beam into n sectionswith one added knots at each end.

Then the uniform beams on Pasternak elastic fouondé&tr flexural vibration can

be approximated by using the C@¥enter, 19753s follows

n+l

V(X)=Y B(X)a (2.7.133)

O(X) = Zf B (X)a (2.7.13b)

i=n+2
where ¢ s are the coefficients to be determined aBdX) is QSF.
Substituting Egs. (2.8.13), into the governing emus in Eqs. (2.8.7) can obtain
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1 n+l 2n+5

—Z B/(X)a + >

i=n+2

B/(

|

{830 B/(X) - A7*B.(X)+

n+l

2.

i=—1

l 2
X)——B(X)+1—Ooc B.(X)

Jo=o

As7?B/(X) ~PF, 72B/(X) +c?B, (X):|ai

80 2n+5

2L
3

i=n+

> B Xa= 0

2

(2.7.14a)

(2.7.14b)

Similarly, the two kinds of boundary conditionskug. (2.7.9) and Eq. (2.7.10) to

Egs. (2.7.13) can obtain,

clamped (C):
n+l 2n+5
Y B(X)3=0, > B(X)a=0
i=—1 i=n+2

Hinged (H):
n+1 2n+5 :
ZB(X)a 0, > B(X)a=0

In general, after substitu

Itingythe coprdinatedhef n+1 knots, X,,

Sk S
= |

(2.7.15)

(2.7.16)

i=0,1,.. n,

into the Egs. (2.7.14), and cou'pli,n_g thetfour ‘giveuindary conditions in Eq. (2.7.15)

and Eq. (2.7.16) at the ends, and D, -

equations.
n+1 2n+5
—Z B'(X,)a + gz
n+l 80
53
n+1 2n+5
= Z B'(X,)a + ;

n+l

)

Li—1

Matrix equations in Eq.

B'(X,) —A7*B (X,) + 4.z °B!(X,) — P ;zZB"(xo)+c25(xo)}

[8305"(x )= AT*B (X,) + A BI(X, )~ P z7BI(X,)+c’B (X, )}

1st B.C. afX,
2nd B.C. a¥,
1st B.C. aiX,
2nd B.C. aiX,

[Bﬂ(x )_ 1

B(Xo)+_()c B(xo)

J

80 2n+5
31‘3'—2 B (Xo)a

i=n+2

2n+5

a—S—;LZ B (X,)a

i=n+2

B(X )+—lczB(X)

|:B"(X )_ OO

(2.7.17) of the followingrin
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[Kl{a}-A7TK ] {a}+ 4,71 K] {a}-P[ K] {a}+cf M {a}® (2.7.18)
where [K], [Kq], [K{], [K,], and [M] are the elastic stiffness matrix,

first-parameter foundation stiffness matrix, secpadameter foundation stiffness
matrix, geometric stiffness matrix, and consistertss matrix respectivelyc is the
frequency parameter (eigenvalue). Eq. (2.7.18) bansolved using any standard
algorithm to obtain eigen-values and eigen-vectors

2.7.4 Numerical Examples and Discussions

In order to check the validity of the present teghe described in the previous
section, several examples of the transverse viatof beam-columns supported on
elastic foundations were considered.

The individual parameter méy be droppéd when tse@ated effect is neglected.
Consequently, the computer brograrﬁ 'dggéi’dped rﬁa{yidmly applied to various cases
of: (i) Euler-Bernoulli beam; (ii) Timqshé%hko. beafiii). Euler-Bernoulli beam-column;
(iv) Timoshenko beam-columln.; ::('-v) EulgriBefnoulléann-column on a Winkler
foundation; (vi) Timoshenko beam-column on a Winkldoundation; (vii)
Euler-Bernoulli beam-column on Pasternak elastianétation; (viii) Timoshenko
beam-column on Pasternak elastic foundation; arehsd he effect of the partial elastic
foundation on the natural frequencies of the Tineo&lo beam-columns, as well as the
Euler-Bernoulli beam-columns, was previously exadimy the author (1991). In the
following, only a fully supported beam or beam-culuis considered.

2.7.4.1 Euler-Ber noulli beam-columns

The first example is concerned with the conventitesam-columns or the classical
Euler-Bernoulli beam-columns on the Winkler andtBamk elastic foundations. Two

kinds of end conditions, i.e. hinged-hinged andyathiclamped ends are considered in
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this study. The choice of the buckling load parame® , and the Winkler foundation

parameter A, is based on Cheng and Pantelides’ examples (198f) value of the
shear foundation parametet, is taken from Valsangker and Pradhanang’s work

(1988).

Tables 2.7.1 and 2.7.2, respectively, show a coisgarbetween the present
numerical results, finite element method (FEM) #éimel exact ones for the lowest three
frequency parameters of the beams and beam-colmitimsut elastic foundations.

Table 2.7.1 Frequency parameter ¢ for Euler-Bernoulli beamswithout elastic
foundation (1=4, =0, P. =0.0).

Hinged-hinged Hinged-clamped
Mode no. Exacf FEMP SCM Exacf FEMP SCM
1 st 9.87 9.87.+ .. 9.870 15.42 15.42 15.418
2nd 39.48 39.49 39.480 49.96 49.99 49.967
3rd 88.83 88.94 88.835 104.25 104.43 104.26

2 Timoshenkaet al. (1974); Yokoyamat-(1996), 8 elemenf201 knots

Table 2.7.2 Frequency parameter c f:“t_):?_"‘lf_'uler-Bernoulli beams without elastic
foundation (1 =45 =0, P =0.6).

Hinged-hinged Tk Hinged-clamped
Mode no.  Exacf FEM2 =~ SCM’.  Exacf FEM SCM
1st 6.24 6.24 - 6.242 13.01 13.01 13.007
2 nd 36.40 36.41 36.399 47.35 47.38 47.356
3rd 85.81 85.93 85.823 101.54 101.73 101.55

2 Timoshenkeet al. (1974);° Yokoyamat (1996), 8 elemenf®201 knots

In Table 2.7.2, the exact solutions for the hinggtyed beam-column were
calculated directly from the analytical closed-foempression derived by Cheng and
Pantelides (1988) using their “first approach”, atlte exact solutions for the
hinged-clamped beam-column were obtained by solthegrequency equation derived
by Bokaian (1988). The eight-element solutions rtyeaonverge from above to the
exact ones. A comparison of Tables 2.7.1 and 2&vRals that, as anticipated, the
compressive axial force reduces all modes of nhfueguencies of the beams. The
reduction in the fundamental frequency of the hirglamped beam is less than that of

the hinged-hinged beam. This is due to the fadt tima critical buckling load for the
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hinge-clamped beam is given by, =2.046¢2El /L?), and hence the buckling load

parameter is practically reduced ® =0.3 (normalized with respect td>, ) for the
hinged- clamped beam under study.

Tables 2.7.3 and 2.7.4 list the numerical resfdtsthe lowest three frequency
parameters of the beam-columns on the Winkler aastdPnak elastic foundations. In
contrast to the effect of the compressive axiakdsr the presence of the elastic
foundations increases the natural frequenciescedlyethe fundamental frequencies of
the beam-columns. The frequency parameters folb#am-column on the Pasternak
model in Table 2.7.4 are higher than those on tinkMf model in Table 2.7.3. This is
attributed to the stiffening effect (equiva!gnt ttmat of a tensile axial force in the
beam-column) caused by the shear.layer ofithe Pagtenodel.

Table 2.7.3 Frequency parameter ¢ fQ[_E\t_JI.ér-Berribulli beams on Winkler elastic
foundation (1 =/0.6;=4, =0,  P. =0.6).

Hinged-hinged 1 || Hinged-clamped
Mode no. Exacf FEM>. ' SCM Exact FEM® SCM
1 st 9.87 9.87 /» =9.8697 1 15.09 15.087
2 nd 37.19 37.20. ~'37.193 — 47.99 57.969
3rd 86.15 86.27 86.163 — 102.02 101.84

2 Timoshenkeet al. (1974);° Yokoyamat (1996), 8 elemenf®201 knots

Table 2.7.4 Frequency parameter ¢ for Euler-Bernoulli beams on Pasternak
elastic foundation (1=0.6, A1; =1, P. =0.6).

Hinged-hinged Hinged-clamped
Mode no. Exacf FEMP SCM Exacf FEMP SCM
1 st — 13.96 13.958 — 18.48 18.479
2 nd — 42.11 42.107 — 52.21 52.196
3rd — 91.21 91.108 — 106.47 106.30

2 Timoshenkeet al. (1974);° Yokoyamat (1996), 8 elemenf®201 knots

Figure 2.7.4 indicates the plots of the loweste¢hrmode shapes for the
Euler-Bernoulli beams with hinged-hinged and hingdnped ends given in Table
2.7.1. It is observed that the mode shapes as agelihe frequency parameters are

greatly influenced by the end conditions. It sholdwever, be noted that, for the beam
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or beam-columns with hinged-hinged ends in Tabl&sl2.7.4, thenth mode shape
or the nth eigen-function is expressed Isin(nzx/L) (n=1,2,..) and hence, remains
the same for different values of the axial load tredelastic foundation parameters. The
mode shapes corresponding to the hinged-clamped-belumns in Tables 2.7.2-2.7.4
are hardly affected by the presence of the axiale® or the elastic foundations under
consideration, and are therefore not shown here.

1.0

0.0

VY[ V]ax

VY[ V]ax

VY[ V]ax

-1.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 2.7.4 Lowest three mode shapes for Euler-Bernoulli beamswith
hinged-hinged and hinged-clamped ends.

2.7.4.2 Timoshenko beam-columns
The second example deals with the Timoshenko bednmois having the same two
end conditions, resting on the same elastic foumdsat Tables 2.7.5 and 2.7.6,

respectively, display a comparison between thegptesolutions, FEM and the exact or

87



available results for the lowest three frequencsapeters of the Timoshenko beams
and beam-columns without elastic foundations.

Table 2.7.5 Frequency parameter ¢ for Timoshenko beams without elastic
foundation (1=4;, =0, P. =0.0).

Hinged-hinged Hinged-clamped
Mode no. Exacf FEM® scM Exac? FEM® scM
1 st 8.21 8.22 8.215 10.63 10.63 10.627
2 nd 24.23 24.31 24.230 25.62 25.71 25.618
3rd 41.54 41.96 41.548 42.03 42.46 42.037

2 Cheng and Pantelides (1988Yuang (1961)° Yokoyamat (1996), 8 elements;
9201 knots
Notev =1/4, x'=2/3, L/r, =10

Table 2.7.6 Frequency parameter ¢ for Timoshenko beamswithout elastic
foundation (1=4;, =0, P. =0.6).

Hinged-hinged Hinged-clamped
Mode no.  Exacf FEM® _SCM* ExacP FEM® scM
1 st 3.47 3.47 3.467 7.32 7.33 7.325
2nd 19.22 19.31 19.223 . 20.93 21.03 20.933
3rd 35.08 35.48 [ 35.085 ~35.70 36.16 35.752
2 Cheng and Pantelides (1988{uang’ (1361)°Yokoyamat (1996), 8 elements;
4201 knots Fa

Notev =1/4, x'=2/3, L/r, =10

In Table 2.7.5, the exact solutl-ons for the hinhedyed Timoshenko beam were
calculated directly from the analytical closed-foexpression of Cheng and Pantelides
(1988), whereas the exact solutions for the hindanhoed Timoshenko beam were
found by solving the frequency equation given by ku&1961). The solutions are in
excellent agreement with the exact or availableultes The reduction in the
fundamental frequencies of the Timoshenko beamsaltize compressive axial forces
is more significant than that of the Euler-Bernbbtams. The reason for this is that,
since the critical buckling loads for the Timoshertbeams are smaller than those for

the Euler-Bernoulli beams, the buckling load paremeP, , increases virtually for the

Timoshenko beam- columns under study.

Table 2.7.7 provides a comparison between the pressnlts and the exact or
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available results for the lowest three frequencyapeters of the Timoshenko
beam-columns on the Winkler elastic foundation. Gaggdeement is obtained with
increasing number of elements. Table 2.7.8 conthmsumerical results for the lowest
three frequency parameters of the Timoshenko bedunmmns on Pasternak foundation.
As in the case of the Euler-Bernoulli beam-colunths, frequency parameters of the
Timoshenko beam-columns increase definitely becaisthe presence of Pasternak

elastic foundations.

Table 2.7.7 Frequency parameter ¢ for Timoshenko beamsWinkler elastic
foundation (1=0.6, 45 =0, P. =0.6).

Hinged-hinged Hinged-clamped
Mode no. Exact FEM® scM Exac? FEM® scM
1 st 8.21 8.22 8.215 10.46 10.49 10.481
2nd 20.59 20.67 = +20.592 22.20 22.30 22.209
3rd 35.86 36:25- .385.863. ..* 36.50 36.90 36.510

@ Cheng and Pantelides (198%b1uang (1961)°Yokoyamat (1996), 8 elements;
9201 knots

Notew =14, x'=2/3, L/r, <10 || =t
Table 2.7.8 Frequency parametet | ¢ “for Ti._mos_henko beamsWinkler elastic
foundation (4 =06,mds =1, P =0.6).

Hinged-hingéd : 5 Hinged-clamped
Mode no. Exact FEM SCM Exact FEM SCM
1st — 12.64 12.638 — 14.42 14.419
2 nd — 28.10 28.028 — 29.34 29.250
3rd — 46.34 45,927 — 46.71 46.283

2Yokoyamat (1996), 8 element201 knots
Notev =1/4, x'=2/3, L/r, =10

A further comparison of Tables 2.7.1-2.7.4 and 32.7.8, respectively, indicates
that the higher mode frequencies of the beams @mbmlumns are reduced
significantly, owing to the effects of shear defatman and rotatory inertia which make
the beam less stiff, regardless of the end condifithe axial forces and the elastic
foundations.

In the following, the effects of shear deformatioatatory inertia, compressive

axial forces and elastic foundations on the modgeh of vibrations are investigated.
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Figure 2.7.5 depicts the lowest three mode shapms thhe hinged-clamped
Euler-Bernoulli beam in Table 2.7.1 and for theresponding Timoshenko beam in
Table 2.7.4. It is found that the differences indeshapes due to the influences of shear

deformation and rotatory inertia increase with @aging mode number.

LOfee——e—es
SE 0.0 Mode 1
- Euler-Bernoulli
-~ I R ettt Timoshenko
-1.0 :
0.0 0.2 0.4 0.6 0.8 1.0
X
1.0
Mode 2
5 + Euler-Bernoulli
£ NN | Timoshenko
» 0.0
=
-1.0
0.0 0.2 0.4 0.6 0.8 1.0
X
1.0 Mode 3
’ Euler-Bernoulli
————— Timoshenko
é
:\>T 0.0
>
-1.0 ! [
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2.7.5 Lowest three mode shapes for Euler-Bernoulli beam and Timoshenko
beam with hinged-clamped ends.

Similarly, Figure 2.7.6 represents the lowest thme®de shapes for the
hinged-clamped Timoshenko beam in Table 2.7.5 aod the corresponding

Timoshenko beam-column in Table 2.7.6.
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0.0 0.2 0.4 0.6 0.8 1.0
X
1.0
Mode 2
" [ Beam
_E ----- Beam-Column
» 0.0
=
-1.0
0.0 0.2 0.4 0.6 0.8 1.0

X

Mode 3
Beam

é ————— Beam-Column
> 0.0
=
-1.0
0.0 0.2 0.4 0.6 0.8 1.0
X

Figure 2.7.6 Lowest three mode shapesfor.Fimoshenko beam and Timoshenko
beam-column with hinged-clamped ends.

Figure 2.7.7 shows the lowest three mode shapesther hinged-clamped
Timoshenko beam-columns without and with the Paateelastic foundation, given in
Tables 2.7.6 and 2.7.8, respectively. It can b& $kat the effect of the axial forces as
well as the elastic foundations on the lowest thmeele shape is small, and this effect

decreases as the mode number increases.
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Figure 2.7.7 Lowest three mode shapes for hinged-clamped Timoshenko beams

without and with Pasternak elastic foundation.

2.7.5 Nomenclature

A

B (X)

cross-sectional area
quinticspline functions
frequency parameter
coefficients to be determined
Young’s modulus

shear modulus

second moment of area
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Winkler foundation modulus
shear foundation modulus
length of the beam
compressive axial force
critical buckling load
buckling load parameter
time

kinetic energy

strain energy of the beam
lateral displacement

work

local coordinaté éiong _éhggig;ié'_of thé .It_)earmehzt

bending rotation (or s'quer')'ﬂ‘i__ \

shear coefficient_ﬁepiénding on :the éhape ofithes-section
mass density of the beém material

total potential energy

circular frequency

Winkler foundation parameter

shear foundation parameter
slenderness ratio

rotatory inertia mass
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2.8 Conclusions

The spline functions in the spline collocation noet{SCM) are re-formulated and
extended compactly through finite difference applothat can be easily understood
and accepted by engineers. The solution of the rgovg differential equation is
approximated in terms of the spline functions npligd by the corresponding
weighting coefficients. The coefficient matrix foine weighting coefficients can be
assembled easily by finding then in the spline fiomc The weighting coefficients can
be obtained easily by solving the simultaneousalirelgebraic equations because the
inverse of the coefficient matrix always existsquely solution.

Therefore, the ease of using SCM has been showncddyparing with exact
solutions and other numerical méthod, it is showat the analysis of

1. Flexural Vibration Ahalllysis bf;a;ﬁédmetriéélly Nordar Beam

2. Elastic Analysis of Rectang.ula;'r%‘:}]'hi.ri Plates

3. Shear Buckling of Reéfanéular Thin ;Plafes

4. Buckling Analysis of Rectan.gular Thin Plates

5. Vibration Analysis of Beams on Pasternak Elastiarieation

6. Vibration Analysis of Timoshenko Beam-Columns oisteanak
by the SCM is stable and converged to the coresailt. The order of convergence for
SCM is approaches 2

Consequently, it is believed that SCM will have mapplication developed in the
dynamic analysis, large deformation analysis, twoeshsional, and three-dimensional

problems of engineering problems in near future.
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Chapter 3 Radial Spline Collocation M ethod

3.1 Radial Spline Collocation M ethod
3.1.1 Introduction

Finite element method (FEM) and finite differencethod (FDM) are numerical
methods commonly used to solve partial differenggluation. In the problems of
extremely large deformation, remeshing is freqyendeded for mesh-based methods
but this drawback is not present for the meshlesthods. Therefore, many scholars
worked for development of the meshless method tBcesuch as the Smooth Particle
Hydrodynamics (SPH) (Gingqld- and Mqraghan;___197ﬁ)3 Element-Free Galerkin
(EFG) method (Belytschkeet al., 199:;;the Reproducing Kernel Particle (RKP)
method (Liu et al., 1995), thg.'Fil:n"itle Point ;(EP) method (Onateal., 1996), the
hp-clouds method (Liszka&t al., 19é6), Meshless Local Petrov-Galerkin (MLPG)
(Atluri et al, 1998, 1999, 2000), Local Boundary Integral Equa(LBIE) (Atluri et al.,
2000, Zhuet al., 1998), and several others.

Meshless methods include two major methods: cdiioeamethods and Galerkin
methods. The major difference between these twdadst is the non-interpolatory
character of the approximation in the Galerkin-baseshless methods. The required

computational effort for the collocation methodsrniach less than that required for the

Galerkin-based meshless methods. However, the aocof the collocation methods is
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less than that of the Galerkin methods, so thaemodes are needed for the collocation
method than those needed for the Galerkin methodbtain reasonable accuracy of
results.

The radial basis functions (RBFs) are ones of #msbfunctions in the collocation
methods. Using RBFs for a meshless collocation ateth solve PDES possesses some
advantages: (1) it is mesh-free algorithm; (2) @wgence order is independent of
dimension of analyzed domain; (3) different radtsis functions have different
convergence orders for scattered data interpolafibe RBFs have been successfully
developed for interpolation. ;Frank (1972) __c.:ompa_mdny RBFs with interpolation
methods, and had showed that the:ﬁardys multigaa@Q) (Hardy, 1971) and
Duchon’s thin-plate spline (TP‘S) Wére ranke't:l:;thst lre accuracy. Kansa (1999) used
RBFs with collocation to solve PDEs. of hyperboparabolic, and elliptic types. Kansa
(1999), and Sharamet al. (1997) had shown exponential convergence of Hardy
multiquadric (MQ) scheme. Wat al. (1993) and Franket al. (1998) provided the
convergence proofs and error estimations in apglyile RBFs for scattered data
interpolation and solution of PDEs.

Spline functions, introduced by Schoenberg (1948)dpproximation purposes,

were extended to solve differential equations. Comlyy this incorporates the use of

cubic B-splines which were presented by Mizusaival. (1979) for investigation of
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vibration of skew plates, Shen and Wang (1987)if@ar static analysis of cylindrical

shells, Guptaet al. (1991) for linear finite element analysis of aymmetric shells and

others. Weller (1993) employed B-splines to studgtgouckling behavior of infinite

length cylindrical panels subjected to combinedrtiad and mechanical loading, and
they were incorporated into collocation methodtfe same analysis problem.

When spline functions are combined with collocatiomethod which can
significantly simplify the solution procedure offfédrential equations, it is called spline
collocation method (SCM) (Prenter, 1975). Recemtdgearches have been developed,
such as Bert and Sheu (1996) f-or linear _stéticyai&abf beam and plated/u (2003)
for linear static analysis of continuoﬁs.'%;i?r.r gamé.

The conventional SCM_'.'u?_{es géqually.. spaced knots domputation of
approximation. However, when Ioéd distribution, petry, material property of
structure are discontinuous, it will greatly red@meuracy. Although it can be resolved
by increasing the number of knots, efficiency widicrease and error will increase for
calculation. The goal of this paper is to develaglial spline collocation method
(RSCM) to improve the disadvantage of equally spdac®ts.

The basis functions for governing equation withth order differential equation
must satisfy C" continuous, so that thén+1)-st order spline function should be

derived from (n+2)-nd order difference equation. Utilizing the coricepRBF, spline
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function is transformed into radial spline functiqfiRSF). ThereforeRSF can
conveniently calculate the values for unequallycsplaknots.
3.1.2 Radial radial Quintic B-spline function

In order to solve the fourth-order differential atjan of beam problem, the basis
functions for displacement must be at le&t continuous. The quintic spline function
(QSF) is a polynomial of degree five and continuopgo fourth-order differential. It is

derived from sixth-order finite difference equatiand expressed as follows (Prenter,

1975)
) ENARG TR
(=% o —B(x—x ) ' :tfw i X, <X<X
1 |8 -80S || S X  <X<X
BX s (% 5 —B0x )+ 15k, F 1 20kx% § || /< X <X<X, (3.1.1)
(%o -6 ) +1563¢., 7+ 206X F156 x4 ) X4 <XSX.,
(X_X—S)S _6(X_X72)5+156(_)§71)6_ D(X_)QS +156(_)§+1 5)_ 66(_)§+2 js X2 SXSK3
0 otherwise

where h is the distance between two consecutive knots. 33fero beyond the

range between knotx,_, and x.,. Equally spaced knots are used for conventional

SCM.

Because QSF is symmetric with respect §0, Equation (3.1.1) can be

rewritten as
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(f _573)5 éfs S‘f Séfz
(f _573)5 _6(5_&72)5 éfz Sf Sé—l
1 (f _573)5 _6@:_&72)5"'156_&71)5 é—l Sf Sé
B() :F (§.5=8° -6, &P +156, ¢ §<E<4, (3.1.2)
(§+3 _@5 _6(§+2 _‘5)5 éﬂ Sf S§+2
(G G2<¢<G
0 otherwse

If radius is defined as the distance form a certasition £ to the center
position &, shown in Figure 3.1.1, QSF can be transformed bmuintic radial

spline function (QRSF) as shown in Figure 3.1.2(a).

3s.

vY_

- - —— - ———

|
-
6 ¢

Figure 3.1.1 Radius and radius of influence for quintic radial spline function.

(B-|np°-6(2-|r|)°+15(k|r| F G|r,|< :

| @=|np*-62-|r| ¥ 4r| <
Bi(5) = @[t [)? 2<|r|< 3 (3.1.3a)
0 x|r
B (& —-¢)=B (£-<) (3.1.3b)

where r, =(£-¢,)/s, is the dimensionless radiugs is the radius of influence

domain of QRSF at the center positidih. The values of QRSF at the knots beyond
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the radius of influence domain are zero.

Define h =¢,.,,-& as the distance of knof., from knot &;. In order to
cover at least two neighboring knots at each sideéeeocenter knoté,, the radius
of influence domain of QRSF at the center positiénis suggested to be least
3s > maxh_,+h_, h+h,,).

Analogously, the 1st, 2nd, 3rd and 4th order denves of QRSF are given as

follows
—5(3-r;|)* + 30(2- |r|)“ 75(}| o<
| -5@-|n]) #3008y < L <
Bi (é)_ _5(3_|ri|)4 R .____.... 2_| |S z (31148.)
B () S B (3.1.14b)
20(3-|r| - 120(2-|r,| §+ 300@|r,| 3 @]r|<
v | 20(3|r| - 120(2|r,| § <Ir,| <
Bi(é)_ 20(3_|ri|)3 | |S : (31158.)
0 3r
B(Si —¢&)=B(¢-¢&) (3.1.15b)
~60(3-|r;| ) + 360(2-|r| ¥- 900@|r;| J &]r|<
won | —80(3|r| ¥+ 360(2-|r;| § <Ir,| <
Bi(é)_ —60(3—|ri|)2 Z|ri|S : (31168.)
0 =i
B(Si —¢&)=-Bl¢-¢&) (3.1.16b)
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120(3-|r,| - 720(2-|r;| ¥ 1800@|r| ) 8r|<
@, |120(3|r| - 720(2-|r| ) <Ir|<2
B™(S) = 120(3-|r) 2r|< < (3.1.17a)
0 31}
BI(& -£)=B*(¢-&) (3.1.17b)

Note that B/(¢() and B7¢) are anti-symmetric functions, and’(¢) and
B“(&) are symmetric functions as shown in Figures 3.1.2.
QRSF formulas is used to calculate the value oinspfunction at knoté,

where &, is arbitrarily point.in the analyzed demain.
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(a) Quintic radial spline function (QRSF)
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(c) Second order derivative of QRSF
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Bi"(%)

I
(e) Fourth order derivative of QRSF
Figure 3.1.2 The quintieradial B-spline function.

3.1.3 Radial Spline Collocation M ethod

According to SCM (Prenter, 1975)';'_fhé approximdtetttion by Spline Function

can be shown as

W(X) = nim a B, (x) (3.1.18)

where B,(X) is Spline Function,a,'s are unknown coefficients, andh is the
number of virtual knots at each end outside thdyaad domain. m is dependent on
the order of the governing differential equatiom=21 for 2nd-order andm=2 for
4th-order, etc. There are totalljn+1+2m) knots: (n+1) knots in the analyzed
domain and 2m virtual knots beyond the analyzed domain.

In this paper, RSF is used as basis function iadst# the spline function. It is

called as Radial Spline Collocation Method (RSCM).
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In general, RSCM can exactly express the polynanuahny degree depending
on the degree of the basis function used. For elgnfiguintic spline function is
used as basis function, RSCM can exactly exprespdlynomials up to degree five.
Polynomials up to degree five are written as:
P.(x)=x", -1<x<1, n=0,1,2,3/4,t (3.1.19a)
with boundary conditions
P.(z1)=n1D)"", P, (¥1)=n(nh-1)1)"? (3.1.19b)
As shown in Figure 3.1.3, only__ohe khot is_ neededach end of the analyzed
domain, and two virtual knots;beyond the_a_n_élyzemadn at each end. Consequently,
totally six knots are used to 'represe.nt.'%é ;:po.:Iy'atHnThe knots are spaced unequally
with h,=h,=h,=h,=0.25 ahd :_h"’ I: 200 W'h:garé h=x,—%. The polynomials
are exactly represented by QRSF w.ith Six unequsdbced knots. The approximated
values of P,(xX) by RSCM are computed at 31 points within the aredydomain,

-1<x<1, using Eq. (3.1.18) and agreed exactly with thiyrmomials as shown in

Figure 3.1.3.
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() polynomial of degree five
Figure 3.1.3 Interpolated and exact values of polynomial.
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3.2 Static Analysis of Beams

3.2.1 Introduction
3.2.2 Approach by Radial Spline Collocation M ethod

The prismatic Bernoulli-Euler Beam is governed hg tollowing fourth-order
differential equation:

d*w

El o =g indomain Q (3.2.1)

where w is the transverse deflectiort is the Young's modulus] is the second

moment of sectional area, angl is'the.distributed load over the beam.

According to RSCM, the. deflect_iop;_qf_béam can bprapimated by Eq. (3.1.18).

Therefore, Eq. (3.2.1) can be'rewritten as

ne2"

El Za,B,(“)(x) q( X) (3.2.2)

Similarly, the given boundary conditions at globaundary, I", are approximated

as

n+2

w(x,)=> aB (x)=w onT, (3.2.3a)
dv‘gx") ——faB (%) =6 on I, (3.2.3b)
d W(XO) = El nfa B (X)) =M onl,, (3.2.3¢)
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3 n+2
gl %:_a S a B (x) =V onr, (3.2.3d)
i=—2

where M and V denote the moment and the shear force, respegtivg), I',,
I', and I', denote the boundary regions where deflectioneslopment, and shear
force are specified, respectively.

There are totallyn+5 independent linear equationsi+1 field equations at
n+1 knots and two boundary conditions at each endhv@feam. On the other hand,
there aren+5 unknown coefficientsa, 's to_be determined. For the stable structure,
unique solution will exist.

3.2.3 Numerical Results )

—=ral
S

L=

Example 1: a simply supported beam \}vith lendgthis subjected to uniformly

distributed loadq as shown in Figure 3.2.1:

A\

Figure 3.2.1 Simply supported beam subjected to uniformly distributed load.

The deflection of the beam is approximately repnesst by QRSF with seven
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knots: three in the analyzed domain and four virtunes beyond the analyzed domain.

The location of the knotx, is x=«aL, where « varies from 0.05 to 0.50 with

increment 0.05. The spacing of virtual knots beyond the analydediain is 0.5L .

When « =0.50, those seven knots are equally spaced t®!5 . The dimensionless

deflection and moment diagrams of the beam for hwth0.05 and « =0.50 are

coincided with the corresponding exact ones (Figu2e2a). No matter howr varies

in (0,1), the maximum dimensionless moment and deflectigneea with the

corresponding exact solutions (Figure,3.2.2b).

F) — Exact
Fl
g
;L X Wa=00s
=
- O Wa=os0
E & Mo=oos
=
—
= + Mo=oso
(a) dimensionless deflection and moment diagram
El 10 — 0 s s s s N N s N <>
~ B —— Exact
g
g 00 | | | | | I | | 1 I X w
= olo 0.1 0.2 0.3 0.4 05
) o
g B <> Mmax
=
B
g - L A4 A4 N N N N N N A V.4 A
a 10 Y A Y Y Y A A Y A A

(b) maximum dimensionless deflection and moment
Figure 3.2.2 Radial Spline Collocation M ethod and exact solutions.
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Example 2: a cantilever beam with length is subjected to a triangularly

distributed load, where the maximum intensity oé tllistributed loadq is at the

location x=0.29_ as shown in Figure 3.2.3.

A W
q
X
Il N e e
1 /a2 ‘I Lo VRAV] ;I
S I "]
P | ‘I‘ " ~-\1
ok o
0----0----@ o ®---0---0
X, X, Xo X X, X; X,

Figure 3.2.3 Cantilever beam with trié\_ngular__'distrib'Uted load on portion of beam.

S

%

The deflection of the bea_m IS -ap[-)ﬁrloxirﬁate.ly repmese by QRSF with seven
knots: three in the analyzed ddmaiin and four v:irumas beyond the analyzed domain.
The location of the knotx, is x=aL, where « varies from 0.125 to 0.87t
with increment 0.125. The spacing of virtual knots beyond the analydedain is
0.5L. When « =0.5, the seven knots are equally spaced toOket. . Comparisons of
the dimensionless moment diagrams of the beamadidr br =0.25 and o =0.50 are
shown in Figure 3.2.4a. The maximum dimensionlessment (M ,./M .ea))
between the RSCM and exact solutions for differaties of « are shown in Figure
3.2.4b. Whena =0.25 the maximum dimensionless moment 10, because the

variation of distributed load can be exactly ddsdi Whena =0.25, since the
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distributed load cannot be described exactly so e¢h@r of maximum dimensionless

moment increases with the difference fraim= 0.25.

1.0
|
= O
8 a — Exact
g O
E 05— ]
E ] + AMo=o2s
L
— .-: ]
il - O Afe-oso
0.00 025 050 075 100
x/L
(a) dimensionless moment diagram
1.0 >
X
- L X
o X — Exact
=
g 0.5 —
b X
\‘§ /< X Mm
= L %
00 . | . | . | . | . | . |
0.125 0.250 0.375 0.500 0.625 0.750 0.875

o
(b) maximum dimensionless moment
Figure 3.2.4 Radial Spline Collocation M ethod and exact solutions.
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Example 3: a continuous beam of two spans, each spth length L, is

subjected to uniformly distributed load as shown in Figure 3.2.5.

\

S RS ]
l< e o
I L " L g
ot e ot
O----0---® ° ® ° ®----0----0
X, X1 X X, X, X; X, Xs Xs

Figure 3.2.5 Continuous beam stibj ected to uniformly distributed load.

The deflection of the beérﬁ IS apbrgﬁ’_rpétely ré;:mtfmt by QRSF with nine knots:
five in the analyzed domain ar_lq four \}?;'tuélllon@md the analyzed domain. The
distances of the knots, and x3 from ce'ntr;I knot x, are taken asaL for
convenience, wherex varies from 0.01 to 0.50 with increment 0.05. The
spacing of virtual knots beyond the analyzed donwif.5L . When « = 0.5, the nine
knots are equally spaced to Iie5L. The dimensionless moment diagrams of the
beam for botha =0.01 and « =0.50 are shown in Figure 3.2.6a. The maximum
dimensionless momentM .,/ M | .eae)) betWeen the RSCM and exact solutions for
different values ofa are shown in Figure 3.2.6b. The agreement bet\R&®M and

exact solutions becomes better and betterraslecreases because the shear force at

the central knotx, is discontinuous due to the reaction force. Wher 0.01 and
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a=0.25, the maximum dimensionless moment a@@983t and 0.4150,

respectively.

M/MmmiEma)

Mod My

1.0

O — Exact
0.0 ' l = l X Mo=onn
0 05 O 1.0 0
| D X/L D MG,:O.SO
10
(a) dimensionless - moment diagram
1.0 pg -
L X
X
08 %
B = % — Exact
06 X
_ X X % X Mo
04 X
09 . | ! | . | ! | . |
0.00 0.10 0.20 0.30 0.40 0.50

o

(b) maximum dimensionless moment
Figure 3.2.6 Radial Spline Collocation M ethod and exact solutions.
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Example 4: a simply supported beam with lendthis subjected to a single

concentrated loadP at the mid-span as shown in Figure 3.2.7.

\

3
k\@ S

|<7 L/2 :I: L/2 :I
[ aL/2+}+ aLj2+]
° ° ° ®---0---0

X, Xy X X X, Xs X4 Xs  Xe

Figure 3.2.7 Simply supported beam subjected to concentrated load.

The deflection of the beam is‘approximately repmeese by QRSF with nine knots:

\ e 4L
g—

five in the analyzed domain and fourVirfual on@ydnd the analyzed domain. The

distances of the knotx, and x.'a.'fr:.o"m central ’kpot X, are aL/2, where o varies
from 0.01 to 0.50 with increment0.05. The spacing of virtual knots beyond the
analyzed domain i90.25.. When « =0.25, the nine knots are equally spaced to be
0.259.. By using equivalent load concept, the concentrdbad at the knotx, is
simulated by an equivalent triangular distributedd where the maximum intensity of

distributed load isq, = P/h and h_, =h =h, Figure 3.2.8.
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Figure 3.2.8 Equiv_alggt{per'_\tralization load.

L
| L]

The dimensionless moment._diag-:r-ém_s.: .of.the beam fwh lar =0.01 and
a=0.25 are shown in Fig;Jre. 3..2.9a. ..The maximum dimens&sl moment
(M ' M aeaa ) Detween the RSCM and exact solutions for differeaities of o«
are shown in Figure 3.2.9b. The agreement betweB@MR and exact solutions
becomes better as is decreases, because the shear force at thaldembt x, is
discontinuous due to the concentrated loRAd When « =0.01 and « =0.25 the

maximum dimensionless moment a@e993: and 0.833%, respectively.
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(b) maximum dimens_ioriless moment
Figure 3.2.9 Radial Spline Callocation M ethod and exact solutions.
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Example 5: a simply supported beam with lendthis subjected to concentrated

moment M at the mid-span as shown in Figure 3.2.10.

R :

NN s&

Figure 3.2.10 Simply supported beam subjected to concentrated moment.

The deflection of the beérﬁ is apbrgﬁ’_rpétely ré;:mtfmt by QRSF with nine knots:
five in the analyzed domain ar_lq four \}?;'tuélllon@md the analyzed domain. The
distances of the knotx, and x, fr:bm central k:;\ot X, are al/2, where o varies
from 0.01 to 0.50 with increment0.05. The spacing of virtual knots beyond the
analyzed domain i90.25.. When « =0.25, the nine knots are equally spaced to be
0.29.. The dimensionless moment diagrams of the beambéih «=0.01 and
a=0.25 are shown in Figure 3.2.11a. The maximum dimensgsn moment
(M ' M aeea )  DEtween the RSCM and exact solutions for differeaities of o
are shown in Figure 3.2.11b. The agreement betvR®GM and exact solutions

becomes better ag is getting smaller because the shear force ateh&al knot x,

is discontinuous due to the concentrated momént When o« =0.01 and « =0.25
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the maximum dimensionless shear &r@0 and 1.20, respectively.

1.0 — O O
O O
O O
g B O O
% O O —— Exact
05
§ 9. 9. X Maoor
B O Mooas
00 1 | 1 I 1 | 1
0.00 0.25 0.50 0.75 1.00
x/L
(a) dimensionless moment diagram
1.20 — X
i X
1.15 — X
N X
. X
1.10 )4 —— Exact
B X
1.05 % X % 7
— X fi2res
1.00 —%
0.95 . I ! I . I ! I ! I
0.00 0.05 0.10 0.15 0.20 0.25
o

(b) maximum dimensionless shear force

Figure 3.2.11 Radial Spline Collocation M ethod and exact solutions.
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Example 6: a continuous beam with four spans, edéngth L, is subjected to

three kinds of loading patterns including lineard anonlinear distributed loads,

concentrated load® and concentrated momem#l as shown in Figure 3.2.12.

4o P — 0 (x—12 )2

Figure3.2.12 C_E_Brﬁ*ihuous beam.

In this example, the appli.c.ati.?"n of RSCI\;/I:;is'gerieemi to cover all the cases of
example 1 to example 5 mentioned ébove. The defteof the beam is represented by
QRSF with 25 knots: 21 in the analyzed domain amat fvirtual ones beyond the
analyzed domain. The spacing of any two consecutnhas varies form0.01L to
0.73 . The spacing is reduced t®.01L in the location where loading is
discontinuous. Figure 3.2.13 shows analysis refmitdimensionless deflection, slope,
shear force and bending moment, respectively. €balts have good agreement with
the corresponding exact solutions. It is shownhis &xample that RSCM can be

applied to complicated beam problems.
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x/1.

(a) dimensionless deflection

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x/1.

(b) dimensionless slope

i [

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x/.

(c) dimensionless shear force
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0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
x/.

(d) dimensionless bending moment
Figure 3.2.13 Radial Spline Collocation M ethod solutions for continuous beam.

3.2.4 Nomenclature

a, unknown coefficients
B, (X) Spline Function '

E Young's modulus

second moment of sectional area

L length

M concentrated moment

P concentrated load

q distributed load over the beam

g = P/h maximum intensity of distributed load
Vv shear force

w transverse deflection

r, boundary regions of deflection
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boundary regions of slope

boundary regions of moment

boundary regions of shear force

121



3.3 Conclusions

In conventional SCM, the spacing of any two consgelknots is kept constant to
solve structural problems numerically. Incorporavath the concept of RBF, SCM is
extended to RSCM where the spacing of any two @utse knots may vary. In RSCM,
the knots may be more densely spaced only in tbatim where discontinuity in
loading, geometry and material is present. Theegfdhe knots can be optimally
allocated according to the variation in loadingometry and material. Comparing with
SCM, the number of knots.used iﬁ the ;nalyzed doman be minimized and the
efficiency of computation cénl be gregzlyenhancﬁkie feasibility of the proposed
RSCM is illustrated through seyeral nu-'érﬁeric::_al ekampThe numerical results agree
well with the corresponding e'xac::f ones. As a:; whtile, complicated beam problems
with discontinuity characteristics can be solvedtuaately and efficiently by the

proposed RSCM in the paper. The proposed RSCMaiadbe extended to solve the

solutions of other structural problems such of eaplate, shelletc.
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Chapter 4 Spline collocation element method

4.1 Spline collocation Element method

Various numerical techniques have been developed sfdving continuum
mechanics problems. Among these techniques, tite @iifference method was the first.
This method uses divided difference expressiorsbéshed from a local Taylor series
to replace differential or partial differential apéors appearing in a mathematical term
in discretizing an engineering or scientific prabl¢Burden and Faires, 1985). Though
the discretization is straight, it is difficult tkeal with problems showing nonrectangular
or complex curvilinear geometries using this metf®ehith, 1978).

The finite element method ean consistently disoeeproblems having arbitrary
geometries since it uses interpolation and mapm'ogniques (Zienkiewicz, 1977). This
method employs the variatiohél calcﬁlqi 9‘r'-\./'veight\;s.§idual along with the divergence
theorem to carry out a weak formulallti(-);j‘;:}y./vhich ressirl an integral statement valid for
a discretization. The discretiza_'t.ibr;_. is performédklé domain of an element, which can
have different shape configurations; to ré;sult icoaputable algebraic form. This
method has successfully been applied to the solutibovarious problems in many
engineering or scientific areas.

The spline collocation method (SCM) uses an asdufngction to approximate a
variable function associated with the problem dem@hen spline function linear sums
of the function values at all discrete points ie tiomain are used to approximate the
derivatives in all mathematical terms, in discrietizthe problem (Prenter, 1975). This
method has been used to the solution of many difteengineering and scientific
problems ((Bert and Sheu, 1996; Wu, 2003a).

The author has proposed the spline collocatiomef method (SCEM) (Wu,

2003b). Like the finite-element method, in this hoet the domain of a problem is
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separated into many sub-domains or elements. T @stretization is carried out on
an element-basis. The governing differential otipbdifferential equations defined on
the elements, the transition conditions on interrent boundaries and the boundary
conditions on the boundary of the problem doma@ iarcomputable algebraic forms
after the SCM discretization. All discretized gaveg equations, transition conditions
and boundary conditions are assembled to obtailolzalgalgebraic equation system.
The coefficient matrix of the algebraic equatiorsteyn is generally non-symmetric.
Therefore a direct non-symmetric or indirect ites@atlgorithm can be used to solve the
problem. Since all relations governing a continuprgblem are satisfied, the essence of
this method is to find a rigorous solution numdica

Due to the use of assumed variable '.functionsltelatnents, mapping technique
can be used. Therefore this method-has the sana@t@gye as the finite element method
of consistent boundary condition irﬁﬁ%‘?ﬁéntaﬁon gadmetric flexibility. Hence a
generic engineering or scientifi_c p_r'oblé:r-n c:'?m baveoted into a numerical SCEM
algorithm. And the related com’put::ér code can E)Eeayatically developed.

The gradient of a response function in the probteymain will depend on the
distribution of external causes. Hence the adaptivecept is necessary in order to
efficiently solve a generic engineering or sciaatgroblem. The SCEM is suitable for
adaptively discretizing a continuum problem in whi@rious elements with differently
assumed variable functions can be used simultaiyeous

In treating a concentrated external cause existinghe problem domain, two
approaches are available, one of which is to gémetiae mesh by locating the
concentrated external cause on some inter-elenzamtdaries and including it into the
natural transition conditions. The second one ist¢ate the concentrated external cause

in some element domains and use certain continfumaesions defined over the element
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domains to approximate it based on the rule ofdf@guivalence.
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4.2 Satic Analysis of Two-dimensional Frame

4.2.1 Discrete Element Equation

Figure 2.2.1(a) shown an element placed in theajlobordinates the differential

equilibrium equation in the axial direction is

. d
die

due
die

{EA(XQ) }: p(X®) (4.2.1)

where X° is the local physical coordinataje the axial displacementE Young's

modulus, A(X®) the area of cross section aru(x®) the distributed axial force.

According to SCM theorem assume axial displacensent
Sm+l =
ue(x) = " B(X)a; (4.2.2)
i=-1

where B (X®) using cubic spline funct]_pcn{n \is the number of knots and;, are

L
| L]

unknown coefficients.
Employing Eq. (4.2.2) in Eg. (4.2.1) can be obtain

m+1 d
LoX°

[ EAX®)B' (X°) |&; = p(X°) (4.2.3)
Therewithal, Figure 4.2.1(b) shown an element placethe global coordinates
The differential equilibrium equation in the latked&rection is

d2ve
d(ie)z

d2
d(ie)z

{EI (X°) }: q(x°) (4.2.4)

where X° is the local physical coordinat&;® the lateral displacementt: Young's

modulus, 1(X®) the second moment of section area ag(@®) the distributed lateral

force.

According to SCM theorem assume lateral displaceéiisen
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ViR = Y B (R (4.2.5)

i=-2
where B (X°) using quintic spline functionn is the number of knotsa;, are
unknown coefficients.

Employing Eq. (4.2.5) in Eq. (4.2.4) can be obtain

n+2 d 2

Zz 4= [EI(X)B (x°)]a; =q(x°) (4.2.6)

Attentively, axial and lateral unknown coefficierparting is a;;, and aj; * so

axial and lateral can used difference number ofkno

(a) knots for axial direction

(b) knots for lateral direction
Figure 4.2.1Two-dimensional spline collection frame element.
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Each element connected joint must satisfy equiliori and compatibility

condition> so it will using transformation matrix in order tbe local coordinates

transformed into the global coordinates. The tramsétion matrix is defined as:

Te-| 02" s 4.2.7)
—sind® coP*

where 6° is direction angles between the local axes andgtbbal axes. It defines

same for structural matrix.

Denote Fe the axial force at an arbitrary poirk® in element. Fe is expressed

as

_ ——,
Ff = EAKX°) 4.2.8
. EAX"); i (4.2.8)
Using Eq. (4.2.2) in EQ. (4.2.8)/
. . %:'if |
Fe = EAX®) D B! (X9)ag; (4.2.9)
Y 1==1
The distribution of bending moment.and shear famaglement is
V;:-i £l (x¢)-4Y _ (4.2.10)
dx® d(x®)
M ¢ = El (X°) dv* (4.2.11)
2 d(x°)? o
Using Eq. (4.2.5) in Eq. (4.2.10) and Eq. (4.2.11)
ve =-S5 9 e x9B?x0)] a¢ (4.2.12)
y iz:zdye[ ( :|a\/| e
_ n+2
M= EI(x°)B? (X%)e, (4.2.13)
i=—2

The deflection slop is
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dve

0,(X) = 0:(X°) = e (4.2.14)
Using Eq. (4.2.5) in Eq. (4.2.14)
0,(X)=0,(x) = nf Bf”(x‘-‘)aji (4.2.15)

i=—2
4.2.2 Discrete Condition Equation of Joints

Let M’ denote the number of elements connected to jgintAlso let | e’

denote the element knot number of the th element connected to the joint. Then
1°“' is equal to0 or N*', with N being the largest knot no. on the' th
element. With these in mind, the displacement caibiity conditions of a hinged or
rigid joint, which are kinematic co_ndit‘ions of joinj.can be expressed as follows :

ue,lj ue,zj B uepzj ™\ 'ueMj Uj
e (e P TRV R
v v Ve | v

o
| L]

i i i 10 ;
where [ue'“ Ve J and [U k VJ] represent-the global element displacement

vector of the o' th element and the global displacement vectoriaf jg , respectively.

i i . .
[ue'“ Ve J can using Eqg. (4.2.2) and Eg. (4.2.5) obtain

Thal cos9®* - sing*’
Ve ) sin@®*'  cog®*’

Slope compatibility conditions are also kinematiansition conditions of a rigid

m+1

> ai’B, (;(e’“ j )
i=-1

n+2 _ j
> a8, (X
i=-2

(4.2.17)

joint.
0%t =% =...20°* =...=g°M =g} (4.2.18)

where 9°*' is slop deflectiona’ th element of jointj. &' is slop deflection of

129



joint j, M’ is number of rigid joint in jointj . 6%’ can be obtain from Eq.
(4.2.15).
The equilibrium conditions of external and interf@ices at joints also have to be

satisfied. Each equilibrium condition is either @ural transition condition or a natural

boundary condition. Figure 4.2.2 shown a joipt with external loadsP, , Pyj and
M .. Let v*™ denote an indicator defined by the local elemantennumber of an

element at the jointv®™ is defined as :

o, e = Nem
vem = (4.2.19)

~1, if1e™ =0

Then the two translational equilibrium-conditionfsjoint j can be expressed as

7 {P} 4.2.20
\_/3“1 PyJ

where F$*' and VS*' can obtain'by.Eq. (4:2:9) and Eq. (4.2.12).

the following matrix equation »

b
-
y==

M - [Cosge,a' 1{ Si-rﬁe,al
ve 1

.Sinaé,a‘ COﬁe'aJ_

a=1

We might need one or two of two translational &guum equations for a hinged
or rigid joint. We do also need a moment equilibricondition for a rigid joint if the
rotation is not prescribed. The equilibrium coratitcan be obtained

M/ _ . )
SVIME =M (4.2.21)

a=1

where M j’“j can obtain by Eq. (4.2.13).
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/
£ Element

o Element
Ve,a

Figure 4.2.2 Interhal‘and external force at a joint.

4.2.3 Numerical Algorithm

A computer program has‘written wﬁrtéh‘ i.rhplementsrthmerical procedures of the
two-dimensional SCEM frame-_mogl'el. _;:Ii_he_:‘:SCM discegton is carried out on the
natural coordinate system. Only ::élements-wi:ih dyuspaced knots are considered,
unequally spaced knots will study next paper. Thenerical procedures can be
summarized and described as follows :

(a) The used elements are divided into various groagsd on the number of axial and
lateral knots of the element. Usingi+1 axial knots andn+1 lateral knots on
element parting into Eq. (4.2.4) and Eq. (4.2.6) chtain m+n+2 equations.

(b) Calculate element transformation matrix of Eq. (A2using for next step.

(c) In order to obtain unique solution, each elemenstniave another six equation,

include three unknown (one ad, and two of a¢) for each element external

endpoint. These equations can be obtain form dguin and compatibility

conditions, that is Eqgs. (4.2.16) to (4.2.21).ded to using element transformation
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matrix from step b.
(d) Using a solver to solve the algebraic equationesysuuinknownag;, and ag can

be otained.

(e) The axial displacement, lateral displacement, skbgiéection, axial force, bending
moment and shear force can be calculated using4E2)2), Eq. (4.2.5), Eq. (4.2.15),
Eq. (4.2.13) and Eq. (4.2.12), respectively. SCMIGEM) be different than matrix
structural analysis or Finite Element Method, eletmelon't need through
transformation matrix obtain displacement or in&rforce; even can calculate

arbitrary location on element.

4.2.4 Numerical Examples
4.2.4.1 Orthogonal Frame

Figure 4.2.3 shown a Orthbgonaj_l_fiame- probié'm wiirmber AB subjected to a
aquatically distributed lateral force.. ngng :the:h]eique of adaptive discretization
element 1 is a three-knots for.'axiallan;j."sevenkmm\c, for lateral on element, which
element2 and 3 are three-knofs f(;r axial and I;almwaalements. Figure 4.2.4 to Figure
4.2.6 represent the displacement, bending moment simear force diagrams,
respectively. Although only three elements are ydeel SCEM result are excellent.

The problem was also solved by using the MSC/NASTRiAite element problem.
The lateral displacement at point B, obtained bgdgally increasing the number of
finite elements up to 128 to model member AB, coged to the fifth digit accuracy as
compared to the SCEM result. This result has cowfd that the developed

two-dimensional SCEM frame model is efficient farcarately solving problem with

highly nonlinear distributed loads.
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y,V A
VN EA=6.0<10 N , El =4.0x10 N-m?
q=y'N/m g 5
5m —
3
1 5m Dg
\—>
g
A X,u
77 -

Figure 4.2.3 Orthogonal frame.

Displacement : 0.1 mm
Dimension - 0.5 m

Figure 4.2.4 Displacement diagram for orthogonal frame.
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N 1.77x 16

Bending moment . o 5 E+02N-m

Figure 4.2.5 Bending mement diagram-for-orthogonal frame.

6.25¢ 1G

-1.67x 1C

Shear force -4 5 E+02N

Figure 4.2.6 Shear force diagram for orthogonal frame.

134



4.2.4.2 Two-bay Two-span Orthogonal Frame

The frame structure shown Figure 4.2.7 has twoddnjgints and is subjected to
highly nonlinear distributed loads. In the SCEM lgss, 15 elements were used to
model the structure. Element 3, which is subjetted quadratically distributed load, is
a eleven-knots for lateral and three-knots for laomaelements, and element 4, which is
subjected to a cubically distributed load, numbgkmots is same as element 3. All
other elements are three-knots for axial and lat@naelement. The 15 elements are

divided into two groups based on their axial amctdral rigidities.

Element 7~12:EA=4.0x10 N ;El = 4.& 10N-m?

14~15:
Element 1~6:EA=14x10°N El = 4.6 10N-m?
13: ' '
y.v 1 - ._"1:10()‘—.8)3 N/m
200N ;C L -
4
2 13 5
q=800N/m
q=400 N/m
A4 A4 v VL l l A l l K
O 2@8m
By 7 Do~ 8 6 9 /1 10
14
11 12
15 4m
A X, u E J
o 7 7 -
IA ;I
[« 4@ 4m L

Figure 4.2.7 Two-bay two-span orthogonal frame.
The results of displacement, bending moment, aearsforce were plotted, and

are shown in Figure 4.2.8 to Figure 4.2.10, respelgt Highly nonlinear distributions
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of internal forces which represent excellent gladoal local accuracy were obtained.

D\splacemeﬁ.t 0.2 mm

Dimension -, 1.0m

Figure 4.2.8 Displacement diagram for two-bay two-span orthogonal frame.

17410 -7 on 1
SN e \ \B51 10

' 25110 |+ !
42516 | ! .

6.84x 1G [
X 7.47< 1G i 2.23« l(f 8310

0' = - =" e - 1
'B.74< 1G Jod " 8.05+ 1G
) 7 2.28< 16 .
1.53« 16
14.73 1.38¢<16 3.75¢16 |
777 777 777

Bending moment : 5 E+03N-m

Figure 4.2.9 Bending moment diagram for two-bay two-span orthogonal frame.
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1.52:10 1.75x< 16 <
~1.11<1G
1.84 q
| ~1.48< 1G
13.46< 1G

Shear force : 5E+03N

Figure 4.2.10 Shear force diagram‘for two-bay two-span orthogonal frame.
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4.2.4.3 Non-orthogonal Frame

Figure 4.2.11 shown a non-orthogonal frame subgecte two uniformly
distributed forces and a support settlement. InSB&EM analysis, 10 three-knots for
axial and lateral elements were used to modelttinetsre. The results of displacement,
bending moment and shear force were plotted, amdlawn in Figure 4.2.12 to Figure

4.2.14.

EA=2.0x10°N ;El = 4. 10N -m?

g=600 N/m
g=300 N/m
C
200N > ) l l l A A 4 Y A4 ¥ E —_—
3 D 4
2 9 5
| Ra S F 2@8m
7 8
10 6
| G
o -
l Settlement A = 5mm
||< 4@8m ;I

Figure 4.2.11 Non-orthogonal frame.
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Displacement : o __4 5.0 mm
Dimension 20 m

Figure 4.2.12 Displacement diagram for Non-orthogonal frame.
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1.09x 16 '~

Bending moment - __, 5 E+03N-m

Figure 4.2.13 Bending moment diagram for Non-orthogonal frame.
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Figure 4.2.14 Shear force diagram for Non-orthogonal frame.
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4.2.4.4 Four -bay Eight-span Orthogonal Frame

Figure 4.2.15 shows a four-bay eight-span ortholgibame. The left column and all
beams are subjected to uniform loads. The dis@€tM structural model is composed
of 68 three knots for axial and lateral on elemaftahich beam elements and column
elements have different structural rigidities. Tresults of displacement, bending

moment and shear force are plotted, and are showigure 4.2.16 to Figure 4.2.18.

Beams :EA=2.0x10'N ;El= 4. 10N -m?
Column: EA=4.0x10°N ;El = 1.6 106N -m?

L L L g=2000kN/m
\ A 4 A A \ A 4 A/ .. ¥ y v.v v v_.V y v_ .V -
10 4 P y4 U =20 JU \oLs 3
P1s T2 20 78 36T LS 52 G0 68
q=200kN/m | ¢ L L g=2000kN/m
v L AR v E Y v Y
[ 1J e} oLl oI a7 jo}e] Vo
> )
. 3 TT 19 20 1 135) = 73 5T 59 67
q= /m ) L =14 | | g=2000kN/m 4@4m
. ,
A 4 A 2 s V. A 4 A 4
= O 14 44 U =00 | =0 jo L2 3 OZ
%
2 iy I8 7AY ;{4 132 50 538 66
G=600KN/m |, q= 2000 kN/m
A\ 4 A\ 4 v i VvV Vi% ViV AR 4 A4 4
i T3 7T ~-29 Yy 53 BT
— 1 9 17 |25 33 o |41 49 57 65
- X, U .
q=800 kN/m_>
P> 7 Z 7 77 77z b g b d -
l¢ |
I~ 8@4m |

Figure 4.2.15 Four-bay eight-span orthogonal frame.
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Figure 4.2.16 Displacement diagram for four-bay eight-span orthogonal frame.
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Figure 4.2.17 Bending moment diagram for four-bay eight-span orthogonal frame.
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Figure 4.2.18 Shear force diagram for four-bay. eight-span orthogonal frame.

4.2.5 Nomenclature

e
u,i

a

unknown coefficients. [ =53

e T

unknown coefficients -

area of cross section.

cubic spline function

Young’s modulus

axial force at an arbitrary poirk® in element
second moment of section area

element knot number of ther ! th element connected to the joint

number of knots

number of elements connected to joipt
distribution of bending moment in element

number of knots,
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p(x®) distributed axial force

q(x®) distributed lateral force

ue local axial displacement

Ve lateral displacement

_ye distribution of shear force in element

ver indicator defined by the local element node nunadf@n element at the joint
x® local physical coordinate

6° direction angles between the local axes andldi®mbaxes

6! slop deflection of joint

6’ slop deflectiona! th glefnent of jointj

-

= :Illﬂ-r';' T

144



4.3 Conclusions

Mathematical formulations for the two-dimension&lESVl frame model were carried
out. The related numerical procedures were impleetenito a computed code. The
capability of the program was demonstrated by sglviarious frame problems having
complex geometrical properties. This SCEM frame ehddhs the same advantage as
the finite element method of being able to solvenege problems. Due to the
availability of adaptive discretization and the lusion of all mechanics relations to
from the algebraic equation system, accurate esah efficiently be obtained by using
this method. Numerical results proved it. The degwetb computer code can also be
used to solve two-dimensional truss p.robl_'ems of wiatt joints are hinged and only

concentrated joint loads and disfributed axial $oedn be applied.

-
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Appendix A Derivation of Cubic B-spline Function

The kth forward difference f(&,) of a given function (&) at &, is defined

recursively by

Af(So) = ()~ T(So), AMT(S,) =ART(S) AT (L)) (A1)

In particular
A%f(&o) = T(&,)—21(5) + (o) (A.2)
A3 (5o) = F(£5) —3F(5,) +3F(5) + (&) (A.3)

ATT(So) = T(84)—4T(5:) +61(S,) 4T () + T(So) (A4)
And so forth. The coefficien_t of f(fl'('-') ih Arf(&,) is ssimply the binomial

coefficient (—1)k[k]. It is well known that with evenly spaced knots, A" annihilates

all polynomials of degree n—-1.
In order to device the cubic B-sb'lin_es, ones cdmpute

K () = A*F($o)

CFL(£) - 4R (£) + BF (£,) 4R, (£) + F,(£0) (A9
where A*F,(&,) isfourth forward difference A*f (&,).
The F,(£) for eachfixed t have
F () =(-1)3 (A.6)
where the function (£—t)? is defined by,
(60
Then, Eq. (A.7) substituting into Eq. (A.5), obtained as
KD = (02 4, -2 + 6, ~17 ~4(E, -1 + (E-1)? (A9
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It is clear form the definition Eq. (A.5) of (£ -t)® that K(t)=0 for dl t>¢,.
Moreover, for fixed t and & <t, F (&)=(&-t)® isapolynomial of degree six. Thus
any sixth forward difference A“F,(£,) with evenly spaced knots vanishes identically
when &£, >t. Thatis

K(t)=0 when t>¢£, and t<¢, (A.9)

A sum of cubic B-splines (£ -t)2, K(t) becomes

(54 _t)si ‘53 <t 3‘54
(54 _t)3_4(§3 _t)si ‘fz <t S‘fs

KO =1 G045+, -0 §<t<f (A.10)
(54 _t)3 _4@:3 _t)3 +a§2 _t)3 _4(51 _t)si ‘fo <t Sfl
0 dhawise "
To generalize, one can t_rqr_léform the_indepeno_l_ent variables &, ... &, into

Siar o Siiz Y SUING ¢, :éz’mthéé@éexpron K(t) can be reduced to
€03  Sastsdol| |
(§i+2_t)3_ZK§i+2 _t)3! ::Ié:i Stsfid ?

KO =1 (€., ~AE,, ) 166 10, &r st <E (A.11)
(E.o 024G, 0P +BE 12 -AE -1, &,<t<E,
0 dhawise

For evenly spaced partitions, &, ,-¢&,=h, j=i+1..i-3, K(t) can be
reduced further to

G P-AG )+, ) -AE 1)°, Sast=<S,

1 G P-AG, ) HEE., )} &<ty

E(t)zﬁ G P-AG D% Gast<g (A.12)
(§i+2_t)3’ ‘fifz Stggi—l

0 dhawise

and the above B, (t) = K(t)/h® arethe required quintic B-splines (Prenter, 1975).
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Appendix B Derivation of Quintic B-spline Function

The kth forward difference f(&,) of a given function (&) at &, is defined

recursively by

Af(So) = (&) —T(So), AMT(S,) =ANT(S) AT (S,) (B.1)

In particular
A%f(&o) = T(&,)—21(5) + (o) (B.2)
A3 (5o) = F(£5) —3F(5,) +3F(5) + (&) (B.3)
A f(&o) = T(£,)—41(S;) +6f (cfz)_._—4f_(§1)+ f(£0) (B.4)
A*(So) = T(£5)-5F(5,)+10f (§I3)+10.f (cfz)—Sf () + F(So) (B.5)

AST(E) = F(6)-61 (5)H15 (£)-OREDHIST L) 61(€)+ 1) (B

And so forth. The coefficient of £(g,)! linl A% (£,) is simply the binomial
coefficient (—1)'{2]. It iswell knO\;vn that-with evenly spaced knots, A" annihialates

all polynomials of degree n-1.

In order to device the quintic B-splines, ones compute

K(t) = A°F,($o)

= F (&) —6F,(&5) +15F, (£,) — 20F, (£5) +15F,(£,) — 6F, (£)) + R (&) (B7)
where ASF (&,) issixth forward difference f (£,), see Appendix B.
The F,(&) for eachfixed t have
F (&)= -1 (B.8)
where the function (£ —t)5 is defined by,
R
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Then, Eqg. (B.8) substituting into Eq. (B.7), obtained as

K(t) = (£ —1)% —6(&5—1)% +15(5, —1)° - 20(5; - 1)°
+15(§2_t)5 _6(‘);:1_0? +(§0_t)i

(B.10)
It is clear form the definition Eq. (B.7) of (£—t)° that K(t)=0 for al t>¢&,.
Moreover, for fixed t and & <t, F (&)=(£-t)° isapolynomial of degree six. Thus
any sixth forward difference ASF,(,) with evenly spaced knots vanishes identically

when £, >t. Thatis
K(t)=0 when t>¢, and t<¢, (B.11)

A sum of quintic B-splines (£ —-t)°, K(t) becomes

(56—05, §5£t£§6

G- -851)°  &st<y :

(G~ 0°-8G—0°+15G, 0 G=t=gy :
K(O=1 (& —)°-6& 05+ 15, - -20& s G <t<d,

12
(6~ 6,7 +15E, )R, OF-I5E, 4, - &<t (512
(56_05 afs—t)5+ﬂ§4—t)5 ngs )5"‘]352_05 6(51 t)5 fo gtgé‘l
0 ahawise
To generalize, one can transform the independent variables &,, ... &g into

Eoaye &5 bysetting & =£,, S0 the above expression K(t) can be reduced to

(§i+3 _t)s, g oSt <£ i3

(§i+3 -t)y° _q‘fwz —1)°, Gast<g,

(§i+3 _t)s _q‘fnz _t)s +ﬂ‘§|+1 _t)s, é:. <t Sé:nl

KO= (65,0 +1E,°-DEH)° &<t

G -85, )P+1HE, -G -O)>+IHE, 1), §,<t<g,

(§i+3 _t)5 _q‘fnz _t)5 +ﬂ‘§i+1 _t)5 _ﬂé —t)5 +H‘§i71 _t)5 —6@12 _t)s, é 3 <t <§ 2
Q dhawe

(B.13)

For evenly spaced partitions, &, ,—-¢&,=h, j=i+2..,i-4, K() can be

reduced further to
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(& 40P~ ,—0P+15E 0P~ —P+IHE , 6,1, &, <t<E,

(& 40P~ ,—0P+I5E - OP—E P +IHE ), £, <t<E,

| E e, OB R, Gt

S L R CHRL P (B.14)
(§i+3 _t)5 _q‘fnz _t)s, é:ifz <t Sgi—l

Gt Gast<g,

0 dawnse

and the above B, (t)=K(t)/h> are the required quintic B-splines (Bert and Shev,

1996).
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