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摘要摘要摘要摘要    

 楔形函數配點法是以楔形函數作為基底函數所構成之近似函數，搭配配點法

以獲取最佳之近似函數，具有基本理論與計算步驟簡單，計算速度與收斂速度快…

等優點，早期被應用於曲線擬合，後期乃因工程問題所對應之控制方程式與邊界

條件趨於複雜，很難甚至無法推導其解析解，因而採用楔形函數配點法分析工程

問題以求其近似解，但目前僅有少數文獻採用楔形函數配點法進行工程問題分析

之研究。 

本文研究採用楔形函數配點法與延伸發展之徑向楔形函數配點法與楔形函數

配點元素法，針對連續梁、幾何非線性梁與矩形薄板等問題進行彈性分析、頻率

分析與挫屈荷載分析，並與解析解與其他數值方法(例如:有限元素法)進行比較。

分析結果顯示，楔形函數配點法應用於工程問題之數值分析時，不輸於其他數值

方法，值得繼續發展楔形函數配點法分析更複雜的工程問題。 

關鍵字關鍵字關鍵字關鍵字: 楔形函數配點法、徑向楔形函數配點法、楔形函數配點元素法。 
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ABSTRACT 

In this thesis, we study the spline collocation method (SCM), radial spline 

collocation method (RSCM) and spline collocation element method (SCEM) for solving 

engineering problems: beam, beam-column, frame, and plate problem. The popularity of 

the collocation method is in part due to their conceptual simplicity, wide applicability, 

and ease of implementation. In comparison to finite element difference methods, the 

CM provides approximations to the solution and its spatial derivatives at mesh point of 

the domain of problems. The obvious advantage of collocation method over Galerkin 

methods is that the calculation of the coefficients in the system of algebraic equations 

determining the approximate solution is very fast since no integrals need to be evaluated 

or approximated. Moreover, numerical experiments illustrate that the collocation 

method provide high order accuracy and super-convergence feature for a wide range of 

physical and engineering problems. 

Keyword : collocation method, spline collocation method (SCM), radial spline 

collocation method (RSCM), spline collocation element method (SCEM) 

 



 

v 

 

CONTENTS 
 

Acknowledgement ..................................................................................... i 

Chinese Abstract ..................................................................................... iii 

English Abstract ...................................................................................... iv 

1 Preliminaries.......................................................................................... 1 

1.1 Introduction ......................................................................................................... 1 

1.2 Outline................................................................................................................. 2 

2 Spline collocation method  ................................................................... 3 

2.1 Spline collocation method  .................................................................................. 3 

2.1.1 Introduction ................................................................................................... 3 

2.1.2 Theory  ......................................................................................................... 5 

2.1.3 Cubic B-spline function  ............................................................................... 5 

2.1.4 Quintic B-spline function  ............................................................................ 7 

2.2 Flexural Vibration Analysis of a Geometrically Nonlinear Beam ......................... 9 

2.2.1 Introduction ................................................................................................... 9 

2.2.2 Formulation ................................................................................................... 9 

2.2.3 Approach by spline collocation method ....................................................... 11 

2.2.4 Numerical Results ....................................................................................... 16 

2.2.5 Nomenclature .............................................................................................. 22 

2.3 Elastic Analysis of Rectangular Thin Plates ....................................................... 24 

2.3.1 Introduction ................................................................................................. 24 

2.3.2 Formulation ................................................................................................. 24 

2.3.3 Approach by spline collocation method ....................................................... 26 

2.3.4 Numerical Results ....................................................................................... 28 

2.3.5 Nomenclature .............................................................................................. 31 

2.4 Shear Buckling Analysis of Rectangular Thin Plates .......................................... 32 



 

vi 

 

2.4.1 Introduction ................................................................................................. 32 

2.4.2 Formulation ................................................................................................. 33 

2.4.3 Approach by spline collocation method ....................................................... 35 

2.4.4 Numerical Results ....................................................................................... 42 

2.4.4.1 Definition of Parameters .................................................................. 42 

2.4.4.2 Convergence Study .......................................................................... 43 

2.4.4.3 Uni-directional Forces Acting on a Plate .......................................... 43 

2.4.4.4 Aspect Ratio Effects of Thin Plates .................................................. 46 

2.4.4.5 Bi-directional Forces Acting on a Plate ............................................ 51 

2.4.5 Nomenclature .............................................................................................. 53 

2.5 Buckling Analysis of Rectangular Thin Plates ................................................... 55 

2.5.1 Introduction ................................................................................................. 55 

2.5.2 Formulation ................................................................................................. 56 

2.5.3 Approach by spline collocation method ....................................................... 58 

2.5.4 Numerical Examples and Discussions ......................................................... 61 

2.5.4.1 Linearly Varying Distributed Load ................................................... 62 

2.5.4.2 Non-uniformly Distributed Load ...................................................... 63 

2.5.5 Nomenclature .............................................................................................. 64 

2.6 Vibration Analysis of Beams on a Two-Parameter Elastic Foundation ............... 66 

2.6.1 Introduction ................................................................................................. 66 

2.6.2 Formulation ................................................................................................. 66 

2.6.3 Approach by spline collocation method ....................................................... 68 

2.6.4 Numerical Examples and Discussions ......................................................... 70 

2.6.5 Nomenclature .............................................................................................. 74 

2.7 Vibration Analysis of Timoshenko Beam-Columns on Two-Parameter Elastic 

Foundations ....................................................................................................... 76 

2.7.1 Introduction ................................................................................................. 76 

2.7.2 Formulation ................................................................................................. 78 

2.7.3 Approach by spline collocation method ....................................................... 82 



 

vii 

 

2.7.4 Numerical Examples and Discussions ......................................................... 84 

2.7.4.1 Euler-Bernoulli beam-columns ......................................................... 84 

2.7.4.2 Timoshenko beam-columns.............................................................. 87 

2.7.5 Nomenclature .............................................................................................. 92 

2.8 Conclusions ....................................................................................................... 94 

3 Radial Spline Collocation Method  .................................................... 95 

3.1 Radial Spline Collocation Method  ................................................................... 95 

3.1.1 Introduction ................................................................................................. 95 

3.1.2 Radial radial Quintic B-spline function ........................................................ 98 

3.1.3 Radial Spline Collocation Method ............................................................. 102 

3.2 Static Analysis of Beams  ............................................................................... 106 

3.2.1 Approach by Radial Spline Collocation Method ........................................ 106 

3.2.2 Numerical Results ..................................................................................... 107 

3.2.3 Nomenclature ............................................................................................ 120 

3.3 Conclusions ..................................................................................................... 122 

4 Spline Collocation Element Method ................................................. 123 

4.1 Spline Collocation Element Method  ............................................................... 123 

4.2 Static Analysis of Two- dimensional Frame ..................................................... 126 

4.2.1 Discrete Element Equation ........................................................................ 126 

4.2.2 Discrete Condition Equation of Joints........................................................ 129 

4.2.3 Numerical Algorithm ................................................................................ 131 

4.2.4 Numerical Examples ................................................................................. 132 

4.2.4.1 Orthogonal Frame .......................................................................... 132 

4.2.4.2 Two-bay Two-span Orthogonal Frame ........................................... 135 

4.2.4.3 Non-orthogonal Frame ................................................................... 138 

4.2.4.4 Four-bay Eight-span Orthogonal Frame ......................................... 141 

4.2.5 Nomenclature ............................................................................................ 143 

4.3 Conclusions ..................................................................................................... 145 



 

viii 

 

Reference .............................................................................................. 147 

Appendix A Derivation of Cubic B-spline Function ........................... 163 

Appendix B Derivation of Quintic B-spline Function ........................ 165 



 

 

ix 

 

LIST OF FIGURES 
 

2.1.1 The Cubic B-splines function ............................................................................. 6 

2.1.2 The quintic B-splines function  ......................................................................... 8 

2.2.1 Partitions of beam  .......................................................................................... 12 

2.2.2 Flow-chart of iterative scheme ......................................................................... 16 

2.2.3 Convergence analyses for linear vibrating beams ........................................... 17 

2.2.4 Dimensionless amplitude-frequency curves of hinged-hinged beam .............. 18 

2.2.5 Dimensionless amplitude-frequency curves of clamped-clamped beam ........ 19 

2.2.6 Dimensionless amplitude-frequency curves of hinged-clamped beam ........... 20 

2.2.7 Dimensionless amplitude-frequency curves with different boundary 

conditions ......................................................................................................... 21 

2.2.8 Fist three normal mode shapes by SCM .......................................................... 22 

2.3.1 Configuration of thin plate............................................................................... 25 

2.3.2 Distribution knots of thin plate ........................................................................ 26 

2.3.3 Loading pattern of thin plate ........................................................................... 28 

2.4.1 System coordinates of rectangular thin plate .................................................. 33 

2.4.2 Distribution of knots of the plate ( 6xn = , 5yn = ) ............................................ 37 

2.4.3 Square plates with uni-directional in-plane loading for SSSS ........................ 44 

2.4.4 Square plates with uni-directional in-plane loading for CCCC ..................... 45 

2.4.5 Normalized dimensionless critical shear loadings versus different α  for 

three plate aspect ratios γ  ............................................................................. 47 

2.4.6 Critical buckling modes for SSSS plates with variable uni-directional  

loading.............................................................................................................. 48 

2.4.7 Normalized dimensionless critical shear loadings versus different α  for 

three plate aspect ratios γ  ............................................................................. 49 

2.4.8 Critical buckling modes for CCCC plates with variable uni-directional 

loading.............................................................................................................. 50 



 

 

x 

 

2.4.9 Square plates with uni-directional in-plane loading and with different 

boundary conditions ........................................................................................ 51 

2.4.10 Plates with bi-directional in-plane loads........................................................ 52 

2.5.1 Rectangular plates under uni-axial edge compressions .................................. 56 

2.6.1. Pasternak elastic foundation ........................................................................... 67 

2.6.2. Partitions of beam into n  sections with two added knots at each end ........ 68 

2.7.1. A Timoshenko beam-column supported on an elastic foundation ................ 78 

2.7.2. A Timoshenko beam element with an axial force, resting on Pasternak  

elastic foundation............................................................................................. 79 

2.7.3 Partitions of beam into n  sections with one added knots at each end .......... 82 

2.7.4 Lowest three mode shapes for Euler-Bernoulli beams with hinged-hinged  

and hinged-clamped ends .................................................................................. 87 

2.7.5 Lowest three mode shapes for Euler-Bernoulli beam and Timoshenko  

beam with hinged-clamped ends ....................................................................... 90 

2.7.6 Lowest three mode shapes for Timoshenko beam and Timoshenko 

beam-column with hinged-clamped ends ....................................................... 91 

2.7.7 Lowest three mode shapes for hinged-clamped Timoshenko beams without 

and with Pasternak-type elastic foundation ................................................... 92 

3.1.1 Radius and radius of influence for quintic radial spline function .................. 99 

3.1.2 The quintic radial B-spline function .............................................................. 102 

3.1.3 Interpolated and exact values of polynomial ................................................. 105 

3.2.1 Simply supported beam subjected to uniformly distributed load ................ 107 

3.2.2 Radial Spline Collocation Method and exact solutions ................................. 108 

3.2.3 Cantilever beam with triangular distributed load on portion of beam ........ 109 

3.2.4 Radial Spline Collocation Method and exact solutions ................................. 110 

3.2.5 Continuous beam subjected to uniformly distributed load .......................... 111 

3.2.6 Radial Spline Collocation Method and exact solutions ................................. 112 

3.2.7 Simply supported beam subjected to concentrated load............................... 113 



 

 

xi 

 

3.2.8 Equivalent centralization load ....................................................................... 114 

3.2.9 Radial Spline Collocation Method and exact solutions ................................. 115 

3.2.10 Simply supported beam subjected to concentrated moment ...................... 116 

3.2.11 Radial Spline Collocation Method and exact solutions ............................... 117 

3.2.12 Continuous beam .......................................................................................... 118 

3.2.13 Radial Spline Collocation Method solutions for continuous beam ............. 120 

4.2.1Two-dimensional spline collection frame element.......................................... 127 

4.2.2 Internal and external force at a joint ............................................................. 131 

4.2.3 A frame structure with a highly nonlinear distributed load ......................... 133 

4.2.4 Displacement diagram for orthogonal frame ................................................ 133 

4.2.5 Bending moment diagram for orthogonal frame .......................................... 134 

4.2.6 Shear force diagram for orthogonal frame ................................................... 134 

4.2.7 A frame structure with hinged joints............................................................. 135 

4.2.8 Displacement diagram for two-bay two-span orthogonal frame .................. 136 

4.2.9 Bending moment diagram for two-bay two-span orthogonal frame ............ 136 

4.2.10 Shear force diagram for two-bay two-span orthogonal frame ................... 137 

4.2.11 A frame structure with an inclined roller .................................................... 138 

4.2.12 Displacement diagram for non-orthogonal frame ....................................... 139 

4.2.13 Bending moment diagram for non-orthogonal frame ................................. 139 

4.2.14 Shear force diagram for non-orthogonal frame .......................................... 140 

4.2.15 A four-bay eight-span frame structure ........................................................ 141 

4.2.16 Displacement diagram for four-bay eight-span orthogonal frame ............. 142 

4.2.17 Bending moment diagram for four-bay eight-span orthogonal frame ....... 142 

4.2.18 Shear force diagram for four-bay eight-span orthogonal frame ................ 143 



 

 

xii 

 

 



 

xiii 

 

LIST OF TABLES 

 
2.1.1 Cubic spline values at knots ............................................................................... 6 

2.1.2 Quintic spline values at knots ............................................................................ 8 

2.2.1 Fundamental natural frequencies ( )1 L
ω ∗  for linear vibrating beams ........... 17 

2.2.2 Fundamental natural frequency ratio for hinged-hinged beams ................... 18 

2.2.3 Fundamental natural frequency ratio for clamped-clamped beams .............. 19 

2.2.4 Fundamental natural frequency ratio for hinged-clamped beams ................. 20 

2.3.1 Center deflection *w  in rectangular plates subjected to line distributed  

load ( * 4
0w wD q d= , 0.5d c= ) .................................................................... 29 

2.3.2 Center deflection *w  in rectangular plates subjected to line distributed  

load ( * 4
0w wD q c= , 1.0d c= ) ..................................................................... 29 

2.3.3 Center deflection *w  in rectangular plates subjected to line distributed  

load. ( * 4
0w wD q c= , 2.0d c= ) .................................................................... 30 

2.3.4 Center deflection *w  in rectangular plates subjected to cosine distributed 

load. ( * 4
0w wD q d= , 0.5d c= ) ................................................................... 30 

2.3.5 Center deflection *w  in rectangular plates subjected to cosine distributed 

load. ( * 4
0w wD q c= , 1.0d c= ) .................................................................... 30 

2.3.6 Center deflection 
*w  in rectangular plates subjected to cosine distributed 

load. ( * 4
0w wD q c= , 2.0d c= ) .................................................................... 31 

2.4.1 Convergence of the dimensionless shear buckling load xyP  ........................... 43 

2.4.2 Dimensionless critical shear buckling loads xyP  for SSSS plates .................. 44 

2.4.3 Dimensionless critical shear buckling loads xyP  for CCCC plates ............... 45 

2.4.4 Dimensionless pure critical shear buckling load xyP  for plates with  

various boundary conditions ........................................................................... 46 

2.4.5 Dimensionless critical shear loading xyP  for three aspect ratios γ  ............. 47 

2.4.6 Dimensionless critical shear loading xyP  for three aspect ratios γ  ............. 48 

2.4.7 Dimensionless critical shear buckling loads xyP  for square plates ............... 51 

2.4.8 Dimensionless critical shear buckling loads xyP  for SSSS plates .................. 52 



 

xiv 

 

2.4.9 Dimensionless critical shear buckling loads xyP  for CCCC plates ............... 53 

2.5.1 Convergence for square thin plates under linearly varying compressive 

 load ................................................................................................................... 62 

2.5.2 Buckling load k of simply supported rectangular thin plates under linearly 
varying compressive load ................................................................................ 62 

2.5.3 Convergence for rectangular thin plates under half-cosine compressive  

load ................................................................................................................... 63 

2.5.4 Buckling load k of simply supported rectangular thin plates under  

half-cosine distributed compressive load ........................................................ 64 

2.6.1 Variation of stability parameter bλ 2( )PL EI  with 0K =  and 1 0K =   

for vibrating beams ......................................................................................... 70 

2.6.2. Variation of stability parameter bλ  for H-H beam ..................................... 71 

2.6.3 Variation of stability parameter bλ  for C-C beam ....................................... 72 

2.6.4 Variation of stability parameter bλ  for H-C beam ....................................... 72 

2.6.5 Variation of frequency parameter fλ  for H-H beam ................................... 72 

2.6.6 Variation of frequency parameter fλ  for C-C beam ................................... 73 

2.6.7 Variation of frequency parameter fλ  for H-C beam ................................... 74 

2.7.1 Frequency parameter c  for Euler-Bernoulli beams without elastic 
foundation ( 0Gλ λ= = , 0.0rP = ) .................................................................. 85 

2.7.2 Frequency parameter c  for Euler-Bernoulli beams without elastic 
foundation ( 0Gλ λ= = , 0.6rP = ) .................................................................. 85 

2.7.3 Frequency parameter c  for Euler-Bernoulli beams on Winkler elastic 
foundation ( 0.6λ = , 0Gλ = , 0.6rP = ) ......................................................... 86 

2.7.4 Frequency parameter c  for Euler-Bernoulli beams on Pasternak elastic 
foundation ( 0.6λ = , 1Gλ = , 0.6rP = ) .......................................................... 86 

2.7.5 Frequency parameter c  for Timoshenko beams without elastic  

foundation ( 0Gλ λ= = , 0.0rP = ) .................................................................. 88 

2.7.6 Frequency parameter c  for Timoshenko beams without elastic  

foundation ( 0Gλ λ= = , 0.6rP = ) .................................................................. 88 

2.7.7 Frequency parameter c  for Timoshenko beams Winkler elastic  

foundation ( 0.6λ = , 0Gλ = , 0.6rP = ) ......................................................... 89 



 

xv 

 

2.7.8 Frequency parameter c  for Timoshenko beams Winkler elastic  

foundation ( 0.6λ = , 1Gλ = , 0.6rP = ) .......................................................... 89 



 

xvi 

 

 



 

1 

 

Chapter 1 Preliminaries 

1.1 Introduction 

 In this thesis, we study the spline collocation method (SCM), radial spline collocation method 

(RSCM) and spline collocation element method (SCEM) for solving engineering problems: beam, 

beam-column, frame, and plate problem. The popularity of the collocation method is in part due to 

their conceptual simplicity, wide applicability, and ease of implementation. In comparison to finite 

element difference methods, the CM provides approximations to the solution and its spatial 

derivatives at mesh point of the domain of problems. The obvious advantage of collocation method 

over Galerkin methods is that the calculation of the coefficients in the system of algebraic equations 

determining the approximate solution is very fast since no integrals need to be evaluated or 

approximated. Moreover, numerical experiments illustrate that the collocation method provide high 

order accuracy and super-convergence feature for a wide range of physical and engineering 

problems. 

 B-spline functions were initially adopted for data fitting, curve fitting, surface fitting and 

interpolation. They were then extended for approximate solutions of differential equations and 

structural analyses (Schoenberg, 1946; Bert and Sheu, 1996; Prenter, 1975). Spline functions 

possess higher smoothness than piecewise Lagrange interpolation and Hermite interpolation. The 

stability of spline functions was proven by Prenter (1975). 

Commonly, this incorporates the use of cubic B-splines which were presented by Mizusawa et 

al. (1979) for investigation of vibration of skew plates, Shen and Wang (1987) for linear static 

analysis of cylindrical shells, Gupta et al. (1991) for linear finite element analysis of axi-symmetric 

shells and others. Weller (1993a, b) employed B-splines to study post-buckling behavior of infinite 

length cylindrical panels subjected to combined thermal and mechanical loading, and they were 

incorporated into collocation method for the same analysis problem. 

When spline functions are combined with collocation method which can significantly simplify 

the solution procedure of differential equations, it is called spline collocation method (SCM) 
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(Prenter, 1975). Recently, researches have been developed, such as Bert and Sheu (1996) for linear 

static analysis of beam and plates, Wu and Chen (2003a, b) for linear static analysis of continuous 

beam and frame. 

The use of OCM in the engineering literature can be traced back at least to Lanczos (1938, 

1956). In their research, Tchebycheff polynomials collocating at Gaussian knots were used to 

approximate solution to initial value problems. Chemists (Horvay and Spiess, 1954; Wright, 1964; 

Villadsen and Stewart, 1967; Ferguson and Finlayson, 1970; Finlayson, 1971; Ferguson, 1971) used 

OCM extensively to solve one and two dimensional initial and boundary value problems arising in 

reactor dynamic and other systems. Boor and Schwartz (1973) proved the uniqueness of solution. 

They also showed the errors of one dimensional OCM using splines was better than using full 

polynomials (Prenter, 1975).  

1.2 Outline 

 A brief outline of this thesis is as follows. In Chapter 2, we introduce basis functions and some 

formulas of spline collocation method (SCM) for solving beam, beam-column, 2D-frame, plate 

problems. In Chapter 3, we introduce basis functions and some formulas of radial spline collocation 

method (RSCM) for solving beam problem. Finally, in Chapter 4, we introduce basis functions and 

some formulas of spline collocation element method (SCEM) for solving 2D-frame problem. 
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Chapter 2 Spline collocation method 

2.1 Spline collocation method 

2.1.1 Introduction 

By the finite difference method (FDM) or the finite element method (FEM), a large 

number of discretized points in the computational domain have to be manipulated in 

order to obtain solutions withhigh accuracy. The computational effect may be alleviated 

by using the differential quadrature method (DQM), which was first introduced by 

Bellman and Casti (1971). Solutions with reasonable accuracy can be obtained in an 

economical and time-saving way by DQM where the governing equations are used 

directly without the necessity of energy formulation (Bert et al., 1993; Chen, 1997). 

However, when this method is applied to the problems of structural mechanics, some 

weak points are found in DQM (Striz et al., 1994; Bert and Sheu, 1996). Loss of 

efficiency and simplicity arise from mapping the physical domain onto the 

computational domain and it is difficult to model discontinuous loads by using 

continuous basis functions. One boundary condition is applied at the exact boundary 

while the other boundary condition is applied at a small distance δ  from the boundary 

in the solutions of systems of fourth-order or higher order differential equations. 

Because of δ  at the boundary, the solution matrix become ill-conditioned and 

oscillation of the solutions is induced due to numerical instability (Bert and Sheu, 

1996). 

B-spline functions were initially adopted for data fitting, curve fitting, surface 

fitting and interpolation. They were then extended for approximate solutions of 

differential equations and structural analyses (Bert and Sheu, 1996; Prenter, 1975).  

Spline functions possess higher smoothness than piecewise Lagrange interpolation and 

Hermite interpolation. The stability of spline functions was proven by Prenter (1975). 
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The spline collocation method (SCM) basically is an interpolation method in which the 

solution of the governing differential equation can be approximated in terms of spline 

functions multiplied by the corresponding weighting coefficients. The spline functions 

can be derived systematically from FDM no matter whether forward, backward or 

central finite difference is used. In general, the spline functions should be at least one 

order higher than that of the governing differential equation so that accuracy and 

smoothness of the approximate solution can be guaranteed. Since the governing 

equation of a generalized beam is a fourth-order ordinary differential equation (ODE), 

the solution of the governing ODE is approximated by the spline function with 

polynomial of at least fifth degree. A quintic B-spline function is a piecewise fifth 

degree polynomial which is four-time continuously differentiable and an exact solution 

can be achieved by using this approximation method for piece-wise linearly distributed 

loading. A B-quintic spline function is a polynomial of degree five so that the sixth 

order forward difference with evenly spaced knots will be equal to zero. Therefore, the 

interpolatory function (B-spline function) is nonzero only within the considered interval 

of seven consecutive knots. As a whole, at least sixth-order forward difference 

expression is needed for the derivation of spline function (Prenter, 1975). Since the 

exact boundary conditions are directly used in the SCM without the necessity of using a 

small distance δ  from the boundary, the problem of singularity does not exist. 

Moreover, not only structures under distributed loads can be solved by the SCM but also 

those under patch and point loads. The latter have not been analyzed successfully by 

using the conventional DQM. No matter how simple or complicated the problem is, 

higher accuracy can be achieved by the SCM through using more nodal points in the 

domain without encountering numerical instability while the DQM fails to do so (Bert 

and Sheu, 1996). 
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2.1.2 Theory 

The collocation method is a method for the numerical solution of ordinary 

differential equation, partial differential equations and integral equations. The idea is to 

choose a approximate function and a number of knots in the domain (called collocation 

points), and to select that solution which satisfies the given equation at the collocation 

points. 

According to spline collocation method (SCM), the approximate function and its 

derivatives are represented by a linear combination of B-spline functions as 

For 1D ( ) ( )i i
i

w x a B x=∑ , ( ) ( )
n n

j jn n
j

d d
w x a B x

dx dx
=∑  (2.1.1a) 

For 2D ( , ) ( ) ( )ij i j
i j

w x y a B x B y=∑∑ , ( , ) ( ) ( )
n m

jk j kn m n m
k j

d d d
w x y a B x B y

dx dy dx dy

+

=∑∑  (2.1.1b) 

where ia s and ija s are the coefficients to be determined and ( )iB x , ( )jB y  is 

B-spline function. A B-spline of order k  is made up of a polynomial of order k  and 

has a compact support consisting of 2k +  knots. 

2.1.3 Cubic B-spline function 

The cubic B-spline function is a cubic polynomial and 2C  continuous, define as 

(Prenter, 1975) 

3
2 1 2

3 3
2 1 1

3 3
2 13

( ) ,                                                                 

( ) 4( ) ,                                               
1

( ) ( ) 4( ) 6( )

i i i

i i i i

i i i iB
h

ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ

+ + +

+ + +

+ +

− ≤ ≤
− − − ≤ ≤

= − − − + − 3
1

3 3 3 3
2 1 1 2 1

,                            

( ) 4( ) 6( ) 4( ) ,    

0,      otherwise                                                                                 

i i

i i i i i i

ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

−

+ + − − −

 ≤ ≤ − − − + − − − ≤ ≤



 (2.1.2) 

 We can see that the values of cubic B-spline function vanish outside the interval 

[ ]2 2,i iξ ξ− + . Note that ( )iB ξ  and ( )iB ξ′′  are symmetric functions , ( )iB ξ′  is 

anti-symmetric functions as shown in Figure 2.1.1. The values of cubic B-spline 
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function and and its derivatives are listed in Table 2.1.1. 

 

 
(a) Cubic B-spline function. 

 

 
(b) First order derivate of Cubic B-spline function 

 

 
(c) Second order derivate of Cubic B-spline function 

 
Figure 2.1.1 The Cubic B-splines function ( 1h = ). 

Table 2.1.1 Cubic spline values at knots 

jξ  2iξ −  1iξ −  iξ  1iξ +  2iξ +  

( )i jB ξ  0 1 4 1 0 

( )i jB ξ′  0 
3

h
 0 

3

h
−  0 

( )i jB ξ′′  0 2

6

h
 

2

12

h
−  

2

6

h
 0 
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2.1.4 Quintic B-spline function  

The quintic B-spline function is a quintic polynomial and 4C  continuous, define 

as (Bert and Sheu, 1996) 

5
3 2 3

5 5
3 2 1 2

5

( ) ,                                                                                                                    

( ) 6( ) ,                      

1
( )

i i i

i i i i

iB
h

ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ

ξ

+ + +

+ + + +

− ≤ ≤
− − − ≤ ≤

=
5 5 5

3 2 1 1

5
3

                                                                        

( ) 6( ) 15( ) ,                                                                          

( ) 6(
i i i i i

i

ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ

+ + + +

+

− − − + − ≤ ≤
− − 5 5 5

2 1 1

5 5 5 5 5
3 2 1 1 2 1

5
3

) 15( ) 20( ) ,                                                     

( ) 6( ) 15( ) 20( ) 15( ) ,                            

( ) 6(

i i i i i

i i i i i i i

i

ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

+ + −

+ + + − − −

+

− + − − − ≤ ≤
− − − + − − − + − ≤ ≤
− − 5 5 5 5 5

2 1 1 2 3 2) 15( ) 20( ) 15( ) 6( ) ,      

0,      otherwise                                                                                                                 
i i i i i i iξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ+ + − − − −− + − − − + − − − ≤ ≤

                   

  

(2.1.3) 

 We can see that the values of quintic B-spline function vanish outside the interval 

[ ]3 3,i iξ ξ− + . Note that ( )iB ξ , ( )iB ξ′′  and (4)( )iB ξ  are symmetric functions , ( )iB ξ′  

and ( )iB ξ′′′  are anti-symmetric functions as shown in Figure 2.1.2. The values of 

quintic B-spline function and and its derivatives are listed in Table 2.1.2. 

 

 

(a) Quintic B-spline function. 

 
(b) First order derivate of quintic B-spline function 
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(c) Second order derivate of quintic B-spline function 

 
(d) Third order derivate of quintic B-spline function 

 
(e) Fourth order derivate of quintic B-spline function 
Figure 2.1.2 The quintic B-splines function ( 1h = ). 

 
Table 2.1.2 Quintic spline values at knots 

jξ  3iξ −  2iξ −  1iξ −  iξ  1iξ +  2iξ +  3iξ +  

( )i jB ξ  0 1 26 66 26 1 0 

( )i jB ξ′  0 
5

h
 

50

h
 0 

50

h
−  

5

h
−  0 

( )i jB ξ′′  0 2

20

h
 

2

40

h
 

2

120

h
−  

2

40

h
 

2

20

h
 0 

 ( )i jB ξ′′′  0 3

60

h
 

3

120

h
−  0 3

120

h
 

3

60

h
−  0 

(4)( )i jB ξ  0 4

120

h
 

4

480

h
−  

4

720

h
 

4

480

h
−  

4

120

h
 0 
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2.2 Flexural Vibration Analysis of a Geometrically Nonlinear Beam 

2.2.1 Introduction 

Large amplitude of vibrating beams is nonlinear systems so the small deflection 

theory is no longer applicable in nonlinear problems. The geometric non-linear or 

large-amplitude vibrations of beams had been studied by many scholars using the 

approximately analytical and numerical methods such as finite difference and finite 

element method etc. A comprehensive survey of such works had been presented by 

Sathyamoorthy (1982). Woinowsky-Krieger (1950) investigated the problem of simply 

supported beams with immovable ends using elliptic integrals. Evensen (1968) studied 

the non-linear vibrations of beams for different boundary conditions using a 

perturbation method. Srinivasan (1965) used a Ritz-Galerkin technique to obtain the 

non-linear free vibration response of simply supported beams and plates with 

immovable ends/edges. The non-linear vibratory behavior of beam with pinned ends 

was presented by Ray and Bert (1969) with test results. A wealth of information on 

non-linear systems and non-linear vibrations had been provided by Nayfeh and Mook 

(1979) and Chia (1980). The non-linear free vibration response of beam had been 

studied by Mei (1973), using a finite element method. 

2.2.2 Formulation 

A Bernoulli–Euler beam oscillating with large amplitude on immovable ends is 

considered here. The governing equation for non-linear vibrations of beams can be 

described as (Bhashyam and Prathap, 1980) 

4 2

4 2
0

w w
EI N mw

x x

∂ ∂− + =
∂ ∂

��  (2.2.1) 

where w , E , I , A , and m  are the deflection, Young’s modulus, moment of inertia 

of the cross-section, area of the cross-section, and the mass per unit length, respectively. 
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Assuming that the ends are axially immovable, i.e., (0, ) ( , ) 0u t u L t= = , it is 

evident that the axial force N  is independent of x and thus depends only on time 

(Bhashyam and Prathap, 1980), 

2 2

0

1
( , ) ( )

2 2

Lu w EA w
N x t EA N t dx

x x L x

 ∂ ∂ ∂   = + = =    ∂ ∂ ∂      ∫  
(2.2.2) 

For a simply supported beam, it is reasonable to assume that (Sarma, 1983) 

( , ) ( ) cosw x t av x tω=  
(2.2.3) 

The governing equation for simply supported beams can be developed using the 

Ritz–Galerkin technique (Singh, et. al), i.e., 

24 2 2
2

4 2 20

3

4 2

Ld v EAa dv d v
EI dx mv

dx L dx dx
ω

  − =     ∫  
(2.2.4) 

Its dimensionless form is 

( )24 2 21 2*
4 2 20

3 1

4 2

d v a dv d v
d v

d r d d
ξ ωξ ξ ξ

  − =     ∫  
(2.2.5) 

where 

x

L
ξ = , 

4
* 2 2( )

mL

EI
ω ω= , 2 I

r
A
=  (2.2.6) 

For a simply supported beam, the boundary conditions can be written as 

0  v =  and 
2

2 0
d v

dξ =  at 0,  1ξ =  
(2.2.7) 

As noted by some researchers (Evensen, 1968; Mei, 1972; Raju et al., 1976), on 

the framework of the moderately large bending theory, the non-linear vibration of 

simply supported beams would admit a variable-separable solution, but the beams with 

clamped-clamped end or hinged-clamped end would not. For beam with a clamped end, 

it is usually assumed (Raju et al., 1976) that maximum amplitude of each point on the 

beam exists during the vibration and that is also its point of reversal of motion. Assume 
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that the maximum amplitude of each point on vibrating beam is reached, the 

configuration of the beam is represented by w  and there exists (Raju et al., 1976) 

2w wω= −�� , 0w =�  (2.2.8) 

Substituting the above expression into governing equation (2.2.1) results in the 

differential equation 

( )24 2 21 2*
4 2 20

1

2

d w a d w d w
d w

d r d d
ξ ωξ ξ ξ

  − =     ∫  (2.2.9) 

where ξ , * 2( )ω  are given in Eq. (2.2.6). 

The corresponding dimensionless boundary conditions are 

clamped-clamped : 

0w =  at 0,  1ξ =  (2.2.10a) 

0
d w

dξ =  at 0,  1ξ =  (2.2.10b) 

hinged-clamped : 

0w =  at 0,  1ξ =  (2.2.11a) 

2

2 0
d w

dξ =  at 0ξ =  (2.2.11b) 

0
d w

dξ =   at 1ξ =  (2.2.11c) 

2.2.3 Approach by spline collocation method 

Considering a set of equi-spaced knots is selected in a normalized interval 

[0,1]ξ ∈ , i.e., 

0 0ξ = , 1nξ = , 1j j hξ ξ+ − = , 0, , 1j n= −…  (2.2.12) 

where h  is distance of equi-spaced knots. In order to apply the SCM (Prenter, 1975; 

Bert and Sheu, 1996), one needs to extend two added knots (fictitious) 2ξ −
, 1ξ −

 and 
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1nξ + , 2nξ +  at each end of beam, respectively (shown in Figure 2.2.1).  

 

Figure 2.2.1 Partitions of beam. 

Then the nonlinear normal mode of a geometrically nonlinear beam with simply 

supported ends and a clamped end, respectively, for flexural vibration can be 

approximated by using the quintic B-spline function (QSF) (Prenter, 1975; Bert and 

Sheu, 1996) as follows 

2

2

( ) ( )
n

i i
i

v c Bξ ξ
+

=−

=∑  or 
2

2

( ) ( )
n

i i
i

w c Bξ ξ
+

=−

=∑  
(2.2.13) 

where ic s are the coefficients to be determined and ( )iB ξ  is QSF. 

Substituting the approximations of nonlinear normal mode of a beam, that are Eq. 

(2.2.13), into the governing equations in Eq. (2.2.5) and Eq. (2.2.9) can obtain 

( ) ( )2 22(4) *

2 2

3
( ) ( ) ( )

4

n n

i i i i i
i i

c B N B c Bξ ξ ξ ω ξ
+ +

=− =−

 ′′− =  ∑ ∑  
(2.2.14) 

( ) ( )2 22(4) *

2 2

( ) ( ) ( )
n n

i i i i i
i i

c B N B c Bξ ξ ξ ω ξ
+ +

=− =−

′′ − = ∑ ∑  
(2.2.15) 

where 

( )
2

2 21

2 0
1

( )
2

n

i i
i

a
N c B d

r
ξ ξ ξ

+

= −

 ′=   ∑∫  (2.2.16) 

Note that ( )N ξ can be evaluated by Gauss integration method. 

Similarly, the boundary conditions in Eq. (2.2.7), Eq. (2.2.10) and Eq. (2.2.11) can 

obtain, 

h  

0ξ  1iξ −
 

iξ  nξ  1ξ−  2ξ−  1nξ +  2nξ +  

fictitious fictitious 
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clamped-clamped : 

2

0 0
2

( ) ( ) 0
n

i i
i

v c Bξ ξ
+

=−

= =∑  (2.2.17a) 

2

2

( ) ( ) 0
n

n i i n
i

v c Bξ ξ
+

=−

= =∑  (2.3.17b) 

2
0

0
2

( )
( ) 0

n

i i
i

dv
c B

d

ξ ξξ
+

=−

′= =∑  (2.2.17c) 

2

2

( )
( ) 0

n
n

i i n
i

dv
c B

d

ξ ξξ
+

=−

′= =∑  (2.2.17d) 

hinged- hinged : 

2

0 0
2

( ) ( ) 0
n

i i
i

v c Bξ ξ
+

=−

= =∑  (2.2.18a) 

2

2

( ) ( ) 0
n

n i i n
i

v c Bξ ξ
+

=−

= =∑  (2.2.18b) 

2 2
0

02
2

( )
( ) 0

n

i i
i

d v
c B

d

ξ ξξ
+

=−

′′= =∑  (2.2.18c) 

2 2

2
2

( )
( ) 0

n
n

i i n
i

d v
c B

d

ξ ξξ
+

=−

′′= =∑  (2.2.18d) 

hinged-clamped : 

2

0 0
2

( ) ( ) 0
n

i i
i

v c Bξ ξ
+

=−

= =∑  (2.2.19a) 

2

2

( ) ( ) 0
n

n i i n
i

v c Bξ ξ
+

=−

= =∑  (2.2.19b) 

2 2
0

02
2

( )
( ) 0

n

i i
i

d v
c B

d

ξ ξξ
+

=−

′′= =∑  (2.2.19c) 

2

2

( )
( ) 0

n
n

i i n
i

dv
c B

d

ξ ξξ
+

=−

′= =∑  (2.2.19d) 

In general, after substituting the coordinates of the 1n +  knots, ,  0,1, ,i i nξ = … , 
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into the governing equation in Eq. (2.2.14) or Eq. (2.2.15), and coupling the four given 

boundary conditions in Eq. (2.2.17) to Eq. (2.2.19) at the ends, 0ξ  and nξ , one obtains 

the following simultaneous equations. 

( )
( )

( )

0

0

2
(4)

0 0
2

2
(4)

1 1
2

2
(4)

2

1st B.C. at 

2nd B.C. at 

1st B.C. at 

2nd B.C. at 

3
( ) ( )

4

3
( ) ( )

4

3
( ) ( )

4

n

n

n

i i i
i

n

i i i
i

n

i i n i n
i

c B N B

c B N B

c B N B

ξ
ξ
ξ
ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ

+

=−

+

=−

+

=−

        ′′−      ′′−     ′′−    

∑
∑

∑
�

( )
( )

( )

22*
0

2

22*
1

2

22*

2

0

0

0

0

( )

( )

( )

n

i i
i

n

i i
i

n

i i n
i

c B

c B

c B

ω ξ

ω ξ

ω ξ

+

=−

+

=−

+

=−

        =               

∑
∑

∑
�

 (2.2.20) 

( )
( )

( )

( )

0

0

2
(4) *

0 0
2

2
(4)

1 1
2

2
(4)

2

1st B.C. at 0

2nd B.C. at 0

1st B.C. at 0

2nd B.C. at 0

( ) ( )

( ) ( )

( ) ( )

n

n

n

i i i
i

n

i i i
i

n

i i n i n
i

c B N B

c B N B

c B N B

ξ
ξ
ξ
ξ

ξ ξ ξ ω

ξ ξ ξ

ξ ξ ξ

+

=−

+

=−

+

=−

       ′′ −   =  ′′ −      ′′ −   

∑
∑

∑
�

( )

( )

22

0
2

22*
1

2

22*

2

( )

( )

( )

n

i i
i

n

i i
i

n

i i n
i

c B

c B

c B

ξ

ω ξ

ω ξ

+

=−

+

=−

+

=−

                 

∑
∑

∑
�

 (2.2.21) 

Matrix Eq. (2.2.20) and Eq. (2.2.21) are eigen-value problem of the following form 

( )2bb bd b b*

db db d db dd d

ω
       =             
S S c 0 0 c

S S c M M c
 (2.2.22) 

where { }T 4
b 2 1 1 2n nc c c c R− − + += ∈c , { }T 1

d 0 1
n

nc c c R += ∈c � , 1nR +  denotes 

1n +  dimensional vector space, etc., subscripts b and d denote the two fictitious knots 

at each end and all internal knots, respectively. From the right hand side of Eq. (2.2.22) 

the dbS  and ddS  can be decomposed into the linear part and nonlinear part as 
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( ) ( ) ( )db db dbL N
N ξ= −S S S  (2.2.23a) 

( ) ( ) ( )dd dd ddL N
N ξ= −S S S  (2.2.23b) 

where subscripts L  and N  denote the linear part and nonlinear part.  

Multiplying out Eq. (2.2.22), obtains 

bb b bd d+ =S c S c 0  (2.2.24a) 

( ) ( )2*
db b dd d db b dd dω+ = +S c S c M c M c  (2.2.24b) 

From Eq. (2.2.24a), 

1
b bb bd d

−

= −c S S c  (2.2.25) 

Substituting Eq. (2.2.25) into the Eq. (2.2.24b), yields 

( )2*
d dω=Sc Mc  (2.2.26) 

where 

( ) ( ) ( ) ( ) ( ) ( ) 1
dd dd db db bb bdL N L N

N Nξ ξ −   = − − −   S S S S S S S  (2.2.27a) 

1
db bb bd dd

−= − +M M S S M  (2.2.27b) 

The Eq. (2.2.26) is a generalized eigen-value nonlinear problem. In order to solve 

the fundamental dimensionless frequency *
1ω  of nonlinear vibrating beam, an iterative 

scheme can be applied and described by the following procedure.  

Given the initial value of dimensionless stretching force (0)( )N ξ  is zero into Eq. 

(2.2.27a) firstly, it means that the corresponding linear problem of vibrating beam is 

considered, then the eigen-value problem equation in Eq. (2.2.26) can be solved for 

eigen-value (0)*( )ω  and eigen-vector (0)
dc . Consequently, the initial linear mode (0)ν  

or (0)w  can be determined. Further, the value of dimensionless stretching force 

(1)( )N ξ  can be computed by using Eq. (2.2.16) .  
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In place of the initial value of dimensionless stretching force (0)( )N ξ  by (1)( )N ξ , 

and this process is repeated till convergence is achieved to the required accuracy for the 

fundamental dimensionless frequency of nonlinear vibrating beam *( )ω  and nonlinear 

mode shapes ν  or w . (See flow chart Figure 2.2.2) 

Figure 2.2.2 Flow-chart of iterative scheme.  

2.2.4 Numerical Results 

The numerical examples including linear and nonlinear vibrating beam, three types 

of boundary conditions: clamped-clamped, hinged-hinged and clamped-hinged end of 

beam, the amplitude of vibration 0.1,0.2,0.4,0.6,0.8,1.0,1.5,2.0a r =  for nonlinear 

cases. 

From the numerical examples for linear vibrating beam, the dimensionless 

fundamental natural frequency ( )1 L
ω ∗  is shown in Table 2.2.1. The convergence 

analysis of using SCM can be shown in Figure 2.2.3 based on Table 2.2.1, and the order 

Calculate ( ) ( )iN ξ  for Eq. (2.16) 

( 1) ( )

( )

i i

i

ω ω
ε

ω

∗ + ∗

∗

−
≤  

STOP 

 Step 0i = , (0)( ) 0N ξ = , 

Calculate ( )iω ∗  and ( )
d
ic  for Eq. (2.26) 

Calculate ( )iv  or ( )iw for Eq. (2.13) 

Yes No 
1+= ii  
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of convergence exact ( )qO hω ω∗ ∗
− =  for clamped-clamped, hinged-hinged and 

clamped-hinged of linear vibrating beam are 2.01q = , 1.85q = , 1.97q = , 

respectively. 

Table 2.2.1 Fundamental natural frequencies ( )1 L
ω ∗  for linear vibrating beams. 

No. of knots (n ) 
Boundary conditions 

hinged-hinged clamped-clamped hinged-clamped 
3 10.9545 23.4216 17.0238 
6 10.0338 22.8167 15.7135 
11 9.9103 22.4872 15.4922 
21 9.8798 22.4019 15.4367 
51 9.8712 22.3778 15.4212 
101 9.8700 22.3744 15.4189 
201 9.8697 22.3736 15.4184 

Exact* 9.8696 22.3733 15.4182 
* Woinowsky-Krieger (1950) 

  
(a) hinged-hinged                   (b) clamped-clamped 

 
(c) hinged -clamped 

Figure 2.2.3 Convergence analyses for linear vibrating beams. 
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Figure 2.2.4 shows that four numerical methods, SCM, SDQM (Guo and Zhong, 

2004), DQM (Feng and Bert, 1992), and FEM (Mei, 1972), all can reach appropriate 

high accurate results for non-linear frequency ratio ( )1 1 L
ω ω∗ ∗  of hinged-hinged beam, 

however, Table 2.2.2 shows that the most accurate results is SCM. 

 
Figure 2.2.4 Dimensionless amplitude-frequency curves of hinged-hinged beam. 

Table 2.2.2 Fundamental natural frequency ratio ( )1 1 L
ω ω∗ ∗  for hinged-hinged 

beams. 
a r  Exact SCM SDQM DQM FEM 
0.1 1.0009 1.0009 1.0009 1.0010 1.0009 
0.2 1.0037 1.0038 1.0037 1.0043 1.0037 
0.4 1.0149 1.0149 1.0149 1.0170 1.0148 
0.6 1.0332 1.0332 1.0332 1.0384 1.0339 
0.8 1.0583 1.0584 1.0583 1.0673 1.0578 
1.0 1.0897 1.0898 1.0897 1.1030 1.0889 
1.5 1.1924 1.1926 1.1924 1.2045 1.1902 
2.0 1.3229 1.3232 1.3229 1.3170 1.3022 

Figure 2.2.5 shows that five numerical methods, GFEM (Bhashyam and Prathap, 

1980), SCM, SDQM (Guo and Zhong, 2004) , FEM, and ASM (Evensen, 1968) all 

approach to the same results for non-linear frequency ratio ( )1 1 L
ω ω∗ ∗  of 

clamped-clamped beam, but only DQM has slight deviation of results which increasing 

with a r , are listed in Table 2.2.3. 
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Figure 2.2.5 Dimensionless amplitude-frequency curves of clamped-clamped beam. 

Table 2.2.3 Fundamental natural frequency ratio ( )1 1 L
ω ω∗ ∗ for clamped-clamped 

beams. 
a r  GFEM SCM SDQM DQM FEM ASM 
0.1 1.0003 1.0003 1.0003 1.0003 1.0003 1.0003 
0.2 1.0012 1.0012 1.0012 1.0011 1.0012 1.0012 
0.4 1.0048 1.0048 1.0048 1.0044 1.0048 1.0048 
0.6 1.0107 1.0108 1.0108 1.0100 1.0107 1.0107 
0.8 1.0190 1.0190 1.0190 1.0178 1.0190 1.0190 
1.0 1.0295 1.0296 1.0296 1.0278 1.0295 1.0296 
1.5 1.0650 1.0652 1.0652 1.0628 1.0650 1.0653 
2.0 1.1127 1.1129 1.1129 1.1119 1.1127 1.1135 

Figure 2.2.6 shows that four numerical methods, GFEM, SCM, FEM, and ASM all 

approach to the same result for non-linear frequency ratio ( )1 1 L
ω ω∗ ∗  of 

hinged-clamped beam, but only SDQM has slight deviation of result which increasing 

with a r , are listed in Table 2.2.4. 
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Figure 2.2.6 Dimensionless amplitude-frequency curves of hinged-clamped beam. 

Table 2.2.4 Fundamental natural frequency ratio ( )1 1 L
ω ω∗ ∗ for hinged-clamped 

beams. 
a r  GFEM SCM SDQM FEM ASM 
0.1 1.0006 1.0007 1.0006 1.0006 1.0006 
0.2 1.0026 1.0027 1.0024 1.0026 1.0026 
0.4 1.0106 1.0109 1.0097 1.0106 1.0106 
0.6 1.0237 1.0242 1.0218 1.0237 1.0238 
0.8 1.0416 1.0425 1.0383 1.0416 1.0418 
1.0 1.0641 1.0655 1.0592 1.0641 1.0647 
1.5 1.1378 1.1406 1.1284 1.1378 1.1404 
2.0 1.2318 1.2361 1.2179 1.2319 1.2385 

Figure 2.2.7 shows that SCM result for non-linear frequency ratio ( )1 1 L
ω ω∗ ∗  of 

three types of boundary conditions: hinged-hinged, clamped-clamped, and 

hinged-clamped ends of beam, the physical characteristics are : 

1. The more amplitude of vibration a r , the larger non-linear frequency ratio 

( )1 1 L
ω ω∗ ∗  for each type of boundary condition of beam. 

2.  For the same amplitude of vibration a r , the order of amplitude of 

non-linear frequency ratio ( )1 1 L
ω ω∗ ∗ is hinged-hinged, hinged-clamped, and 

clamped-clamped ends of beam. 

3. The more amplitude of vibration a r , the larger the non-linear frequency 
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ratio ( )1 1 L
ω ω∗ ∗  change for each type of boundary condition of beam. 

 
Figure 2.2.7 Dimensionless amplitude-frequency curves with different boundary 

conditions. 

Figure 2.2.8 shows that the fist three normal mode shapes of three types of 

boundary conditions: hinged-hinged, clamped-clamped, and hinged-clamped ends of 

beam. 

 
(a) hinged-hinged 
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(b) clamped-clamped 

 
(c) hinged -clamped 

Figure 2.2.8 Fist three normal mode shapes by SCM ( 2.0a r = ). 
 

2.2.5 Nomenclature 

A    area of the cross-section 

( )iB ξ    quintic B-spline function  

ic    coefficient to be determined 

E     Young’s modulus 

h     distance of equi-spaced knots 

I     moment of inertia of the cross-section 

m     mass per unit length 

( )N ξ   dimensionless stretching force  

q    order of convergence 
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I
r

A
=    

ν    nonlinear mode shapes 

w     deflection 

w    nonlinear mode shapes 

x    coordinate system 

x

L
ξ =   dimensionless coordinate system 

ω    fundamental frequency of nonlinear vibrating beam 

4
* mL

EI
ω ω=  fundamental dimensionless frequency of nonlinear vibrating beam 

( )1 L
ω ∗   dimensionless fundamental natural frequency of linear vibrating beam 

a r    amplitude of vibration 
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2.3 Elastic Analysis of Rectangular Thin Plates 

2.3.1 Introduction 

Spline functions, introduced by Schoenberg (Schoenberg, 1946) for approximation 

purposes, were extended to solve differential equations. Commonly, this incorporates 

the use of cubic B-splines which were presented by Mizusawa et al. (1979) for 

investigation of vibration of skew plates, Shen and Wang (1987) for linear static 

analysis of cylindrical shells, Gupta et al. (1991) for linear finite element analysis of 

axi-symmetric shells and others. Weller employed B-splines to study post-buckling 

behavior of infinite length cylindrical panels subjected to combined thermal and 

mechanical loading (Weller and Patlashenko,1993), and they were incorporated into 

collocation method for same analysis problem (Weller and Patlashenko,1993). 

The SCM is proposed to analyze thin plate problems. The transverse deflection of 

the plate is expressed in term of spline functions. A set of algebraic equations is 

established to solve the coefficients for spline functions from the governing equations 

and boundary conditions. The feasibility of SCM to plate analysis is studied by 

considering different plate problems with various boundary conditions and loading 

patterns. Moreover, the rapid convergence properties and accuracy of the SCM are 

demonstrated through comparison of the numerical results with the corresponding exact 

solutions.  

2.3.2 Formulation 

An rectangular plate with dimensions c d×  is considered as shown in Figure 2.3.1. The 

governing equations of a uniform thin plate subjected to a distributed loading can be derived as 

(Timoshenko and Woinowsky-Krieger, 1959) : 

4 4 4

4 2 2 42 ( , )
w w w

D q x y
x x y y

 ∂ ∂ ∂  + + =   ∂ ∂ ∂ ∂ 
 (2.3.1) 
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where w  is the transverse deflection; 3 212(1 )D Eh ν
 = −  

, E  and ν  are the plate 

flexural rigidity, Young’s modulus and Poisson’s ratio, respectively; q  is the surface load 

intensity. 

 

Figure 2.3.1 Configuration of thin plate. 

The moments and shear forces are expressed as:  

2 2

2 2x

w w
M D

x y
ν

 ∂ ∂  =− +   ∂ ∂ 
 (2.3.2a) 

2 2

2 2y

w w
M D

y x
ν

 ∂ ∂  =− +   ∂ ∂ 
 (2.3.2b) 

2

(1 )xy yx

w
M M D

x y
ν

∂
=− = −

∂ ∂
 (2.3.2c) 

2 2

2 2x

w w
Q D

x x y

 ∂ ∂ ∂  =− +  ∂ ∂ ∂ 
 (2.3.2d) 

2 2

2 2y

w w
Q D

y x y

 ∂ ∂ ∂  =− +  ∂ ∂ ∂ 
 (2.3.2e) 

The boundary conditions considered herein are divided into three kinds. For example, for 

an edge with 2x c= , they are: 

(a) Built-in edge (B) : 

0w= ; 0
w

x

∂
=

∂
, (2.3.3) 

x  

y  

2d  

2c  2c  

2d  
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(b) Simply-supported edge (S) :  

0w= ; 
2 2

2 2 0
w w

x y
ν

∂ ∂
+ =

∂ ∂
, (2.3.4) 

(c) Free edge (F) :    

3 3

3 2(2 ) 0
w w

x x y
ν

∂ ∂
+ − =

∂ ∂ ∂
;

2 2

2 2 0
w w

x y
ν

∂ ∂
+ =

∂ ∂
. (2.3.5) 

2.3.3 Approach by spline collocation method  

The analyzed domain is taken ( 1) ( 1)x yN N+ × +  knots in the x  and y  directions as 

shown in Figure 2.3.2, respectively. Extend SCM theory (Prenter, 1975) to two dimension 

problem, the transverse deflection is approximated as : 

22

2 2

( , ) ( ) ( )
yx NN

i j ij
i j

w x y B x B y a
++

=− =−

=∑ ∑  (2.3.6) 

where ( )iB x ’s and ( )jB y ’s are quintic spline functions, ija ’s are coefficients to be 

determined. 

 

Figure 2.3.2 Distribution knots of thin plate. 

The discrete governing equation takes the following discrete form: 

22
(4) (2) (2) (4)

2 2

( ) ( ) 2 ( ) ( ) ( ) ( ) ( , )
yx NN

i j i j i j ij
i j

D B x B y B x B y B x B y a q x y
++

=− =−

 + + =  ∑ ∑  (2.3.7) 

�  

�  

�  

�  

�  �  �  �  
�  

knot fictitious knot 



 

27 

Similarly, the moments and shear forces can be discretized as: 

22
(2) (2)

2 2

( ) ( ) ( ) ( )
yx NN

x i j i j ij
i j

M D B x B y B x B y aν

++

=− =−

 =− +  ∑ ∑  (2.3.8a) 

22
(2) (2)

2 2

( ) ( ) ( ) ( )
yx NN

y i j i j ij
i j

M D B x B y B x B y aν

++

=− =−

 =− +  ∑ ∑  (2.3.8b) 

22
(1) (1)

2 2

(1 ) ( ) ( )
yx NN

xy yx i j ij
i j

M M D B x B y aν

++

=− =−

 =− = −   ∑ ∑  (2.3.8c) 

22
(3) (1) (2)

2 2

( ) ( ) ( ) ( )
yx NN

x i j i j ij
i j

Q D B x B y B x B y a
++

=− =−

 =− +  ∑ ∑  (2.3.8d) 

22
(2) (1) (3)

2 2

( ) ( ) ( ) ( )
yx NN

y i j i j ij
i j

Q D B x B y B x B y a
++

=− =−

 =− +  ∑ ∑  (2.3.8e) 

Taking the edge 2x c=  as an example, the three kinds of boundary conditions can be 

discretized into the following forms: 

(B)  
22

2 2

( 2) ( ) 0
yx NN

i j ij
i j

B c B y a
++

=− =−

  =  ∑ ∑ , (2.3.9a) 

22
(1)

2 2

( 2) ( ) 0
yx NN

i j ij
i j

B c B y a
++

=− =−

  =  ∑ ∑  (2.3.9b) 

(S) 
22

2 2

( 2) ( ) 0
yx NN

i j ij
i j

B c B y a
++

=− =−

  =  ∑ ∑ ,  (2.3.10a) 

     
22

(2) (2)

2 2

( 2) ( ) ( 2) ( ) 0
yx NN

i j i j ij
i j

B c B y B c B y aν

++

=− =−

 + =  ∑ ∑  (2.3.10b) 

(F) 
22

(3) (1) (2)

2 2

( 2) ( ) (2 ) ( 2) ( ) 0
yx NN

i j i j ij
i j

B c B y B c B y aν

++

=− =−

 + − =  ∑ ∑ , (2.3.11a) 

22
(2) (2)

2 2

( 2) ( ) ( 2) ( ) 0
yx NN

i j i j ij
i j

B c B y B c B y aν

++

=− =−

 + =  ∑ ∑  (2.3.11b) 

Since both the discretized governing equations and the discretized boundary conditions 

are written out on a spline function basis, the discretized governing equations and the 
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discretized boundary conditions should be satisfied simultaneously. In order to get solutions for 

the problems, virtual knots are assigned beyond the analyzed domain to satisfy the boundary 

conditions (Figure 2.3.2). Thus, solutions of the problems are acquired by solving a set of linear 

algebraic equations, which consist of ( 1) ( 1)x yN N+ × +  governing equations at all the knots, 

and 4( 1) 4( 1) 4x yN N+ + + −  boundary conditions at the edge knots. It have to notice, there 

using three virtual knots for four corners to resolve singular matrix problem (Bert and Sheu, 

1996). 

2.3.4 Numerical Results 

To investigate the applicability, convergence and accuracy of the SCM for plate problems, 

plates with different combinations of free (F), simply supported (S) and fixed (B) boundaries 

are calculated. The rectangular plates subjected to linearly distributed load and cosine 

distributed load are shown in Figure 2.3.3.The boundary conditions of the plates are denoted by 

four letter symbols, the first symbol relates to the 2x c=−  edge, the second symbol relates 

to the 2x c=  edge, the third symbol relates to the 2y d=−  edge and the fourth symbol 

relates to the 2y d=  edge. The Poisson ratio ν  is taken to be 0.30 for all cases. 

 
Figure 2.3.3 Loading pattern of thin plate. 

In order to investigate the convergence pattern of the different plates, deflections for plates 

with various length-to-width ratio ( )d c  subjected to various combinations of boundary 

conditions are presented. Table 2.3.1 to Table 2.3.3 present results of deflections of plates 

w  

x  

w  

x  

(a) line distributed load (b) cosine distributed load 

0( , ) (1 2 )q x y q x c= +  0( , ) cos( )q x y q x cπ=  
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subjected to linearly distributed load with 0.5,  1.0,  2.0d c= . Table 2.3.4 to Table 2.3.6 

present results of deflections of plates subjected to cosine distributed load with 

0.5,  1.0,  2.0d c= . The proposed method provides rapid converged and good accurate results 

for all the cases as the number of knots increases. 

Table 2.3.1 Center deflection *w  in rectangular plates subjected to line distributed 
load. ( * 4

0w wD q d= , 0.5d c= ) 

knots 9 5×  21 11×  41 21×  61 31×  EXACT 

B-B-B-B 0.13091E-02 0.12735E-02 0.12683E-02 0.12673E-02 0.128E-02 

B-B-B-S 0.23417E-02 0.22599 E-02 0.22484 E-02 0.22462E-02 - 

B-B-B-F 0.71620E-02 0.68274 E-02 0.67551 E-02 0.67380E-02 - 

B-B-F-F 0.22011E-01 0.21185 E-01 0.21026 E-01 0.2988 E-01 - 

S-S-B-B 0.13281E-02 0.13096 E-02 0.13065 E-02 0.13059E-02 - 

S-B-S-S 0.46409E-02 0.44912 E-02 0.44699 E-02 0.44659E-02 0.45E-02 

S-S-S-S 0.52041E-02 0.50865 E-02 0.50698 E-02 0.50668E-02 - 

 
 

Table 2.3.2 Center deflection *w  in rectangular plates subjected to line distributed 
load. ( * 4

0w wD q c= , 1.0d c= ) 

knots 5 5×  11 11×  21 21×  31 31×  EXACT 

B-B-B-B 0.74093E-03 0.64766E-03 0.63634E-03 0.63429E-03 0.63E-03 

B-B-B-S 0.89840E-03 0.80181E-03 0.78933E-03 0.78705E-03 - 

B-B-B-F 0.10257E-02 0.95994E-03 0.94917E-03 0.94682E-03 - 

B-B-F-F 0.13237E-02 0.12902E-02 0.12831E-02 0.12811E-02 - 

S-S-B-B 0.10692E-02 0.97597E-03 0.96290E-03 0.96049E-03 - 

S-B-S-S 0.14140E-02 0.13045E-02 0.12893E-02 0.12865E-02 0.13E-02 

S-S-S-S 0.21969E-02 0.20560E-02 0.20373E-02 0.20338E-02 - 
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Table 2.3.3 Center deflection *w  in rectangular plates subjected to line distributed 
load. ( * 4

0w wD q c= , 2.0d c= ) 

knots 5 9×  11 21×  21 41×  31 61×  EXACT 

B-B-B-B 0.13091E-02 0.12735E-02 0.12683E-02 0.12673E-02 - 

B-B-B-S 0.13186E-02 0.12916E-02 0.12874E-02 0.12866E-02 - 

B-B-B-F 0.13010E-02 0.12837E-02 0.12814E-02 0.12811E-02 - 

B-B-F-F 0.12918E-02 0.12939E-02 0.12946E-02 0.12948E-02 - 

S-S-B-B 0.44233E-02 0.42546E-02 0.42305E-02 0.42261E-02 - 

S-B-S-S 0.22583E-02 0.22135E-02 0.22068E-02 0.22055E-02 0.23E-02 

S-S-S-S 0.52041E-02 0.50865E-02 0.50698E-02 0.50668E-02 - 

 
Table 2.3.4 Center deflection *w  in rectangular plates subjected to cosine 

distributed load. ( * 4
0w wD q d= , 0.5d c= ) 

knots 9 5×  21 11×  41 21×  61 31×  

B-B-B-B 0.23305E-02 0.22653E-02 0.22563E-02 0.22547E-02 

B-B-B-S 0.40435E-02 0.39224E-02 0.39060E-02 0.39029E-02 

B-B-B-F 0.12058E-01 0.11608E-01 0.11506E-01 0.11481E-01 

B-B-F-F 0.36737E-01 0.35767E-01 0.35562E-01 0.35512E-01 

S-S-B-B 0.23486E-02 0.23019E-02 0.22955E-02 0.22943E-02 

S-B-S-S 0.79695E-02 0.77867E-02 0.77616E-02 0.77570E-02 

S-S-S-S 0.84746E-02 0.83422E-02 0.83241E-02 0.83207E-02 

 
Table 2.3.5 Center deflection *w  in rectangular plates subjected to cosine 

distributed load. ( * 4
0w wD q c= , 1.0d c= ) 

knots 5 5×  11 11×  21 21×  31 31×  

B-B-B-B 0.12081E-02 0.10916E-02 0.10790E-02 0.10768E-02 

B-B-B-S 0.14558E-02 0.13474E-02 0.13345E-02 0.13322E-02 

B-B-B-F 0.16566E-02 0.16133E-02 0.16050E-02 0.16029E-02 

B-B-F-F 0.21270E-02 0.21654E-02 0.21669E-02 0.21660E-02 

S-S-B-B 0.16501E-02 0.15565E-02 0.15447E-02 0.15426E-02 

S-B-S-S 0.23832E-02 0.22877E-02 0.22751E-02 0.22728E-02 

S-S-S-S 0.33192E-02 0.32408E-02 0.32308E-02 0.32290E-02 
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Table 2.3.6 Center deflection *w  in rectangular plates subjected to cosine 
distributed load. ( * 4

0w wD q c= , 2.0d c= ) 

knots 5 9×  11 21×  21 41×  31 61×  

B-B-B-B 0.21039E-02 0.21368E-02 0.21411E-02 0.21419E-02 

B-B-B-S 0.21190E-02 0.21668E-02 0.21731E-02 0.21743E-02 

B-B-B-F 0.20912E-02 0.21542E-02 0.21636E-02 0.21654E-02 

B-B-F-F 0.20767E-02 0.21715E-02 0.21860E-02 0.21889E-02 

S-S-B-B 0.66476E-02 0.66676E-02 0.66709E-02 0.66716E-02 

S-B-S-S 0.38522E-02 0.39387E-02 0.39507E-02 0.39529E-02 

S-S-S-S 0.78048E-02 0.79639E-02 0.79868E-02 0.79910E-02 

 

2.3.5 Nomenclature 

ija      coefficients to be determined 

( )iB x , ( )jB y     quintic spline functions 

3 212(1 )D Eh ν
 = −  

  plate flexural rigidity 

E       Young’s modulus 

1xN +     knots in the x  directions 

1yN +     knots in the y  directions 

q       surface load intensity 

w       transverse deflection 

* 4
0w wD q c=   dimensionless transverse deflection 

ν       Poisson’s ratio 

 



 

32 

2.4 Shear Buckling of Rectangular Thin Plates 

2.4.1 Introduction 

The critical shear buckling load of a thin elastic rectangular plate is an important 

design factor for applications in aeronautical, civil, mechanical, and marine structures. It 

is essential for the critical shear buckling load of a thin plate to be large enough to 

endure a safe design. This paper uses the classical Kirchhoff thin plate theory to analyze 

the critical shear buckling load of a thin rectangular plate. Although the same problem 

was analyzed previously by numerous researchers, their solutions were limited to 

relatively few cases of boundary conditions (Timoshenko and Gere, 1961; Roark and 

Young, 1975; Japan, 1971). Conventionally, the letters C, S, and F have been used to 

denote the clamped, simply supported, and free boundary conditions, respectively, of 

each edge of the plate. Research on this topic was carried out by NASA (Stein and Neff, 

1947; Batdorf and Stein, 1947; Budiansky and Connor, 1948) in the late 1940’s, but 

only approximate results for simply supported (SSSS) and clamped (CCCC) plates were 

mentioned. The upper and lower bounds of the critical pure shear buckling loads of 

clamped plates were approximated by NASA (Budiansky and Connor, 1948) using the 

Lagrangian multiplier method (LMM). The shear buckling loads for SSSS plates of 

several aspect ratios were analyzed by Smith (1995) using the finite element method 

(FEM). The critical shear buckling loads of thin plates were solved for various boundary 

conditions (CCCC, CSCS, SSSS, CCFF, and CFCF) by researchers using the extended 

Kantorovich method (EKM) (Yuan and Jin, 1998; Eisenberger and Alexandrov, 2003; 

Shufrin and Eisenberger, 2005; Shufrin and Eisenberger, 2007). 

The main objective of this paper is to present highly accurate solutions for a thin 

elastic rectangular plate with various combinations of boundary conditions (CCCC, 

CSCS, SSSS, CCFF, and CFCF), aspect ratios, uni- and bi-directional 
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compressive/tensile loadings. The results obtained will be compared with the published 

results by FEM, LMM, EKM, etc.  

2.4.2 Formulation 

Elastic shear buckling of a rectangular thin plate with in-plane normal forces xN , 

yN  and shear force xyN  are considered, as shown in Figure 2.4.1.  

 
Figure 2.4.1 System coordinates of rectangular thin plate. 

According to the classical Kirchhoff thin plate theory, the governing equation of 

the plate under in-plane forces is (Reddy, 1999) 

4 4 4 2 2 2

4 2 2 4 2 22 2x y xy

w w w w w w
D N N N

x x y y x y x y

 ∂ ∂ ∂ ∂ ∂ ∂+ + = + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
 (2.4.1) 

where ( , )w x y  is the elastic lateral buckling displacement, and D  is the flexural 

rigidity of the plate given by 

( )
3

212 1

Et
D

ν
=

−
 (2.4.2) 

x  

y  

xN  

N  

yN  
xyN  

xyN  

a  

b  
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Here, E  is Young’s modulus, t  is the thickness, and ν  is Poisson’s ratio of the 

plate. 

For the purpose of description, notations will be adopted as follows. Any edge of 

the plate can have one of the three boundary conditions: clamped (C), simply supported 

(S), and free (F). The symbolism SCSF will denote the plate boundary conditions with 

the edges 0x = , x a= , 0y = , y b=  having simply supported, clamped, simply 

supported, and free boundary conditions, respectively, etc. The clamped, simply 

supported, and free boundary conditions at edge 0x =  or a  can be sequentially given 

as follows: 

0w = , 0
w

x

∂ =
∂

 (2.4.3) 

0w = , 
2 2

2 2 0
w w

x y
ν

∂ ∂+ =
∂ ∂

 (2.4.4) 

2 2

2 2 0
w w

x y
ν

∂ ∂+ =
∂ ∂

, 
3 3

3 2(2 ) 0
w w

x x y
ν

∂ ∂+ − =
∂ ∂ ∂

 (2.4.5) 

Similarly, the clamped, simply supported, and free boundary conditions at edge 

0y =  or b  can be sequentially given as follows: 

0w = , 0
w

y

∂ =
∂

 (2.4.6) 

0w = , 
2 2

2 2 0
w w

y x
ν

∂ ∂+ =
∂ ∂

 (2.4.7) 

2 2

2 2 0
w w

y x
ν

∂ ∂+ =
∂ ∂

, 
3 3

3 2(2 ) 0
w w

y x y
ν

∂ ∂+ − =
∂ ∂ ∂

 (2.4.8) 

For a corner point of a rectangular plate with both neighboring edges clamped, 

or simply supported, or free, the boundary conditions can be sequentially expressed 

as follows: 
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0w = , 0
w

x

∂ =
∂

, 0
w

y

∂ =
∂

 (2.4.9) 

0w = , 
2

2
0

w

x

∂ =
∂

, 
2

2 0
w

y

∂ =
∂

 (2.4.10) 

2

0
w

x y

∂ =
∂ ∂

, 
2 2

2 2 0
w w

x y
ν

∂ ∂+ =
∂ ∂

, 
2 2

2 2 0
w w

x y
ν
∂ ∂+ =
∂ ∂

 (2.4.11) 

When a plate is simply supported edge at 0x =  or a , the boundary conditions 

of the two corner points, ( , ) (0,0), (0, )x y b=  or ( , ) ( ,0), ( , )x y a a b= , can be given as 

0w = , 
2

2
0

w

x

∂ =
∂

, 0
w

y

∂ =
∂

 (2.4.12) 

From Eq. (2.4.12), we can obtain 2 2 0w y∂ ∂ = , 3 3 0w x∂ ∂ = , and 

3 2 0w x y∂ ∂ ∂ = .  Therefore, if Eq. (2.4.12) is satisfied then Eqs. (2.4.4) and (2.4.5) 

are satisfied automatically. Consequently, Eq. (2.4.12) holds regardless of the types 

of boundary conditions at edges 0y =  and b  whenever the edge at 0x =  or a  

is simply supported.  

Similarly, when a plate is simply-supported edge at 0y =  or b , the boundary 

conditions of the two corner points, ( , ) (0,0), ( ,0)x y a=  or ( , ) (0, ), ( , )x y b a b= , are 

0w = , 0
w

x

∂ =
∂

, 
2

2 0
w

y

∂ =
∂

. (2.4.13) 

2.4.3 Approach by spline collocation method 

A rectangular thin plate with size a b×  has been assigned xn  and yn  inner 

knots with equal-space xh  and yh  in the x - and y - directions, respectively, as 

shown in Figure 2.4.2. The serial numbers of the inner knots are defined as 
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3 0x = , 2xnx a+ = , 1 ( 1)j j x xx x h a n+ − = = − , 3, , 1xj n= +… . (2.4.14) 

3 0y = , 2yny b+ = , 1 ( 1)j j y yy y h b n+ − = = − , 3, , 1yj n= +… . (2.4.15) 

The total number of inner knots is x yn n . The governing equation in Eq. (2.4.1) 

must be satisfied for each inner knot of the plate.  

Fictitious knots are needed in order to satisfy the boundary conditions of physical 

problem. One needs two fictitious knots outside the plate to satisfy two boundary 

conditions of one set equations of Eq. (2.4.3) to Eq. (2.4.8) for each boundary knot of 

the plate, except the four corner knots 3 3( , )x y , 3 2( , )
ynx y + , 2 3( , )

xnx y+ , 

and 2 2( , )
x yn nx y+ + . Therefore, the total number of fictitious knots for the boundary knots, 

excluding the four corner knots, is 4 ( 2) ( 2)x yn n − + −  . Each corner knot has three 

boundary conditions, which are regarded as one set of Eq. (2.4.9) to Eq. (2.4.13). Thus, 

the total number of fictitious knots for four corners is 12. Consequently, the total 

number of boundary fictitious knots for the plate is 4( ) 4x yn n+ − , which is exactly 

equal to the total number of boundary conditions of the problem. The total number of 

knots including fictitious knots for the whole plate is 4( ) 4x y x yn n n n+ + − , as shown in 

Figure 2.4.2. 

The elastic lateral buckling displacement ( , )w x y  of a rectangular thin plate 

subjected to in-plane forces can be approximated by using the QSFs as follows: 

44

1 1

( , ) ( ) ( )
yx

nn

i j ij
i j

w x y B x B y a
++

= =

=∑∑  (2.4.16) 

where ija s are the coefficients to be determined, noting that 0ija =  exists for no knots 

when 1, 4xi n= + , 1,2,3, 2, 3, 4y y yj n n n= + + +  and 2,3, 2, 3x xi n n= + + , 

1,, 4yj n= + .  
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Figure 2.4.2 Distribution of knots of the plate ( 6xn = , 5yn = ). 

The partial derivatives for ( , )w x y  can be given as 

44
( )

1 1

( , )
( ) ( )

yx
nnr

r
i j ijr

i j

w x y
B x B y a

x

++

= =

∂ =
∂ ∑∑  (2.4.17) 

44
( )

1 1

( , )
( ) ( )

yx
nns

s
i j ijs

i j

w x y
B x B y a

y

++

= =

∂ =
∂ ∑∑  (2.4.18) 

44( )
( ) ( )

1 1

( , )
( ) ( )

yx
nnr s

r s
i j ijr s

i j

w x y
B x B y a

x y

+++

= =

∂ =
∂ ∂ ∑∑  (2.4.19) 

Substituting the displacement of thin rectangular plate and its partial derivatives in 

Eq. (2.4.16) to Eq. (2.4.19) into the governing equation in Eq. (2.4.1), one can obtain 

the field equation as: 

x  

y  

fictitious knots 

3x  
8x  

5 4( , )x y  

4x  
5x  6x  1x  2x  

7x  9x  10x  

inner knots boundary knots 

1y  

2y  

3y  

4y  

5y  

6y  

7y  

8y  

9y  
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44
(4) (4)

1 1

44

1 1

( ) ( ) 2 ( ) ( ) ( ) ( )

              ( ) ( ) ( ) ( ) 2 ( ) ( )

yx

yx

nn

i j i j i j ij
i j

nn

x i j y i j xy i j ij
i j

D B x B y B x B y B x B y a

N B x B y N B x B y N B x B y a

++

= =

++

= =

′′ ′′ + + 

′′ ′′ ′ ′ = + + 

∑∑

∑∑
 (2.4.20) 

Similarly, the boundary conditions in Eq. (2.4.3) to Eq. (2.4.13) can be discretized 

and reduced as the same way.  

Clamped boundary conditions at edge 0x =  or a : 

44

1 1

( ) ( ) 0
yx

nn

i j ij
i j

w B x B y a
++

= =

= =∑ ∑  (2.4.21a) 

44

1 1

( ) ( ) 0
yx

nn

i j ij
i j

w
B x B y a

x

++

= =

∂ ′= =
∂ ∑ ∑  (2.4.21b) 

Simply supported boundary conditions at edge 0x =  or a : 

44

1 1

( ) ( ) 0
yx

nn

i j ij
i j

w B x B y a
++

= =

= =∑ ∑  (2.4.22a) 

442 2

2 2
1 1

( ) ( ) ( ) ( ) 0
yx

nn

i j i j ij
i j

w w
B x B y B x B y a

x y
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.22b) 

Free boundary conditions at edge 0x =  or a : 

442 2

2 2
1 1

( ) ( ) ( ) ( ) 0
yx

nn

i j i j ij
i j

w w
B x B y B x B y a

x y
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.23a) 

443 3

3 2
1 1

(2 ) ( ) ( ) (2 ) ( ) ( ) 0
yx

nn

i j i j ij
i j

w w
B x B y B x B y a

x x y
ν ν

++

= =

∂ ∂ ′′′ ′ ′′ + − = + − = ∂ ∂ ∂ ∑ ∑  (2.4.23b) 

Clamped boundary conditions at edge 0y =  or b : 

44

1 1

( ) ( ) 0
yx

nn

i j ij
i j

w B x B y a
++

= =

= =∑ ∑ , (2.4.24a) 
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1 1

( ) ( ) 0
yx
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i j ij
i j

w
B x B y a

y

++

= =

∂ ′= =
∂ ∑ ∑  (2.4.24b) 

Simply supported conditions at edge 0y =  or b : 
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1 1

( ) ( ) 0
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i j ij
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w B x B y a
++

= =

= =∑ ∑  (2.4.25a) 

442 2

2 2
1 1

( ) ( ) ( ) ( ) 0
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i j i j ij
i j

w w
B x B y B x B y a

y x
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.25b) 

Free boundary conditions at edge 0y =  or b : 

442 2

2 2
1 1

( ) ( ) ( ) ( ) 0
yx

nn

i j i j ij
i j

w w
B x B y B x B y a

y x
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.26a) 
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i j i j ij
i j

w w
B x B y B x B y a

y x y
ν ν

++

= =

∂ ∂ ′′′ ′′ ′ + − = + − = ∂ ∂ ∂ ∑ ∑  (2.4.26b) 

Boundary conditions of a corner point of a rectangular plate with both 

neighboring edges clamped: 
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++
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= =∑ ∑  (2.4.27a) 
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Boundary conditions of a corner point of a rectangular plate with both 

neighboring edges simply supported: 

44
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( ) ( ) 0
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w B x B y a
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1 1
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i j ij
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1 1

( ) ( ) 0
yx
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i j ij
i j

w
B x B y a

y

++

= =

∂ ′′= =
∂ ∑ ∑  (2.4.28c) 

Boundary conditions of a corner point of a rectangular plate with both 
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neighboring edges free: 

442

1 1

( ) ( ) 0
yx

nn

i j ij
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w
B x B y a

x y

++

= =
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B x B y B x B y a

x y
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.29b) 
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i j

w w
B x B y B x B y a

y x
ν ν

++

= =

∂ ∂ ′′ ′′ + = + = ∂ ∂ ∑ ∑  (2.4.29c) 

Boundary conditions of two associated corner points, ( , ) (0,0), (0, )x y b=  or 

( , ) ( ,0), ( , )x y a a b= , and simply supported edge at 0x =  or a : 
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w B x B y a
++

= =

= =∑ ∑  (2.4.30a) 

442

2
1 1

( ) ( ) 0
yx

nn

i j ij
i j

w
B x B y a

x

++

= =

∂ ′′= =
∂ ∑ ∑  (2.4.30b) 
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∂ ∑ ∑  (2.4.30c) 

Boundary conditions of two associated corner points, ( , ) (0,0), ( ,0)x y a=  or 

( , ) (0, ), ( , )x y b a b= , and simply-supported edge at 0y =  or b : 

44

1 1

( ) ( ) 0
yx
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i j ij
i j

w B x B y a
++

= =

= =∑ ∑  (2.4.31a) 
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i j ij
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w
B x B y a

y

++

= =

∂ ′′= =
∂ ∑ ∑  (2.4.31c) 

By substituting the coordinates of the all inner knots with a total number of x yn n  

into the field equation in Eq. (2.4.20), and those of the boundary knots with a total 

number of 4( ) 4x yn n+ −  into the boundary conditions in Eq. (2.4.21) to Eq. (2.4.31), 
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then a well defined linear system of ordinary differential equations in the matrix form 

λ=Ax Bx  can be obtained, which is referred to as the eigen-value problem. More 

details will be given below. 

From the field equation in Eq. (2.4.20), the following can be derived: 

db b dd d db db db b

dd dd dd d

( ) ( ) ( )

                                       ( ) ( ) ( )

x y xy

x y xy

x N y N xy N

x N y N xy N

N N N

N N N

 + = + + 
 + + + 

B a B a B B B a

B B B a
, (2.4.32) 

where ba  and da  are column vectors of the undetermined coefficients matrix 

{ }T

b d[ ]ija = a a , with subscripts b and d denoting the fictitious knots and all inner 

knots, respectively.  

Also, from the boundary conditions in Eq. (2.4.21) to Eq.(2.4.31), the following 

can be derived: 

bb b bd d+ =B a B a 0 (2.4.33) 

where the first 12 equations are obtained from Eq. (2.4.27) to Eq. (2.4.31), and the 

remaining 4 ( 2) ( 2)x yn n − + −   equations from Eq. (2.4.21) to Eq. (2.4.26). It can be 

seen that Eqs. (2.4.32) and (2.4.33) form a simultaneous matrix equation with unknown 

matrices ba  and da .  

From Eq. (2.4.33), the following can be solved: 

1
b bb bd d

−

= −a B B a . (2.4.34) 

Substituting Eq. (2.4.34) into Eq. (2.4.32) yields a generalized eigen-value problem 

λ=Ax Bx  as follows: 

d dxyxy NN=Ba B a . (2.4.35) 

where xyN , da  are the required eigen-values and eigen-vectors, respectively. The B  

and 
xyNB  matrices are defined as  
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1
db db db bb bd

dd dd dd

( ) ( )

                                      ( ) ( )

x y

x y

x N y N

x N y N

N N

N N

− = − − − 
 + − − 

B B B B B B

B B B
, (2.4.36a) 

1
db bb bd dd( ) ( )

xy xy xyN N N
−= − +B B B B B . (2.4.36b) 

Consequently, the eigen-values xyN  and eigen-vectors da , can be determined by 

solving the eigen-value problem in Eq. (2.4.35) for given matrices B  and 
xyNB . The 

value xyN  is exactly the shear buckling load of the thin plate. Then, ba  can be 

determined from Eq. (2.4.34). Finally, the shear buckling mode shapes can be obtained 

by Eq. (2.4.16), where it is noted that { }T

b d[ ]ija = a a . 

2.4.4 Numerical Results 

2.4.4.1 Definition of Parameters 

The stability of rectangular thin plates with different in-plane loads are studied here 

using the extended SCM. In the following numerical examples, Poisson’s ratio ν  is 

taken as 0.3, the plate aspect ratio γ , the ratio of applied force to buckling load α , and 

dimensionless critical shear buckling load xyP  are defined as 

a

b
γ =  (2.4.37) 

cr, cr,

 or  yx

x y

NN

N N
α α= =  (2.4.38) 

2

2

xy
xy

N
P

Db

π
=  (2.4.39) 

where cr,xN  and cr,yN  indicate that the critical buckling loads of the plate with the 

same boundary conditions due to the compressive loading in the x - and y -direction, 

respectively; cr,xyN  indicates the critical shear buckling load of the plate with the same 

boundary conditions, but due to pure shear loads xyN  ( 0x yN N= = ). 
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2.4.4.2 Convergence Study 

 The convergence characteristics of the dimensionless critical shear buckling loads 

xyP  of the square plates ( 1γ = ) for five types of boundary conditions, CCCC, CSCS, 

SSSS, CCFF, and CFCF, are shown in Table 2.4.1. Clearly, the convergence 

characteristics by SCM are very good. In addition, one observes that using 60 60×  

inner knots are enough to obtain stable and accurate results. 

Table 2.4.1 Convergence of the dimensionless shear buckling load xyP . 

Inner knots ( )x yn n×  CCCC CSCS SSSS CCFF CFCF 

10 10×  14.9513 11.9370 9.4852 7.5744 0.6340 
20 20×  14.6866 11.7731 9.3647 7.5385 0.6328 
30 30×  14.6774 11.7437 9.3423 7.5104 0.6319 
40 40×  14.6620 11.7331 9.3345 7.4994 0.6308 
50 50×  14.6548 11.7282 9.3309 7.4952 0.6303 
60 60×  14.6509 11.7256 9.3290 7.4922 0.6300 

2.4.4.3 Uni-directional Forces Acting on a Plate 

 A SSSS plate subjected to constant uniform uni-directional compressive/tensile 

forces xN  in the x -direction and shear force xyN  is shown in Figure 2.4.3. The 

magnitude of the applied constant uniform force xN  is taken as cr,xNα , where cr,xyN  

is the critical shear buckling force of the plate. Based on Eq. (2.4.35) and Eq. (2.4.36), 

one can find the solution of the eigen-value xyN  and eigen-vector a  for the case with 

0yN = . Consequently, the uni-directional compressive/tensile forces xN  acting on a 

plate can be solved. In Table 2.4.2, the dimensionless critical shear buckling loads xyP  

for the SSSS plates are presented and compared with existing ones for several aspect 

ratios  ( 1.0,1.2,1.4,2.0,4.0)γ = , and load factors  ( 0.0, 0.5)α = ± . The values of xyP  

solved by the SCM are slightly lower than the others, except the one by EKM.  
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Figure 2.4.3 Square plates with uni-directional in-plane loading for SSSS. 

Table 2.4.2 Dimensionless critical shear buckling loads xyP  for SSSS plates. 
( )a bγ =  1.0 1.2 1.4 2.0 1.0 1.0 2.0 2.0 4.0 4.0 

,( )x cr xN Nα =  0.0 0.0 0.0 0.0 -0.5 0.5 -0.5 0.5 -0.5 0.5 

* 9.40 8.40 7.30 6.60 — — — — 4.63 7.75 
** 9.35 8.00 — 6.59 — — — — — — 
*** — — — — 6.62 11.56 4.66 7.89 4.10 — 

EKM 9.32 7.98 7.29 6.55 6.59 11.56 4.63 7.78 4.07 6.88 
SCM 9.33 7.99 7.29 6.55 6.58 11.50 4.62 7.79 4.07 6.89 

*Column Research Committee of Japan, 1971; **Stein and Neff, 1947 
*** Batdorf and Stein, 1947 

Similarly, a CCCC plate subjected to constant uniform uni-directional 

compressive/tensile forces xN  in the x -direction and shear force xyN  is shown in 

Figure 2.4.4. Table 2.4.3 shows the dimensionless critical shear buckling loads xyP  for 

the CCCC plates with constant uniform forces cr,( )x xN Nα=  in the x -direction. As 

can be seen, the xyP  values approach to each other for the SCM and EKM solutions in 

most cases. 

xyN  

xyN  
cr,x xN Nα=  

cr,x xN Nα=  

S 

S 

S S 
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Figure 2.4.4 Square plates with uni-directional in-plane loading for CCCC. 

Table 2.4.3 Dimensionless critical shear buckling loads xyP  for CCCC plates. 

,( )x cr xN Nα =  0.5α =  0.0α =  0.5α = −  

( )a bγ =  SCM EKM SCM EKM SCM EKM 

2.0 12.74 12.71 10.26 10.25 7.23 7.22 
3.0 11.75 11.71 9.55 9.53 6.80 6.78 
4.0 11.42 11.39 9.32 9.30 6.58 6.56 
6.0 11.19 11.16 9.14 9.12 6.47 6.46 
10.0 11.09 11.06 9.06 9.03 6.41 6.39 

Comparisons with results by the other methods are given in Table 2.4.4 for the 

plates with four types of boundary conditions, SSSS, CCCC, CCSF, and CCFF, and 

several aspect ratios γ  ( 1.0 ~ 2.0)= . Here one can see that except for the EKM results, 

the solutions given by SCM for the dimensionless critical shear buckling loads xyP  are 

slightly lower than the other ones. Evidently, the results obtained by the, SCM are quite 

accurate. 

xyN  

xyN  
cr,x xN Nα=  

cr,x xN Nα=  

C 

C 

C C 

(b) CCCC 
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Table 2.4.4 Dimensionless pure critical shear buckling load xyP  for plates with 

various boundary conditions. 
 ( )a bγ =  SCM EKM FEM EKM Timoshenko 

SSSS 1.0 9.3290 9.3245 9.3250 9.3257   9.3400 
 1.5 7.0763 7.0700 7.0700 — 7.1000 
 2.0 6.5531 6.5460 6.5460 — 6.6000 
 3.0 5.8479 5.8402 5.8400 — 5.9000 

CCCC 1.0 14.6509 14.6420 14.6400 14.6428 14.7100 
 1.5 11.4722 11.4583 11.4600 — 11.5000 
 2.0 10.2604 10.2480 10.2500 — 10.3400 

CCSF 1.0 8.4402 8.4289 8.4330 — — 
 2.0 2.3678 2.3501 2.3510 — — 

CCFF 1.0 7.5002 7.4869 7.4920 — — 
 2.0 2.7827 1.7703 1.7720 — — 

 

2.4.4.4 Aspect Ratio Effects of Thin Plates 

The variations of the dimensionless critical shear buckling loads xyP  for three 

aspect ratios ( 1.0,2.0,4.0γ = ) of a SSSS plate are shown in Table 2.4.5 and Figure 

2.4.5. Note that all the dimensionless critical shear buckling loads ( )xy xy xyP P P αα= =  

are normalized with respect to the one for pure shear loading only, i.e., 0xyP . The results 

of analyses indicate that the larger the aspect ratio γ  is, the smaller the dimensionless 

critical shear buckling load xyP . One can also see that for three plate aspect ratios 

( 1.0,2.0,4.0)γ = , the same behaviors can be observed, namely, a nearly linear relation 

exists in the range 0.4 1.0α− < ≤ , and a sharp drop occurs as the compressive force 

cr,( )x xN Nα=  in the x -direction approaches the critical buckling load cr,xN  (i.e. 

1.0α →− ).  
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Table 2.4.5 Dimensionless critical shear loading xyP  for three aspect ratios γ . 

 SSSS plates 

,( )x cr xN Nα =  1.0γ =  2.0γ =  4.0γ =  

1.0 22.071 14.889 13.239 
0.8 20.713 14.051 12.545 
0.6 19.303 13.177 11.813 
0.4 17.833 12.260 11.039 
0.2 16.289 11.293 10.215 
0.0 14.655 10.261 9.326 
-0.2 12.901 9.144 8.350 
-0.4 10.980 7.907 7.219 
-0.6 8.795 6.483 5.883 
-0.8 6.088 4.703 4.162 

 

   
Figure 2.4.5 Normalized dimensionless critical shear loadings versus different α  

for three plate aspect ratios γ . 
 

The critical buckling modes of SSSS plates for five constant uniform 

uni-directional loads cr,( )x xN Nα= , 1.0,0.5,0.0, 0.5, 1.0α = − − , and three aspect ratios 

( 1.0,2.0,4.0)γ =  are shown in Figure 2.4.6. It is seen that as the force changes from 

tension to compression, the number of waves in the shape increases. 
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Figure 2.4.6 Critical buckling modes for SSSS plates with variable uni-directional 

loading. 
 

For a CCCC plate, the variations of the constant uniform uni-directional loading 

cr,( )x xN Nα=  of the thin plates for three aspect ratios (1.0,2.0,4.0γ = ) are shown in 

Table 2.4.6 and Figure 2.4.7.  

Table 2.4.6 Dimensionless critical shear loading xyP  for three aspect ratios γ . 

 CCCC plates 

,( )x cr xN Nα =  1.0γ =  2.0γ =  4.0γ =  

1.0 13.389 8.913 7.948 
0.8 12.659 8.476 7.555 
0.6 11.896 8.025 7.125 
0.4 11.095 7.557 6.661 
0.2 10.244 7.069 6.168 
0.0 9.331 6.556 5.640 
-0.2 8.333 5.873 5.066 
-0.4 7.212 5.078 4.429 
-0.6 5.893 4.145 3.656 
-0.8 4.177 2.937 2.603 
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Figure 2.4.7 Normalized dimensionless critical shear loadings versus different α  

for three plate aspect ratios γ . 
 

The critical buckling modes of CCCC plates for five constant uniform 

uni-directional loads cr,( )x xN Nα= , 1.0,0.5,0.0, 0.5, 1.0α = − − , and aspect ratios 

( 1.0,2.0,4.0)γ =  are shown in Figure 2.4.8. As for the CCCC plate, it is seen that as 

the force changes from tension to compression, the number of waves in the shape 

increases. The variation of the critical shear forces is similar to that of the simply 

supported plates, which need not be repeated here. 
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Figure 2.4.8 Critical buckling modes for CCCC plates with variable uni-directional 

loading. 

Square plates ( 1.0)γ =  with four combinations of boundary conditions, CFCF, 

CSCS, FFCC, and FFFC, are also solved by SCM (see Figures 2.4.9). In Table 2.4.7, 

the results for the dimensionless critical shear loadings xyP  of the square plate with 

different levels of constant uniform compressive/tensile loadings cr,( )x xN Nα=  are 

presented. It is sufficient to mention that the dimensionless critical shear buckling loads 

determined by the SCM are very close to the EKM results. 
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Figure 2.4.9 Square plates with uni-directional in-plane loading and with different 

boundary conditions. 

Table 2.4.7 Dimensionless critical shear buckling loads xyP  for square plates. 
α  

,( )x cr xN N=  
CFCF CSCS FFCC FFFC 

SCM EKM SCM EKM SCM EKM SCM EKM 

1.0 1.1145 1.1023 17.1201 17.1015 9.8283 9.8184 0.5528 0.5561 
0.8 1.0133 1.0143 16.1310 16.1257 9.3915 9.3848 0.5283 0.5275 
0.6 0.9282 0.9235 15.1238 15.1095 8.9528 8.9382 0.4985 0.4973 
0.4 0.8315 0.8295 14.1613 14.0450 8.4923 8.4765 0.4679 0.4652 
0.2 0.7346 0.7318 12.9414 12.9207 8.0101 7.9964 0.4382 0.4307 
0.0 0.6308 0.6298 11.7256 11.7197 7.5083 7.4927 0.3969 0.3932 
-0.2 0.5238 0.5226 10.4322 10.4146 6.5639 6.9566 0.3583 0.3517 
-0.4 0.4093 0.4087 8.9723 8.9579 6.3901 6.3712 0.3081 0.3045 
-0.6 0.2894 0.2866 7.2688 7.2532 5.7205 5.7005 0.2498 0.2486 
-0.8 0.1573 0.1520 5.0618 5.0478 4.3914 4.3726 0.1738 0.1758 
-1.0 0.0801 0.0794 3.5006 3.4885 3.1419 3.1298 0.1282 0.1243 

 

2.4.4.5 Bi-directional Forces Acting on a Plate 

Thin plates with two types of boundary conditions SSSS/CCCC subjected to 

constant uniform bi-directional compressive/tensile forces xN , yN , and shear force 

xyN  are shown in Figure 2.4.10.  

The values of the dimensionless critical shear buckling loads of the SSSS and 

CCCC plate with variable bi-directional loads cr,( )x xN Nα= / yN ( cr,yNα= ) and three 

aspect ratios ( 1.0,2.0,4.0)γ =  obtained by the SCM are listed sin Table 2.4.8 and 

Table 2.4.9, respectively. We like to point out that the critical shear buckling loads 

obtained by the SCM are very close to that by the EKM. 
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Figure 2.4.10 Plates with bi-directional in-plane loads. 

Table 2.4.8 Dimensionless critical shear buckling loads xyP  for SSSS plates. 

a bγ =  1.0 2.0 4.0 1.0 2.0 4.0 

,cr xyN  (pure shear) 92.031 64.607 55.512 92.031 64.607 55.512 

2
xN π  -2.000 -2.000 -2.000 2.000 2.000 2.000 

2
,cr yN π  2.000 1.063 1.004 6.000 2.063 1.254 

,

( )y

cr y

N

N
α =  

1.00 9.309 5.979 5.318 16.811 10.193 8.465 
0.75 8.704 5.661 5.027 15.595 9.697 8.099 
0.50 8.058 5.332 4.725 14.317 9.188 7.716 
0.25 7.358 4.990 4.410 12.961 8.572 7.316 
0.00 6.585 4.633 4.079 11.501 7.790 6.896 
-0.25 5.709 4.260 3.647 9.892 6.859 6.405 
-0.50 4.670 3.865 3.157 8.041 5.697 5.799 
-0.75 3.311 2.871 2.583 5.688 4.099 4.918 
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Table 2.4.9 Dimensionless critical shear buckling loads xyP  for CCCC plates. 

( )a bγ =  1.0 2.0 4.0 1.0 2.0 4.0 

,cr xyN  (pure shear) 144.513 101.145 91.740 144.513 101.145 91.740 

2
xN π  -5.037 -3.934 -3.604 5.037 3.934 3.604 

2
,cr yN π  5.569 3.921 3.891 12.772 5.656 4.338 

,

( )y

cr y

N

N
α =  

1.00 14.628 10.344 9.602 27.641 17.383 15.127 
0.75 13.558 9.673 8.916 25.546 16.299 14.282 
0.50 12.430 8.946 8.180 23.352 15.150 13.392 
0.25 11.230 8.115 7.404 21.039 13.964 12.438 
0.00 9.934 7.227 6.585 18.574 12.723 11.431 
-0.25 8.504 6.268 5.708 15.901 11.382 10.351 
-0.50 6.858 5.215 4.674 12.915 9.433 9.087 
-0.75 4.790 4.019 3.430 9.353 6.748 7.582 

 
2.4.5 Nomenclature 

ba , da      column vectors of the undetermined coefficients matrix 

ija       coefficients to be determined 

( )iB x , ( )jB y     quintic spline functions 

( )
3

212 1

Et
D

ν
=

−
  flexural rigidity 

E       Young’s modulus 

xh      equal-space in the x  directions 

yh       equal-space in the y  directions  

xn       inner knots in the x  directions 

yn      inner knots in the y  directions 

xyP      dimensionless critical shear buckling load  

t       thickness of the plate 

cr,xyN      critical shear buckling load of the plate 
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xN      in-plane normal forces in the x  directions 

yN      in-plane normal forces in the y  directions 

xyN      shear force  

( , )w x y      elastic lateral buckling displacement 

cr,

x

x

N

N
α = , 

cr,

y

y

N

N
α =  ratio of applied force to buckling load 

a

b
γ =     plate aspect ratio  

ν       Poisson’s ratio 
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2.5 Buckling Analysis of Rectangular Thin Plates  

2.5.1 Introduction 

The buckling problem of a thin rectangular elastic plate subjected to in-plane 

compressive and/or shear loading is important in the aircraft and automotive industries. 

Bert and Devarakonda (2003) gave a brief historical review recently on this subject . As 

is noticed that there have been very few previous solutions for the case of nonlinearly 

distributed edge loadings. The possible reason is perhaps due to the additional 

complexity of having to first solve a problem in plane-stress elasticity for obtaining the 

in-plane stress distributions, then to solve the buckling problem. The first work in this 

field was due to van der Neut (1958). A uniaxial compressive loading with a half-sine 

distribution was considered. Later, Benoy (1969) considered a uniaxial compressive 

loading with a parabolic distribution and obtained a solution by using the energy 

method. It is pointed out, however, that both works suffered several serious deficiencies 

(Bert and Devarakonda, 2003). Recently, Bert and Devarakonda (2003) presented an 

analytical solution for in-plane stresses for the case of a half-sine load distribution on 

two opposite sides. As can be seen that the in-plane stress distributions are more 

realistic, showing a decrease (diffusion) in axial stress as the distance from the loaded 

edges is increased. The buckling loads are then calculated using Galerkin method. Much 

more accurate buckling load is obtained for a rectangular plate simply supported along 

all edges. Xinwei (2006) used differential quadrature method (DQM) to analysis 

buckling loads of thin rectangular plates under non-uniform distributed in-plane 

loadings. It indicates that the DQM can be employed for obtaining buckling loads of 

plates with other combinations of boundary conditions subjected to non-uniform 

distributed loadings. 

SCM is used herein for the first time for buckling analysis of thin rectangular 
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plates subjected to non- uniform distributed in-plane loadings. Formulations and 

procedures are worked out in detail and two non-uniform in-plane loading cases are 

studied. SCM results are well compared with existing analytical solutions DQM and 

finite element method (FEM). Some conclusions are drawn based on the results 

presented herein. 

2.5.2 Formulation 

Consider a problem of in-plane elasticity, an isotropic rectangular thin plate with 

length a  and width b  subjected to a uniaxial non-uniform distributed in-plane edge 

load as shown in Figure 2.5.1. 

 

Figure 2.5.1 Rectangular plates under uni-axial edge compressions. 

x  

y  a  

b  

xσ  

(a) 0(1 2 3)x yσ σ= − −  

x  

y  a  

b  xσ  xσ  

xσ  

(b) 0 cos( )x y bσ σ π= −  
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The governing differential equation can be expressed as 

4 4 4 2

4 2 2 4 2

( , ) ( , ) ( , ) ( , )
2 x

w x y w x y w x y w x y
D h

x x y y x
σ

 ∂ ∂ ∂ ∂+ + = ∂ ∂ ∂ ∂ ∂   (2.5.1) 

where ( , )w x y  is the normal deflection, D  is the flexural rigidity of the plate given 

by 

( )
3

212 1

Eh
D

ν
=

−
 (2.5.2) 

in which E  is the Young’s modulus, h  is the plate thickness and ν  is Poisson’s 

ratio. The internal forces of plate are given by 

2 2

2 2

( , ) ( , )
( , )x

w x y w x y
M x y D

x y
ν

 ∂ ∂= − + ∂ ∂   (2.5.3) 

2 2

2 2

( , ) ( , )
( , )y

w x y w x y
M x y D

x y
ν
 ∂ ∂= − + ∂ ∂   (2.5.4) 

3 3

3 2

( , ) ( , )
( , ) (2 )x

w x y w x y
V x y D

x x y
ν

 ∂ ∂= − + − ∂ ∂ ∂   (2.5.5) 

3 3

3 2

( , ) ( , )
( , ) (2 )y

w x y w x y
V x y D

y y x
ν

 ∂ ∂= − + − ∂ ∂ ∂   (2.5.6) 

2

c

( , )
( , ) 2 (1 )

w x y
F x y D

x y
ν

∂= − −
∂ ∂

 (2.5.7) 

where ( , )xM x y , ( , )xV x y , c( , )F x y  are bending moment, effective transverse force 

per length, and concentrated force produced at each corner, respectively, etc. 

Two types of boundary conditions (BCs) are considered as follow : 

(1) simply supported (SSSS) BC :  

( , ) ( , ) 0xw x y M x y= =  at edge 0,x a=  (2.5.8a) 

( , ) ( , ) 0yw x y M x y= =  at edge 0,y b=  (2.5.8b) 
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(2) clamped (CCCC) BC : 

( , )
( , ) 0

w x y
w x y

x

∂= =
∂

 at edge 0,x a=  (2.5.9a) 

( , )
( , ) 0

w x y
w x y

y

∂= =
∂

 at edge 0,y b=  (2.5.9b) 

Note that corner conditions are automatically satisfied for both BCs. 

Each corner point of a thin rectangular plate has three degrees-of-freedom (DOFs), 

namely, w , w x∂ ∂ , w y∂ ∂ . Each point of the remaining boundaries has two DOFs, 

w , w x∂ ∂  at edges parallel to the y -axis, and w , w y∂ ∂  at edges parallel to the 

x -axis, respectively. Each inner point of plate has only one DOF w . 

2.5.3 Approach by spline collocation method 

A rectangular thin plate with size a b×  has been assigned xn  and yn  inner 

knots with equal-space xh  and yh  in the x - and y - directions, respectively, as 

shown in Figure 2.3.1. The serial numbers of the inner knots are defined as 

3 0x = , 2xnx a+ = , 1 ( 1)j j x xx x h a n+ − = = − , 3, , 1xj n= +… . (2.5.10) 

3 0y = , 2yny b+ = , 1 ( 1)j j y yy y h b n+ − = = − , 3, , 1yj n= +… . (2.5.11) 

The total number of inner knots is x yn n . The governing equation in Eq. (2.5.1) 

must be satisfied for each inner knot of the plate. 

The fictitious knots should be based on, and required to satisfy the BCs. One needs 

two fictitious knots outside the plate to satisfy two BCs for each boundary knot of the 

plate except for four corner knots. Therefore, the total number of fictitious knots for 

boundary knots, excluding four corner knots, is 4 ( 2) ( 2)x yn n − + −  . Each corner 

knot has three BCs. Thus, the total number of fictitious knots for four corners is 12. 

Consequently, the total number of boundary fictitious knots for the plate are 
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4( ) 4x yn n+ − , which exactly equal to the total number of BCs. The total number of 

knots including fictitious knots for the whole plate is 4( ) 4x y x yn n n n+ + − , as shown in 

Figure 2.4.2. 

The displacement ( , )w x y  of a rectangular thin plate subjected to in-plane forces 

can be approximated by using the QSF as follows 

44

1 1

( , ) ( ) ( )
yx

nn

i j ij
i j

w x y B x B y w
++

= =

=∑∑  (2.5.12) 

where ijw s are coefficients to be determined, note that 0ijw =  for no knots 

1, 4xi n= + , 1,2,3, 2, 3, 4y y yj n n n= + + +  and 2,3, 2, 3x xi n n= + + , 1,, 4yj n= + . 

Therefore, the partial derivatives for ( , )w x y  given as 

44( )
( ) ( )

1 1

( , )
( ) ( )

yx
nnr s

r s
i j ijr s

i j

w x y
B x B y w

x y

+++

= =

∂ =
∂ ∂ ∑∑  (2.5.13) 

Substituting Eq. (2.5.12) and Eq. (2.5.13) into governing equation in Eq. (2.5.1), 

generalized forces in Eq. (2.5.3) to Eq. (2.5.7), and BCs in Eqs. (2.5.8) and Eqs.(2.5.9), 

respectively , can obtain. 

Governing equation: 

44
(4) (4)

1 1

44

1 1

( ) ( ) 2 ( ) ( ) ( ) ( )

                                                           ( ) ( )

yx

yx

nn

i j i j i j ij
i j

nn

x i j ij
i j

D
B x B y B x B y B x B y w

h

B x B y wσ

++

= =

++

= =

′′ ′′ + + = 

′′

∑ ∑

∑ ∑
 (2.5.14) 

Generalized forces: 

44

1 1

( , ) ( ) ( ) ( ) ( )
yx

nn

x i j i j ij
i j

M x y D B x B y B x B y wν
++

= =

′′ ′′ = − + ∑ ∑  (2.5.15) 

44

1 1

( , ) ( ) ( ) ( ) ( )
yx

nn

y i j i j ij
i j

M x y D B x B y B x B y wν
++

= =

′′ ′′ = − + ∑ ∑  (2.5.16) 
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44

1 1

( , )  ( ) ( ) (2 ) ( ) ( )
yx

nn

x i j i j ij
i j

V x y D B x B y B x B y wν ν
++

= =

′′′ ′ ′′ = − + − ∑ ∑  (2.5.17) 

44

1 1

( , )  ( ) ( ) (2 ) ( ) ( )
yx

nn

y i j i j ij
i j

V x y D B x B y B x B y wν ν
++

= =

′′′ ′′ ′ = − + − ∑ ∑  (2.5.18) 

44

1 1

( , ) 2 (1 ) ( ) ( )
yx

nn

c i j ij
i j

F x y D B x B y wν
++

= =

′ ′= − − ∑ ∑  (2.5.19) 

Boundary conditions: 

(1) SSSS BC: 

44

1 1

( , ) ( ) ( ) 0
yx

nn

i j ij
i j

w x y B x B y w
++

= =

= =∑∑  at edge 0,x a=  (2.5.20a) 

44

1 1

( , ) ( ) ( ) ( ) ( ) 0
yx

nn

x i j i j ij
i j

M x y D B x B y B x B y wν
++

= =

′′ ′′ = − + = ∑ ∑  at edge 0,x a=  (2.5.20b) 

44

1 1

( , ) ( ) ( ) 0
yx

nn

i j ij
i j

w x y B x B y w
++

= =

= =∑∑  at edge 0,y b=  (2.5.20c) 

44

1 1

( , ) ( ) ( ) ( ) ( ) 0
yx

nn

y i j i j ij
i j

M x y D B x B y B x B y wν
++

= =

′′ ′′ = − + = ∑ ∑  at edge 0,y b=  (2.5.20d) 

(2) CCCC BC: 

44

1 1

( , ) ( ) ( ) 0
yx

nn

i j ij
i j

w x y B x B y w
++

= =

= =∑∑  at edge 0,x a=  (2.5.21a) 

44

1 1
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yx
nn

i j ij
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w x y
B x B y w
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++

= =

∂ ′= =
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44

1 1

( , ) ( ) ( ) 0
yx

nn

i j ij
i j

w x y B x B y w
++

= =

= =∑∑  at edge 0,y b=  (2.5.21c) 

44

1 1

( , )
( ) ( ) 0

yx
nn

i j ij
i j

w x y
B x B y w

y

++

= =

∂ ′= =
∂ ∑∑  at edge 0,y b=  (2.5.21d) 

In general, after substituting the coordinates of the all inner knots into the 

governing equation in Eq. (2.5.14), and boundary knots into the BCs in Eqs. (2.5.20) or 
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Eqs.(2.5.21), then a well determined linear eigen-value system of matrix form can be 

obtained, and expressed as 

* *
db dd b bdb dd

bb bd d d
x

D

h
σ

     =          
B B w wB B
B B w w0 0

 (2.5.22) 

where bw  and dw  are column vectors of undetermined coefficients, subscripts b and 

d denote the fictitious knots and all inner knots, respectively. The first x yn n  equations 

are obtained from governing equation in Eq. (2.5.14) and the remaining equations are 

obtained from BCs in Eqs. (2.5.20) or Eqs.(2.5.21). From Eq. (2.5.22) can obtained as 

1
b bb bd d

−

= −w B B w . (2.5.23) 

Substituting Eq. (2.5.23) into the Eq. (2.5.22), obtained an generalized eigen-value 

problem as follow 

*
d d

xh

D

σ
=Bw B w . (2.5.24) 

where xh Dσ , dw  are the required eigen-values and eigen-vectors, respectively, B  

and *B  defined as follow 

1
db bb bd dd

−= − +B B B B B , * * 1 *
db bb bd dd

−= − +B B B B B  (2.5.25a,b) 

Consequently, eigen-values xσ  and eigen-vectors dw  can be found easily from 

solving the Eq. (2.5.12).  

2.5.4 Numerical Examples and Discussions 

In following numerical examples, Poisson’s ratio ν  is taken as 0.3, the plate 

aspect ratio γ  and buckling coefficient k  are defined, respectively, as 

a

b
γ =  (2.5.26) 

2
0

2

hb
k

D

σ

π
=  (2.5.27) 
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where 0σ  is maximum stress for uniaxial non-uniform distributed in-plane edge load. 

In this paper, two non-uniform distributed loading cases are studied. 

2.5.4.1 Linearly Varying Distributed Load 

Consider a rectangular plate under linearly varying distributed compressive load, 

02 3(1 )x y bσ σ= − − , shown in Figure 2.5.1(a). Since 02 3(1 )x y bσ σ= − −  and 

0y xyσ τ= =  everywhere in the plate, solutions for buckling loads are available for 

designers (Aircraft design manual, 2001; Young and Budynas, 2002). This example 

serves as a check of both the formulations as well as the computer program. 

 Two boundary conditions, i.e., all edges are simply supported or clamped and 

denoted by SSSS or CCCC, are considered. Table 2.5.1 shows the convergence study 

for the buckling load with 1a b = . As can be seen that converged results can be 

obtained with 11N = . Table 2.5.2 shows the SCM results for various aspect ratios. It is 

found that differences are observed between the data obtained by SCM, DQM (Wang et 

al., 2006), FEM (Wang et al., 2006) and cited from manual (Aircraft design manual, 

2001). Consequently, SCM can obtain good accurate solutions. 

Table 2.5.1 Convergence for square thin plates under linearly varying compressive 
load. 

B.C. x yn n×  

10 10×  20 20×  30 30×  40 40×  
SSSS 5.9842 5.9685 5.9657 5.9647 
CCCC 15.2477 15.0349 14.9953 14.9811 

Table 2.5.2 Buckling load k of simply supported rectangular thin plates under 
linearly varying compressive load. 

a bγ =  0.4 0.6 0.75 0.8 1.0 1.5 

SCM 12.24 7.60 6.45 6.25 5.96 6.45 
DQM 12.24 7.60 6.45 6.25 5.96 6.45 
FEM 12.23 7.59 6.44 6.25 5.96 6.45 

Manual 10.80 7.10 6.10 6.00 5.90 6.10 
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2.5.4.1 Non-uniformly Distributed Load 
Consider a rectangular plate under non-uniformly distributed compressive load, 

0 cos( )X y bσ π= − , shown in Figure 2.5.1(b). For this loading case, 

0 cos( )x y bσ σ π≠ − , 0yσ ≠  and 0xyτ ≠  within the plate. This makes analytical 

solutions be difficult to be obtained if not impossible. Relatively accurate buckling 

loads are only available recently for plates with all edges simply supported (Bert and 

Devarakonda, 2003). 

Table 2.5.3 shows the convergence study for the buckling load of rectangular plates 

with three different aspect ratios. As can be seen that converged results are obtained. 

Table 2.5.4 shows the SCM results with 15N =  for three different aspect ratios. It is 

found that differences are observed between the data obtained by SCM and results cited 

from literatures (Bert and Devarakonda, 2003; Van der Neut, 1958; Benoy, 1969). To 

check the data, finite element analyses are also performed by MSC-NASTRAN. There 

are difference between SCM data and solutions by Galerkin method in (Bert and 

Devarakonda, 2003). The possible reasons to cause the discrepancy are that a minor 

error exists in their derivations and the stress boundary conditions are not satisfied to 

obtain their inplane stress solutions. Data in (Van der Neut, 1958; Benoy, 1969) are 

obviously too small and are not accurate, as are pointed out by Bert and Devarakonda 

(2003). 

Table 2.5.3 Convergence for rectangular thin plates under half-cosine compressive 
load. 

B.C. a bγ =  x yn n×  

10 10×  20 20×  30 30×  40 40×  

SSSS 
0.5 7.3539 7.3244 7.3189 7.3170 
1.0 4.7205 4.7087 4.7064 4.7056 
3.0 4.7986 4.7280 4.7150 4.7104 

CCCC 
0.5 22.2457 21.8098 21.7289 21.7007 
1.0 11.5205 11.3467 11.3143 11.3029 
3.0 10.8380 10.3469 10.0615 9.9622 
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Table 2.5.4 Buckling load k of simply supported rectangular thin plates under 
half-cosine distributed compressive load. 

a bγ =  SCM DQM FEM 
Bert 

 (2003) 
Benoy  
(1969) 

Van Der Neut 
(1958) 

0.5 7.317 7.452 7.409 7.841 7.08  
1.0 4.706 5.419 5.383 5.146 4.59 4.68 
3.0 4.710 5.849 5.818 5.748 4.53  

 
2.5.5 Nomenclature 

a     length of rectangular thin plate 

b     width of rectangular thin plate 

( )
3

212 1

Eh
D

ν
=

−
 flexural rigidity of the plate 

E      Young’s modulus 

c( , )F x y    concentrated force 

h      plate thickness  

xh     equal-space in the x  directions 

yh      equal-space in the y  directions 

( , )xM x y    bending moment 

( , )xV x y    effective transverse force per length 

xn      inner knots in the x  directions 

yn      inner knots in the y  directions 

( , )w x y     normal deflection 

bw , dw    column vectors of undetermined coefficients 

ijw      is coefficients to be determined 

ν      Poisson’s ratio 

a

b
γ =    plate aspect ratio 
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2
0

2

hb
k

D

σ

π
=   buckling coefficient 

0σ      maximum stress 
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2.6 Vibration Analysis of Beams on Pasternak Elastic Foundation 

2.6.1 Introduction 

The initial stress in a structural member can significantly affect its dynamic 

behaviour. Vibration characteristics of beams on Pasternak elastic foundation without 

initial stress were studied by Franciosi and Masi (1993). However, a study of the effect 

of initial stress on the dynamic behaviour of beams on Pasternak elastic foundation is 

not available in literature. The purpose of the present note is to study the vibration 

characteristics of beams on Pasternak elastic foundation under initial stress using the 

spline collocation method. 

2.6.2 Formulation 

The elastic foundation, in a simplified form, can be represented as a continuous 

layer of independent linear elastic springs (Winkler, 1867). The relation between the 

pressure and the deflection of the foundation is 

( ) ( )p x Kw x=  (2.6.1) 

where K  is the foundation modulus, known as the Winkler foundation parameter  

and x  is the axial coordinate of the beam. 

As this foundation model cannot represent the continuous elastic medium, the 

following pressure displacement relationship is used for the present study: 

2

1 2

( )
( ) ( )

d w x
p x Kw x K

dx
= −  (2.6.2) 

where the second parameter 1K , represents the stiffness of the shearing layer (Figure 

2.6.1) connecting the top of the Winkler springs. This physical model with constants K  

and 1K , is known as the Pasternak model (Pasternak, 1954). 
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Figure 2.6.1. Pasternak elastic foundation. 

For a uniform beam of length L , moment of inertia I , Young’s modulus E   

subjected to an end concentrated load P  and executing harmonic oscillations resting 

on an elastic foundation characterized by Eq. (2.6.2), the governing equation is given by 

4 2 2

14 2 2

( ) ( ) ( )
( ) ( ) 0f

d w x d w x d w x
Kw x K w x

dx dx dx
λ λ+ − + − =  (2.6.3) 

Nondimensionalizing all the length quantities in Eq. (2.6.3) by the length of the 

column L , we get 

4 2 2

14 2 2

( ) ( ) ( )
( ) ( ) 0f

d W X d W X d W X
KW X K W X

dX dX dX
λ λ+ − + − =  (2.6.4) 

where 

( )
( )

w x
W X

L
= , 

x
X

L
= , 

4KL
K

EI
= , 

2
1

1 2

K L
K

EIπ
= ,  

2PL

EI
λ = , 

1 44 2

f

mL

EI

ωλ  =     

(2.6.5) 

The deflection slope, bending moment and shear force are 

( )
( )

dW X
X

dX
θ =  (2.6.6) 

2

2

( )
( )

d W X
M X EI

dX
=  (2.6.7) 
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3

3

( )
( )

d W X
V X EI

dX
= −  (2.6.8) 

The boundary conditions can be divided into the following two kinds: 

clamped (C):    

0W = , 0θ =  (2.6.9) 

Hinged (H):    

0W = , 0M =  (2.6.10) 

at the extremity 0,1X = . 

2.6.3 Approach by spline collocation method 

Since the governing equation of a uniform beams on Pasternak elastic foundation 

is a fourth-order ordinary differential equation (ODE), the solution of the governing 

ODE can be approximated by the spline functions with polynomial at least fifth degree. 

A quintic spline functions (QSFs) is a piecewise fifth degree polynomial which is 

belonging to 4C .  

Considering a set of equi-spaced knots is selected in a normalized interval 

[0,1]X ∈ , i.e., 

0 0X = , 1nX = , 1j jX X h+ − = , 0, , 1j n= −…  (2.6.11) 

where h  is distance of equi-spaced knots. In order to apply the SCM, one needs to 

extend two added knots (fictitious) 2X
−

, 1X
−

 and 1nX + , 2nX +  at each end of beam, 

respectively (Figure 2.6.2). 

 
Figure 2.6.2. Partitions of beam into n  sections with two added knots at each end. 

Then the uniform beams on Pasternak elastic foundation for flexural vibration can 

h  

0X  1iX
−

 iX  nX  
1X

−
 2X

−
 

1nX +  2nX +  

fictitious fictitious 
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be approximated by using the QSF (Prenter, 1975) as follows  

2

2

( ) ( )
n

i i
i

W X B X a
+

=−

=∑  (2.6.12) 

where ic s are the coefficients to be determined and ( )iB ξ  is QSF. 

Substituting Eq. (2.6.12), into the governing equations in Eq. (2.6.4) can obtain 

2
(4)

1
2

( ) ( ) ( ) ( ) ( ) 0
n

i i i i f i i
i

B X KB X K B X B X B X aλ λ
+

=−

′′ ′′ + − + − = ∑  (2.6.13) 

Similarly, the two kinds of boundary conditions in Eq. (2.6.9) and Eq. (2.6.10) to 

Eq. (2.6.12) can obtain, 

clamped (C): 

2

2

( ) 0
n

i i
i

B X a
+

=−

=∑ , 
2

2

( ) 0
n

i i
i

B X a
+

=−

′ =∑  (2.6.14) 

Hinged (H): 

2

2

( ) 0
n

i i
i

B X a
+

=−

=∑ , 
2

2

( ) 0
n

i i
i

B X a
+

=−

′′ =∑  (2.6.15) 

In general, after substituting the coordinates of the 1n+  knots, ,  0,1, ,iX i n= … , 

into the Eq. (2.6.13), and coupling the four given boundary conditions in Eq. (2.6.14) 

and Eq. (2.6.15) at the ends, 0X  and nX , one obtains the following simultaneous 

equations. 

0

0

2
(4)

0 0 1 0 0 0
2

2
(4)

1 1 1 1 1 1
2

(4)
1

1st B.C. at 

2nd B.C. at 

1st B.C. at 

2nd B.C. at 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

n

n

n

i i i i f i i
i

n

i i i i f i i
i

i n i n

X

X

X

X

B X KB X K B X B X B X a

B X KB X K B X B X B X a

B X KB X K

λ λ

λ λ

+

=−

+

=−

′′ ′′ + − + − 
′′ ′′ + − + − 

′+ −

∑
∑

�

2

2

( ) ( ) ( )
n

i n i n f i n i
i

B X B X B X aλ λ
+

=−

         =       ′ ′′ + −   ∑

0  (2.6.16) 
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Matrix equations in Eq. (2.6.16) of the following form 

{ } { } { } { }[ ] [ ] [ ] [ ] 0fK a F a G a M aλ λ+ + − =  (2.6.17) 

where [ ]K , [ ]F  and [ ]G  are the assembled elastic stiffness matrix, foundation 

matrix and geometric stiffness matrix respectively. λ  is the load parameter 

representing the initial stress in the beam and fλ  is the frequency parameter 

(eigenvalue). Eq. (2.6.17) can be solved using any standard algorithm to obtain 

eigen-values and eigen-vectors 

2.6.4 Numerical Examples and Discussions 

Frequency parameter fλ  is evaluated for 0.0γ = , 0.2, 0.4, 0.6 and 0.8. γ  is 

defined as the ratio between the load parameter λ  and the stability parameter 

( )b bλ γ λ λ= . Stability parameter bλ 2( )PL EI  is obtained by using Eq. (2.6.17) by 

neglecting the fourth term and replacing λ  by bλ .  

Convergence of the stability parameter bλ  of beams ( 0K =  and 0fK = ) for 

three types of boundary conditions, H-H, C-C, and H-C, are shown in Table 2.6.1. It is 

sufficiently to indicate that the convergences by SCM are very good, and observe that 

using inner 301 knots are enough to obtain stable and very accurate results. 

Table 2.6.1 Variation of stability parameter bλ 2( )PL EI  with 0K =  and 
1 0K =  for vibrating beams. 

No. of knots (n ) H-H C-C H-C 
21 9.8899 39.8042 20.2758 
51 9.8729 39.5304 20.2043 
101 9.8704 39.4914 20.1941 
201 9.8698 39.4816 20.1916 
301 9.8697 39.4799 20.1911 
401 9.8697 39.4792 20.1911 

The above formulation is employed to obtain the frequency parameter fλ  of a 

uniform beam for various values of K  and fK  for the H-H, C-C, and H-C beams. 

The beam is idealized into 301 knots of equal length. 
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The variation of bλ  and fλ  is given in Table 2.6.2 to Table 2.6.4, and Table 

2.6.5 to Table 2.6.7, respectively, for the values of K - 0.0, 1.0, 210 , 410 , 610  and 

1K  = 0.0, 0.5, 1.0, 2.5 for H-H, C-C, and H-C beams. 

From the numerical results presented in the Tables 2.6.6, 2.6.7, and 2.6.8, the 

following observations have been made:  

(a) fλ  decreases with increasing γ  for a given K  and 1K ;  

(b) reduction in fλ  with increasing γ  is more for lower values of K  ; 

(c) reduction in fλ  with increasing γ  is small for simply supported beam compared 

to clamped beam for a given K  and 1K ; 

(d) the values of fλ , are almost the same for simply supported and lamped beams for 

stong foundation (i.e. higher values of K ) for a given K  and 1K ; 

(e) for a given K  and γ , the values of fλ  increase with increasing 1K ;  

(f) the increase in fλ , with increasing 1K , is more for lower values of K ;  

(g) for a given 1K , and γ , the values of fλ , increase with increasing K ; 

(h) The increase in fλ , with increasing 1K  is more for lower values of K . 

 
Table 2.6.2. Variation of stability parameter bλ  for H-H beam. 
 1K  

K  0.0 1.0 10 210  

0.0 9.8697 10.8699 19.8699 109.8698 
1.0 9.9710 10.9712 19.9712 109.9712 

210  20.0039 21.0036 30.0037 120.0036 
410  201.4158 202.4140 211.4146 301.4150 
610  2001.0728 2002.0747 2011.0743 2101.0738 
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Table 2.6.3 Variation of stability parameter bλ  for C-C beam. 
 1K  

K  0.0 1.0 10 210  

0.0 39.4799 40.4805 49.4808 139.4805 
1.0 39.5567 40.5567 49.5566 139.5568 

210  47.0099 48.0104 57.0099 147.0105 
410  233.8066 234.8077 243.8067 333.8063 
610  2039.6859 2040.6860 2049.6861 2139.6860 

Table 2.6.4 Variation of stability parameter bλ  for H-C beam. 
 1K  

K  0.0 1.0 10 210  

0.0 20.2758 21.1918 30.1919 120.1918 
1.0 20.2745 21.2745 30.2744 120.2745 

210  28.3095 29.3090 38.3092 128.3087 
410  208.9871 209.9880 218.9885 308.9884 
610  2010.6861 2011.6811 2020.6882 2110.6925 

Table 2.6.5 Variation of frequency parameter fλ  for H-H beam. 
  1K  

K  γ  0.0 1.0 10 210  

0.0 0.0 3.1416 3.2183 3.7422 5.7384 
 0.2 2.9711 3.0437 3.5391 5.4271 
 0.4 2.7650 2.8324 3.2935 5.0505 
 0.6 2.4984 2.5594 2.9760 4.5636 
 0.8 2.1009 2.1522 2.5025 3.8375 

1.0 0.0 3.1496 3.2258 3.7469 5.7398 
 0.2 2.9787 3.0508 3.5436 5.4283 
 0.4 2.7720 2.8390 3.2977 5.0516 
 0.6 2.5048 2.5654 2.9798 4.5647 
 0.8 2.1063 2.1571 2.5057 3.8384 

210  0.0 3.7484 3.7944 4.1482 5.8664 
 0.2 3.5450 3.5885 3.9231 5.5481 
 0.4 3.2989 3.3394 3.6509 5.1631 
 0.6 2.9809 3.0175 3.2989 4.6653 
 0.8 2.5070 2.5372 2.7739 3.9230 

410  0.0 10.0243 10.0267 10.0487 10.2608 
 0.2 9.9077 9.9261 9.9442 10.1202 
 0.4 9.4177 9.5736 9.6341 9.9735 
 0.6 8.5837 9.0820 9.1290 9.5643 
 0.8 5.9770 7.7437 7.8284 8.5551 

610  0.0 31.6235 31.6236 31.6243 31.6313 
 0.2 31.3160 31.3169 31.3262 31.4182 
 0.4 30.2909 30.2929 30.3102 30.4809 
 0.6 28.2934 28.2962 28.3213 28.5683 
 0.8 24.4913 24.4940 24.5184 24.7589 
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Table 2.6.6 Variation of frequency parameter fλ  for C-C beam. 
  1K  

K  γ  0.0 1.0 10 210  

0.0 0.0 4.7300 4.7588 4.9957 6.4025 
 0.2 4.4803 4.5077 4.7331 6.0714 
 0.4 4.1764 4.2021 4.4132 5.6683 
 0.6 3.7808 3.8041 3.9965 5.1426 
 0.8 3.1856 3.2054 3.3688 4.3467 

1.0 0.0 4.7324 4.7611 4.9977 6.4035 
 0.2 4.4826 4.5099 4.7350 6.0723 
 0.4 4.1785 4.2041 4.4150 5.6693 
 0.6 3.7827 3.8060 3.9981 5.1434 
 0.8 3.1872 3.2070 3.3702 4.3474 

210  0.0 4.9504 4.9755 5.1852 6.4957 
 0.2 4.6909 4.7148 4.9144 6.1616 
 0.4 4.3747 4.3972 4.5845 5.7548 
 0.6 3.9625 3.9829 4.1539 5.2238 
 0.8 3.3409 3.3583 3.5038 4.4191 

410  0.0 10.1229 10.1258 10.1522 10.3960 
 0.2 9.9757 9.9784 10.0185 10.2183 
 0.4 9.7972 9.7999 9.8640 10.0194 
 0.6 9.1510 9.1578 9.4538 9.7523 
 0.8 8.1464 8.1519 8.6765 8.6366 

610  0.0 31.6267 31.6268 31.6277 31.6361 
 0.2 31.3434 31.3446 31.3643 31.4560 
 0.4 30.3465 30.3486 30.4083 30.5519 
 0.6 28.3781 28.3806 28.5113 28.6242 
 0.8 24.6045 24.6072 24.9308 24.8665 
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Table 2.6.7 Variation of frequency parameter fλ  for H-C beam. 
  1K  

K  γ  0.0 1.0 10 210  

0.0 0.0 3.9266 3.9733 4.3313 6.0483 
 0.2 3.7169 3.7622 4.1022 5.7317 
 0.4 3.4619 3.5057 3.8237 5.3476 
 0.6 3.1298 3.1723 3.4615 4.8487 
 0.8 2.6290 2.6719 2.917 4.0974 

1.0 0.0 3.9307 3.9772 4.3344 6.0494 
 0.2 3.7218 3.766 4.1051 5.7328 
 0.4 3.4679 3.5092 3.8265 5.3487 
 0.6 3.1380 3.1758 3.4641 4.8499 
 0.8 2.6428 2.6746 2.9192 4.0983 

210  0.0 4.2869 4.3231 4.6107 6.1583 

 0.2 4.0618 4.0961 4.3697 5.8381 
 0.4 3.7880 3.8201 4.0774 5.4500 
 0.6 3.4313 3.4605 3.6943 4.9459 
 0.8 2.8936 2.9185 3.1176 4.1865 

410  0.0 10.059 10.062 10.087 10.319 

 0.2 9.9298 9.9327 9.9572 10.163 
 0.4 9.6418 9.6487 9.7086 9.9896 
 0.6 9.0307 9.0379 9.1015 9.6206 
 0.8 7.8933 7.9016 7.9743 8.5581 
610  0.0 31.625 31.625 31.626 31.633 

 0.2 31.314 31.315 31.326 31.428 
 0.4 30.293 30.295 30.315 30.498 
 0.6 28.312 28.315 28.338 28.567 
 0.8 24.521 24.524 24.548 24.787 

 
2.6.5 Nomenclature 

( )iB ξ    quintic spline functions 

ic    is the coefficients to be determined  

E     Young’s modulus 

h     distance of equi-spaced knots 

I    moment of inertia 

K     foundation modulus 

1K    second parameter 
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L    uniform beam of length 

( )M X   dimensionless bending moment  

P    concentrated load  

( )V X   dimensionless shear force 

x     axial coordinate of the beam 

x
X

L
=   dimensionless coordinate system 

( )Xθ   dimensionless deflection slope 

λ     load parameter representing the initial stress in the beam 

bλ    stability parameter  

fλ     frequency parameter 

b

λγ λ=   frequency ratio 
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2.7 Vibration Analysis of Timoshenko Beam-Columns on Pasternak 

Elastic Foundations 

2.7.1 Introduction 

Many problems related to soil-structure interaction can be modeled by means of a 

beam or a beam-column on an elastic foundation. Practical examples of these are 

railroad tracks, highway pavements, continuously supported pipelines, and strip 

foundations. The free flexural vibrations of beams on continuous elastic foundations 

have been analyzed by a number of investigators. The effect of a partial elastic 

foundation on the natural frequencies of beams or piles was examined by Doyle and 

Pavlovic (1982), Eisenberger er al. (1985), Valsangkar and Pradhanang (1987), Laura 

and Cortinez (1987). The exact dynamic stiffness matrices for free vibration 

calculations of a uniform beam on an elastic foundation were developed by Williams 

and Kennedy (1987).  

The problems of bending vibrations of uniform beams on nonuniform elastic 

foundations were solved by Pavlovic and Wylie (1983), Eisenberger and Clastornik 

(1987), Filipich et al. (1988), De Rosa (1993), Kukla (1991) and Zhou (1993). The 

similar problem for stepped beams on uniform elastic foundations was treated by Wang 

(1991). The free vibrations of nonuniform beams resting on nonuniform elastic 

foundation with general elastic end restraints were studied by Lee and Ke (1990). In the 

aforementioned studies, the elastic foundation was idealized by a Winkler model 

(one-parameter model) for mathematical simplicity. Although the Winkler model is 

quite simple, it does not represent accurately the characteristics of many practical 

foundations. In order to eliminate the discontinuous nature of this model, several 

two-parameter foundation models that are more accurate than the Winkler model and 

simpler than semi-infinite elastic continuum foundation models (see, Richart et al. 
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(1970)) have been reported in the literature. The vibration and buckling of beams on 

variable Pasternak elastic foundations were discussed by Eisenberger and Clastornik 

(1987). The same problems for beams on an elastic half-space or a two-parameter 

elastic soil were considered by Karamanlidis and Prakash (1988), and De Rosa (1989). 

The free vibration analysis of a beam on a two-parameter elastic soil was performed by 

Franciosi and Masi (1993) using a matrix displacement approach. The influences of the 

partial elastic foundation and the magnitude of the axial force on the natural frequencies 

of beam-columns lying on Pasternak models were studied by Valsangker and 

Pradhanang (1988). All of the foregoing work has been conducted within the framework 

of the elementary Euler-Bernoulli beam theory of flexural vibration, which is not 

applicable to moderately short and thick beams. In order to evaluate the effects of 

transverse shear deformation and rotatory inertia on the dynamic behavior of beams, the 

lateral vibrations of Timoshenko beams (see Timoshenko et al. (1974)) laid on 

Pasternak foundations (or two-parameter foundations) were analyzed by Wang and 

Stephens (1977), Wang and Gagnon (1978), Yokoyama (1987), Filipich and Rosales 

(1988). The transverse vibrations of curved Timoshenko beams on the Winkler 

foundations were investigated by Panayotounakos and Theocaris (1980), and Issa 

(1988). A transfer matrix method for the vibration and buckling analysis of an axially 

loaded Timoshenko beam on a Winkler foundation was developed by Djodjo (1969). 

The exact dynamic stiffness matrices for an axially loaded Timoshenko member 

embedded in the Winkler-type foundation were derived by Capron and Williams (1988). 

The vibration analysis of Timoshenko beam-columns on elastic media was presented by 

Cheng and Pantelides (1988) using the dynamic stiffness approach. In their work, the 

elastic media were replaced by a constant Winkler foundation and the effect of the 

partial elastic foundation was not taken into account. 
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 The present paper describes a spline collocation technique for determining the free 

vibration characteristics of a uniform Timoshenko beam-column on Pasternak elastic 

foundation. The beam-column is divided lengthwise into a number of knots of equal 

length. The influences of axial force, foundation stiffness parameters, transverse shear 

deformation and rotatory inertia are incorporated into a spline collocation model. The 

governing matrix equation for small-amplitude, free vibrations of the beam-column on 

the elastic foundation is derived by application of Hamilton’s principle. The numerical 

results for the natural frequencies and the corresponding mode shapes of the classical 

Euler-Bernoulli and Timoshenko beam-columns on the elastic foundations are provided 

and compared with the exact solutions or the available results in the published literature. 

The advantages and limitations associated with the technique are discussed. 

2.7.2 Formulation 

Consider a Timoshenko beam-column partially supported on an elastic foundation as 

depicted in Figure 2.7.1 The elastic foundation is idealized as a constant two-parameter 

model characterized by two module, i.e. the Winkler foundation modulus k  and the 

shear foundation modulus Gk . In the case 0Gk =  this model reduces to the usual 

Winkler model.  

   
Figure 2.7.1. A Timoshenko beam-column supported on an elastic foundation. 
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Figure 2.7.2 shows a Timoshenko beam element with an axial force P , resting on 

Pasternak elastic foundation model. The beam element consists of two nodes i  and j ;  

each  node  has  the  degrees  of  freedom of lateral displacement v  and 

bending rotation (or slope) θ . In the present formulation, it is assumed that: (i) the 

beam material is isotropic, homogeneous and linearly elastic; (ii) the vibration 

amplitudes of the beam are sufficiently small; (iii) the cross-sections initially normal to 

the neutral axis of the beam remain plane, but no longer normal to that axis during 

bending; (iv) the normal inertia and damping of the foundation are negligible; and (v) 

bonding between the beam and the foundation is perfect. 

 
Figure 2.7.2. Timoshenko beam element with an axial force, resting on 

Pasternak-type elastic foundation. 

 The strain energy U  of the beam of length L  including the effects of both 

transverse shear deformation and elastic foundation may be written as 

( )

2 2

0 0

2
2

0 0

1 1

2 2

1 1
           

2 2

L L

L L

G

v
U EI dx GA dx

x x

v
k v dx k dx

x

θ κ θ∂ ∂   ′= + −   ∂ ∂   
∂ + +  ∂ 

∫ ∫
∫ ∫

 (2.7.1) 

where E  is Young’s modulus; I  the second moment of area; κ ′  the shear 

coefficient depending on the shape of the cross-section (see Cowper, 1996); G  the 
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shear modulus; A  the cross-sectional area; and x  the local coordinate along the axis 

of the beam element.  

The kinetic energy T  of the beam allowing for the rotatory inertia effect is given 

by 

2 2

0 0

1 1

2 2

L Lv
U A dx I dx

t t

θρ ρ∂ ∂   = +   ∂ ∂   ∫ ∫  (2.7.2) 

in which ρ  is the mass density of the beam material, and t  is the time.  

The W  work done by a compressive axial force P  (positive in tension) can be 

represented as 

2

0

1

2

L v
W P dx

x

∂ = −  ∂ ∫  (2.7.3) 

Summation of the individual energies and the work over the entire beam-column 

using Eqs. (2.7.1)-(2.7.3) gives the total potential energy is given by 

U T WΠ = − +  (2.7.4) 

Taking variation the governing equation for Timoshenko beam-column partially 

supported on Pasternak elastic foundation can be evaluated as 

2 2

2 2
0

v
EI GA I

x x t

θ θκ θ ρ∂ ∂∂ ′− − + = ∂ ∂ ∂   (2.7.5a) 

2 2 2 2

2 2 2 2
0G

v v v v
GA k k P A

x x x x t

θκ ν ρ ∂ ∂ ∂ ∂∂′ − − + − + = ∂ ∂ ∂ ∂ ∂   (2.7.5b) 

If the assembled displacement assumed to be harmonic in time with circular 

frequency ω , i.e. ( , ) ( ) i tv x t v x e ω=  and ( , ) ( ) i tx t x e ωθ θ= , after incorporation of the 

appropriate end conditions, Eqs. (2.7.5) becomes an eigenvalue problem of the form 

2
2

2
0

d dv
EI GA I

dx dx

θ κ θ ρ ω θ ′− − + =    (2.7.6a) 
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2 2 2
2

2 2 2
0G

d v d v d vd
GA k k P A v

dx dx dx dx

θκ ν ρ ω ′ − − + − + =    (2.7.6b) 

Nondimensionalizing all the length quantities in Eqs. (2.7.6) by the length of the  

column l , and following mechanical and geometric properties of the Timoshenko beam 

used by Cheng and Pantelides (1988) are chosen for the analysis: Poisson’s ratio: 

1 4ν = (or 2 5G E = ), shear coefficient: 2 3κ ′ =  (for rectangular cross-section), 

slenderness ratio: 10gL r = , we get 

2
2

2

80 1 1
0

3 100

d dV
c

dX L dX

θ θ θ − − + =    (2.7.7a) 

2 2 2
4 2 2 2

2 2 2

80
0

3 G r

V V V
L V P c V

X X X X

θ λπ λ π π ∂ ∂ ∂∂− − + − + = ∂ ∂ ∂ ∂ 
 (2.7.7b) 

where 

v
V

L
= , 

x
X

L
= , 

4

4

kL

EI
λ
π
= , 

2

2

G
G

k L

EI
λ π= , 

2

2r

PL
P

EIπ
= , 

4
2 2

AL
c

EI

ρ ω=  (2.7.8) 

 The boundary conditions can be divided into the following two kinds: 

clamped (C):    

0V = , 0θ =  (2.7.9) 

Hinged (H):    

0V = , 0
d

dX

θ
=  (2.7.10) 

at the extremity 0,1X = . 

Alternatively, when the shear deformation parameter V Xφ = ∂ ∂  is set equal to 

zero and the rotatory inertia mass Iρ  is neglected, the resulting model is identical to 

the classical Euler-Bernoulli beam-column model on Pasternak elastic foundation used 

by Karamandilis and Prakash (1989). 



 

82 

4 2 2
4 2 2 2

4 2 2G r

d V d V d V
V P c V

dX dX dX
λπ λ π π− + − = −  (2.7.11) 

2.7.3 Approach by spline collocation method 

Since the governing equation of a Timoshenko beam-column partially supported 

on Pasternak elastic foundation is a second-order ordinary differential equation (ODE), 

the solution of the governing ODE can be approximated by the spline functions with 

polynomial at least fifth degree. A cubic spline functions (CSFs) is a piecewise third 

degree polynomial which is belonging to 3C . 

Considering a set of equi-spaced knots is selected in a normalized interval 

[0,1]X ∈ , i.e., 

0 0X = , 1nX = , 1j jX X h+ − = , 0, , 1j n= −…  (2.7.12) 

where h  is distance of equi-spaced knots. In order to apply the SCM, one needs to 

extend two added knots (fictitious) 1X
−

 and 1nX +  at each end of beam, respectively 

(Figure 2.7.3). 

 
Figure 2.7.3 Partitions of beam into n  sections with one added knots at each end. 

Then the uniform beams on Pasternak elastic foundation for flexural vibration can 

be approximated by using the CSF (Prenter, 1975) as follows  

1

1

( ) ( )
n

i i
i

V X B X a
+

=−

=∑  (2.7.13a) 

2 5

2

( ) ( )
n

i i
i n

X B X aθ
+

= +

= ∑  (2.7.13b) 

where ic s are the coefficients to be determined and ( )iB X  is QSF. 

Substituting Eqs. (2.8.13), into the governing equations in Eqs. (2.8.7) can obtain 

h  

0X  1iX
−

 iX  nX  1X
−

 1nX +  

fictitious fictitious 
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1 2 5
2

1 2

1 80 1
( ) ( ) ( ) ( ) 0

3 100

n n

i i i i i i
i i n

B X a B X B X c B X a
L

+ +

=− = +

 ′ ′′+ − + =  ∑ ∑  (2.7.14a) 

1
4 2 2 2

1

2 5

2

80
( ) ( ) ( ) ( ) ( )

3

80
                             ( ) 0

3

n

i i G i r i i i
i

n

i i
i n

B X B X B X P B X c B X a

L B X a

λπ λ π π
+

=−

+

= +

 ′′ ′′ ′′− + − +  
− =

∑
∑

 (2.7.14b) 

Similarly, the two kinds of boundary conditions in Eq. (2.7.9) and Eq. (2.7.10) to 

Eqs. (2.7.13) can obtain, 

clamped (C): 

1

1

( ) 0
n

i i
i

B X a
+

=−

=∑ , 
2 5

2

( ) 0
n

i i
i n

B X a
+

= +

=∑  (2.7.15) 

Hinged (H): 

1

1

( ) 0
n

i i
i

B X a
+

=−

=∑ , 
2 5

2

( ) 0
n

i i
i n

B X a
+

= +

′ =∑  (2.7.16) 

In general, after substituting the coordinates of the 1n +  knots, ,  0,1, ,iX i n= … , 

into the Eqs. (2.7.14), and coupling the four given boundary conditions in Eq. (2.7.15) 

and Eq. (2.7.16) at the ends, 0X  and nX , one obtains the following simultaneous 

equations. 

0

0

1 2 5
2

0 0 0 0
1 2

1
4 2 2 2

0 0 0 0 0
1

1st B.C. at 

2nd B.C. at 
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B X B X B X P B X c B X aλπ λ π π
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+
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0

 

(2.7.17) 

Matrix equations in Eq. (2.7.17) of the following form 
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{ } { } { } { } { }4 2 2
1 2[ ] [ ] [ ] [ ] [ ] 0f G f r gK a K a K a P K a c M aλπ λ π− + − + =  (2.7.18) 

where [ ]K , 1[ ]fK , 2[ ]fK , [ ]gK , and [ ]M  are the elastic stiffness matrix, 

first-parameter foundation stiffness matrix, second-parameter foundation stiffness 

matrix,  geometric stiffness matrix, and consistent mass matrix respectively. c  is the 

frequency parameter (eigenvalue). Eq. (2.7.18) can be solved using any standard 

algorithm to obtain eigen-values and eigen-vectors 

2.7.4 Numerical Examples and Discussions 

In order to check the validity of the present technique described in the previous 

section, several examples of the transverse vibrations of beam-columns supported on 

elastic foundations were considered. 

The individual parameter may be dropped when the associated effect is neglected. 

Consequently, the computer program developed may be widely applied to various cases 

of: (i) Euler-Bernoulli beam; (ii) Timoshenko beam; (iii) Euler-Bernoulli beam-column; 

(iv) Timoshenko beam-column; (v)  Euler-Bernoulli beam-column on a Winkler 

foundation; (vi) Timoshenko beam-column on a Winkler foundation; (vii) 

Euler-Bernoulli beam-column on Pasternak elastic foundation; (viii) Timoshenko 

beam-column on Pasternak elastic foundation; and so on. The effect of the partial elastic 

foundation on the natural frequencies of the Timoshenko beam-columns, as well as the 

Euler-Bernoulli beam-columns, was previously examined by the author (1991). In the 

following, only a fully supported beam or beam-column is considered. 

2.7.4.1 Euler-Bernoulli beam-columns 

The first example is concerned with the conventional beam-columns or the classical 

Euler-Bernoulli beam-columns on the Winkler and Pasternak elastic foundations. Two 

kinds of end conditions, i.e. hinged-hinged and hinged-clamped ends are considered in 
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this study. The choice of the buckling load parameter rP , and the Winkler foundation 

parameter λ , is based on Cheng and Pantelides’ examples (1988). The value of the 

shear foundation parameter Gλ  is taken from Valsangker and Pradhanang’s work 

(1988). 

Tables 2.7.1 and 2.7.2, respectively, show a comparison between the present 

numerical results, finite element method (FEM) and the exact ones for the lowest three 

frequency parameters of the beams and beam-columns without elastic foundations.  

Table 2.7.1 Frequency parameter c  for Euler-Bernoulli beams without elastic 
foundation ( 0Gλ λ= = , 0.0rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMb SCMc Exacta FEMb SCMc 

1 st 9.87 9.87 9.870 15.42 15.42 15.418 
2 nd 39.48 39.49 39.480 49.96 49.99 49.967 
3 rd 88.83 88.94 88.835 104.25 104.43 104.26 

a Timoshenko et al. (1974); b Yokoyamat (1996), 8 elements; c 201 knots 
 

Table 2.7.2 Frequency parameter c  for Euler-Bernoulli beams without elastic 
foundation ( 0Gλ λ= = , 0.6rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMb SCMc Exacta FEMb SCMc 

1 st 6.24 6.24 6.242 13.01 13.01 13.007 
2 nd 36.40 36.41 36.399 47.35 47.38 47.356 
3 rd 85.81 85.93 85.823 101.54 101.73 101.55 

a Timoshenko et al. (1974); b Yokoyamat (1996), 8 elements; c 201 knots 

In Table 2.7.2, the exact solutions for the hinged-hinged beam-column were 

calculated directly from the analytical closed-form expression derived by Cheng and 

Pantelides (1988) using their “first approach”, and the exact solutions for the 

hinged-clamped beam-column were obtained by solving the frequency equation derived 

by Bokaian (1988). The eight-element solutions clearly converge from above to the 

exact ones. A comparison of Tables 2.7.1 and 2.7.2 reveals that, as anticipated, the 

compressive axial force reduces all modes of natural frequencies of the beams. The 

reduction in the fundamental frequency of the hinged-clamped beam is less than that of 

the hinged-hinged beam. This is due to the fact that the critical buckling load for the 
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hinge-clamped beam is given by 2 22.046( )crP EI Lπ= , and hence the buckling load 

parameter is practically reduced to 0.3rP =  (normalized with respect to crP ) for the 

hinged- clamped beam under study. 

 Tables 2.7.3 and 2.7.4 list the numerical results for the lowest three frequency 

parameters of the beam-columns on the Winkler and Pasternak elastic foundations. In 

contrast to the effect of the compressive axial forces, the presence of the elastic 

foundations increases the natural frequencies, especially the fundamental frequencies of 

the beam-columns. The frequency parameters for the beam-column on the Pasternak 

model in Table 2.7.4 are higher than those on the Winkler model in Table 2.7.3. This is 

attributed to the stiffening effect (equivalent to that of a tensile axial force in the 

beam-column) caused by the shear layer of the Pasternak model. 

Table 2.7.3 Frequency parameter c  for Euler-Bernoulli beams on Winkler elastic 
foundation ( 0.6λ = , 0Gλ = , 0.6rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMb SCMc Exacta FEMb SCMc 

1 st 9.87 9.87 9.8697 — 15.09 15.087 
2 nd 37.19 37.20 37.193 — 47.99 57.969 
3 rd 86.15 86.27 86.163 — 102.02 101.84 

a Timoshenko et al. (1974); b Yokoyamat (1996), 8 elements; c 201 knots 

Table 2.7.4 Frequency parameter c  for Euler-Bernoulli beams on Pasternak 
elastic foundation ( 0.6λ = , 1Gλ = , 0.6rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMb SCMc Exacta FEMb SCMc 

1 st — 13.96 13.958 — 18.48 18.479 
2 nd — 42.11 42.107 — 52.21 52.196 
3 rd — 91.21 91.108 — 106.47 106.30 

a Timoshenko et al. (1974); b Yokoyamat (1996), 8 elements; c 201 knots 

 Figure 2.7.4 indicates the plots of the lowest three mode shapes for the 

Euler-Bernoulli beams with hinged-hinged and hinged-clamped ends given in Table 

2.7.1. It is observed that the mode shapes as well as the frequency parameters are 

greatly influenced by the end conditions. It should, however, be noted that, for the beam 
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or beam-columns with hinged-hinged ends in Tables 2.7.1-2.7.4, the n th mode shape 

or the n th eigen-function is expressed by sin( )n x Lπ  ( 1,2,n = …) and hence, remains 

the same for different values of the axial load and the elastic foundation parameters. The 

mode shapes corresponding to the hinged-clamped beam-columns in Tables 2.7.2-2.7.4 

are hardly affected by the presence of the axial forces or the elastic foundations under 

consideration, and are therefore not shown here. 

 

 
Figure 2.7.4 Lowest three mode shapes for Euler-Bernoulli beams with 

hinged-hinged and hinged-clamped ends. 

2.7.4.2 Timoshenko beam-columns 

The second example deals with the Timoshenko beam-columns having the same two 

end conditions, resting on the same elastic foundations. Tables 2.7.5 and 2.7.6, 

respectively, display a comparison between the present solutions, FEM and the exact or 
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available results for the lowest three frequency parameters of the Timoshenko beams 

and beam-columns without elastic foundations.  

Table 2.7.5 Frequency parameter c  for Timoshenko beams without elastic 
foundation ( 0Gλ λ= = , 0.0rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMc SCMd Exactb FEMc SCMd 

1 st 8.21 8.22 8.215 10.63 10.63 10.627 
2 nd 24.23 24.31 24.230 25.62 25.71 25.618 
3 rd 41.54 41.96 41.548 42.03 42.46 42.037 

a Cheng and Pantelides (1988); b Huang (1961); c Yokoyamat (1996), 8 elements;  
d 201 knots 
Note: 1 4ν = , 2 3κ ′ = , 10gL r =  

 
Table 2.7.6 Frequency parameter c  for Timoshenko beams without elastic 

foundation ( 0Gλ λ= = , 0.6rP = ). 
 Hinged-hinged Hinged-clamped 

Mode no. Exacta FEMc SCMd Exactb FEMc SCMd 
1 st 3.47 3.47 3.467 7.32 7.33 7.325 
2 nd 19.22 19.31 19.223 20.93 21.03 20.933 
3 rd 35.08 35.48 35.085 35.70 36.16 35.752 

a Cheng and Pantelides (1988); b Huang (1961); c Yokoyamat (1996), 8 elements; 
 d 201 knots 
Note: 1 4ν = , 2 3κ ′ = , 10gL r =  

 
In Table 2.7.5, the exact solutions for the hinged-hinged Timoshenko beam were 

calculated directly from the analytical closed-form expression of Cheng and Pantelides 

(1988), whereas the exact solutions for the hinged-clamped Timoshenko beam were 

found by solving the frequency equation given by Huang (1961). The solutions are in 

excellent agreement with the exact or available results. The reduction in the 

fundamental frequencies of the Timoshenko beams due to the compressive axial forces 

is more significant than that of the Euler-Bernoulli beams. The reason for this is that, 

since the critical buckling loads for the Timoshenko beams are smaller than those for 

the Euler-Bernoulli beams, the buckling load parameter rP , increases virtually for the 

Timoshenko beam- columns under study.  

Table 2.7.7 provides a comparison between the present results and the exact or 
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available results for the lowest three frequency parameters of the Timoshenko 

beam-columns on the Winkler elastic foundation. Good agreement is obtained with 

increasing number of elements. Table 2.7.8 contains the numerical results for the lowest 

three frequency parameters of the Timoshenko beam-columns on Pasternak foundation. 

As in the case of the Euler-Bernoulli beam-columns, the frequency parameters of the 

Timoshenko beam-columns increase definitely because of the presence of Pasternak 

elastic foundations.  

Table 2.7.7 Frequency parameter c  for Timoshenko beams Winkler elastic 
foundation ( 0.6λ = , 0Gλ = , 0.6rP = ). 

 Hinged-hinged Hinged-clamped 
Mode no. Exacta FEMc SCMd Exactb FEMc SCMd 

1 st 8.21 8.22 8.215 10.46 10.49 10.481 
2 nd 20.59 20.67 20.592 22.20 22.30 22.209 
3 rd 35.86 36.25 35.863 36.50 36.90 36.510 

a Cheng and Pantelides (1988); b Huang (1961); c Yokoyamat (1996), 8 elements;  
d 201 knots 
Note: 1 4ν = , 2 3κ ′ = , 10gL r =  

 
Table 2.7.8 Frequency parameter c  for Timoshenko beams Winkler elastic 

foundation ( 0.6λ = , 1Gλ = , 0.6rP = ). 
 Hinged-hinged Hinged-clamped 

Mode no. Exact FEMa SCMb Exact FEMa SCMb 
1 st — 12.64 12.638 — 14.42 14.419 
2 nd — 28.10 28.028 — 29.34 29.250 
3 rd — 46.34 45.927 — 46.71 46.283 

a Yokoyamat (1996), 8 elements; b 201 knots 
Note: 1 4ν = , 2 3κ ′ = , 10gL r =  

 
A further comparison of Tables 2.7.1-2.7.4 and 2.7.5-2.7.8, respectively, indicates 

that the higher mode frequencies of the beams or beam-columns are reduced 

significantly, owing to the effects of shear deformation and rotatory inertia which make 

the beam less stiff, regardless of the end conditions, the axial forces and the elastic 

foundations. 

 In the following, the effects of shear deformation, rotatory inertia, compressive 

axial forces and elastic foundations on the mode shapes of vibrations are investigated. 
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Figure 2.7.5 depicts the lowest three mode shapes for the hinged-clamped 

Euler-Bernoulli beam in Table 2.7.1 and for the corresponding Timoshenko beam in 

Table 2.7.4. It is found that the differences in mode shapes due to the influences of shear 

deformation and rotatory inertia increase with increasing mode number.  

 

 

 
Figure 2.7.5 Lowest three mode shapes for Euler-Bernoulli beam and Timoshenko 

beam with hinged-clamped ends. 
 

Similarly, Figure 2.7.6 represents the lowest three mode shapes for the 

hinged-clamped Timoshenko beam in Table 2.7.5 and for the corresponding 

Timoshenko beam-column in Table 2.7.6.  
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Figure 2.7.6 Lowest three mode shapes for Timoshenko beam and Timoshenko 

beam-column with hinged-clamped ends. 
 

Figure 2.7.7 shows the lowest three mode shapes for the hinged-clamped 

Timoshenko beam-columns without and with the Pasternak elastic foundation, given in 

Tables 2.7.6 and 2.7.8, respectively. It can be seen that the effect of the axial forces as 

well as the elastic foundations on the lowest three mode shape is small, and this effect 

decreases as the mode number increases. 
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Figure 2.7.7 Lowest three mode shapes for hinged-clamped Timoshenko beams 

without and with Pasternak elastic foundation. 

2.7.5 Nomenclature 

A      cross-sectional area 

( )iB X    quintic spline functions 

c     frequency parameter 

ic    coefficients to be determined  

E     Young’s modulus  

G     shear modulus 

I     second moment of area 
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k    Winkler foundation modulus  

Gk    shear foundation modulus 

L    length of the beam 

P    compressive axial force 

crP    critical buckling load 

rP    buckling load parameter  

t     time 

T    kinetic energy  

U    strain energy of the beam  

v    lateral displacement 

W     work  

x     local coordinate along the axis of the beam element 

θ    bending rotation (or slope) 

κ ′     shear coefficient depending on the shape of the cross-section 

ρ     mass density of the beam material 

Π    total potential energy 

ω    circular frequency  

λ    Winkler foundation parameter  

Gλ    shear foundation parameter  

gL r   slenderness ratio 

Iρ    rotatory inertia mass 
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2.8 Conclusions 

The spline functions in the spline collocation method (SCM) are re-formulated and 

extended compactly through finite difference approach that can be easily understood 

and accepted by engineers. The solution of the governing differential equation is 

approximated in terms of the spline functions multiplied by the corresponding 

weighting coefficients. The coefficient matrix for the weighting coefficients can be 

assembled easily by finding then in the spline function. The weighting coefficients can 

be obtained easily by solving the simultaneous linear algebraic equations because the 

inverse of the coefficient matrix always exists uniquely solution. 

Therefore, the ease of using SCM has been shown. By comparing with exact 

solutions and other numerical method, it is shown that the analysis of  

1. Flexural Vibration Analysis of a Geometrically Nonlinear Beam 

2. Elastic Analysis of Rectangular Thin Plates 

3. Shear Buckling of Rectangular Thin Plates 

4. Buckling Analysis of Rectangular Thin Plates 

5. Vibration Analysis of Beams on Pasternak Elastic Foundation 

6. Vibration Analysis of Timoshenko Beam-Columns on Pasternak 

by the SCM is stable and converged to the correct result. The order of convergence for 

SCM is approaches 2 

Consequently, it is believed that SCM will have more application developed in the 

dynamic analysis, large deformation analysis, two-dimensional, and three-dimensional 

problems of engineering problems in near future. 
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Chapter 3 Radial Spline Collocation Method  

3.1 Radial Spline Collocation Method 

3.1.1 Introduction 

Finite element method (FEM) and finite difference method (FDM) are numerical 

methods commonly used to solve partial differential equation. In the problems of 

extremely large deformation, remeshing is frequently needed for mesh-based methods 

but this drawback is not present for the meshless methods. Therefore, many scholars 

worked for development of the meshless method recently, such as the Smooth Particle 

Hydrodynamics (SPH) (Gingold and Moraghan, 1977), the Element-Free Galerkin 

(EFG) method (Belytschko et al., 1994), the Reproducing Kernel Particle (RKP) 

method (Liu et al., 1995), the Finite Point (FP) method (Onate et al., 1996), the 

hp-clouds method (Liszka et al., 1996), Meshless Local Petrov-Galerkin (MLPG) 

(Atluri et al, 1998, 1999, 2000), Local Boundary Integral Equation (LBIE) (Atluri et al., 

2000, Zhu et al., 1998), and several others.  

Meshless methods include two major methods: collocation methods and Galerkin 

methods. The major difference between these two methods is the non-interpolatory 

character of the approximation in the Galerkin-based meshless methods. The required 

computational effort for the collocation methods is much less than that required for the 

Galerkin-based meshless methods. However, the accuracy of the collocation methods is 
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less than that of the Galerkin methods, so that more nodes are needed for the collocation 

method than those needed for the Galerkin methods to obtain reasonable accuracy of 

results. 

The radial basis functions (RBFs) are ones of the basis functions in the collocation 

methods. Using RBFs for a meshless collocation method to solve PDEs possesses some 

advantages: (1) it is mesh-free algorithm; (2) convergence order is independent of 

dimension of analyzed domain; (3) different radial basis functions have different 

convergence orders for scattered data interpolation. The RBFs have been successfully 

developed for interpolation. Frank (1972) compared many RBFs with interpolation 

methods, and had showed that the Hardy’s multiquadric (MQ) (Hardy, 1971) and 

Duchon’s thin-plate spline (TPS) were ranked the best in accuracy. Kansa (1999) used 

RBFs with collocation to solve PDEs of hyperbolic, parabolic, and elliptic types. Kansa 

(1999), and Sharan et al. (1997) had shown exponential convergence of Hardy’s 

multiquadric (MQ) scheme. Wu et al. (1993) and Franke et al. (1998) provided the 

convergence proofs and error estimations in applying the RBFs for scattered data 

interpolation and solution of PDEs. 

Spline functions, introduced by Schoenberg (1946) for approximation purposes, 

were extended to solve differential equations. Commonly, this incorporates the use of 

cubic B-splines which were presented by Mizusawa et al. (1979) for investigation of 
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vibration of skew plates, Shen and Wang (1987) for linear static analysis of cylindrical 

shells, Gupta et al. (1991) for linear finite element analysis of axi-symmetric shells and 

others. Weller (1993) employed B-splines to study post-buckling behavior of infinite 

length cylindrical panels subjected to combined thermal and mechanical loading, and 

they were incorporated into collocation method for the same analysis problem. 

When spline functions are combined with collocation method which can 

significantly simplify the solution procedure of differential equations, it is called spline 

collocation method (SCM) (Prenter, 1975). Recently, researches have been developed, 

such as Bert and Sheu (1996) for linear static analysis of beam and plates, Wu (2003) 

for linear static analysis of continuous beam and frame.  

The conventional SCM uses equally spaced knots for computation of 

approximation. However, when load distribution, geometry, material property of 

structure are discontinuous, it will greatly reduce accuracy. Although it can be resolved 

by increasing the number of knots, efficiency will decrease and error will increase for 

calculation. The goal of this paper is to develop radial spline collocation method 

(RSCM) to improve the disadvantage of equally spaced knots. 

The basis functions for governing equation with n -th order differential equation 

must satisfy nC  continuous, so that the ( 1)n + -st order spline function should be 

derived from ( 2)n+ -nd order difference equation. Utilizing the concept of RBF, spline 
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function is transformed into radial spline function (RSF). Therefore RSF can 

conveniently calculate the values for unequally spaced knots. 

3.1.2 Radial radial Quintic B-spline function 

In order to solve the fourth-order differential equation of beam problem, the basis 

functions for displacement must be at least 4C  continuous. The quintic spline function 

(QSF) is a polynomial of degree five and continuous up to fourth-order differential. It is 

derived from sixth-order finite difference equation and expressed as follows (Prenter, 

1975) 
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 (3.1.1) 

where h  is the distance between two consecutive knots. QSF is zero beyond the 

range between knots 3ix −  and 3ix + . Equally spaced knots are used for conventional 

SCM. 

Because QSF is symmetric with respect to iξ , Equation (3.1.1) can be 

rewritten as 
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If radius is defined as the distance form a certain position ξ  to the center 

position iξ , shown in Figure 3.1.1, QSF can be transformed into quintic radial 

spline function (QRSF) as shown in Figure 3.1.2(a). 

 

Figure 3.1.1 Radius and radius of influence for quintic radial spline function. 
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 (3.1.3a) 

( ) ( )i i i iB Bξ ξ ξ ξ− = −  (3.1.3b) 

where ( )i i ir sξ ξ= −  is the dimensionless radius, 3 is  is the radius of influence 

domain of QRSF at the center position iξ . The values of QRSF at the knots beyond 
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the radius of influence domain are zero.  

Define 1i i ih ξ ξ+= −  as the distance of knot 1iξ +  from knot iξ . In order to 

cover at least two neighboring knots at each sides of the center knot iξ , the radius 

of influence domain of QRSF at the center position iξ  is suggested to be least 

2 1 13 max( , )i i i i is h h h h− − +> + + . 

Analogously, the 1st, 2nd, 3rd and 4th order derivatives of QRSF are given as 

follows 
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( ) ( )i i i iB Bξ ξ ξ ξ′ ′− = − −  (3.1.14b) 
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( ) ( )i i i iB Bξ ξ ξ ξ′′ ′′− = −  (3.1.15b) 

2 2 2

2 2

2

60(3 ) 360(2 ) 900(1 )   0 1

60(3 ) 360(2 )                           1 2
( )

60(3 )                                                  2 3

0                                

i i i i

i i i
i

i i

r r r r

r r r
B

r r
ξ

− − + − − − ≤ ≤
− − + − ≤ ≤′′′ = − − ≤ ≤

                                    3      ir

 <

 (3.1.16a) 

( ) ( )i i i iB Bξ ξ ξ ξ′′′ ′′′− = − −  (3.1.16b) 
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(4) (4)( ) ( )i i i iB Bξ ξ ξ ξ− = −  (3.1.17b) 

Note that ( )iB ξ′  and ( )iB ξ′′′  are anti-symmetric functions, and ( )iB ξ′′  and 

(4)( )iB ξ  are symmetric functions as shown in Figures 3.1.2.  

QRSF formulas is used to calculate the value of spline function at knot jξ  

where jξ  is arbitrarily point in the analyzed domain. 

 
(a) Quintic radial spline function (QRSF) 

 
(b) First order derivative of QRSF 

 
(c) Second order derivative of QRSF 
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(d) Third order derivative of QRSF 

 
(e) Fourth order derivative of QRSF 

Figure 3.1.2 The quintic radial B-spline function. 

3.1.3 Radial Spline Collocation Method 

According to SCM (Prenter, 1975), the approximated function by Spline Function 

can be shown as 

( ) ( )
n m

i i
i m

w x a B x
+

= −

≅ ∑  (3.1.18) 

where ( )iB x  is Spline Function, ia ’s are unknown coefficients, and m  is the 

number of virtual knots at each end outside the analyzed domain. m  is dependent on 

the order of the governing differential equation, 1m =  for 2nd-order and 2m =  for 

4th-order, etc. There are totally ( 1 2 )n m+ +  knots: ( 1)n +  knots in the analyzed 

domain and 2m  virtual knots beyond the analyzed domain.  

In this paper, RSF is used as basis function in stead of the spline function. It is 

called as Radial Spline Collocation Method (RSCM). 
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In general, RSCM can exactly express the polynomials of any degree depending 

on the degree of the basis function used. For example, if quintic spline function is 

used as basis function, RSCM can exactly express the polynomials up to degree five. 

Polynomials up to degree five are written as: 

( ) n
nP x x= , 1 1x− ≤ ≤ , 0,1,2,3,4,5n =  (3.1.19a) 

with boundary conditions 

' 1( 1) ( 1)n
nP n −± = ± , " 2( 1) ( 1)( 1)n

nP n n −± = − ±  (3.1.19b) 

As shown in Figure 3.1.3, only one knot is needed at each end of the analyzed 

domain, and two virtual knots beyond the analyzed domain at each end. Consequently, 

totally six knots are used to represent the polynomials. The knots are spaced unequally 

with 2 1 1 2 0.25h h h h
− −
= = = =  and 0 2.00h =  where 1i i ih x x+= − . The polynomials 

are exactly represented by QRSF with six unequally spaced knots. The approximated 

values of ( )nP x  by RSCM are computed at 31 points within the analyzed domain, 

1 1x− ≤ ≤ , using Eq. (3.1.18) and agreed exactly with the polynomials as shown in 

Figure 3.1.3. 
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(a) polynomial of degree zero 

 
(b) polynomial of degree one 

 
(c) polynomial of degree two 
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(d) polynomial of degree three 

 
(e) polynomial of degree four 

 
(f) polynomial of degree five 

Figure 3.1.3 Interpolated and exact values of polynomial. 
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3.2 Static Analysis of Beams 

3.2.1 Introduction 

3.2.2 Approach by Radial Spline Collocation Method 

The prismatic Bernoulli-Euler Beam is governed by the following fourth-order 

differential equation: 

4

4

d w
EI q

dx
=  in domain Ω   (3.2.1) 

where w  is the transverse deflection, E  is the Young’s modulus, I  is the second 

moment of sectional area, and q  is the distributed load over the beam.  

According to RSCM, the deflection of beam can be approximated by Eq. (3.1.18). 

Therefore, Eq. (3.2.1) can be rewritten as 

( )2
(4)

2

( )
n

i i
i

EI a B x q x
+

=−

=∑  (3.2.2) 

Similarly, the given boundary conditions at global boundary, Γ , are approximated 

as 

2
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+
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θ
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EI EI a B x V

dx

+

=−

− = − =∑   on VΓ  (3.2.3d) 

where M  and V  denote the moment and the shear force, respectively; wΓ , θΓ , 

MΓ  and VΓ  denote the boundary regions where deflection, slope, moment, and shear 

force are specified, respectively. 

There are totally 5n+  independent linear equations: 1n+  field equations at 

1n+  knots and two boundary conditions at each end of the beam. On the other hand, 

there are 5n+  unknown coefficients ia ’s to be determined. For the stable structure, 

unique solution will exist. 

3.2.3 Numerical Results 

Example 1: a simply supported beam with length L  is subjected to uniformly 

distributed load q  as shown in Figure 3.2.1.  

 

Figure 3.2.1 Simply supported beam subjected to uniformly distributed load. 

The deflection of the beam is approximately represented by QRSF with seven 
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knots: three in the analyzed domain and four virtual ones beyond the analyzed domain. 

The location of the knot 1x  is x Lα= , where α  varies from 0.05 to 0.50 with 

increment 0.05. The spacing of virtual knots beyond the analyzed domain is 0.5L . 

When 0.50α = , those seven knots are equally spaced to be 0.5L . The dimensionless 

deflection and moment diagrams of the beam for both 0.05α =  and 0.50α =  are 

coincided with the corresponding exact ones (Figure 3.2.2a). No matter how α  varies 

in (0,1) , the maximum dimensionless moment and deflection agree with the 

corresponding exact solutions (Figure 3.2.2b). 

 

(a) dimensionless deflection and moment diagram 

 
(b) maximum dimensionless deflection and moment  

Figure 3.2.2 Radial Spline Collocation Method and exact solutions. 
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Example 2: a cantilever beam with length L  is subjected to a triangularly 

distributed load, where the maximum intensity of the distributed load q  is at the 

location 0.25x L=  as shown in Figure 3.2.3.  

 

Figure 3.2.3 Cantilever beam with triangular distributed load on portion of beam. 

The deflection of the beam is approximately represented by QRSF with seven 

knots: three in the analyzed domain and four virtual ones beyond the analyzed domain. 

The location of the knot 1x  is x Lα= , where α  varies from 0.125 to 0.875 

with increment 0.125. The spacing of virtual knots beyond the analyzed domain is 

0.5L . When 0.5α = , the seven knots are equally spaced to be 0.5L . Comparisons of 

the dimensionless moment diagrams of the beam for both 0.25α =  and 0.50α =  are 

shown in Figure 3.2.4a. The maximum dimensionless moment max max( )( / )ExactM M  

between the RSCM and exact solutions for different values of α  are shown in Figure 

3.2.4b. When 0.25α =  the maximum dimensionless moment is 1.00, because the 

variation of distributed load can be exactly described. When 0.25α ≠ , since the 
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distributed load cannot be described exactly so that error of maximum dimensionless 

moment increases with the difference from 0.25α = . 

 
(a) dimensionless moment diagram 

 
(b) maximum dimensionless moment 

Figure 3.2.4 Radial Spline Collocation Method and exact solutions. 



 

111 
 

Example 3: a continuous beam of two spans, each span with length L , is 

subjected to uniformly distributed load q  as shown in Figure 3.2.5.  

 

Figure 3.2.5 Continuous beam subjected to uniformly distributed load. 

The deflection of the beam is approximately represented by QRSF with nine knots: 

five in the analyzed domain and four virtual ones beyond the analyzed domain. The 

distances of the knots 1x  and 3x  from central knot 2x  are taken as Lα  for 

convenience, where α  varies from 0.01 to 0.50  with increment 0.05. The 

spacing of virtual knots beyond the analyzed domain is 0.5L . When 0.5α = , the nine 

knots are equally spaced to be 0.5L . The dimensionless moment diagrams of the 

beam for both 0.01α =  and 0.50α =  are shown in Figure 3.2.6a. The maximum 

dimensionless moment max max( )( / )ExactM M  between the RSCM and exact solutions for 

different values of α  are shown in Figure 3.2.6b. The agreement between RSCM and 

exact solutions becomes better and better as α  decreases because the shear force at 

the central knot 2x  is discontinuous due to the reaction force. When 0.01α =  and 
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0.25α = , the maximum dimensionless moment are 0.9835  and 0.4150 , 

respectively. 

 

(a) dimensionless moment diagram 

 
(b) maximum dimensionless moment 

Figure 3.2.6 Radial Spline Collocation Method and exact solutions. 
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Example 4: a simply supported beam with length L  is subjected to a single 

concentrated load P  at the mid-span as shown in Figure 3.2.7.  

 

Figure 3.2.7 Simply supported beam subjected to concentrated load. 

The deflection of the beam is approximately represented by QRSF with nine knots: 

five in the analyzed domain and four virtual ones beyond the analyzed domain. The 

distances of the knots 1x  and 3x  from central knot 2x  are 2Lα , where α  varies 

from 0.01 to 0.50 with increment 0.05. The spacing of virtual knots beyond the 

analyzed domain is 0.25L . When 0.25α = , the nine knots are equally spaced to be 

0.25L . By using equivalent load concept, the concentrated load at the knot ix  is 

simulated by an equivalent triangular distributed load where the maximum intensity of 

distributed load is iq P h=  and 1i ih h h
−
= = , Figure 3.2.8.  
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Figure 3.2.8 Equivalent centralization load. 

The dimensionless moment diagrams of the beam for both 0.01α =  and 

0.25α =  are shown in Figure 3.2.9a. The maximum dimensionless moment 

max max( )( / )ExactM M  between the RSCM and exact solutions for different values of α  

are shown in Figure 3.2.9b. The agreement between RSCM and exact solutions 

becomes better as α  is decreases, because the shear force at the central knot 2x  is 

discontinuous due to the concentrated load P . When 0.01α =  and 0.25α =  the 

maximum dimensionless moment are 0.9933 and 0.8333, respectively. 

2ix
−
 1ix −  ix  1ix +  2ix +  
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−
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(a) dimensionless moment diagram 

 

(b) maximum dimensionless moment 

Figure 3.2.9 Radial Spline Collocation Method and exact solutions. 
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Example 5: a simply supported beam with length L  is subjected to concentrated 

moment M  at the mid-span as shown in Figure 3.2.10.  

 

Figure 3.2.10 Simply supported beam subjected to concentrated moment. 

The deflection of the beam is approximately represented by QRSF with nine knots: 

five in the analyzed domain and four virtual ones beyond the analyzed domain. The 

distances of the knots 1x  and 3x  from central knot 2x  are 2Lα , where α  varies 

from 0.01 to 0.50 with increment 0.05. The spacing of virtual knots beyond the 

analyzed domain is 0.25L . When 0.25α = , the nine knots are equally spaced to be 

0.25L . The dimensionless moment diagrams of the beam for both 0.01α =  and 

0.25α =  are shown in Figure 3.2.11a. The maximum dimensionless moment 

max max( )( / )ExactM M  between the RSCM and exact solutions for different values of α  

are shown in Figure 3.2.11b. The agreement between RSCM and exact solutions 

becomes better as α  is getting smaller because the shear force at the central knot 2x  

is discontinuous due to the concentrated moment M . When 0.01α =  and 0.25α =  
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the maximum dimensionless shear are 1.00 and 1.20, respectively. 

 

(a) dimensionless moment diagram 

 
(b) maximum dimensionless shear force 

Figure 3.2.11 Radial Spline Collocation Method and exact solutions. 
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Example 6: a continuous beam with four spans, each of length L , is subjected to 

three kinds of loading patterns including linear and nonlinear distributed loads, 

concentrated load P  and concentrated moment M  as shown in Figure 3.2.12.  

 

Figure 3.2.12 Continuous beam. 

In this example, the application of RSCM is generalized to cover all the cases of 

example 1 to example 5 mentioned above. The deflection of the beam is represented by 

QRSF with 25 knots: 21 in the analyzed domain and four virtual ones beyond the 

analyzed domain. The spacing of any two consecutive knots varies form 0.01L  to 

0.73L . The spacing is reduced to 0.01L  in the location where loading is 

discontinuous. Figure 3.2.13 shows analysis results for dimensionless deflection, slope, 

shear force and bending moment, respectively. The results have good agreement with 

the corresponding exact solutions. It is shown in this example that RSCM can be 

applied to complicated beam problems. 
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(a) dimensionless deflection 

 

(b) dimensionless slope 

 

(c) dimensionless shear force 
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(d) dimensionless bending moment 

Figure 3.2.13 Radial Spline Collocation Method solutions for continuous beam. 

3.2.4 Nomenclature 

ia     unknown coefficients 

( )iB x    Spline Function 

E     Young’s modulus 

I     second moment of sectional area 

L    length  

M    concentrated moment  

P    concentrated load  

q     distributed load over the beam 

iq P h=   maximum intensity of distributed load 

V     shear force 

w     transverse deflection 

wΓ    boundary regions of deflection 
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θΓ    boundary regions of slope 

MΓ    boundary regions of moment 

VΓ     boundary regions of shear force 
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3.3 Conclusions 

In conventional SCM, the spacing of any two consecutive knots is kept constant to 

solve structural problems numerically. Incorporated with the concept of RBF, SCM is 

extended to RSCM where the spacing of any two consecutive knots may vary. In RSCM, 

the knots may be more densely spaced only in the location where discontinuity in 

loading, geometry and material is present. Therefore, the knots can be optimally 

allocated according to the variation in loading, geometry and material. Comparing with 

SCM, the number of knots used in the analyzed domain can be minimized and the 

efficiency of computation can be greatly enhanced. The feasibility of the proposed 

RSCM is illustrated through several numerical examples. The numerical results agree 

well with the corresponding exact ones. As a whole, the complicated beam problems 

with discontinuity characteristics can be solved accurately and efficiently by the 

proposed RSCM in the paper. The proposed RSCM also can be extended to solve the 

solutions of other structural problems such of frame, plate, shell, etc. 
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Chapter 4 Spline collocation element method 

4.1 Spline collocation Element method 

Various numerical techniques have been developed for solving continuum 

mechanics problems. Among these techniques, the finite difference method was the first. 

This method uses divided difference expressions established from a local Taylor series 

to replace differential or partial differential operators appearing in a mathematical term 

in discretizing an engineering or scientific problem (Burden and Faires, 1985). Though 

the discretization is straight, it is difficult to deal with problems showing nonrectangular 

or complex curvilinear geometries using this method (Smith, 1978). 

 The finite element method can consistently discretize problems having arbitrary 

geometries since it uses interpolation and mapping techniques (Zienkiewicz, 1977). This 

method employs the variational calculus or weighted-residual along with the divergence 

theorem to carry out a weak formulation which results in an integral statement valid for 

a discretization. The discretization is performed on the domain of an element, which can 

have different shape configurations, to result in a computable algebraic form. This 

method has successfully been applied to the solution of various problems in many 

engineering or scientific areas. 

 The spline collocation method (SCM) uses an assumed function to approximate a 

variable function associated with the problem domain. Then spline function linear sums 

of the function values at all discrete points in the domain are used to approximate the 

derivatives in all mathematical terms, in discretizing the problem (Prenter, 1975). This 

method has been used to the solution of many different engineering and scientific 

problems ((Bert and Sheu, 1996; Wu, 2003a). 

 The author has proposed the spline collocation element method (SCEM) (Wu, 

2003b). Like the finite-element method, in this method the domain of a problem is 
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separated into many sub-domains or elements. The SCM discretization is carried out on 

an element-basis. The governing differential or partial differential equations defined on 

the elements, the transition conditions on inter-element boundaries and the boundary 

conditions on the boundary of the problem domain are in computable algebraic forms 

after the SCM discretization. All discretized governing equations, transition conditions 

and boundary conditions are assembled to obtain a global algebraic equation system. 

The coefficient matrix of the algebraic equation system is generally non-symmetric. 

Therefore a direct non-symmetric or indirect iterative algorithm can be used to solve the 

problem. Since all relations governing a continuous problem are satisfied, the essence of 

this method is to find a rigorous solution numerically. 

 Due to the use of assumed variable functions to all elements, mapping technique 

can be used. Therefore this method has the same advantage as the finite element method 

of consistent boundary condition implementation and geometric flexibility. Hence a 

generic engineering or scientific problem can be converted into a numerical SCEM 

algorithm. And the related computer code can be systematically developed. 

 The gradient of a response function in the problem domain will depend on the 

distribution of external causes. Hence the adaptive concept is necessary in order to 

efficiently solve a generic engineering or scientific problem. The SCEM is suitable for 

adaptively discretizing a continuum problem in which various elements with differently 

assumed variable functions can be used simultaneously. 

 In treating a concentrated external cause existing in the problem domain, two 

approaches are available, one of which is to generate the mesh by locating the 

concentrated external cause on some inter-element boundaries and including it into the 

natural transition conditions. The second one is to locate the concentrated external cause 

in some element domains and use certain continuous functions defined over the element 
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domains to approximate it based on the rule of force equivalence. 



 

126 

4.2 Static Analysis of Two-dimensional Frame 

4.2.1 Discrete Element Equation 

Figure 2.2.1(a) shown an element placed in the global coordinates the differential 

equilibrium equation in the axial direction is  

( ) ( )
e

e e
e e

dud
EA x p x

dx dx

 − =  
    (4.2.1) 

where ex  is the local physical coordinate, eu  the axial displacement, E  Young’s 

modulus, ( )eA x  the area of cross section and ( )ep x  the distributed axial force.  

According to SCM theorem assume axial displacement is 

1

,
1

( ) ( )
m

e e e e
i u i

i

u x B x a
+

= −

=∑       (4.2.2) 

where ( )e
iB x  using cubic spline function, m  is the number of knots and ,

e
u ia  are 

unknown coefficients. 

 Employing Eq. (4.2.2) in Eq. (4.2.1) can be obtain 

1

,
1

( ) ( ) ( )
m

e e e e
i u ie

i

d
EA x B x a p x

dx

+

=−

′ − = ∑       (4.2.3) 

Therewithal, Figure 4.2.1(b) shown an element placed in the global coordinates 

The differential equilibrium equation in the lateral direction is 

22

2 2( ) ( )
( ) ( )

e
e e

e e

d vd
EI x q x

d x d x

  =  
     (4.2.4) 

where ex  is the local physical coordinate, ev  the lateral displacement, E  Young’s 

modulus, ( )eI x  the second moment of section area and ( )eq x  the distributed lateral 

force.  

According to SCM theorem assume lateral displacement is 
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2

,
2

( ) ( )
n

e e e e
i v i

i

v x B x a
+

= −

= ∑       (4.2.5) 

where ( )e
iB x  using quintic spline function, n  is the number of knots, ,

e
v ia  are 

unknown coefficients. 

Employing Eq. (4.2.5) in Eq. (4.2.4) can be obtain 

22

,2
2

( ) ( ) ( )
( )

n
e e e e

i v ie
i

d
EI x B x a q x

d x

+

=−

′′  = ∑    (4.2.6) 

Attentively, axial and lateral unknown coefficients parting is ,
e
u ia  and ,

e
v ia ，so 

axial and lateral can used difference number of knots. 

 
(a) knots for axial direction 

 
(b) knots for lateral direction 

Figure 4.2.1Two-dimensional spline collection frame element. 
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Each element connected joint must satisfy equilibrium and compatibility 

condition，so it will using transformation matrix in order to the local coordinates 

transformed into the global coordinates. The transformation matrix is defined as: 

cos sin

sin cos

e e
e

e e

θ θ
θ θ

 =  − 
T      (4.2.7) 

where eθ  is direction angles between the local axes and the global axes. It defines 

same for structural matrix. 

Denote 
x
eF  the axial force at an arbitrary point ex  in element. 

x
eF  is expressed 

as 

( )
e

e e
x e

du
F EA x

dx
=       (4.2.8) 

Using Eq. (4.2.2) in Eq. (4.2.8)  

1

,
1

( ) ( )
m

e e e e
x i u i

i

F EA x B x a
+

= −

′= ∑      (4.2.9) 

 The distribution of bending moment and shear force in element is  

2

2( )
( )

e
e e

y e e

d d V
V EI x

dx d x

 = −   
          (4.2.10) 
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2( )
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e
e e
z e

d v
M EI x

d x
=        (4.2.11) 

 Using Eq. (4.2.5) in Eq. (4.2.10) and Eq. (4.2.11)  

( )2
2

,
2

( ) ( )  
n

e e e e
y i v ie
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d
V EI x B x a

dx

+

=−

 = −  ∑       (4.2.12) 

( )2
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,
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( ) ( )
n

e e e e
z i v i
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M EI x B x a
+

=−

=∑           (4.2.13) 

The deflection slop is 
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( ) ( )
e

e
zz e

dv
x x

dx
θ θ= =        (4.2.14) 

 Using Eq. (4.2.5) in Eq. (4.2.14) 

( )2
1

,
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( ) ( ) ( )
n

e e e
zz i v i

i

x x B x aθ θ
+

=−

= =∑       (4.2.15) 

4.2.2 Discrete Condition Equation of Joints 

Let jM  denote the number of elements connected to joint j . Also let , jeI α  

denote the element knot number of the jα th element connected to the joint. Then 

, jeI α  is equal to 0  or , jeN α , with , jeN α  being the largest knot no. on the jα th 

element. With these in mind, the displacement compatibility conditions of a hinged or 

rigid joint, which are kinematic conditions of joint j  can be expressed as follows : 

,1 ,2 , ,

,1 ,2 , ,

j j j j

j j j j

e e e e M j

je e e e M

u u u u U

Vv v v v

α

α

                = = = = = =                        
� �      (4.2.16) 

where , ,j j T
e eu vα α    and 

Tj jU V    represent the global element displacement 

vector of the jα th element and the global displacement vector of joint j , respectively. 

, ,j j T
e eu vα α    can using Eq. (4.2.2) and Eq. (4.2.5) obtain  
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     (4.2.17) 

Slope compatibility conditions are also kinematic transition conditions of a rigid 

joint.  

,1 ,2 , ,j j j je e e e M jαθ θ θ θ θ= = = = = =� �       (4.2.18) 

where , je αθ  is slop deflection jα th element of joint j . jθ  is slop deflection of 
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joint j , jM  is number of rigid joint in joint j . , je αθ  can be obtain from Eq. 

(4.2.15). 

The equilibrium conditions of external and internal forces at joints also have to be 

satisfied. Each equilibrium condition is either a natural transition condition or a natural 

boundary condition. Figure 4.2.2 shown a joint j  with external loads j
xP , j

yP  and 

j
zM . Let , je mv  denote an indicator defined by the local element node number of an 

element at the joint. , je mv  is defined as : 

, ,
,

,

1, if

1, if 0

j j

j

j

e m e m
e m

e m

I N
v

I

+ == − =
        (4.2.19) 

 Then the two translational equilibrium conditions of joint j  can be expressed as 

the following matrix equation : 
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∑   (4.2.20) 

where 
, je

xF
α

 and 
, je

yV
α

 can obtain by Eq. (4.2.9) and Eq. (4.2.12). 

 We might need one or two of two translational equilibrium equations for a hinged 

or rigid joint. We do also need a moment equilibrium condition for a rigid joint if the 

rotation is not prescribed. The equilibrium condition can be obtained  

, ,

1

j
j j

M
e m e j

z zv M Mα

α =

=∑       (4.2.21) 

where , je
zM α  can obtain by Eq. (4.2.13). 



 

131 

 
Figure 4.2.2 Internal and external force at a joint. 

4.2.3 Numerical Algorithm 

A computer program has written which implements the numerical procedures of the 

two-dimensional SCEM frame model. The SCM discretization is carried out on the 

natural coordinate system. Only elements with equally spaced knots are considered, 

unequally spaced knots will study next paper. The numerical procedures can be 

summarized and described as follows : 

(a) The used elements are divided into various groups based on the number of axial and 

lateral knots of the element. Using 1m +  axial knots and 1n +  lateral knots on 

element parting into Eq. (4.2.4) and Eq. (4.2.6) can obtain 2m n+ +  equations. 

(b) Calculate element transformation matrix of Eq. (4.2.7), using for next step.  

(c) In order to obtain unique solution, each element must have another six equation, 

include three unknown (one of ,
e
u ia  and two of ,

e
v ia ) for each element external 

endpoint. These equations can be obtain form equilibrium and compatibility 

conditions, that is Eqs. (4.2.16) to (4.2.21). It need to using element transformation 

y  

x  

,e αθ  

j
yP  

j
xP  

jM  
joint j  

, je
yV
α  

, je
xF
α  

, je
zM
α  

, je
yV
α  

, je
zM
α  

,e βθ  

y  x  

α  Element 

β  Element 



 

132 

matrix from step b.  

(d) Using a solver to solve the algebraic equation system, unknown ,
e
u ia  and ,

e
v ia  can 

be otained.  

(e) The axial displacement, lateral displacement, slope deflection, axial force, bending 

moment and shear force can be calculated using Eq. (4.2.2), Eq. (4.2.5), Eq. (4.2.15), 

Eq. (4.2.13) and Eq. (4.2.12), respectively. SCM (or SCEM) be different than matrix 

structural analysis or Finite Element Method, element don’t need through 

transformation matrix obtain displacement or internal force; even can calculate 

arbitrary location on element. 

4.2.4 Numerical Examples 

4.2.4.1 Orthogonal Frame 

Figure 4.2.3 shown a Orthogonal frame problem with member AB subjected to a 

aquatically distributed lateral force. Using the technique of adaptive discretization 

element 1 is a three-knots for axial and seventeen-knots for lateral on element, which 

element2 and 3 are three-knots for axial and lateral on elements. Figure 4.2.4 to Figure 

4.2.6 represent the displacement, bending moment and shear force diagrams, 

respectively. Although only three elements are used, the SCEM result are excellent. 

The problem was also solved by using the MSC/NASTRAN finite element problem. 

The lateral displacement at point B, obtained by gradually increasing the number of 

finite elements up to 128 to model member AB, converged to the fifth digit accuracy as 

compared to the SCEM result. This result has confirmed that the developed 

two-dimensional SCEM frame model is efficient for accurately solving problem with 

highly nonlinear distributed loads. 
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Figure 4.2.3 Orthogonal frame. 

 

 
Figure 4.2.4 Displacement diagram for orthogonal frame. 
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Figure 4.2.5 Bending moment diagram for orthogonal frame. 

 
 

 
Figure 4.2.6 Shear force diagram for orthogonal frame. 
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4.2.4.2 Two-bay Two-span Orthogonal Frame 

The frame structure shown Figure 4.2.7 has two hinged joints and is subjected to 

highly nonlinear distributed loads. In the SCEM analysis, 15 elements were used to 

model the structure. Element 3, which is subjected to a quadratically distributed load, is 

a eleven-knots for lateral and three-knots for axial on elements, and element 4, which is 

subjected to a cubically distributed load, number of knots is same as element 3. All 

other elements are three-knots for axial and lateral on element. The 15 elements are 

divided into two groups based on their axial and flexural rigidities.  

 
Figure 4.2.7 Two-bay two-span orthogonal frame. 
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of internal forces which represent excellent global and local accuracy were obtained. 

 
Figure 4.2.8 Displacement diagram for two-bay two-span orthogonal frame. 

 
 

 
Figure 4.2.9 Bending moment diagram for two-bay two-span orthogonal frame. 
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Figure 4.2.10 Shear force diagram for two-bay two-span orthogonal frame. 
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4.2.4.3 Non-orthogonal Frame 

Figure 4.2.11 shown a non-orthogonal frame subjected to two uniformly 

distributed forces and a support settlement. In the SCEM analysis, 10 three-knots for 

axial and lateral elements were used to model the structure. The results of displacement, 

bending moment and shear force were plotted, and are shown in Figure 4.2.12 to Figure 

4.2.14. 

 

 
Figure 4.2.11 Non-orthogonal frame. 
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Figure 4.2.12 Displacement diagram for Non-orthogonal frame. 

 

 
Figure 4.2.13 Bending moment diagram for Non-orthogonal frame. 
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Figure 4.2.14 Shear force diagram for Non-orthogonal frame. 
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4.2.4.4 Four-bay Eight-span Orthogonal Frame  

Figure 4.2.15 shows a four-bay eight-span orthogonal frame. The left column and all 

beams are subjected to uniform loads. The discrete SCEM structural model is composed 

of 68 three knots for axial and lateral on elements of which beam elements and column 

elements have different structural rigidities. The results of displacement, bending 

moment and shear force are plotted, and are shown in Figure 4.2.16 to Figure 4.2.18. 

 

 
Figure 4.2.15 Four-bay eight-span orthogonal frame. 
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Figure 4.2.16 Displacement diagram for four-bay eight-span orthogonal frame. 

 
 

 
Figure 4.2.17 Bending moment diagram for four-bay eight-span orthogonal frame. 
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Figure 4.2.18 Shear force diagram for four-bay eight-span orthogonal frame. 

 
4.2.5 Nomenclature 
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( )eA x   area of cross section  

( )e
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E    Young’s modulus 

x
eF   axial force at an arbitrary point ex  in element 

( )eI x   second moment of section area 

, jeI α   element knot number of the jα th element connected to the joint 

m    number of knots 

jM   number of elements connected to joint j  

e
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( )ep x   distributed axial force 

( )eq x   distributed lateral force 

eu    local axial displacement 

ev    lateral displacement 

e
yV    distribution of shear force in element 

, je mv   indicator defined by the local element node number of an element at the joint 

ex    local physical coordinate 

eθ    direction angles between the local axes and the global axes 

jθ    slop deflection of joint j  

, je αθ   slop deflection jα th element of joint j  
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4.3 Conclusions 

Mathematical formulations for the two-dimensional SCEM frame model were carried 

out. The related numerical procedures were implemented into a computed code. The 

capability of the program was demonstrated by solving various frame problems having 

complex geometrical properties. This SCEM frame model has the same advantage as 

the finite element method of being able to solve generic problems. Due to the 

availability of adaptive discretization and the inclusion of all mechanics relations to 

from the algebraic equation system, accurate results can efficiently be obtained by using 

this method. Numerical results proved it. The developed computer code can also be 

used to solve two-dimensional truss problems of which all joints are hinged and only 

concentrated joint loads and distributed axial loads can be applied. 
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Appendix A Derivation of Cubic B-spline Function 
 

The k th forward difference 0( )f ξ  of a given function ( )f ξ  at 0ξ  is defined 

recursively by 

0 1 0( ) ( ) ( )f f fξ ξ ξ∆ = − , 1
0 1 0( ) ( ) ( )k k kf f fξ ξ ξ+∆ = ∆ − ∆  (A.1) 

In particular  

2
0 2 1 0( ) ( ) 2 ( ) ( )f f f fξ ξ ξ ξ∆ = − +  (A.2) 

3
0 3 2 1 0( ) ( ) 3 ( ) 3 ( ) ( )f f f f fξ ξ ξ ξ ξ∆ = − + +  (A.3) 

4
0 4 3 2 1 0( ) ( ) 4 ( ) 6 ( ) 4 ( ) ( )f f f f f fξ ξ ξ ξ ξ ξ∆ = − + − +  (A.4) 

And so forth. The coefficient of ( )kf ξ  in 0( )n f ξ∆  is simply the binomial 

coefficient ( 1) k
n

k

 −    . It is well known that with evenly spaced knots, n∆  annihilates 

all polynomials of degree 1n− . 

In order to device the cubic B-splines, ones compute 

4
0

4 3 2 1 0

( ) ( )

       ( ) 4 ( ) 6 ( ) 4 ( ) ( )
t

t t t t t

K t F

F F F F F

ξ
ξ ξ ξ ξ ξ

= ∆
= − + − +

 (A.5) 

where 4
0( )tF ξ∆  is fourth forward difference 4

0( )f ξ∆ .  

The ( )tF ξ  for each fixed t  have 

3( ) ( )tF tξ ξ += −  (A.6) 

where the function 3( )tξ +−  is defined by, 

3
3

( )    when  t
( )

0            when  t >

t
t

ξ ξξ ξ+

− ≤− =   (A.7) 

Then, Eq. (A.7) substituting into Eq. (A.5), obtained as 

3 3 3 3 3
4 3 2 1 0( ) ( ) 4( ) 6( ) 4( ) ( )K t t t t t tξ ξ ξ ξ ξ+ + + + += − − − + − − − + −  (A.8) 
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It is clear form the definition Eq. (A.5) of 3( )tξ +−  that ( ) 0K t ≡  for all 4t ξ≥ . 

Moreover, for fixed t  and tξ < , 3( ) ( )tF tξ ξ= −  is a polynomial of degree six. Thus 

any sixth forward difference 4
0( )tF ξ∆  with evenly spaced knots vanishes identically 

when 0 tξ ≥ . That is 

( ) 0K t ≡  when 4t ξ≥  and 0t ξ≤  (A.9) 

A sum of cubic B-splines 3( )tξ +− , ( )K t  becomes 

3
4 3 4

3 3
4 3 2 3

3 3 3
4 3 2 1 2

( ) ,                                                               

( ) 4( ) ,                                             

( ) ( ) 4( ) 6( ) ,               

t t

t t t

K t t t t t

ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ ξ ξ

− ≤ ≤
− − − ≤ ≤

= − − − + − ≤ ≤
3 3 3 3

4 3 2 1 0 1

           

( ) 4( ) 6( ) 4( ) ,       

0,      otherwise                                                                       

t t t t tξ ξ ξ ξ ξ ξ

 − − − + − − − ≤ ≤

 (A.10) 

To generalize, one can transform the independent variables 0ξ , ... 4ξ  into 

2iξ − , ..., 2iξ +  by setting 2iξ ξ= , so the above expression ( )K t  can be reduced to 

3
2 1 2

3 3
2 2 1

3 3
2 2

( ) ,                                                                    

( ) 4( ) ,                                                  

( ) ( ) 4( ) 6(

i i i

i i i i

i i i

t t

t t t

K t t t

ξ ξ ξ
ξ ξ ξ ξ
ξ ξ ξ

+ + +

+ + +

+ + +

− ≤ ≤
− − − ≤ ≤

= − − − + 3
1 1

3 3 3 3
2 2 1 2 1

) ,                             

( ) 4( ) 6( ) 4( ) ,        

0,      otherwise                                                                               

i i

i i i i i i

t t

t t t t t

ξ ξ
ξ ξ ξ ξ ξ ξ

−

+ + + − −

− ≤ ≤
− − − + − − − ≤ ≤

  



 (A.11) 

For evenly spaced partitions, 1j j hξ ξ+ − = , 1,..., 3j i i= + − , ( )K t  can be 

reduced further to 

3 5 5 5
2 2 1 1 2

3 3 3
2 2 1 1

3 3
2 2 13

( ) 4( ) 6( ) 4( ) ,      

( ) 4( ) 6( ) ,                           
1

( ) ( ) 4( ) ,                                   

i i i i i i

i i i i i

i i i i i

t t t t t

t t t t

B t t t t
h

ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ
ξ ξ ξ ξ

+ + + + +

+ + + +

+ + −

− − − + − − − ≤ ≤
− − − + − ≤ ≤

= − − − ≤ ≤
3

2 2 1

             

( ) ,                                                                   

0,      otherwise                                                                                
i i it tξ ξ ξ+ − −




− ≤ ≤




 (A.12) 

and the above 3( ) ( )iB t K t h=  are the required quintic B-splines (Prenter, 1975). 
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Appendix B Derivation of Quintic B-spline Function 

 

The k th forward difference 0( )f ξ  of a given function ( )f ξ  at 0ξ  is defined 

recursively by 

0 1 0( ) ( ) ( )f f fξ ξ ξ∆ = − , 1
0 1 0( ) ( ) ( )k k kf f fξ ξ ξ+∆ = ∆ − ∆  (B.1) 

In particular  

2
0 2 1 0( ) ( ) 2 ( ) ( )f f f fξ ξ ξ ξ∆ = − +  (B.2) 

3
0 3 2 1 0( ) ( ) 3 ( ) 3 ( ) ( )f f f f fξ ξ ξ ξ ξ∆ = − + +  (B.3) 

4
0 4 3 2 1 0( ) ( ) 4 ( ) 6 ( ) 4 ( ) ( )f f f f f fξ ξ ξ ξ ξ ξ∆ = − + − +  (B.4) 

5
0 5 4 3 2 1 0( ) ( ) 5 ( ) 10 ( ) 10 ( ) 5 ( ) ( )f f f f f f fξ ξ ξ ξ ξ ξ ξ∆ = − + + − +  (B.5) 

6
0 6 5 4 3 2 1 0( ) ( ) 6 ( ) 15 ( ) 20 ( ) 15 ( ) 6 ( ) ( )f f f f f f f fξ ξ ξ ξ ξ ξ ξ ξ∆ = − + − + − +  (B.6) 

And so forth. The coefficient of ( )kf ξ  in 0( )n f ξ∆  is simply the binomial 

coefficient ( 1) k
n

k

 −    . It is well known that with evenly spaced knots, n∆  annihialates 

all polynomials of degree 1n− . 

In order to device the quintic B-splines, ones compute 

6
0

6 5 4 3 2 1 0

( ) ( )

       ( ) 6 ( ) 15 ( ) 20 ( ) 15 ( ) 6 ( ) ( )
t

t t t t t t t

K t F

F F F F F F F

ξ
ξ ξ ξ ξ ξ ξ ξ

= ∆
= − + − + − +  (B.7) 

where 6
0( )tF ξ∆  is sixth forward difference 0( )f ξ , see Appendix B.  

The ( )tF ξ  for each fixed t  have 
5( ) ( )tF tξ ξ += −  (B.8) 

where the function 5( )tξ +−  is defined by, 

5
5

( )    when  t
( )

0            when  t >

t
t

ξ ξξ ξ+

− ≤− =   (B.9) 
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Then, Eq. (B.8) substituting into Eq. (B.7), obtained as 

5 5 5 5
6 5 4 3

5 5 5
2 1 0

( ) ( ) 6( ) 15( ) 20( )

                  15( ) 6( ) ( )

K t t t t t

t t t

ξ ξ ξ ξ
ξ ξ ξ

+ + + +

+ + +

= − − − + − − −

+ − − − + −
 (B.10) 

It is clear form the definition Eq. (B.7) of 5( )tξ +−  that ( ) 0K t ≡  for all 6t ξ≥ . 

Moreover, for fixed t  and tξ < , 5( ) ( )tF tξ ξ= −  is a polynomial of degree six. Thus 

any sixth forward difference 6
0( )tF ξ∆  with evenly spaced knots vanishes identically 

when 0 tξ ≥ . That is 

( ) 0K t ≡  when 6t ξ≥  and 0t ξ≤  (B.11) 

A sum of quintic B-splines 5( )tξ +− , ( )K t  becomes 

5
6 5 6

5 5
6 5 4 5

( ) ,                                                                                                        

( ) 6( ) ,                                                    

( )

t t

t t t

K t

ξ ξ ξ
ξ ξ ξ ξ
− ≤ ≤
− − − ≤ ≤

=
5 5 5

6 5 4 3 4

5 5 5 5
6 5 4 3 2 3

                                 

( ) 6( ) 15( ) ,                                                                

( ) 6( ) 15( ) 20( ) ,                         

t t t t

t t t t t

ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ
− − − + − ≤ ≤
− − − + − − − ≤ ≤

5 5 5 5 5
6 5 4 3 2 1 2

5 5 5 5 5 5
6 5 4 3 2 1 0 1

                  

( ) 6( ) 15( ) 20( ) 15( ) ,                       

( ) 6( ) 15( ) 20( ) 15( ) 6( ) ,      

0,      otherwise                   

t t t t t t

t t t t t t t

ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ ξ
− − − + − − − + − ≤ ≤
− − − + − − − + − − − ≤ ≤

                                                                                           



 
(B.12) 

To generalize, one can transform the independent variables 0ξ , ... 6ξ  into 

3iξ − , ..., 3iξ +  by setting 3iξ ξ= , so the above expression ( )K t  can be reduced to 

5
3 2 3

5 5
3 2 1 2

( ) ,                                                                                                                 

( ) 6( ) ,                             

( )

i i i

i i i i

t t

t t t

K t

ξ ξ ξ
ξ ξ ξ ξ
+ + +

+ + + +

− ≤ ≤
− − − ≤ ≤

=
5 5 5

3 2 1 1

5 5
3 2

                                                               

( ) 6( ) 15( ) ,                                                                        

( ) 6( ) 15
i i i i i

i i

t t t t

t t

ξ ξ ξ ξ ξ
ξ ξ
+ + + +

+ +

− − − + − ≤ ≤
− − − + 5 5

1 1

5 5 5 5 5
3 2 1 1 2 1

5 5
3 2

( ) 20( ) ,                                                   

( ) 6( ) 15( ) 20( ) 15( ) ,                           

( ) 6( ) 15(

i i i i

i i i i i i i

i i i

t t t

t t t t t t

t t

ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ

+ −

+ + + − − −

+ + +

− − − ≤ ≤
− − − + − − − + − ≤ ≤
− − − + 5 5 5 5

1 1 2 3 2) 20( ) 15( ) 6( ) ,      

0,      otherwise                                                                                                                              
i i i i it t t t tξ ξ ξ ξ ξ− − − −



− − − + − − − ≤ ≤



 
(B.13) 

For evenly spaced partitions, 1j j hξ ξ+ − = , 2,..., 4j i i= + − , ( )K t  can be 

reduced further to 
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5 5 5 5 5 5
3 2 1 1 2 2 3

5 5 5 5 5
3 2 1 1 1 2

5
3 2

5

( ) 6( ) 15( ) 20( ) 15( ) 6( ) ,      

( ) 6( ) 15( ) 20( ) 15( ) ,                          

( ) 6(
1

( )

i i i i i i i i

i i i i i i i

i i

i

t t t t t t t

t t t t t t

t

B t
h

ξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ
ξ ξ

+ + + − − + +

+ + + − + +

+ +

− − − + − − − + − − − ≤ ≤
− − − + − − − + − ≤ ≤
− −

=
5 5 5

1 1

5 5 5
3 2 1 1

) 15( ) 20( ) ,                                                    

( ) 6( ) 15( ) ,                                                                      
i i i i

i i i i i

t t t t

t t t t

ξ ξ ξ ξ
ξ ξ ξ ξ ξ

+ +

+ + + −

− + − − − ≤ ≤
− − − + − ≤ ≤

5 5
3 2 2 1

5
3 3 2

  

( ) 6( ) ,                                                                                            

( ) ,                                                     
i i i i

i i i

t t t

t t

ξ ξ ξ ξ
ξ ξ ξ

+ + − −

+ − −

− − − ≤ ≤
− ≤ ≤                                                             

0,      otherwise                                                                                                                              



 (B.14) 

and the above 5( ) ( )iB t K t h=  are the required quintic B-splines (Bert and Sheu, 

1996). 


