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Abstract 
With the fast advancement of remote sensing technology, efficient and timely 

monitoring of environmental changes has become a reality. Among all kinds of 

environmental monitoring, climate changes and water resources are of most concern 

due to their extensive and potentially devastating impact. In this dissertation, 

feasibilities of three types of environmental monitoring – coastal water quality 

monitoring, effect of landcover changes on ambient air temperature, and forest 

drought monitoring using remote sensing techniques are investigated.  

A multivariate water quality estimation model which can take into consideration the 

combined effect of various seawater constituents on water surface reflectance was 

proposed. The multivariate model was found to be superior to traditional univariate 

models. Changes in coverage ratio of individual landcover types within a NOAA pixel 

affect the NOAA-pixel average air temperature. Forest drought monitoring involves 

drought classification using NDVI derived from SPOT images. Seasonal variations of 

NDVI and ambient air temperature were assessed using multispectral SPOT images 

and NOAA thermal images. 

 

Keywords: environment monitoring and assessment, remote sensing, water quality, 
multivariate model, landcover change, air temperature, drought. 
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摘要 

隨著衛星遙測科技的進步，科學家可更有效率的監測與評估自然環境的變

化。在各項環境監測中，全球氣候變遷與水資源議題廣受矚目，其所造成的影響

廣泛而深遠，水資源議題(例如洪水、乾旱、水質)與全球氣溫升高均造成嚴重的

災害與難以估計的損失。本文應用衛星於環境監測與評估分為三個部份，第一部

分是以 SPOT 衛星監測員山子分洪隧道出口海域水質變化，評估分洪對於該海域

水質的影響。研究中提出水體表面反射率反算程序，此程序適用於小區域尺度的

遙測應用。傳統海域水質監測多以單變量模式建立推估式，然而水中所含物質例

如懸浮顆粒、有機溶解物質與藻類等同時影響水體的光譜反射特性，吾人提出多

變量模式可更有效推估水質變數，且符合水質變數物理特性，推估結果明顯優於

單變量模式，最後繪製水質變數海域分布圖，供決策單位使用。第二部份，探討

土地利用變遷對於週遭空氣溫度改變的評估。普遍而言，土地利用變遷趨勢反映

區域環境生態特性，然而土地利用變遷影響週遭空氣溫度，本文以 AVHRR 影像

推估地表溫度，提出新的方式評估 AVHRR 像元內土地利用類別比例對空氣溫度

的影響。第三部份是評估乾旱造成林地植生生理特性改變的監測，使用 SPOT 衛

星計算植生指標，提出以植生指標所定義的林地乾旱等級；同時以 NOAA 衛星

探討林地於植生指標與地表溫度特徵空間的季節變動特性。環境評估須大量資料

綜合評估，然而衛星資料提供決策者快速而全面的資訊，為決策與防治程序中有

效率的工具之一。 

 

關鍵詞：環境監測與評估、衛星遙測、水質、多變數模式、土地利用變遷、空氣

溫度、乾旱。 
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Chapter 1 Introduction 

1.1 Environmental monitoring and remote sensing techniques 

Rapid development of remote sensing techniques helps scientists monitor 

environment resources in an efficient way. In natural resources, water resource and 

global warming are two major issues that are highly concerned. In the dissertation, 

three kinds of environment resources monitoring and assessment – water quality 

estimation, the effect of landcover change on air temperature, and drought effect on 

forest – are specifically discussed. 

Water resource studies can be divided into two groups which mainly concern water 

quantity and quality. The former group measures and monitors the spatial distribution 

and the movement of water as it progresses through the hydrologic cycle; the latter 

group adopts remotely sensed data to estimate water quality and yields a distribution 

map of water quality. The later kind of application is usually difficult to obtain 

regional spatial information using in situ observations because the poor availability of 

in situ data limits the ability to assess the regional water quality. However, the 

advantages of remotely sensed satellite data, a repetitive coverage and synoptic view 

over the area of interest, are able to resolve this problem. 

Besides water issues, air temperature is another important environmental factor 

directly affecting human life. In recent years, global warming and urbanization are 

considered as major cause of air temperature rising. Urbanization, in general, converts 

water bodies and vegetated surface into paved road or built-up area, coming in the 

wake of ambient air temperature rising. Cheng et al. (2008) and Yokohari et al. (2001) 

reported that change of land-cover/ land-use from paddy fields into buildup results in 

rise of ambient air temperature about 2-3°C. Land surface temperature can be 
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remotely sensed by detecting the thermal infrared electromagnetic radiation in the 3 – 

14 μm portion of the spectrum. The AVHRR (Advanced Very High Resolution 

Radiometer) operated by the NOAA (National Oceanic and Atmospheric 

Administration) is capable of calculating surface temperature by channel 4 and 

channel 5. Air temperature can further be calculated by an empirical relationship 

between land and air temperature. Concerning the details of how to assess the effect 

of landcover change on air temperature by multi-resolution remote sensing images, 

please refer to chapter three.  

Drought is an insidious natural hazard that originates from a long-lasting deficiency 

of precipitation (Wilhite, 2005; Wilhite and Glants, 1985). During drought progress, 

in the view of agriculture, insufficient water supply to vegetation results in reduction 

of yield. In the end part of drought progress, water shortage depletes the supply for 

domestic and industrial purposes and consequently results in vast cost of society and 

economy. 

Insufficient water supply to vegetation will reduce the rate of photosynthesis 

process and keep stomata close from water loss. Consequently, air exchange between 

ambiance and plant reduces and it will lead to higher canopy temperature. If air 

temperature remains high without sufficient water supply, chlorophyll contents will 

decrease. Drought could change surface bio-physical factors such as, land surface 

temperature and surface reflectance feature. Combination of these factors may 

provide useful information for quantitative monitoring of spatial and temporal 

distribution of drought (Ghulam et al., 2007). 

From the temporal viewpoint, drought development is a creeping process which 

makes detecting the onset time a tough task. From a spatial perspective, the influence 
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of drought is cumulative and wide-extended without a clear boundary. In the light of 

the advantages of synoptic spatial coverage and routine availability of satellite images, 

satellite remote sensing technique is the most appropriate tool to monitor drought 

effect on forest. 

1.2 Objectives 

The first objective is to estimate water quality by remote sensing data and assess 

the performance of the estimation models. An integration of remote sensing 

techniques and water sampling is worth pursuing, since water sampling in vast water 

bodies is time and labor consuming. We reviewed water quality estimation models 

using remote sensing images for inland, estuary and coastal water bodies. Most of the 

estimation models are applied for estimating single water quality variable. However, 

natural water bodies are mixture of water and other constituents including suspended 

solids, dissolved organic matters, zooplankton, etc. These constituents affect the 

reflectance in different wavelength of spectrum. Such wavelength-dependent 

combined effects should be reflected in water quality estimation model. Therefore, we 

proposed the multivariate model for water quality estimation by 

atmospheric-corrected multispectral reflectances. A scheme of retrieval of water 

surface reflectance with remote sensing images, can be used in a local scale area, is 

proposed. The concept of a multivariate model for water quality estimation can be 

applied to inland waters (pounds, lakes, reservoirs), estuary and coastal waters. 

The second objective of this study is to quantitatively evaluate the effect of 

landcover types on ambient air temperature by remote sensing images and to 

understand the inter-relationships of different landcover types in a region. We showed 

the theoretical details of the land surface temperature estimation by remotely sensed 



 

 4

thermal infrared energy. We established the landcover-specific empirical relationship 

between the air temperature at 2m height and surface temperature for the study area. 

We proposed a new assessment method to evaluate the influence of landcover/ 

landuse changes on ambient air temperatures. 

The final objective is to assess drought effect on forest. Six SPOT (Satellite Pour 

l'Observation de la Terre) satellite images with a spatial resolution of 20 m, taken in 

each May from 1999 to 2004, are used to classify drought severity. The relationship 

between NDVI and SPI is established and the drought classification by NDVI is 

proposed. In addition, series of AVHRR (Advanced Very High Resolution Radiometer) 

images, taken in year 2002 and 2004, are used to assess seasonal dynamic of forest in 

the feature space of vegetation index and surface temperature. 

1.3 Structure 

This dissertation is composed of five parts. Chapter 1, introduction, gives readers 

the rough concept of environmental monitoring and assessment by remote sensing 

techniques. In this chapter, we clarify the selected issues of environmental monitoring 

discussed in the dissertation. Chapter 2 elaborates on the application of remote 

sensing images to water quality estimation. Chapter 3 describes how to assess the 

influence on ambient air temperature due to landcover change. Chapter 4 shows the 

application of multi-sensor to drought classification and assessment. The final part is 

summary and suggestions.  

References 

Cheng, K. S., Su, Y.F., Kuo, F.T., Hung, W.C., Chiang, J.L. (2008). Assessing the 
effect of landcover changes on air temperature using remote sensing images - A 
pilot study in northern Taiwan. Landscape and Urban Planning, 85, 85-96. 

Ghulam, A., Qin, Q., and Zhan, Z. (2007). Designing of the perpendicular drought 
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Wilhite, D. A., and Glantz, M.H. (1985). Understanding the drought phenomenon: The 
role of definitions. Water International, 10(3), 111-120. 

Wilhite, D. A., Ed. (2005). Drought and water crisis: science, technology, and 
management issues, Florida: CRC Press.  

Yokohari, M., Brown, R.D., Kato, Y., Yamamoto, S. (2001). The cooling effect of 
paddy fields on summertime air temperature in residential Tokyo, Japan. 
Landscape and Urban Planning, 53, 17-27. 
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Chapter 2 Water quality monitoring using remotely sensed data 

2.1 Introduction 

Conventional water quality monitoring depends on taking water sample in situ and 

analyzing it in laboratory. This procedure is not only time and labor consuming but to 

get distributed point data in a study area. Remotely-sensed data acquired from satellite 

can provide a cost-effective procedure for mapping water quality. The advantages of 

satellite data over conventional sampling procedures include repetitive coverage of an 

interesting area in a short period, and a synoptic view which provides almost 

instantaneous spatial data over the area of interest and is unobtainable by conventional 

procedure. 

The sensor on satellite measures the radiative signal from a water surface to the 

sensor. Water quality can be estimated by the radiative signal. The studies of applying 

remote-sensed data to water quality monitoring have been proposed before 30 years 

ago. Coastal Zone Color Scanner (CZCS) is the first satellite launched by United 

States of America in 1978 specifically designed to sense ocean color. In the past three 

decades, many countries launched their own satellites for ocean color monitoring 

including SeaWiFS, MODIS etc. However, most of the ocean color observation 

satellites have spatial resolution of 1 km. The image data of this spatial scale limits 

the capability of monitoring inland water or near shore coastal water monitoring. 

Under this situation, a satellite with meter-scale spatial resolution, such as SPOT or 

Landsat, is more adapted for the application. 

In general, water quality study can be divided into two categories, inland waters 

and ocean waters. Reservoirs and lakes are kind of inland waters which are easily 

affected by land-source substance. Suspended solid material carried in by upstream 
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inflow trapped in impounded water bodies may have long-lasting effect on 

impounded water quality. The constituents of inland waters are more complex than 

ocean waters. Besides suspended solid material, nutrients such as phosphate and 

nitrogen are other major constituents in impounded water bodies. Inland water quality 

will be affected by settling of sand particles and eutrophication. Therefore, in inland 

waters, the data ranges of water quality variables, such as total suspended solids, 

turbidity and chlorophyll-a concentration, are larger than those in ocean waters. There 

are many successful applications for inland water quality monitoring (Cheng and Lei, 

2001; Giardino et al., 2001; Huang, 2006; Kloiber et al., 2002; Lin, 2005; Östlund et 

al., 2001; Tan, 2006; Verdin, 1985; Wang et al., 2004; Wu, 2001). 

Morel and Prieur (1977) suggested that ocean waters can be divided into two cases 

according to constituents of ocean waters. The optical property of Case I ocean water 

is mainly affected by phytoplankton, also named as original open ocean water body. 

Non-algal particle (NAP) is the dominating factor in Case II ocean water. Near shore 

water and coastal water quality are constantly affected by upstream flow discharge 

which may contain high concentration sediments, especially during high-flow periods. 

Flushed by seawater, suspended solid material in coastal water may be mixed. Thus 

the characteristics of creeping impact and low immediate effect make it difficult to 

sense the emerging consequences which may be severely deleterious and irreversible 

on coastal ecosystem. For example, Tomascik and Sander (1985) and 

Hoegh-Guldberg et al. (2004) reported that change to coastal discharge is one of the 

most serious threats to coral reef ecosystem. Thus, understanding the long term effect 

of sediments carried in the upstream discharge on coastal water quality necessitates a 

routine monitoring scheme.  

The optical properties of Case II water shows that when concentration of NAP is 
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higher the reflectances of visible band and near infrared band will arise; meanwhile, 

the influence of chlorophyll-a concentration on reflectance will decrease (Doxaran et 

al., 2002; Lodhi et al., 1997; Oyama et al., 2007). Runquist et al. (1996) measured the 

reflectances of water surface with different chlorophyll-a concentration (156~277μg/L, 

340~2190μg/L). The spectral pattern shows that when chlorophyll-a concentration 

increases, the reflectances of green and near infrared bands increase with it; 

meanwhile, the reflectance of blue and red bands decrease (Figure 2-1). The spectral 

pattern is more regular under high chlorophyll-a concentration (340~2190μg/L). The 

minor irregularities in the spectral pattern of lower chlorophyll-a concentration water 

surface probably occur because overall chlorophyll levels are very low 

(156~277μg/L). In general, chlorophyll-a concentration in Case II water is extreme 

low (0~3μg/L). The spectral pattern in Case II water may be more insignificant. It 

causes difficulties for monitor water quality by satellite data. Therefore, an 

appropriate monitoring model is necessary for a synoptic water quality monitoring. 

Over the past three decades, the univariate models using only one water quality 

variable as dependent variable are proposed in many applications (summarized in 

Table 2-1). However, the water body is a mixture of seawater, suspended solids, color 

dissolved organic matters, and phytoplankton etc. The sea surface reflectance of a 

specific wavelength is interworked by those constituents. Some authors mentioned 

that the complexity of constituents in nature water interferes the spectral identification 

of water quality and affects the accuracy of estimation model. However, there is no 

solution suggested in the literature (Giardino et al., 2001;Wang et al., 2004). 

Considering the wavelength-dependent combined effect must be reflected in the 

water quality estimation model, a multivariate model is proposed in this study. The 
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Figure 2-1 Reflectance factor of water surface with varied Chlorophyll-a 
concentration (Runquist, 1996). 
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Table 2-1 Univariate models. 

Impounded waters 
Study Area Sensor Variable Type Reference 

Flaming Gorge Reservoir MS SSD, Chla Exp, Poly Verdin, 1985 

Moon Lake MS TSS Poly Ritchie and Cooper, 1988 

Iseo Lake, Italy TM SDD, Chla Poly Giardino et al., 2001 

Yung-He-Shan Reservoir SPOT SDD, Chla, Tb, TP Power, Poly Wu, 2001 

Erken Lake, Sweden TM, CASI TSS, Chla Power, Poly Östlund et al., 2001 

Four lakes in Finland AISA*, MERIS SDD, Tb, Chla Poly Koponen et al., 2002 

Lakes in Twin City TM, MS SDD Exp Kloiber et al., 2002 

Frisian Lakes TM, SPOT TSS Exp Dekker et al., 2002 

Shenzhen Reservoirs TM TOC, BOD, COD Poly Wang et al., 2004 

Tseng-Wen Reservoirs FS II TSS, Turb, Chla Poly Huang, 2006 
Coastal water or Estuary water 

Study Area Sensor Variable Type Reference 
San Francisco Bay MS TSS, Tb Poly Khorram, 1981 

San Francisco Bay Daedalus* Chla Poly Catts et al., 1985 

Neuse River Estuary MS SAL, Chla, Tb, TSS Poly Khorram and Cheshire, 1985 

Adriatic Sea TM, CZCS TSS, Chla Power Tassan, 1987 

Swasea Bay NERC* TSS, SAL Exp Rimmer et al., 1987 

North Sea AVHRR TSS Power Prangsma and Roozekrans, 1989

New Jersey’ coast TM Chla Poly Bagheri and Dios, 1990 

Augusta Bay TM SDD, Tb, Chla, Temp Power Khorram et al., 1991 

Western Australia Coast TM SDD, Chla, Pha Exp, Poly Lavery et al., 1993 

Western Australia Coast TM SDD, Chla Exp Pattiaratchi et al., 1994 

Indonesian seas TM, SPOT TSS, PIG Exp Populus et al., 1995 

Lakes and Coastal water 

in Finland 

TM, MODIS, 

MERIS 

SDD, TSS, Chla, Turb Poly Härmä, et al. 2001 

Gironde Estuary SPOT TSS Exp Doxaran et al., 2002 

New York Harbor TM, MODIS SDD, Chla Power Hellweger et al., 2004 

Florida near-shore area SeaWiFS Chla Power, Poly Cannizzaro and Carder, 2006 

*: Airborne Sensor; MS: Landsat Multispectral Scanner; TM: Landsat Thematic Mapper; FS II: Formosat II 

Exp: Exponential ; Poly: Polynomial; 

TSS: Total Suspended Solid; Tb: Turbidity; SDD: Secchi Disk Depth; Chla: Chlorophyll-a concentration 

Pha: Phaeophytin; TOC: Total Organic Carbon; BOD: Biochemical Oxygen Demand; COD: Chemical Oxygen Demand; 

Temp: Temperature; TP: Total Phosphorus; SAL: Salinity; 
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atmospheric corrected water surface reflectances of SPOT images are the independent 

variables in proposed model. The water quality variables selected in this study are 

secchi disk depth (SDD), turbidity (Tb), total suspended solids (TSS) and 

chlorophyll-a concentration (Chla). SDD is a measure of water transparency in 

seawaters and is related to water turbidity and the radiance onto water surface. 

Turbidity and total suspended solids are the indicators to show organic and inorganic 

particle amount in a water body. The chlorophyll-a concentration is well-correlated to 

the amount of phytoplankton. These four variables are commonly used to assess the 

water quality in Case II waters.  

2.2 Study area and materials 

Yuan-Shan-Tzu (YST) Diversion Tunnel is designed to divert flood flow from the 

upper Keelung River Basin to a discharge outlet at the northern tip of Taiwan. The 

YST tunnel, completed in 2003 with a diameter of 12 m and 2.48 km in total length, is 

capable of diverting approximately 81% (1,310 m3/s) of the 200-year flood flow 

(1,620 m3/s) at a cross section near the inlet of YST tunnel. The coastal area near the 

outlet of the Yuan-Shan-Tzu Diversion Tunnel in northern Taiwan is the typical Case 

II water and is selected as study area in this article (Figure 2-2). A radiometric control 

area (RCA) of approximately 30m×60m is selected in Figure 2-2 for spectral 

reflectance calibration. The RCA is a horizontal paved open area with homogeneous 

and stationary surface reflectance and no adjacent obstruction (see Figure 2-3).  

During July to November of 2007, a few water sampling campaigns were 

conducted in a coastal area of tunnel outlet. The sampling dates and relevant storm 

information are shown in Table 2-2. Water samples were taken within 0 – 20 cm range 

below the sea surface at eight locations (see Figure 2-2) during each sampling 
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campaign. Global positioning systems were used to guide the sampling vessel to the 

desired sampling locations. Considering the west-to-east surface current direction of 

the season, the sampling area extends from a little northwest of the outlet to about 2 

km to the east of the outlet. Sampling point 4 is located within an area known as the 

Yin-Yang Sea. Geology of the near Yin-Yang Sea area has a large amount of pyrite 

that does no dissolve easily in water. The Yin-Yang Sea area, just offshore from an old 

metal mining township, frequently receives runoff containing high iron ion 

concentration, making the sea surface visually distinct. Secchi disk depth and 

turbidity were measured in situ and water samples were taken to the Environmental 

Chemistry Lab at the National Taiwan University for analyses of total suspended 

solids and chlorophyll-a concentration.  

The water quality analysis methods used in this study are proposed by the 

Environmental Analysis Laboratory, EPA, Executive Yuan, R.O.C. Secchi disk depth 

records the depth that naked eye cannot see the secchi disk in water. Turbidity is 

measured by a portable turbidity meter (2100P, HACH, USA) with unit of 

Nephelometric Turbidity Unit (NTU). Secchi disk depth and turbidity are measured in 

situ during each sampling campaign. Total suspended solids is determined by pouring 

a carefully measured volume of water through a pre-weighted glass-fiber filter (GF/F, 

47mm diameter, 0.7μm pore size), then weighting the filter again after drying to 

remove all water. The gain in weight divided the volume of sample water is the 

measure of total suspended solids with unit of mg/l. Chlorophyll-a can be extract by 

ethanol from a pre-weighted glass-fiber filter which volume of water already poured 

through, then measure the absorptions at 665 and 750nm. Chlorophyll-a concentration 

can be calculated by the absorptions at 665 and 750nm. The methods used for water 

quality variables are listed in Table 2-2. 
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A few multispectral images from SPOT satellites with acquisition dates close to the 

dates of sampling campaign were also collected (see Table 2-3). During and 

immediately after the Wipha and Krosa typhoon events, the study area were almost 

completely under cloud cover, and thus no SPOT images were collected. The 

multispectral SPOT images include images of three spectral bands – green (0.5–0.59 

μm), red (0.61–0.68 μm), and near infrared (0.78–0.89 μm), with pixel resolution of 

20 m for SPOT-4 or 10 m for SPOT-5. 

Table 2-4 summarizes statistical properties of the three water quality variables. Two 

sampling campaigns (09/20/2007 and 10/08/2007) took place one day after activation 

of flood diversion. Comparison of the water quality data of the no-diversion and 

post-diversion periods is shown in Figure 2-4. Differences in medians and ranges of 

TSS, Tb and SDD are apparent. For example, median of SDD drops from 6.8 m of the 

no-diversion period to 3.8 m of the post-diversion period, whereas median of TSS 

increases from 1.6 mg/L of the no-diversion period to 5.2 mg/L of the post-diversion 

period. Also, excluding the outliers, the ranges of the water quality variables of the 

no-diversion and post-diversion periods are almost non-overlapping. 

Before pursuing establishment of water quality estimation models using the water 

quality data and remote sensing images, we conducted a careful check on 

measurements of water quality variables. The purpose of such data check is to screen 

out data which might have been contaminated by inappropriate sampling of water 

samples or erroneous measurement in the lab. In general, the Secchi disk depth, total 

suspended solids, and turbidity are inter-related, as showed in following equations and 

demonstrated in Figure 2-5. The points marked by dashed-circles are significantly 

inconsistent with such correlation, and thus are excluded in subsequent analyses. 
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Similar relationships between the Secchi disk depth and the turbidity are showed in 

few researches (Gao et al., 2008; Gryson et al., 1996; Koponen et al., 2002; Lewis, 

1996; Pavanelli and Bigi, 2005).  

( ) ( )TbSDD ln5.071.1ln −=     ( 71.02 =R ) (2-1a)
( ) ( )TbTSS ln77.086.0ln +=    ( 52.02 =R ) (2-1b)
( ) ( )SDDTSS ln21.197.2ln −=   ( 45.02 =R ) (2-1c)

2.3 Retrieval of reflectance 

Mobley (1994) described the optical properties of natural water are conveniently 

divided into two mutually exclusive classes: inherent and apparent. Inherent optical 

properties (IOP’s) are those properties that are independent of the ambient light field. 

The two fundamental IOP’s are the absorption coefficient and the volume scattering 

function which can quantitatively describe the solar radiance transfer process. 

Apparent optical properties (AOP’s) are those properties that depend both on the 

medium and on the geometric structure of the ambient light field, and that display 

enough regular features and stability to be useful descriptors of the water body. The 

spectral remote-sensing reflectance is one of the most important AOP. The spectral 

remote-sensing reflectance, hereafter which is short as reflectance, is used to construct 

the experience model in this study. 

In satellite remote sensing application, the major paths of solar radiation reaching 

the sensor are depicted in Figure 2-6. The primary solar radiance (path I) accounts for 

the solar irradiance onto the target object, and then reflected back to the atmosphere, 

and finally arrives at the sensor. The downwelled solar radiance (path II) is the 

atmospheric scattered solar radiance incident on and reflected away from the target 

object before reaching the sensor. The upwelled solar radiance (path III) is the 

radiance scattered by the atmosphere and directly reaching the sensor without getting  
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Figure 2-2 Study area in northern Taiwan (The numbers represent the sample sites). 

 
Figure 2-3 The radiometric control area (RCA). 
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Figure 2-4 Box plots of water quality data of no-diversion and post-diversion 
periods. 

 

No-diversion   Post-diversion No-diversion   Post-diversion 

No-diversion   Post-diversion No-diversion   Post-diversion 

SD
D

 (m
) 

Tb
 (N

TU
) 

TS
S 

(m
g/

L)
 

C
hl

a 
(μ

g/
L)

 



 

 18

 

-1.00

0.00

1.00

2.00

3.00

4.00

-2.00 -1.00 0.00 1.00 2.00 3.00 4.00

Ln(Tb )

L
n(

T
SS

)

 

-1.00

0.00

1.00

2.00

3.00

4.00

-1.00 0.00 1.00 2.00 3.00

Ln(SDD)

L
n(

T
b

)

 

-1.00

0.00

1.00

2.00

3.00

4.00

-1.00 0.00 1.00 2.00 3.00

Ln(SDD)

L
n(

T
S

S
)

 
Figure 2-5 Empirical relationships among different water quality parameters (a)Tb 
vs. TSS (b) SDD vs. Tb(c) SDD vs. TSS. 
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Table 2-2 Methods of water quality analysis. 
Water quality variable Methods Unit 

Chlorophyll-a conc. NIEA E508.00B μg/L 
Turbidity  NIEA W219.52C NTU 
Secchi disk depth  NIEA W221.50A m 
Total suspended solid NIEA W210.57A 1030C-1050C mg/L 

 
Table 2-3 Dates of water sampling and SPOT image acquisition. 

Sampling 
date 

SPOT image 
acquisition date

Relevant storm 
events 

Volume of  
diverted flow (m3) 

7/02/2007 
7/04/2007 
(SPOT-4) 

No storm 0 

7/18/2007 
7/19/2007 
(SPOT-4) 

No storm 0 

8/15/2007 NAa No storm 0 

8/23/2007 
8/23/2007 
(SPOT-5) 

Typhoon Sepat 
(8/16~8/19) 

0 

9/07/2007 
9/03/2007 
(SPOT-5) 

No storm 0 

9/20/2007 NAa 
Typhoon 
Wiphab 

(9/17~9/19) 
1,051,200 

10/08/2007 NAa 
Typhoon Krosab 

(10/4~10/7) 
16,133,400 

11/14/2007 NAa No storm 0 
aSatellite images were not collected due to high percentage of cloud cover. 
bFlow diversion activated. 

  
 

Table 2-4 Statistical properties of water quality variables. 

 Mean
Standard 
deviation 

Maximum Minimum 

Secchi disk depth (m) 5.40 2.13 10.30 0.50 
Turbidity (NTU) 2.20 4.22 29.50 0.38 

Total suspended solid (mg/L) 4.36 4.97 28.00 0.40 
Chlorophyll-a conc. (μg/L) 0.79 0.69 2.67 0.00 

Total number of samples: 61 
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in contact with the target object. 

Mobley (1994) defined the spectral remote-sensing reflectance, in this study is 

called reflectance, as the water-leaving radiance divided by irradiance onto water 

surface. Spectral remote-sensing reflectance, which is abbreviated as reflectance in 

this study, is presented as: 

( ) ( )
( )λ

λσφφθλσφφθ
E

LR ZS
ZSrs

,,,,,,,, =   (2-2)

where 

rsR  = the water-leaving radiance 
L  = the water-leaving radiance 
θ  = view angle in sensor-target direction 

Zφ  = sensor azimuth angle 

Sφ  =sun azimuth angle 
σ  = the sun angle 
E  = the solar irradiance reaching water surface 
λ  = wavelength in μm.  

The amount of solar radiance reaching the satellite sensor can be expressed as: 

( ) ( ) ( ) ( )λφθλτλσφφθλφθ ,,,,,,,, 2 ZuZSZS LLL +⋅=  (2-3)

where 2τ  is the atmospheric transmittance along the target-sensor path and uL  is 

upwelled solar radiance ( also known as path radiance). The water-leaving radiance 

can further expressed as: 

( ) =λσφφθ ,,,, ZSL ( ) ( )
π

λσφφθσλτ ,,,,cos1
ZSrs

Top
RE ⋅⋅⋅ +

( ) ( )
π

λλ rs
D

REF ⋅⋅  
(2-4)

where  

ETop= the exoatmospheric solar irradiance 
1τ  = the atmospheric transmittance along the sun-target path 
DE  = the downwelled irradiance from the sky dome onto the target 
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F = the obstruction factor. 

The obstruction factor in equation (2-4) accounts for the proportion of irradiance 

that may be obstructed by adjacent objects or surface slope of the target. If the target 

object is on a horizontal surface and free of adjacent object obstruction, the factor F 

equals 1. It is also worthy to note that the sun and view angles are defined with 

reference to the normal of the target surface. If the target is located on a slope, the sun 

and view angles will need to be adjusted accordingly. Readers are referred to Schott 

(1997) for detailed calculation of solar radiances arriving at the sensor. 

The reflectance ( )λσφφθ ,,,, ZSrsR  varies with spectral wavelength and orientation 

angles. If the target object is assumed to be a diffuse reflector with a constant 

reflectance ( )λrsR  in all directions, we then have  

( ) =λφθ ,, ZSL ( ) ( )( ) ( ) ( )λλ
π

λλσλτ 21 cos ⋅⋅⋅+⋅⋅ rs
DTop

R
EFE  

( )λφθ ,, ZuL+  
(2-5)

On the right hand side of the above equation, only the reflectance ( )λrsR  

represents the physical property of the target surface. The upwelled radiance uL  

does not even get into contact with the target.  

Environmental monitoring using remote sensing images often requires derivation of 

physical properties (reflectance, for example) of the target objects from satellite 

images. Unfortunately, the upwelled radiance uL , the atmospheric transmittance 1τ  

and 2τ , the downwelled irradiance DE , and the exoatmospheric solar irradiance ETop 

are generally not available for most applications, and we have to resort to other means 

for estimation of the reflectance. 

For most local-scale environmental monitoring applications, uL , 1τ , 2τ , DE , and 
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Figure 2-6 Major paths of solar radiation reaching the satellite sensor. The target 
object is assumed to be on a horizontal plane. 
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ETop can be assumed constant (or spatially invariant) within the study area. While on 

the contrary, the sun angle σ  and the obstruction factor F are dependent on the 

surface slope of the target, and the reflectance ( )λrsR  is dependent on surface cover 

of the earth. Their values may vary from pixel to pixel within a scene. If only pixels 

on horizontal surface and free of adjacent obstruction are considered (F = 1), Equation 

(2-5) may be expressed as: 

( ) =λφθ ,, ZSL ( ) ( )( ) ( ) ( )λλ
π

λλσλτ 21 cos ⋅⋅+⋅⋅ rs
DTop

REE  

( )λφθ ,, ZuL+  
         ( ) 21 kRk rs +⋅= λ  

(2-6)

where  

( ) ( )( ) ( )
π

λτλσλτ 2
11 cos ⋅+⋅⋅= DTop EEk

 
( )λφθ ,,2 ZuLk =  

A common practice dealing with the upwelled radiance ( )λφθ ,, ZuL  in satellite 

remote sensing is the dark object subtraction (DOS) method (Chavez, 1988; Cheng 

and Lei, 2001; Teng et al., 2008). The basic concept of the DOS method is to identify 

very dark features within the scene. The minimum scene radiance is set to be the 

upwelled radiance based on the assumption that it represents the radiance from a pixel 

with near zero reflectance. If the minimum scene radiance is subtracted from the 

radiance of each individual pixel, the processed image is then assumed free of 

atmospheric scattering effect. 

After removing the upwelled radiance ( )λφθ ,, ZuL  using the DOS method, the 

DOS-adjusted radiance ( )λφθ ,,'
ZSL is linearly related to the surface reflectance, i.e.: 

( ) =λφθ ,,'
ZSL ( )−λφθ ,, ZSL ( )λφθ ,, ZuL ( )λrsRk ⋅= 1  (2-7)

Based on the linear relationship between '
SL  and ( )λrsR , we derive a surface 
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reflectance estimation scheme through reflectance calibration in a radiometric control 

area (RCA).  

In this study a radiometric control area of approximately 30 m × 60 m was chosen 

for spectral reflectance calibration. The RCA is a horizontal paved open area with 

homogeneous and stationary surface reflectance and no adjacent obstruction (see 

Figure 2-3). It is located in a restricted and free of public access harbor area. The 

wavelength-depended surface reflectance of RCA is then calibrated using a variable 

spectral radiometer (VSR) which is equipped with two spectral-variable filters 

capable of detecting spectral radiances in various 7 nm-wide windows within the 

0.40 – 0.72 μm and 0.65 – 1.1 μm ranges respectively (Figure 2-7). The VSR was 

moved around within the radiometric control area taking multispectral images. When 

taking images within the RCA, a standard reflectance disk which has been 

pre-calibrated to have ( ) 1≈λDisk
rsR  over the 0.25 – 1.1 μm wavelength range was 

also placed within the viewing area. Reflectance of the radiometric control area is 

then calculated as the ratio of average radiance from RCA to average radiance from 

the standard reflectance disk, i.e.: 

( ) ( )λλ Disk
rsDisk

S

RCA
SRCA

rs R
L

LR ⋅=   (2-8)

where ( )λRCA
rsR  is the reflectance of RCA, and

RCA
SL  and

Disk
SL are respectively 

average radiances received at VSR sensor from the RCA surface and from the  

standard reflectance disk. For RCA reflectance calibration, the effect of upwelled 

radiance can be neglected since the VSR is placed near the ground surface. Table 2-5 

lists measurements of surface reflectance in the radiometric control area and area 

average reflectance with respect to various spectral wavelengths are also shown in 
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Figure 2-8. The RCA-average reflectance corresponding to green, red and near 

infrared SPOT spectral bands (hereafter referred to as the RCA band reflectances) are 

calculated to be 0.097, 0.113, and 0.161%, respectively. The RCA band reflectances 

are considered constant since the land surface condition within the RCA is relatively 

homogeneous and stationary. 

Assuming the sea surface is horizontal, the DOS-adjusted radiances of a pixel A in 

the RCA and a pixel B on the sea surface are respectively expressed by: 

( ) ( )λλφθ A
rsZ

A
S RkL ⋅= 1
' ,,   (2-9)

( ) ( )λλφθ B
rsZ

B
S RkL ⋅= 1
' ,,   (2-10)

where A
rsR  and B

rsR  are the reflectance of RCA pixel A and sea surface pixel B, 

respectively. Combining Equation (2-9) and Equation (2-10) and rewriting the 

reflectance of sea surface pixel B as: 

( ) ( )
( ) ( )λφθ

λφθ
λλ ,,

,,
'

' Z
B
S

Z
A
S

A
rsB

rs L
L

RR ⋅⎥
⎦

⎤
⎢
⎣

⎡
=   (2-11)

Practically, ( )λφθ ,,'
Z

A
SL and ( )λA

rsR  are respectively replaced by the average 

radiance and reflectance of RCA, and  

( ) ( )
( )

( )λφθ
λφθ

λλ ,,
,,

'
' Z

B
S

Z
RCA
S

RCA
rsB

rs L
L

RR ⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=   (2-12)

where ( )λφθ ,,
'

Z
RCA
SL  represents the average value of DOS-adjusted radiances within 

RCA and ( )λRCA
rsR  is the RCA band reflectance. The reflectance calibration ratio 

( )
( )λφθ

λ
,,

'
Z

RCA
S

RCA
rs

L

R  in above equation may vary with SPOT scenes since ( )λφθ ,,
'

Z
RCA
SL  

varies due to scene variations in orientation angles and atmospheric transmittance. 
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Table 2-6 summarizes reflectance calibration ratios of individual SPOT multispectral 

images. 

2.4 Water quality estimation model assessment 

In order to map the spatial distribution of water quality variables using remote 

sensing images, it is necessary to establish water quality estimation models based on 

reflectance of sea surface. A few simple or multiple regression models have been 

proposed in the literature (Bagheri and Dios, 1990; Cannizzaro and Carder, 2006; 

Catts et al., 1985; Giardino et al., 2001; Härmä et al., 2001; Hellweger et al., 2004; 

Huang, 2006; Khorram, 1981; Khorram and Cheshire, 1985; Khorram et al., 1991; 

Kloiber et al., 2002; Lavery et al., 1993; Oyama et al., 2007; Pattaratchi et al., 1994; 

Polulus et al., 1995; Prangsma and Roozekrans, 1989; Rimmer et al., 1987; Ritchie 

and Cooper, 1988; Tassan, 1987; Wang et al., 2004; Wu, 2001) and most of these 

models fall into one of the following forms: 

∑
=

+=
k

i
ii XccY

1
0 loglog (or equivalently, ∏

=

=
k

i

a
i

iXaY
1

0 ) (2-13a)

∑
=

+=
k

i
ii XccY

1
0log   (2-13b)

∑
=

+=
k

i
ii XccY

1
0   (2-13c)

where Y represents a water quality variable and Xi can be reflectance of a specific 

spectral band, ratio of reflectances of different spectral bands, or other arithmetic 

calculation of band reflectances. 

In order to choose appropriate models for water quality mapping, we first examined 

scatter plots of water quality measurements versus band-dependent sea surface 

reflectances, as shown in Figures 2-9(a)-(d). Although the data points are widely 

dispersed, particularly in lower measurement ranges, measurements of turbidity and 



 

 27

Table 2-5 Measurements of surface reflectance in the radiometric control area. 
Wavelength 

(μm) Sampling points 

Green 1 2 3 4 5 6 7 8 9 
0.50 0.091  0.073  0.088 0.088 0.074 0.076 0.069  0.101  0.094 
0.51 0.094  0.076  0.091 0.090 0.076 0.079 0.071  0.104  0.096 
0.52 0.097  0.079  0.094 0.093 0.079 0.081 0.073  0.107  0.100 
0.53 0.100  0.081  0.097 0.096 0.081 0.084 0.075  0.110  0.103 
0.54 0.103  0.083  0.099 0.098 0.083 0.086 0.076  0.113  0.106 
0.55 0.106  0.086  0.103 0.101 0.086 0.089 0.079  0.117  0.110 
0.56 0.109  0.088  0.106 0.104 0.088 0.091 0.080  0.120  0.113 
0.57 0.112  0.090  0.108 0.107 0.090 0.093 0.082  0.123  0.116 
0.58 0.114  0.092  0.110 0.109 0.092 0.095 0.083  0.125  0.118 
0.59 0.117  0.094  0.113 0.111 0.094 0.097 0.084  0.127  0.120 
0.60 0.119  0.095  0.114 0.113 0.095 0.099 0.086  0.129  0.122 

Red          
0.61 0.121  0.097  0.116 0.114 0.096 0.100 0.087  0.131  0.124 
0.62 0.122  0.097  0.117 0.115 0.097 0.101 0.087  0.132  0.125 
0.63 0.123  0.098  0.118 0.116 0.098 0.101 0.088  0.133  0.126 
0.64 0.124  0.099  0.119 0.118 0.100 0.103 0.089  0.134  0.127 
0.65 0.125  0.100  0.119 0.118 0.100 0.103 0.089  0.135  0.128 
0.66 0.126  0.101  0.120 0.119 0.101 0.104 0.090  0.136  0.129 
0.67 0.127  0.102  0.121 0.120 0.102 0.105 0.091  0.137  0.130 
0.68 0.129  0.103  0.122 0.121 0.103 0.106 0.092  0.138  0.131 

Near IR          
0.79 0.263  0.205  0.241 0.247 0.205 0.205 0.180  0.290  0.284 
0.80 0.245  0.189  0.225 0.229 0.190 0.189 0.167  0.270  0.258 
0.81 0.223  0.171  0.204 0.208 0.173 0.171 0.151  0.245  0.231 
0.82 0.162  0.127  0.151 0.151 0.131 0.128 0.115  0.180  0.174 
0.83 0.157  0.126  0.148 0.148 0.130 0.126 0.114  0.174  0.169 
0.84 0.155  0.126  0.148 0.147 0.131 0.126 0.115  0.173  0.169 
0.85 0.146  0.124  0.143 0.141 0.129 0.124 0.113  0.161  0.162 
0.86 0.142  0.124  0.144 0.141 0.129 0.124 0.114  0.156  0.161 
0.87 0.141  0.125  0.144 0.140 0.130 0.124 0.114  0.155  0.163 
0.88 0.140  0.126  0.146 0.141 0.132 0.126 0.116  0.155  0.165 
0.89 0.138  0.126  0.145 0.141 0.131 0.125 0.116  0.154  0.164 

 
 
Table 2-6 Scene reflectance calibration ratios of SPOT multispectral images used in 
this study. 

Reflectance calibration ratio ( )
( )λφθ

λ
,,

'
Z

RCA
S

RCA
rs

L

R
 

Image acquisition date 

Green Red Near infrared 
7/04/2007 0.00282 0.00313 0.00420 
7/19/2007 0.00232 0.00249 0.00410 

8/23/2007 0.00331 0.00336 0.00532 

9/03/2007 0.00345 0.00342 0.00500 
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Figure 2-7 Variable spectral radiometer (VSR) used for reflectance calibration. 
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Figure 2-8 Calibrated wavelength-dependent RCA-average reflectances and 
band-average reflectances. 
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total suspended solids tend to increase with sea surface reflectance whereas secchi 

disk depth tends to decrease with increase of sea surface reflectance. Chlorophyll-a 

concentration has no significant correlation with sea surface reflectance. It approves 

that the optical properties of Case II water is not depends on Chlorophyll-a 

concentration. 

To better illustrate the variation trend of these water quality variables, water quality 

measurements were grouped into several incremental intervals. Each water quality 

variable is classified into five or six classes, and interval-average water quality and 

corresponding average sea surface reflectance were calculated and were demonstrated 

in Figure 2-10(a)-(d). Using Equation 4-12, the specific water quality estimation 

models are as follow: 

11.125.6 −= rRSDD   ( 92.02 =R , p=0.03) (2-14a)

65.397.0 rRTurb =   ( 93.02 =R , p=0.01) (2-14b)

rRTSS 11.747.4 +−=  ( 45.02 =R , p=0.12) (2-14c)

rRChla 7.18.0 +−=   ( 22.02 =R , p=0.29) (2-14d)

where rR  represents the reflectance of red band. The signs of regression coefficients 

of rR are consistent with the physical phenomena normally observed in the natural 

environment, except for chlorophyll-a concentration (refer to Figure 2-1). 

Although the above water quality estimation models were established using the 

interval-average measurements, these models were adopted for water quality 

estimation using the pixel-based sea surface reflectance. The applicability of these 

models was checked by comparing the model estimates against the original 
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measurements. Figure 2-11(a) demonstrates that the water quality estimates are 

roughly consistent with the corresponding measurements. Each of the above models 

utilizes the single band reflectance rR  for estimation of a single water quality 

variable, and is referred to as the univariate model in this study.  

The water body is a mixture of seawater, suspended solids, dissolved organic 

matters, zooplankton, etc. The sea surface reflectance of a specific wavelength is 

affected by the combined effect of these constituents. On the other hand, the effects of 

individual constituents on the sea surface reflectance vary among different spectral 

wavelengths. Such wavelength-dependent combined effect must be reflected in the 

water quality estimation model. Thus, we propose the following multivariate model, 

by multivariate regression (Johnson and Wichern, 2002), for water quality estimation 

using the multispectral reflectances: 

( ) ( ) mnmrrnmn ZY ××++×× +⋅= εβ 11   (2-15)

where mnY ×  is the dependent variable matrix ( [ ]ChlaTSSTurbSDDY mn ,,,=× ), m and n 

are the numbers of water quality (m=4) and the number of data (n=25), respectively. 

( )1+× rnZ  is the independent variable matrix ( ( ) [ ]irrgrn RRRZ ,,,11 =+× ). Where the 

subscripts of reflectance refer to green, red and near infrared band. The number of 

band reflectances R is three. ( ) mr ×+1β  and mn×ε  are the coefficient matrix and 

residual matrix, respectively. The coefficient matrix is estimated by least squared 

estimator and expressed as: 

( ) YZZZ '1'ˆ −=β  (2-16)

After the coefficient matrix is estimated, the multivariate model can be expressed as 
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Figure 2-9 Scatter plots of water quality measurements versus band-dependent sea 
surface reflectances. 
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Figure 2-10 Scatter plots of interval-average water quality measurements versus sea 
surface reflectances. 
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Figure 2-11(b) demonstrates the results of water quality estimation using the 

multivariate model. Comparing to the estimation results of the univariate model, 

water quality estimates of the multivariate model show significantly less degree of 

dispersion around the line of equivalence. Notably, there is an out-of-bound estimate 

of SDD using the univariate model (see Figure 2-11(a)), whereas the corresponding 

estimate by the multivariate model is quite accurate. The superior of the multivariate 

model may be attributed to its capability of modeling the wavelength-dependent 

combined effect of the seawater constituents. It is also noteworthy that the sign of 

regression coefficients of the red band reflectance ( rR ) in both models are consistent, 

and the red band reflectance remains the dominant factor in the multivariate model. 

Performance of water quality estimation by the univariate and multivariate models 

was evaluated with respect to the correlation coefficient (r), root mean square error 

(RMSE) and normalized RMSE (see Table 2-7). Performance of the multivariate 

model is superior to the univariate model regardless of the overall or univariate 

performance.  

Quantitative coastal water quality mapping was accomplished by substituting the 

pixel-specific spectral reflectance calculated by Eq. (2-12) into the multivariate model 

of Equation (2-17). The resultant water quality distribution maps are shown in Figure 

2-12, Figure 2-13 and Figure 2-14. In general, SDD increases outward from the near 

shore area, whereas decreasing Tb and TSS can be observed. Such spatial variation 

trends are particularly evident on August 23 and September 3, 2007. Spatial variations 

of water quality variables on July 4 and 19 appear to be more complicated and the 
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Figure 2-11 Water quality measurements versus estimates. 
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Table 2-7 Comparison of water quality estimation models.  
Univariate model 

Variable SDD Turb TSS Chla 
r 0.60 0.59 0.53 -0.003 

RMSEa 3.21 1.21 2.06 0.89 

NRMSEb 0.48 1.14 0.92 1.08 
Multivariate model 

Variable SDD Turb TSS Chla 
r 0.70 0.55 0.58 0.069 

RMSEa 1.24 0.89 1.62 0.72 

NRMSEb 0.19 0.84 0.72 0.88 

aRMSE: ( )( ) kxx
k

i
ii∑

=

−
1

2ˆ , where the k is number of samples, the ix̂  represents the 

estimates, the ix  represents the observed samples.  
bNRMSE: normalized RMSE = RMSE / x , x  is the sample mean of observed 
samples.  
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influence of the water quality condition in the Yin-Yang Sea area is more significant. 

As can be seen in Figure 2-15(a), on July 2, 2007 there were higher waves on the sea 

and the brownish water color (the lower right corner in the figure) suggests higher 

concentrations of TSS and Tb in seawater. In contrast, the sea condition was calm on 

August 23 and no brownish water color can be observed in Figure 2-15(b). Turbidity 

distribution mapping also reveals areas with negative Tb values. Although small in 

magnitude, these negative estimates suggest exercising extra caution for estimates of 

low Tb concentration. Within the study area, the Yin-Yang Sea area has exceptionally 

higher TSS and Tb concentrations and lower SDD values due to non-dissolved solids 

routinely received from its upstream area. As for the area offshore from the YST 

tunnel outlet, no significant effect of the diverted flood flow on coastal water quality 

has been observed. This may be attributed to very few cases and short duration of 

flow diversion since the tunnel completion in 2003. However, a monitoring routine 

using satellite images is recommended for assessing the long term effect of the 

diverted flood flow on the coastal water quality. 

2.5 Conclusions 

In this study we demonstrate the feasibility of coastal water quality mapping using 

remote sensing images. A few concluding remarks are drawn as follows:  

(1) A surface reflectance estimation scheme which involves choosing a radiometric 

control area was proposed in this study. The scheme is applicable for local-scale 

environmental monitoring applications.  

(2) The three water quality variables (SDD, Tb, and TSS) are found to be most 

related to the red band surface reflectance. High values of the sea surface 

reflectance generally correspond to high TSS and Tb concentrations and low SDD 



 

 36

7/04/2007 7/19/2007 

8/23/2007 9/03/2007 
 

 
Figure 2-12 Spatial distribution of secchi disk depth. 
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Figure 2-13 Spatial distribution of turbidity. 
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Figure 2-14 Spatial distribution of total suspended solids. 
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Figure 2-15 Photos of the Yin-Yang Sea area taken during water sampling campaigns. 
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values. However, Chla is not well-correlated to band surface reflectance. 

(3) The water body is a mixture of the seawater and other constituents including the 

suspended solids, the dissolved organic matters, the zooplankton, etc. The 

proposed multivariate water quality estimation model takes into consideration the 

wavelength-dependent combined effect of individual constituents on the sea 

surface reflectance and yields more accurate water quality estimation results. 

(4) The signs of all bands reflectances for chlorophyll-a concentration in multivariate 

model is coincident with the spectral feature of chlorophyll-a, whereas the 

spectral feature is not reflected in univariate model. The multivariate model takes 

the co-variance of water quality variables into account and yields better ability to 

explain the nature of water quality. 

(5) Water quality mapping using remote sensing images shows a general pattern of 

increasing SDD and decreasing Tb and TSS outward from the coast. Under higher 

wave condition, water quality in the Yin-Yang Sea area may have more 

significant influence on the spatial distribution of water quality in the nearby 

area. 

(6) Until present, no significant effect of the diverted flow on coastal water quality 

has been observed due to few cases of flow diversion. However, a routine 

operation of coastal water quality mapping utilizing satellite images is 

recommended for assessment of the long term effect of the diverted flow. 
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Chapter 3 Assessing the effect of landcover changes on air 
temperature using remote sensing images 

3.1 Introduction  

Rice cultivation through paddy irrigation has had a long history in eastern and 

southeastern Asia. The vast extent of paddy fields necessitates a well-organized and 

sophisticated irrigation network including reservoirs, ponds, intake/outlet structures, 

pumps, channels, and flumes to convey enough water to all points in an irrigation 

district. Despite of its long history and relevant cultural aspect, such practices have 

been criticized for inefficiency of water utilization. In addition, demand and request 

for larger shore of water utilization from industrial sectors are ever increasing due to 

low market prices of agricultural produce as compared to industrial products. After 

entering WTO, agricultural sectors in Taiwan also face harsh competition of imported 

produce from labor-cheap countries. As a result, paddy fields in some regions are let 

fallow and converting paddy fields to other landuse types have been discussed. 

However, in addition to rice production, there are also concerns about 

multifunctionality of paddy cultivation. Such concerns have been the focus of 

countries and professional societies in eastern and southeastern Asia over the last 

several years. An important and apparent function of paddy field is its capability of 

flood retention during the typhoon and monsoon seasons (Nakanishi, 2004; Unami 

and Kawachi, 2005). Other functions of paddy culture include recharge of 

groundwater (Greppi, 2004), air temperature cooling (Saptomo et al., 2004; Yokohari 

et al., 1997, 2001), removal of pollutants in irrigation water (Ishikawa et al., 2003; 

Nakasone, 2003), providing habitat for inhabitants (Fukuda et al., 2006), aesthetic 

landscape, and facilitating religious/cultural activities. Many of these functions have 

been experienced or practiced for many generations. However, quantitative 
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evaluations of individual functions are difficult and rare due to lack of data and, in 

some cases, difficulty in determining what to measure. 

Many major cities in eastern Asia still paddy fields within their close vicinities. 

Existence of such paddy fields provides many functions in urban areas (Yokohari et 

al., 1994). Extensive landuse changes of paddy fields may have significant 

environmental, ecological, cultural, and social impacts and yield potentially severe 

and adverse consequences. Therefore, the positive and adverse effects of paddy 

culture should be thoroughly investigated and considered in the landuse planning and 

decision-making process.  

Yokohari et al. (1994, 1997, 2001) conducted a series of studies on the temperature 

cooling effect of paddy fields in urban fringe areas of Tokyo using field measured 

land surface and air temperatures. They found that measured surface temperatures 

varied by approximately 20oC, while measured air temperatures differed by more than 

2oC. For large study areas, it would be labor and time consuming to conduct field 

measurements. With the availability of many images from weather and land 

observation satellites, it seems beneficial and feasible to use remote sensing images to 

aid in similar studies. In addition, what kinds of landuse conversions should be 

pursued in order to avoid adverse effect and to sustain the environment quality in the 

region must also be investigated for a sound decision making. Therefore, the 

objectives of this study are to quantitatively evaluate the effect of landcover types on 

ambient air temperature using remote sensing images and to understand the 

inter-relationships of different landcover types in a region through a pilot study 

conducted in northern Taiwan. The flowchart of this study is shown in Figure 3-1.  
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Figure 3-1 Flowchart for assessing the effect of landcover changes on ambient air 
temperature. 
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3.2 Energy exchange between the land surface and the atmosphere 

Surface of paddy fields (partly to fully covered by crop canopy, depending on the 

growth condition) generally has a lower temperature than landcover types like bare 

soil and paved surfaces due to its higher moisture content in solids. However, instead 

of the land surface temperature, the ambient air temperature is of interest in 

assessment of the cooling effect of paddy field. The relationship of land surface 

temperature and ambient air temperature depends on landcover types and can be 

derived by considering energy exchange between the atmosphere and the land surface.  

Energy exchange between the atmosphere and the land surface (or the crop canopy) 

can be expressed by the following energy balance equation: 

0=−−− GHLERn   (3-1)

where Rn, LE, H and G respectively, represent the net radiation at the land surface, the 

latent heat flux, the sensible heat flux, and the soil heat flux.  

The net radiation is the sum of incoming and outgoing short and longwave 

radiations on the land surfaces, and is expressed by  

( ) ( ) τσεσε 44
0 11 skyaslssssn TrTSrR −+−−=   (3-2)

where 

So = incident solar radiation 
ssr = the shortwave reflectance of the land surface 

slr = the longwave reflectance of the land surface 

sε = the thermal emissivity of the land surface  

sε = the thermal emissivity of the atmosphere 

sT = the absolute temperature of the canopy or land surface 

skyT = the absolute temperature of the atmosphere 
τ  = the average transmittance of the atmosphere  
σ  = the Stefan- Boltzmann constant.  
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The first term in the right-hand-side of the above equation is the net incoming 

shortwave radiation. The second term is the thermal radiation emitted from the land 

surface. The last term is the thermal radiation emitted by the atmosphere and absorbed 

by the land surface. For thermal radiation, transmittance through the land surface can 

be assumed to be zero and, under the thermal equilibrium, the emissivity equals the 

absorptance ( aα ). Therefore,  

1=+=+ slssls rr εα   (3-3)

the net radiation of the land surface Rn can thus be expressed as 

( ) τσεεσε 44
01 skyasssssn TTSrR +−−=   (3-4)

The sensible heat flux can be expressed in terms of temperature difference as 

(Monteith and Unsworth, 1990): 

a

as
p r

TTCH −= ρ   (3-5)

where ρ  is the air density, Cp the specific heat of air at constant pressure, ra the 

aerodynamic resistance, and Ta is the air temperature at a reference height above the 

land surface. 

The latent heat is the energy used for transport of water vapor from the land surface, 

through crop evapotranspiration or evaporation from the soil, to the atmosphere and 

may be expressed as (Monteith and Uusworth, 1990): 

( )[ ]
γ

ρ

a

asp

r
eTeC

LE
−

= 0   (3-6)

where ( )sTe0  is the saturation vapor pressure at temperature Ts, ea is the actual vapor 

pressure, and γ is the psyshrometric constant. The vapor pressure deficit (VPD) of the 
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atmosphere is defined as  

( ) aa eTeVPD −= 0   (3-7)

The ( ) as eTe −0  term in Eq. (3-6) can be expressed by  

( ) ( )[ ] ( )asaaas TTeTeeTe −Δ+−=− 00   (3-8)

where Δ  is the slope of the saturation vapor pressure as a function of temperature. 

Substituting Eq. (3-8) into Eq. (3-6), it yields: 

( )[ ]
γ

ρ

a

asp

r
TTVPDC

LE
−Δ+

=   (3-9)

Idso et al., (1997) suggested that the soil heat flux (G) can be considered as a fraction 

(ξ) of Rn, i.e.,  

nRG ξ=   (3-10)

Rearrangement of the energy balance equation, i.e. Eq. (3-1), yields: 

( ) HLERn +=−ξ1   (3-11)

Substituting Eqs. (3-5) and (3-9) into Eq. (3-11), we have 

( ) ( )[ ]
γ

ρ
ρξ

a

asp

a

as
pn r

TTVPDC
r

TTCR
−Δ+

+−=−1   (3-12)

Rearranging the above equation yields: 

( ) ( )
γρ

ξ
γ

VPD
C

RrTT
p

na
as −−=−⎥

⎦

⎤
⎢
⎣

⎡ Δ+ 11   (3-13)

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+Δ
−

+Δ
−−=

γργ
ξγ VPD

C
RrTT

p

na
sa

1   (3-14)

The above equation expresses the relation of the air and surface temperatures. Both 
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the land surface temperature Ts and the net radiation Rn vary with landcover types, and 

therefore, the Ts ~ Ta relationships are landcover-dependent. The best way of 

collecting the landcover information in a large study area is by using remote sensing 

images, and thus Eq. (3-14) provides the rationale of combining remotely sensed land 

surface temperature Ts and locally calibrated Ts ~ Ta relationship for estimation of the 

air temperature with respect to different landcover types.  

3.3 Study area and remote sensing data set 

An area of approximately 275 km2 in Tao-Yuan County of northern Taiwan was 

chosen for this study (Figure 3-2). It encompasses different landcover types including 

paddy field, water ponds, residential and factory buildings, and other vegetations. The 

western half is mostly agricultural area while the eastern half has mixed land uses 

including manufactural and industrial parks. Multispectral remote sensing images of 

the study area from NOAA-16 AVHRR sensors and SPOT-4 HRVIR sensors were 

collected. Overpasses of the NOAA satellites were almost concurrent with the time of 

field data collection on 16 March and 4 April 2005. NOAA thermal images (channels 

4 and 5, with a spatial resolution of 1.1km×1.1km) were used for retrieval of land 

surface temperature. High-resolution multispectral SPOT images (green, red, infrared 

channels, with a spatial resolution of 20m × 20m) were used for landcover 

classification. A set of 45 orthorectified aerial photos (Figure 3-3) at 1:5000 scale 

were also collected to assist in landcover classification.  

3.4 Land surface temperature estimation using NOAA images 

The first step of our approach for assessing the effect of landcover types on ambient 

air temperature is to estimate the land surface temperature using NOAA thermal 

images. The AVHRR sensors aboard NOAA satellite receive and record thermal  
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Figure 3-2 Location map and pseudo-color SPOT image of the study area. 

 
Figure 3-3 Orthorefectified aerial photos of the study area and the field sampling 
route. 
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emissions from objects on the land surface. These sensors receive radiances within 

specific windows and techniques have been developed for retrieval of land surface 

temperatures from remote sensing thermal images (Prabhakara et al., 1974; McMillan, 

1975; Chedin et al., 1982; Price, 1984; Kerr et al., 1992; Li and Becker, 1993; 

Vasquez et al., 1997). Among these methods, the split window technique (SWT) 

briefly described below is most widely applied and adopted in this study. Readers are 

referred to Schott (1997) for theoretical details of the following derivations.  

Let the radiance received by a sensor with spectral window centered at wavelength 

λ  and the radiance emitted by a target object on the earth surface be respectively 

represented by ( )hLλ  and L(0). The radiance from the air column between the target 

and the sensor due to its mean effective temperature is represented by LTA. We then 

have 

( ) ( ) ( ) ( )[ ]hLhLhL TA λλλ ττ −+= 10   (3-15)

where h is the height of the satellite orbit and ( )hλτ  is the effective transmittance of 

the air column with respect to the sensor’s spectral window.  

For atmospheres dominated by absorption effects, the transmittance expressed as 

( ) ( )heh λβ
λ

ατ −=   (3-16)

where ( )λβα  is the absorption coefficient with respect to the spectral window 

centered at λ  and ( )hλβα  is the optical depth. For clear atmospheres, ( )hλτ  can 

be expanded using a Taylor series and truncated to yield as a good approximation: 

( ) ( )hh λβτ αλ −= 1   (3-17)

Therefore,  
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( ) ( ) ( )[ ] ( )hLLLhL TA λβαλ −−= 00   (3-18)

Assuming a linear relationship between the radiance and the apparent temperature, it 

yields: 

( ) ( ) ( )[ ] ( )hTTThT A λβαλ −−= 00  (3-19)

where ( )hTλ  is the apparent temperature at the sensor, T(0) the apparent temperature 

at the surface, and TA is the apparent temperature corresponding to LTA. The apparent 

temperature (also known as the brightness temperature) of an object is the kinetic 

temperature which a perfect radiator would be required to maintain in order to 

generate the radiance measured from the object.  

Suppose that images of two spectral channels (each of nominal wavelength 1λ and 

2λ ) which an atmospheric window are available. Then,  

( ) ( ) ( )[ ] ( )hTTThT A 100
1

λβαλ −−=  (3-20)

( ) ( ) ( )[ ] ( )hTTThT A 200
2

λβαλ −−=   (3-21)

where ( )hT
1λ  and ( )hT

2λ  are the apparent temperatures at the sensor with respect to 

channels 1 and 2, respectively. Rearranging Eq. (3-20) and (3-21), we have 

( ) ( ) ( )[ ] ( )hTThTT A 100
1

λβαλ −+=  (3-22)

( ) ( ) ( )
( )h

hTT
TT A

1

2
0

0
λβα

λ−
=−   (3-23)

( ) ( ) ( ) ( )
( ) ( )h

h
hTT

hTT 1
2

2

1

0
0 λβ

λβ α
α

λ
λ

−
+=   (3-24)

( ) ( ) ( ) ( )( ) ( )
( )2

1
21

00
λβ
λβ

α

α
λλ hTThTT −+=  (3-25)

Let  
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( )
( )2

1

λβ
λβ

α

α=R  (3-26)

it yields: 

( ) ( ) ( ) ( )RhThTTR
21

01 λλ +=−  (3-27)

( ) ( ) ( )
R

RhThT
T

−
+

=
1

0 21 λλ  (3-28)

( ) ( ) ( ) ( )
( ) ( ) [ ]1,

10

2121

11

21

21

=++=

−+=

cchTchTc

hTChTcT

λλ

λλ   (3-29)

Or,  

( ) ( ) ( ) ( ) ( )[ ]hThT
R

RhTT
211

10 λλλ −−+=   (3-30)

Eq. (3-30) shows that the land surface temperature can be calculated using the 

at-sensor apparent temperatures (which can be calculated using the measured 

radiances and the Plank’s equation) of two spectral channels.  

Gallo et al. (1993) and Florio et al. (2004) proposed the following equation for 

estimation of the land surface temperature using NOAA images of channels 4 and 5.  

( ) ( )544 3.30 TTTT −+=   (3-31)

where T4 and T5 are respectively the apparent temperatures of the target object derived 

from NOAA images of channels 4 and 5. Hereafter, apparent surface temperatures 

estimated using Eq. (3-31) will be referred to as the SWT surface temperatures. 

Figure 3-4 shows the spatial variation of SWT surface temperatures over the study 

area during 2 days of field data collection (described later). It can be seen clearly that 

apparent surface temperatures are higher in area with residential and factory building 

(the circled area) and lower in the northwestern region where paddy fields and other 

vegetations are the dominant landcover types. However, NOAA AVHRR images have 
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a spatial resolution of 1.1 km and each pixel corresponds to an area of 1.21 km2 on the 

earth surface. There may be different landcover types within the spatial coverage of a 

NOAA pixel, and the SWT surface temperatures are average temperatures of all 

landcover types within the pixel coverage.  

3.5 Estimating the landcover-specific surface temperatures 

SWT surface temperatures derived from NOAA images represent average 

temperature within a pixel which may be composed of several landcover types. Four 

major landcover types are present in the study area: (1) paddy fields, (2) water ponds, 

(3) built-up areas (including paved roads, residential area, and factory buildings) and 

bare soils, and (4) other vegetations. In order to assess the effect of landcover types on 

ambient air temperatures, it is necessary to further estimate the apparent temperatures 

of individual landcover types from the SWT surface temperatures. This can be done 

by determining the coverage ratios of different landcover types within individual 

NOAA pixels using the multispectral SPOT images. Detailed procedures are 

described below.  

Assume that k different landcover types are present in the study area. Within the 

spatial coverage of a pixel, each landcover type accounts for wi (i=1, 2,…,k). The 

pixel-average land surface temperatures can thus be calculated as  

( ) ( ) ( )∑
=

==
k

i
ii NjjTjwjT

1

,...,2,1,   (3-32)

where j is the index specifying individual pixels in the NOAA AVHRR images and N 

is the total number of pixels in the study area. The coverage ratio wi’s not only vary 

with landcover but also pixels. 

We also assume that within the study area the apparent temperatures of specific  
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(a) March 16, 2005 (b) April 4, 2005 

  
(c) Detailed landcover in area A (d) Detailed landcover in area B 

Figure 3-4 (a) and (b): spatial variation of apparent surface temperatures derived from 
NOAA AVHRR images. Brighter pixels have higher apparent temperatures. (c) Area 
A with paddy and other vegetation. (d) Area B with residential and factory buildings. 
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landcover types do not vary with spatial locations, i.e., 

( ) NjTjT ii ,...,2,1, ==   (3-33)

where Ti’s represent the landcover-specific apparent temperatures. Such assumption is 

reasonable since, for a specific landcover type, spatial variation of the apparent 

temperature within the study area (approximately 21km×13km) is small, and more 

importantly the effect of landcover types on ambient air temperatures should be 

assessed on a region scale, not base on individual pixels. Thus, spatial variation of the 

pixel-average land surface temperatures depends on coverage ratios of different 

landcover types present in individual NOAA pixels, i.e.,  

( ) ( )∑
=

==
k

i
ii NjTjwjT

1

,...,2,1,   (3-34)

Or equivalently in matrix form, 
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  (3-35)

WTT =   (3-36)

In the above equation the pixel-average land surface temperatures ( T ) can be 

substituted by the SWT surface temperatures, and thus if the coverage ratios wi (i=1, 

2,…,k) are known, the landcover-specific surface temperatures Ti (i=1, 2,…,k) can be 

determined by solving the inversion problem with the following least squares 

estimator: 

( ) TWWWT '' 1−=   (3-37)

The pixel-specific coverage ratio (W) were obtained by conducting a supervised 
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landcover classification using high-resolution multispectral SPOT images and 

orthorectified aerial photos. Implementation of the supervised landcover classification 

using remote sensing images involves the following steps: 

(1) Determining the landcover types to be specified in the subsequent analysis. Both 

the landcover conditions present in the study area and the required level of 

landcover details should be taken into consideration. Four major landcover 

types—paddy fields (P), water ponds (W), built-up area and bare soils (B), and 

other vegetations (V) are present in the study area. However, there were also areas 

covered by clouds (C), and therefore, a total of five landcover types were 

specified. 

(2) Determining the classification features to be used in classification. The selected 

features jointly should be able to differentiate different landcover types. SPOT 

multispectral (green, red, and near infrared) images were chosen as classification 

features in our study. 

(3) Collecting training pixels of individual landcover types. This is done by making 

several field investigations and referencing to the aerial photos to identify areas on 

satellite images which are representative of different landcover types. Digital 

numbers of training pixels are then extracted to establish the spectral signatures of 

different landcover types. Such signatures characterize the distribution and 

variation of digital numbers of individual landcover types in the feature space and 

form the basis of supervised landcover classification. 

(4) Pixels of unknown landcover types are classified by referencing their digital 

numbers to spectral signatures of different landcover types. Many classification 

methods have been developed and the maximum likelihood classification method 

was used in our study. Details of the supervised classification and the maximum 
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likelihood classification method can be found in Schowengerdt (1997) and Schott 

(1997). 

Results of landcover classification are assessed by the confusion matrix shown in 

Table 3-1. It achieves a very high overall accuracy (92.10%) and the user’s and 

producer’s accuracies of all landcover types except vegetation (V) are all higher than 

86%. Table 3-1 shows some pixels belonging to paddy fields and vegetations are 

mutually misclassified since their spectral signatures are more similar. Particularly, 

vegetation pixels are more likely to be classified into paddy fields. Figure 3-4 

demonstrates the landcover image resulted from landcover classification using 

multispectral SPOT images.  

The landcover image derived from multispectral SPOT images has a spatial 

resolution of 20m which is much smaller than the spatial resolution (1.1km) of the 

NOAA AVHRR images. By overlying NOAA AVHRR images on the landcover image 

(Figure 3-5), the coverage ratios (Wi) of individual landcover types within each 

NOAA pixel can be determined and landcover-specific surface temperatures Ti (i=1, 

2,…,k) can be obtained using Eq. (3-37). It should also be noted that NOAA pixels 

containing classified cloud pixels were excluded in subsequent analysis since 

coverage ratios of real landcover types in cloud-covered areas cannot be determined. 

As a result, among a total of 228 NOAA pixels, only 183 pixels (N=183 in Eq. (3-35)) 

were used for estimation of landcover-specific surface temperatures.  

Landcover-specific surface temperatures of the 2 days of field investigation 

(described in the Section 3.6) are shown in Table 3-2. Using the landcover-specific 

surface temperatures and within-pixel coverage ratios (Wi), pixel-average 

temperatures can be estimated by Eq. (3-35) and compared against the SWT surface  
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Figure 3-5 Results of landcover classification using multispectral SPOT images (W: 
water ponds, P: paddy fields, B: built-up, V: other vegetations, and C: clouds). 
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Figure 3-6 Comparison of pixel-average surface temperatures derived by the split 
window technique (TSWT) and estimated using landcover-specific surface temperatures 
(T ). 
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Table 3-1 Confusion matrix of landcover classification using training data. 
 Reference landcover types Sum User’s accuracy (%)
Classified landcover types W P B V C   

W 3236 0 11 0 0 3247 99.66 
P 0 3963 2 613 0 4578 86.57 
B 98 1 5344 13 316 5772 92.58 
V 4 487 26 1126 0 1643 68.53 
C 0 0 88 0 5669 5757 98.47 

Sum 3338 4451 5471 1752 5985 20997 Overall accuracy 
Producer’s accuracy (%) 96.94 89.04 97.68 64.27 94.72  92.10% 

 
Table 3-2 Estimated landcover-specific surface and air temperatures (°C). 

Date Landcover type 
 W P B V 

Surface temperature  
03/16/2005 25.18 33.17 37.49 29.90 
04/04/2005 20.84 28.88 33.31 24.65 

     
Air temperature     

03/16/2005 26.35 28.51 29.34 27.77 
04/04/2005 23.05 25.17 27.23 23.70 

W: water ponds, P: paddy fields, B: built-up, V: other vegetations 
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temperatures. Figure 3-6 demonstrates the pixel-average surface temperature (T ) 

estimated by landcover-specific surface temperatures and the SWT surface 

temperatures (TSWT) are well correlated and the regression lines are almost identical to 

the line of equivalence (slope and interception of the regression lines are respectively 

very close to 1.0 and 0), suggesting the applicability of the landcover-specific surface 

temperatures and coverage ratios within individual NOAA pixels. 

3.6 Pixel-average air temperature estimation 

Field investigations were conducted on 16 March and 4 April 2005 in order to 

develop landcover-specific relationships for surface and air temperatures. In 16 March 

the weather is quiet clear, however there is some cloudy in 4 April 2005. During each 

trip of field investigation surface temperatures of different landcover types and 

corresponding air temperature at 0.2, 0.4, 0.8, 1.2, 1.6 and 2m above the ground 

surface were measured by an infrared thermometer. The field investigations were 

conducted roughly between 11:00 am and 2:30 pm in order to be nearly concurrent 

with the daytime overpass of NOAA AVHRR sensors. A V-shape sampling route as 

shown in Figure 3-2 was adopted to take into consideration the spatial variation of 

temperatures and to cover both north-south and east-west extent of the study area. 

Land surface and air temperatures of different landcover types were measured at 

locations near centers of individual aerial photos (see Figure 3-2) along the sampling 

route. At each location and height, 20 temperatures readings were recorded and the 

average value was taken as the representative temperature. In order to take the diurnal 

temperature changes into consideration, a temperature adjustment practice suggested 

by Yokohari et al. (1997) was adopted. Upon completion of temperature sampling 

along the sampling route, land surface and air temperatures at the starting point were 
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measured again and all other temperature measurements were adjusted to be 

consistent with the last measurement by assuming a liner temporal variation of 

temperatures. Figure 3-7 illustrates vertical air temperature profiles of different 

landcover types.  

Air temperatures above the surface of water ponds have reversed vertical profiles, 

i.e., the surface temperatures are lower than the air temperatures at different heights. 

For other landcover types, surface temperatures are higher than air temperatures. In 

particular, built-up areas have a sharp temperature decrease (about 6-120C) from the 

ground surface to 20cm above the ground. Paddy fields and other vegetations have 

much smaller temperatures decrease (about 0.5-30C) at the same height. More 

specifically, paddy fields seem to have a little larger temperature decrease than 

vegetations.  

Using the above temperature measurements, the following empirical relationships 

(also shown in Figure 3-8) of land surface temperatures (Ts) and air temperatures at 2 

m height (Ta) with respect to different landcover types were developed: 

 8106.27748.0 += sa TT  (paddy fields) (3-38a)
 407.10505.0 += sa TT   (built-up) (3-38b)
 2131.776.0 += sa TT    (water ponds) (3-38c)
 6043.47747.0 += sa TT  (other vegetations) (3-38d)

These relationships are needed for calculation of NOAA-pixel-average air 

temperatures using a procedure illustrated in Figure 3-9 and described below.  

Spatial variation of surface temperatures within a NOAA pixel in characterized by 

the landcover-specific surface temperatures and spatial distribution of different 

landcover types within the NOAA pixel. The landcover-specific surface temperatures 

are then converted to landcover-specific air temperatures using the empirical  
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Figure 3-7 Vertical temperature profiles of different landcover types. 
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Figure 3-8 Landcover-specific empirical relationship between the air temperature at 
2m height (Ta) and surface temperature (Ts). 

 

H
ei

gt
h 

(c
m

) 

H
ei

gt
h 

(c
m

) 

H
ei

gt
h 

(c
m

) 

H
ei

gt
h 

(c
m

) 

Paddy fields 

Built-up 
area & 

bare soils 

Water ponds Other 
vegetations 

Ta
 

Ta
 

Ta
 

Ta
 

Paddy fields Built-up 

Other vegetations Water ponds 

Ta = 0.7748Ts + 2.8106 
R2=0.7708 

Ta = 0.505Ts + 10.407 
R2=0.9109 

Ta = 0.7747Ts + 4.6043 
R2=0.8751 

Ta = 0.76Ts + 7.2131 
R2=0.5563 



 

 64

 

 
       
       
       
       
       
       

 
 
 
 
 

Figure 3-9 Schematic illustration of procedures of calculation of pixel-average air 
temperature over a NOAA pixel. 
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relationships of Eqs. (3-38a)-(3-38d). Although empirical relationships between the 

surface temperatures and air temperatures were derived based on point temperatures 

measurements, they were also used for converting the landcover-specific surface 

temperatures (which represent area-average temperatures) to corresponding air 

temperatures. Finally, the average air temperatures over individual NOAA pixels were 

calculated as the area-weighted average of landcover-specific air temperatures, i.e., 

( ) ( ) NjTjwjT
ia

k

i
ia ,...,2,1,

1

==∑
=

(3-39)

where ( )jT a  is the average air temperatures of the jth NOAA pixel, 
iaT  the air 

temperature of the ith landcover types presents in the jth NOAA pixel.  

Table 3-2 shows the landcover-specific air temperatures at the time of field 

investigation estimated using the above method. Readers are reminded that the 

average surface and air temperatures discussed in this paper refer to respective 

average temperatures over individual NOAA pixels. We consider the size of a NOAA 

pixel (1.1km×1.1km) is appropriate for assessing the landcover changes and its effect 

on ambient air temperatures. 

3.7 Effect of landcover types on ambient air temperatures 

Table 3-2 indicates that surface temperatures vary with landcover types. Built-up 

areas with paved roads and residential and factory buildings have significant higher 

surface temperatures than other landcover types, while water ponds have the lowest 

surface temperatures. Surface temperatures of paddy fields are 3-4° higher than that of 

other vegetations. This may be due to the fact that rice crops in the paddy fields have 

not formed full canopy coverage at the time of this study. However, with regard to the 

living environment, it is the ambient air temperature that is of major concern.  
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Although the built-up landcover has a significantly higher surface temperature than 

other landcover types, the corresponding air temperature differences are smaller. This 

is because the built-up landcover has the largest vertical temperature gradient. On 16 

March 2005 the maximum air temperature difference (between the built-up areas and 

the water ponds) was about 3°C, while on 4 April 2005 the maximum difference was 

about 4.2°C. It is worthy to mention that the differences between landcover-specific 

surface and air temperatures are also dependent on local climatological condition.  

The data in Table 3-2 imply that if an area of NOAA pixel size (1.1km×1.1km) 

with a complete water ponds coverage is converted to a complete built-up coverage, 

the ambient air temperature will be raised by about 3°C (29.34-26.35) to 4°C 

(27.23-23.05). Other kinds of landcover conversions will result in smaller changes on 

ambient air temperatures. Similarly, if the same area is converted from a full paddy 

coverage to a complete built-up area, the ambient air temperature rise will be about 

0.8°C (29.34-28.51) to 2°C (27.23-25.17). Such arbitrarily hypothesized landcover 

conversions between two landcover types are referred to as the blind landcover 

conversions since it may not reflect the actual landcover conditions of the study area. 

For example, in our study there is no pixel with complete paddy or water coverage.  

We argue that landcover conversions will not arbitrarily occur and the likely 

conversions are often restricted by the local or regional conditions of resources 

availability, transportation, etc. Within an area of NOAA pixel size, landcover 

conversions are amore likely to take place among several landcover types, instead of 

mutual conversion between two landcover types. Prevalent landcover conversions 

area related to climatological, geographical, economical, sociological, and other 

factors, and should be considered in assessing the effect of landcover types on 

ambient air temperatures. Such prevalent conversions often are too complicated to be 
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characterized by a generally applicable model and should be considered as a local or 

regional phenomenon. Thus, a locally based assessment of the effect of landcover 

types on ambient air temperatures is presented below.  

Apart from comparing the landcover-specific air temperatures based on blind 

landcover conversions, another way of assessing the effect of landcover types on 

ambient air temperatures is by evaluating average air temperatures with respect to 

coverage ratios of certain landcover types within individual NOAA pixels. Such 

assessment is similar to Yokohari et al. (1997), although in their study temperature 

differences between 50m×50m cells and a reference urban area with respect to paddy 

coverage ratios were evaluated.  

Figure 3-10 illustrates relationships between pixel-average air temperatures ( aT ) 

and within-pixel coverage ratios (CR) of different landcover types. All regression 

lines, particularly the one associated with the built-up landcover type, are very 

significant, suggesting well-established landcover patterns in the study area. It should 

be emphasized that, for any given value of average air temperature (e.g., 28.8°C), the 

sum of corresponding coverage ratios of different landcover types (determined by the 

regression lines) is always very close to 100%. It indicates the regression lines shown 

in Figure 3-10 are inter-related and collectively they characterize the existing 

landcover pattern within the study area. For example, a pixel with 60% built-up 

coverage is likely to have about 27 and 13% coverage of vegetations and paddy fields, 

respectively, The maximum coverage ratio of paddy fields within a NOAA pixel is 

about 26% whereas the maximum coverage ratio of built-up areas reaches near 100% 

due to the dense population and fully developed industrial and manufactural parks. It 

can also be observed that water ponds only exist in areas which are agriculture (paddy 

fields and other vegetations combined) dominant since they are used as irrigation 
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water supply. Another important observation of Figure 3-9 is that reduction in paddy 

and vegetation coverages ten to occur contemporaneously due to decline in 

agricultural activities, and such reductions are converted to increase of built-up areas. 

For regions with no well-established landcover pattern, co-existence of the 

landcover-specific regression lines in Figure 3-9 will not appear.  

The increasing (or decreasing) trend of ambient air temperatures with respect to 

increasing within-pixel coverage ratio of built-up areas (or other landcover types) is 

apparent. Under the existing landcover pattern (i.e., the pattern of inter-related 

regression lines in Figure 3-9), the ambient air temperature will rise by 1.7°C (from 

27.8 to 29.5 on 16 March) to 3.1°C (from 24.3 to 27.4 on 4 April) if the coverage 

ration of paddy fields decreases from its maximum of 26% to none. It may seem 

unreasonable that this amount of ambient air temperature rise is higher that the 

0.8-2°C rise under the blind landcover conversion. This can be explained by 

considering the existing landcover pattern in the region.  

Under the existing landcover pattern of the study area, a pixel with 26% paddy 

coverage is likely to have 19% water ponds, 51% vegetations, and only 5% of built-up 

area, resulting in a pixel-average air temperature of 27.8°C (16 March 2005) which is 

lower than the landcover-specific air temperature of paddy fields (28.51°C). Similarly, 

when the paddy coverage is reduced to zero, the vegetation coverage will also 

decrease due to decline of agricultural activities in the area. Reduced coverages of 

paddy fields and vegetations are converted to built-up areas, causing the pixel-average 

air temperatures to reach around 29.5°C (very close to the landcover-specific air 

temperature for built-up areas, 29.34°C). The will-established existing landcover 

pattern reflects the complex local conditions that sustain the totality of living 

environment in the region. Blind landcover conversion ignores such existing  
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Figure 3-10 Empirical relationships between within-pixel coverage ratios of different 
landcover types and pixel-average air temperature. The inter-related regression lines 
collectively characterize the prevalent landcover conversion pattern of the study area. 
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landcover pattern and will only yield imaginary assessment results. For example, 

assessing the effect of turning huge areas (several pixels) of all-paddy fields into 

water ponds is unrealistic since such all-paddy pixels do not exist in the study area. 

Scenarios contradicting the existing landcover pattern should not be presented for 

assessment.  

We may further consider the situation of changing from an existing landcover 

condition to a forced landcover condition. Suppose a pixel with existing landcover 

condition of 26% paddy fields is forced to become 50% of built-up areas and 50% of 

paddy fields. Under such forced landcover conversion, the average air temperature 

will be raised from 27.8 to 28.93°C (using landcover-specific air temperatures on 16 

March 2005), an increase of 1.13°C. In contrast, if a prevalent landcover conversion 

(conversion following the existing landcover pattern) is taken, a pixel with 50% 

built-up coverage (corresponding o 16% and 32% coverages of paddy fields and other 

vegetation, respectively) has an average air temperature of 28.63°C. The forced 

conversion results in a higher temperature increase than would be under prevalent 

conversion.  

The concept of different landcover conversions can be better illustrated in a 

coverage-ratio space as shown in Figure 3-11. Scattering of actual landcover ratios of 

individual NOAA pixels (points marked by ▲ except C and D) exhibits a pattern 

which characterizes the existing landcover conditions. Landcover condition of point C 

is unrealistic and thus landcover conversion from point C to B is a blind conversion. 

Point A represents an existing landcover condition and conversions from point A to B 

and D are respectively the prevalent and forced landcover conversions. A forced 

landcover conversion contradicts the existing landcover pattern and may cause 

complicated consequences. For instance, conversion from point A to D will force  
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Figure 3-11 Illustrative example of the prevalent, blind and forced conversion. 
Numbers represent coverage ratios in percentage. Point marked by ▲ (except C and 
D) represent actual landcover coverage ratios of NOAA pixels in the study area. 
Scattering of these points characterizes the existing landcover pattern. 
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landcover types of vegetation and water ponds to disappear and increase the coverage 

of paddy fields and built-up areas. It may encounter problems such as not having 

enough water for irrigation and low intention of local farmers to transform from 

vegetation growing to paddy culture. Additional resources allocation and incentives 

may need to be introduced in order to ensure a successful forced conversion.  

Several final remarks should also be mentioned: 

(1) We recognize that environmental changes are dynamic processes and the existing 

landcover pattern may gradually change over time. Therefore, long-term 

monitoring of landcover changes should be pursued.  

(2) Analyses and results of this pilot study were based on data collected in only 2 

days of field investigation. It may not reflect the complete range of temperature 

changes during the full growing period of paddy rice. Therefore, continuation of 

this pilot study is necessary for a more complete assessment of landcover effect on 

ambient air temperature in the study area.  

(3) Spatial scattering of different landcover types within a NOAA pixel may also 

affect the pixel-average air temperatures. Yokihari et al. (1997) studied the effect 

of segmentation of paddy fields on air temperature and found that, for 

intermediate coverage ratios (30-70%) of paddy fields, segmentation level of 

paddy fields has strong influence on air temperatures is more complicated and 

should be pursued in future study.  

3.8 Conclusions 

In this study we present a new method for assessment of landcover effect on 

ambient air temperature using remote sensing images. The proposed method takes 

into account the existing landcover pattern. A few concluding remarks are drawn as 
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follows.  

Landcover-specific empirical relationships exist between within-pixel coverage 

ratios and pixel-average air temperatures. These empirical relationships are 

inter-related and they collectively characterize the existing landcover pattern of the 

region. Landcover conversions tend to follow a local prevalent pattern which sustains 

the totality of the living environment in the region.  

In our study, under the prevalent landcover conversion pattern, reduce the coverage 

ratio of paddy fields from its maximum of 26% to none will result in an ambient air 

temperature rise of 1.7-3.1°C. Increasing the coverage ratio of built-up areas (or 

decreasing coverage of paddy fields, other vegetation, and water ponds) will result in 

rise of ambient air temperature (measured at 2m height). In the study area, reductions 

in paddy and vegetation coverage tend to occur contemporaneously due to the decline 

in agricultural activities, and such reductions are converted to increase of built-up 

areas. 

References 

Chedin, H., Scott, N.A., Berroir, A., (1982). A single channel double-viewing angle 
method for sea surface temperature determination from coincident METEOSAT 
and TIROS-N radiometric measurements. J. Climate Appl. Meteorol., 21, 
613–618. 

Florio, E.N., Lele, S.R., Chang, Y.C., Sterner, R., Glass, G.E., (2004). Integrating 
AVHRR satellite data and NOAA ground observations to predict surface air 
temperature: a statistical approach. International Journal of Remote Sensing, 25, 
2979–2994. 

Fukuda, S.,Hiramatsu,K.,Mori,M., (2006). Fuzzy neural networkmodel for habi-tat 
prediction and HEP for habitat quality estimation focusing on Japanese medaka 
(Oryzias latipes) in agricultural canals. Paddy Water Environ., 4, 119–124. 

Gallo, K.P., McNab, A.L., Karl, T.R., Brown, J.F., Hood, J.J., Tarpley, J.D., (1993). 



 

 74

The use NOAA AVHRR data for assessment of the urban heat island effect. J. 
Appl. Meteorol., 32, 899–908. 

Greppi, M., (2004). Infiltration process and groundwater table rising in a paddy field 
area. Paddy Water Environ., 2, 171–179. 

Idso, S.B., Jackson, R.D., Reginato, R.J., (1977). Remote sensing of crop yields. 
Science, 196, 19–25. 

Ishikawa, M., Tabuchi, T., Yamaji, E., (2003). Clarification of adsorption and 
movement by predicting ammonia nitrogen concentrations in paddy percolation 
water. Paddy Water Environ., 1, 27–33. 

Kerr, Y.H., Lagouarde, J.P., Imbernon, J., (1992). Accurate land surface temperature 
retrieval from AVHRR data with use of an improved split window algorithm. 
Remote Sensing of Environment, 41, 197–209. 

Li, Z.L., Becker, F., (1993). Feasibility of land surface temperature and emissivity 
determination from AVHRR data. Remote Sensing of Environment, 43, 67–85. 

McMillan, L.M., (1975). Estimation of sea surface temperatures fromtwo infrared 
window measurements with different absorptions. J. Geophys. Res., 80, 
5113–5117. 

Monteith, J.L., Unsworth, M.H., (1990). Principles of environmental physics. Edward 
Arnold. 

Nakanishi, N., (2004). Potential rainwater storage capacity of irrigation ponds. Paddy 
Water Environ., 2, 91–97. 

Nakasone, H., (2003). Runoff water quality characteristics in a small agriculture 
watershed. Paddy Water Environ., 1, 183–188. 

Prabhakara, C., Dalu, G., Kunde, V.G., (1974). Estimation of the sea surface 
temperature from remote sensing in the 11 to 13μm window region. J. Geophys. 
Res., 79, 5039–5044. 

Price, J.C., (1984). Land surface temperature measurements from the split window 
channels of the NOAA 7 advanced very high-resolution radiometer. J. Geophys. 
Res., 89, 7231–7237. 

Saptomo, S.K., Nakano, Y., Yuge, K., Haraguchi, T., (2004). Observation and 
simulation of thermal environment in a paddy field. Paddy Water Environ., 2, 
73–82. 



 

 75

Schott, J.R., (1997). Remote Sensing—the Image Chain Approach. Oxford University 
Press. 

Schowengerdt, R.A., (1997). Remote Sensing—Models and Methods for Image 
Processing(2nd ed.). San Diego: Academic Press. 

Unami, K., Kawachi, T., (2005). Systematic assessment of flood mitigation in a tank 
irrigated paddy fields area. Paddy Water Environ., 3, 191–199. 

Vasquez, D.P., Reyes, F.J.O., Arboledas, L.A., (1997). A comparative study of 
algorithms for estimating land surface temperature from AVHRR data. Remote 
Sensing of Environment, 62, 215–222. 

Yokohari, M., Brown, R.D., Takeuchi, K., (1994). A framework for the conservation of 
rural ecological landscapes in the urban fringe area in Japan. Landscape and 
Urban Planning, 29, 103–116. 

Yokohari,M., Brown, R.D.,Kato,Y.,Moriyama,H., (1997). Effect of paddy fields on 
summertime air and surface temperatures in urban fringe areas of Tokyo, Japan. 
Landscape and Urban Planning, 38, 1–11. 

Yokohari, M., Brown, R.D., Kato, Y., Yamamoto, S., (2001). The cooling effect of 
paddy fields on summertime air temperature in residential Tokyo, Japan. 
Landscape and Urban Planning, 53, 17–27. 

 



 

 76



 

 77

Chapter 4 Forest Drought Monitoring  

4.1 Introduction 

Drought is a complex natural disaster that affects the entire ecosystem. Generally, a 

drought refers to a period during which the rainfall is lower than the average. Rainfall 

deficit has different impacts depending on factors such as meteorological conditions, 

ecosystem type, and social and economic circumstances (McVicar and Jupp, 1998). 

According to McVicar and Jupp (1998), there are four major types of drought. They 

are as follows: 

1. Meteorological drought. This is generally regarded as a period during which 

lower than average precipitation is received. The time period is related to 

meteorological condition and ecosystem type; in some cases air temperature 

and precipitation anomalies may be combined. 

2. Agricultural drought. It occurs when the total quantity of available water, i.e. 

the precipitated water and the water stored in the soil, falls below that required 

by a plant community during the critical growth stage. This leads to below 

average yields in both pastoral and grain-producing regions. 

3. Hydrologic drought. This is generally defined by one or a combination of 

factors such as stream flow, reservoir storage and groundwater. 

4. Socioeconomic drought. This is defined in terms of loss from an average or 

excepted return. This can be measured by both social and economic indicators.  

In Taiwan, drought has been studied from the meteorological (Lin, 2007), 

agricultural (Chung et al., 2005), and hydrological (Liu, 1994) perspectives. From the 

meteorological point of view, the application of an index provides a comparable and 
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easily understood categorization of rainfall anomaly. Among the numerous 

meteorological precipitation indices, the standard precipitation index (SPI) proposed 

by McKee (1993) is one of the most commonly used indices to describe the anomalies 

in rainfall. Advantages of the SPI include simplicity and time scale variability, which 

make it suitable for quantifying most types of drought events. Therefore, the SPI is 

used to assess the precipitation anomalies in this study. 

Details of apply remotely sensed data to monitor drought events have been 

suggested and validated in numerous literature (Kogan, 1995a, 1995b, 1997, 1998; 

Unganai and Kogan, 1998a, 1998b; Singh et al., 2003). Study of drought (water stress) 

effect on vegetation can be traced back to Idso et al. (1977). They proposed an index 

which is a summation of the difference between the canopy temperature and the 

ambient air temperature during the growing season of wheat. They then proposed the 

crop water stress index (CWSI) for assessing crop health and establishing irrigation 

scheduling at the field scale. The CWSI is defined as one minus the ratio of daily 

actual to daily potential evapotranspiration. Since the CWSI was proposed, numerous 

studies have used it for many different types of crop (Idso, 1982; Su, 2004). Su (2004) 

applied the CWSI in rice paddy fields and concluded that during water stress, the rice 

canopy temperature increases and the chlorophyll concentration of the leaves 

decreases after several days. The characteristics of drought (or water stress on 

vegetation) agree with the experimental results of several authors (Moran et al., 1994; 

McVicar and Jupp, 1998).  

The key indicators of the effect of drought on vegetation are the spectral vegetation 

indices and the temperature indices. The most commonly used vegetation index is the 

normalized difference vegetation index (NDVI), which is well correlated to the 

pigment amounts in vegetation (Gitelson and Merzlyak, 1997). Kogan (1995a) 
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proposed vegetation condition index (VCI), which is a percentage of NDVI values at 

a specific time with respect to the pixel-based maximum NDVI amplitude. Some 

authors show that there is a lag time from insufficient water supply (or rainfall) to the 

reduction in chlorophyll content (McVicar and Jupp, 1998). During the lag time, the 

NDVI has a limited ability to assess drought conditions. However, surface 

temperature may play an alternative role. 

Kogan (1995a) also proposed the temperature condition index (TCI), which uses 

surface temperature information to assess drought conditions. McVicar et al. (1992) 

and Jupp et al. (1998) developed the normalized difference temperature index (NDTI), 

which depends on modeling two surface temperatures if there is an infinite and zero 

surface resistance. These surface temperatures can be considered as the upper and 

lower limits. 

In the literature, there are two major combinations of thermal and reflective data for 

drought assessment. The first is an integration of the VCI and TCI by a linear 

combination and it yields a vegetation health index (Kogan, 1995a, 1995b, 1997, 

1998a, 1998b, 2000). Kogan mentions that the coefficients of the VCI and TCI are a 

function of the type of vegetation and others environmental factors. The second 

method is to construct a triangle shape in vegetation index and temperature space 

(VI-Ts). The details of VI-Ts space will be discuss in section 4.3. 

In this study, we identify the drought and non-drought years using SPI. Six SPOT 

(Satellite Pour l'Observation de la Terre) satellite images with a spatial resolution of 

20 m were taken in each May from 1999 to 2004 and were used to classify drought 

severity. In addition, series of AVHRR (Advanced Very High Resolution Radiometer) 

images taken in year 2002 and 2004 were used. The AVHRR images can be used to 
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calculate surface temperature and vegetation index. Therefore, AVHRR images are 

utilized to construct a VI-Ts diagram, and an upgraded version of the VI-Ts diagram is 

proposed in this study. 

4.2 Study Area and Materials 

The forest area in the upstream basin of the Shihmen reservoir is selected as the 

study area (Figure 4-1). One meteorological station, GaoYi station (21C080), is 

selected to represent the forest area upstream from the Shihmen reservoir. The 

precipitation records of the station, which have been kept for more than 30 years, are 

collected.  

The acquisition dates of the SPOT images and relative information are given in 

Table 4-1 and the six SPOT false-color images are given in Figure 4-2. For SPOT 

images, there are four spectral bands: green (0.51−0.59 μm), red (0.61−0.68 μm), near 

infrared (0.79−0.89 μm), and short wave infrared (1.58−1.75 μm), and a 20 meter 

spatial resolution. Every SPOT image is geometrically rectified, and the error of 

rectification is less than 10 meters. Other satellite images, with coarser spatial 

resolution (1.1 km at nadir) are also collected. Several AVHRR images taken in 2002 

and 2004 are obtained from the Center for Space and Remote Sensing Research, 

National Central University. Thirty-nine images with less cloud covered are selected 

in year 2002, and 30 images for the year 2004; the dates of the selected images are 

listed in Table 4-2. AVHRR data include five spectral bands—red (0.58−0.68 μm), 

near infrared (0.725−1.1 μm), mid-wave infrared (3.55−3.93 μm), and two thermal 

channels (10.3−11.3 μm and 11.5−12.5 μm)—and provide information about 

vegetation and surface temperature.  

The AVHRR data are preprocessed using WinChips software, which coordinates 
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Figure 4-1 Northern Taiwan and the upstream basin of the Shihmen reservoir. 



 

 82

 

Table 4-1 SPOT images used in this study. 
Physical gain value Minimum radiance ( srmmW ×× μ2/ )

Sensor Date 
Band 1 Band 2 Band 3 Band 1 Band 2 Band 3 

SPOT-4 1999/05/11 1.935 2.28786 2.42568 26.17 11.80 10.31 

SPOT-4 2000/05/09 1.467 1.83253 0.876* 31.36 18.01 22.83 

SPOT-4 2001/05/25 1.4085 1.78991 1.93605 43.31 24.02 9.30 

SPOT-4 2002/05/29 1.3545 1.76272 1.2735 31.91 18.15 7.85 

SPOT-4 2003/05/07 1.3545 1.76272 1.2735 36.18 15.32 6.28 

SPOT-2 2004/05/11 1.43772 1.2662 1.15374 70.94 18.95 17.33 

*: Extremely low physical gain value due to different mode setting when the image was acquired. 

 
Table 4-2 Selected AVHRR images with less cloud cover. 

Dates of AVHRR image 
2002 2004 

2002-01-04-0511* 2002-07-22-0416 2004-01-03-0555 2004-07-06-0425 

2002-01-06-0450 2002-07-24-0533 2004-01-04-0544 2004-07-24-0558 

2002-01-10-0547 2002-08-19-0410 2004-01-10-0437 2004-07-25-0546 

2002-02-17-0540 2002-08-27-0422 2004-02-10-0526 2004-08-01-0429 

2002-02-22-0446 2002-08-28-0411 2004-02-14-0442 2004-08-03-0544 

2002-02-26-0405 2002-08-29-0401 2004-02-22-0451 2004-11-20-0506 

2002-03-07-0546 2002-09-17-0530 2004-03-11-0448 2004-11-29-0503 

2002-03-08-0357 2002-09-18-0519 2004-03-22-0603 2004-12-02-0608 

2002-04-06-0521 2002-10-14-0533 2004-04-11-0536 2004-12-09-0450 

2002-04-08-0459 2002-10-15-0522 2004-04-21-0523 2004-12-11-0605 

2002-04-14-0534 2002-10-16-0511 2004-05-03-0448 2004-12-12-0554 

2002-04-15-0523 2002-11-05-0450 2004-05-11-0638 2004-12-13-0543 

2002-04-22-0409 2002-11-08-0418 2004-05-16-0540 2004-12-16-0509 

2002-04-23-0537 2002-11-09-0408 2004-06-02-0548 2004-12-29-0600 

2002-05-02-0401 2002-12-04-0430 2004-06-10-0557  

2002-05-10-0552 2002-12-05-0420 2004-06-28-0553  

2002-06-19-0515 2002-12-13-0431   

2002-06-21-0453 2002-12-14-0559   

2002-06-24-0601 2002-12-15-0548   

 2002-12-17-0526   

*: The last four digits represent the Greenwich Mean Time (GMT) of image acquired. 



 

 83

 

  
1999 2000 

  

  
2001 2002 

  

  
2003 2004 

Figure 4-2 False-color representations of SPOT images from 1999 to 2004. 
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the images into a longitude and latitude system. The WinChips output data are albedos 

for two visible channels and brightness temperatures for three infrared channels. 

However, the largest geometric registration error of the output images may be as large 

as 10 km. Therefore, manually geometric registration of each AVHRR image is 

conducted by selecting several ground control points (GCPs) around the boundary of 

Taiwan and controlling the registration error to within 1.1 km. 

Besides the registration problem, the other difficulty for land resource monitoring is 

the presence of cloud cover in the study area. Cloud screening plays an important role 

in series satellite images applications. Therefore, a standard and efficient cloud 

screening procedure is necessary. Saunders and Kriebel (1988) applied a radiance 

band ratio, channel 2 divided by channel 1, and determined a threshold to identify 

cloud pixels in an AVHRR image. Welch (1998) mentioned that the spatial variability 

of the spectral signal increases when cloud cover present in an image. He utilized the 

GLCM (Gley Level Co-occurrence Matrix) method to assess the spatial texture of 

cloud. The variables of the GLCM, including angular second moment (ASM), contrast 

(CON), and entropy (ENT), are commonly used in texture analysis. The other method 

for cloud screening is based on the physical characteristics of clouds. However, prior 

knowledge is needed for the physical-based method.  

The cloud screening procedure (see Figure 4-3) proposed in this study combines the 

reflective spectral features of cloud and the spatial texture characteristics. We assume 

that when cloud presents in a pixel, the sensor-received reflective radiance and the 

spatial contrast will increase. We exclude the feature of low cloud top temperature 

because the cloud top temperature may vary with seasons and types of cloud. The 

thresholds of channel 1 and channel 2, albedos equal to 15%, are first applied. If there 

is a pixel for which the albedos of channel 1 ( 1a ) and channel 2 ( 2a ) are both larger 
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than 15%, the pixel is probability covered by clouds; otherwise, the pixel will be 

assigned to a land surface. The next step is to calculate the band ratio (also called Q 

value) by the radiances received by channel 1 and channel 2, which can be expressed 

as (Saunders and Kriebel, 1988) 

1

2

I
I

Q =  (4-1)

where 21, II  are the received radiances of channel 1 and channel 2. The relationship 

between radiance and albedo is expressed as 
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where the subscript represents the number of the channel (i =1,2). ia  is the albedo of 

channel 1 or channel 2 in percentage, and iF  is the extra-terrestrial solar irradiance 

in channel 1 or channel 2. The values of 1F  and 2F  are 133.2 and 243.1 (W/m2), 

respectively. The thresholds of Q value given by Saunders and Kriebel, 0.75~1.6, are 

modified to 1.0~2.5 which is more suitable for application in Taiwan. If a pixel’s Q 

value is within the suggested threshold, the pixel will be assigned to cloud covered; 

otherwise, the pixel will be considered to represent land surface. After the above two 

steps, the pixels covered by thick cloud are identified. Thus, the pixels covered by 

thin cloud and near the boundary of the cloud mass are not filtered. To resolve this 

problem the contrast texture (CON) is applied which is sensitive to the boundary of 

cloud mass and some kinds of thin cloud. Therefore, the third step is to calculate the 

contrast texture, which is defined as 
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where N is the total number of pixels, and d and θ  are the distance and angle, 
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respectively, which are determined from a 3 × 3 window (Figure 4-4). The g is the 

gray level and M is the maximum gray level presented in an image. The CON texture 

is calculated by the albedo of channel 2 (near infrared band) in this study. The 

maximum CON value may be larger than 30000 and varies with the images. We 

normalized the CON value by the maximum CON value ( maxCON ), which is 

expressed as 

maxCON
CONCON N =  (4-4)

where the NCON  represents the normalized CON value. The selected threshold 

value of the NCON  equals 0.23. This value is given somewhat arbitrarily, but is 

capable of screening thin clouds and the boundary area of cloud mass (Figure 4-5).  

4.3 Drought indices 

McKee et al. (1993) developed the SPI to quantify precipitation deficits on multiple 

time scales. A drought event is defined as a period in which the SPI is continuously 

negative and the SPI reaches a value of -1.0 or less. The SPI is uniquely related to 

probability and corresponds to drought categories with specific SPI ranges (Table 4-3). 

The major advantages of the SPI are simplicity and time scale variability, which make 

the SPI suitable for quantifying most types of drought event. Gamma distribution is 

applied to describe precipitation data by McKee et al. (1993). However, Lana et al. 

(2001) suggested that other distributions, such as Poisson-gamma distribution or 

log-normal distribution, may be better models. Exponential distribution belongs to 

gamma distribution family, which is also skewed to the right and non-negative. 

Exponential distribution is selected to describe precipitation in this study. 

Kolmogorov-Smirnov (K-S) test is utilized to assess the goodness of exponential 
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Figure 4-3 The proposed cloud screening procedure. 
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Figure 4-4 A schematic three-by-three window for texture calculation. 

 

  
(a) (b) 

Figure 4-5 Example of cloud screening using the image acquired on 2004/02/10 (a) 
Channel 2, and (b) the cloud mask image (White pixels represent cloud). 
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distribution fit the precipitation (Eq. 4-5).  

( )
⎩
⎨
⎧

≤
>

=
−

0,0
0,

x
xe

xf
xλλ

 (4-5)

( ) xexF λ−−=1  (4-6)

Eq. 4-6 is the cumulative distribution function (CDF) of Exponential distribution 

which is further converted to a normalized value  

( )( )xFGZSPI 1−==  (4-7)

where ( )⋅−1G  is the inverse standard normal cumulative distribution function.  

In order to quantify the severity of drought, McKee et al. (1993) defined a 

measurement of the accumulated magnitude of drought, drought magnitude (DM) as 

⎥
⎦

⎤
⎢
⎣

⎡
−= ∑

=

x

j
jSPIDM

1
 (4-8)

where x is the duration of drought.  

Most satellite remote sensing in vegetation study has applied the vegetation index 

to assess vegetation health and growing conditions. One of the most commonly used 

vegetation indices is NDVI, which can be expressed as 

RIR
RIRNDVI

+
−=  (4-9)

where IR and R represent the data in the near infrared band and visible red band, 

respectively. The data type of red and near infrared channel used for calculating 

NDVI can be reflectance, radiance, or gray level.  

The other commonly used index to assess the water status of vegetation is the 

surface temperature. For the theoretical details on estimating the surface temperature 
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using AVHRR data, please refer to section 3-4. The estimation of surface temperature 

(Ts) applied in this study is suggested by Gallo et al. (1993), and can be expressed as 

( )544 3.3 TTTTS −+=   (4-10)

where 54 ,TT  are the brightness temperature of the thermal channels of AVHRR data. 

Eq. (4-10) is exactly the same with Eq. (3-31). 

The combination of vegetation index and surface temperature to assess vegetation 

growing condition is based on the relationship between the slope of the Ts/NDVI and 

canopy resistance (Nemani et al., 1993). The schematic plot of VI-Ts space and its 

conceptual relationships with evaporation, transpiration and fraction vegetation cover 

are shown in Figure 4-6. 

4.4 Results and discussion 

The SPI series of the GaoYi station with a 10-day period time scale from 1999 to 

2004 is shown in Figure 4-7. The corresponding acquisition dates of SPOT images in 

May are also shown in Figure 4-7. A negative value of SPI represents that the 

precipitation is lower than the normal level. In 2002, before the SPOT image was 

acquired, sequential negative SPI values were observed from February to May, which 

period is within the dry season of Taiwan. The sequential negative SPI values indicate 

to mild to moderate drought and last for almost four months. A similar phenomenon is 

found in 2003. However, there is an intensive rainfall one month before the SPOT 

image is acquired. Therefore, from a meteorological perspective, the drought 

condition from February to May 2003 is not as severe as in 2002. Other than 2002, all 

of the years are considered as non-drought years (or wet years) in a meteorological 

sense.  



 

 91

4.4.1 Drought classification using SPOT image 

The vegetation indices derived from SPOT images are used to classify drought 

conditions. Six years of SPOT images have been as geometrically rectified. The gray 

level of each pixel in the SPOT image is converted to the sensor-received radiance by 

the specific gain value shown in Table 4-1. The minimum histogram method is used to 

correct the atmospheric effect. After atmospheric correction, six vegetation indices are 

compared using the same foundation. In order to extract the pixels that represent 

vegetation, we classified the SPOT images, using the maximum likelihood classifier, 

into four classes: vegetation (V), built-up or bare soil (B), water (W), and cloud (C) 

(Figure 4-8). Pixels classified as vegetation over the six years were extracted, and the 

histograms are compared in Figure 4-9. In Figure 4-9, the histogram for the year 2000 

is significantly lower than all the other distributions. It is probability due to its 

extremely low physical gain value compared to those of others images (Table 4-1). 

The reason for the extremely low physical gain is to compress the range of receiving 

radiance. However, an inappropriate gain setting may result in an over-compressed 

gray level. Therefore, the data for the year 2000 are excluded in the following 

analysis.  

Base on SPI results in Figure 4-7, we accumulated the SPI one to three months 

before the date when SPOT images were taken. Assuming that each 10-day period SPI 

value is independent, the cumulative SPI follows the normal distribution. The original 

SPI is standard normally distributed with the mean of zero and the variance of one, 

the cumulative SPI can be expressed as 

 ∑
=

=
n

i
iSPInSPI

1

)(  , ),0(~)( nNnSPI  (4-11)
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Figure 4-6 Schematic plot of VI-Ts space. (Reproduced from McVicar and Jupp, 
1998). 
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Figure 4-7 The SPI series for GaoYi station with a 10-day period time scale from 
1999 to 2004 (The triangles show the corresponding SPOT image acquisition dates). 
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where SPI(n) represents the cumulative SPI for n steps (10-day periods) before the 

date when SPOT images were taken. Where SPI(n) is normally distributed with the 

mean of zero and the variance of n. The cumulative SPI is further standardized as 

n
nSPISPI n )(= , )1,0(~ NSPI n  (4-12)

where nSPI  represents the standardized cumulative SPI, which is standard normally 

distributed with zero mean and variance equals one. The upper subscript represents 

the n steps, 10-day periods, that SPI cumulated. Therefore, the nSPI  can refer to the 

drought categories that McKee proposed in 1993. 

Figure 4-10 shows the trends of the average NDVI and the standardized cumulative 

SPI. Except year 2000, the variation of average NDVI agrees with the SPI series that 

accumulated more than one month. Involving drought duration and magnitude, 

drought severity quantified by the standardized cumulative SPI which can be applied 

to McKee proposed drought categories.  

In order to classify drought severity by forest NDVI value, the relationships 

between the average NDVI and the standardized cumulative SPI with various 

cumulative periods were showed in Figure 4-11 and can be expressed as 

28.508.61 −= NDVISPI    
41.1562.173 −= NDVISPI   

2028.236 −= NDVISPI     
46.2146.249 −= NDVISPI   

11.02 =R ,  p=0.593 
53.02 =R ,  p=0.163 
77.02 =R ,  p=0.052 
78.02 =R ,  p=0.046 

(4-13)

The r-square value of regression line is getting higher while the cumulative periods 

longer. With a significant level of 0.05, only 9SPI  is significant. After relating the 

NDVI to SPI, the drought categories of NDVI, correspond to of original SPI, is 

proposed in Table 4-4.  
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4.4.2 Comparison between NDVI values derived from SPOT and AVHRR 

A finer spatial resolution satellite image, such as a SPOT image (20 m spatial 

resolution), reveals the details of land cover types. However, the entire coverage of a 

single scan is only capable of local-scale study. The AVHRR images, with 1.1km 

spatial resolution, cover about a 2400 km scan band width and are applied for the 

large-scale monitoring purposes. A comparison between NDVI values derived from 

SPOT and from AVHRR is given in this study. One single SPOT image is chosen to 

compare with a simultaneously taken AVHRR image on 11 May 2004. The SPOT 

image is presented in false color (Figure 4-12(a)). The area for comparison is covered 

by three major land cover types, built-up, vegetation and a few water bodies, which 

are classified by the maximum likelihood classifier (Figure 4-12(b)). The NDVI map 

derived from AVHRR is then produced by the albedo values of channel 1 and channel 

2 (Figure 4-12(c)); in contrast, the NDVI map derived from SPOT images is produced 

by the sensor-received radiance (Figure 4-12(d)). For comparison purposes, an 

average filter of size 55 by 55 goes through the NDVI image derived from SPOT, and 

yields a 1.1km resolution averaged NDVI map (Figure 4-12(e)). The NDVI map 

derived from AVHRR image (Figure 4-12(c)) and filtered SPOT image (Figure 

4-12(e)) show a consistent pattern. The NDVI value is lower in built-up areas and 

higher in vegetation covered areas. In an NDVI map with finer spatial resolution 

(Figure 4-12(d)), the NDVI value in the water body, Shihmen reservoir, even reveals a 

negative value. The relation between NDVI values derived from AVHRR images and 

filtered SPOT images is presented in Figure 4-13. A linear relationship between the 

two NDVI values is modeled using the regression method 

SN NDVINDVI ×+= 343.0075.0  ( 74.02 =R , N=735) (4-14)
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Figure 4-8 Classified SPOT image of the study area from 1999 to 2004 (V: vegetation, 
B: built-up and bare soil; W: water bodies; C: cloud). 
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Figure 4-9 NDVI histograms of the six years. 
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Figure 4-10 Trends of mean NDVI and cumulative SPI values. (SPIn represent the 
accumulated n’s 10-day period before the date when SPOT images are taken. E.g. 
SPI1 represent the SPI of the 10-day period that when SPOT images are taken) 
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Figure 4-11 Mean NDVI and cumulative SPI values (Exclude year 2000).  
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Table 4-3 Drought classification by SPI and NDVI (The last column represents the 
corresponding probabilities and the summation is 50%). 

SPI value NDVI value Category Probability % 

0 to -0.99 0.877 to 0.837 Mild drought 34.1 

-1.0 to -1.49 0.836 to 0.816 Moderate drought 9.2 

-1.5 to -1.99 0.816 to 0.796 Severe drought 4.4 

-2 or less 0.796 or less Extreme drought 2.3 
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where NNDVI  represents the NDVI value derived from the NOAA-AVHRR image, 

SNDVI  is the NDVI value derived from the filtered SPOT image, and N is sample 

size.  

The filtered NDVI value derived from a SPOT image is composed of pixels that 

may be classified as built-up or vegetation within the filter window. In the selected 

SPOT image (Figure 4-12(a)), 98% of the pixels are covered by vegetation and 

built-up areas, thus only 2% represent water. We show that the coverage ratios of 

vegetated and built-up areas within the corresponding AVHRR pixels are 

highly-correlated to the filtered NDVI value derived from the SPOT image (Figure 

4-14). The relationships between the filtered NDVI value and the coverage ratios of 

vegetation and built-up areas are modeled as follows: 

VS CRNDVI 73.0075.0 +=  ( 94.02 =R ) (4-15)

BS CRNDVI 745.0798.0 −=  ( 91.02 =R ) (4-16)

where VCR  and BCR  are the coverage ratios of vegetation and built-up area, 

respectively.  

4.4.3 Using AVHRR images for drought assessment 

The drought event we discuss in this part is the drought of 2002, which is compared 

with the non-drought (or wet) year 2004. The AVHRR images applied in this part are 

preprocessed using the cloud screening procedure proposed in this study. Basically, at 

least one image is selected for each month. However, the cloud cover rate is 

extremely high during typhoon season, July to October in Taiwan. Therefore, there is 

no cloudless image from September to October in 2004 to be selected in this study. 
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(a) (b) 

  

   
(c) (d) (e) 

Figure 4-12 Comparison of SPOT and AVHRR images (a) SPOT false-color image, (b) 
classified SPOT image, (c) NDVI map derived from AHVRR, (d) NDVI map derived 
from SPOT, (e) filtered NDVI map derived from SPOT. 
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Figure 4-13 The regression result of NDVI values derived from AHVRR images and 
filtered SPOT images. 

 

Figure 4-14 Relationships between the NDVI value and the coverage ratios of 
vegetation and built-up areas. 
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The cloud-filtered AVHRR images of the study area, the upstream area of the 

Shihmen reservoirs, are extracted and plotted in VI-Ts space. In order to compare the 

difference between the drought year (year 2002) and a non-drought year (year 2004), 

the plots for each month, except September and October 2004, are shown in Figure 

4-15. Readers are reminded that year 2002 is considered a drought year according to 

the SPI result, while 2004 is considered a non-drought year. In VI-Ts diagrams, the 

vegetation under water stress usually reveals a high surface temperature and low 

vegetation index value. However, in Figure 4-15, the variation of the drought year in 

the VI-Ts diagram, during the dry season from January to May, does not show the 

expected pattern. From February to April in 2002, the SPI result indicates that the 

drought is getting move severe. As a result, the surface temperatures from February to 

April of 2002 are generally higher than in 2004. However, the NDVI does not 

decrease simultaneously. In May, data availability is limited due to cloud cover; there 

is no significant information shown in the VI-Ts space. The NDVI value in June of 

2004 reaches the maximum for the year. For July, the VI-Ts distributions in 2002 and 

2004 completely overlap one another. The reason for this may be that July is usually 

the start of the wet season in Taiwan. As a result, the drought effects on vegetation 

disappear. From August to October 2002, cloud free images are unavailable due to the 

high cloud cover rate.  

In short, the dynamics of vegetation in VI-Ts space are not easily identified by 

comparison between drought and non-drought years for any single month. However, 

the dynamics of vegetation in VI-Ts space in single year may reveal some information 

for assessing the vegetation growing conditions. Mean values of NDVI and Ts are 

used to represent the average vegetation growing conditions in a single month. Figure 

4-16 and Figure 4-17, respectively, show that the mean values in VI-Ts space vary 
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over the twelve months of year 2002 and 2004. In Figure 4-16 and Figure 4-17, the 

NDVI values from January to February form a group at the lower right corner (point 

A) of VI-Ts space. From March or April to May, while the weather is getting warmer 

the average temperature rises. In addition, this period is within the dry season in 

Taiwan. Therefore, once rainfall amount that is lower than the normal level may be 

reflected as a decrease of the NDVI. As shown in Figure 4-16 and Figure 4-17, the 

mean values of vegetation dynamics from April and May move to the upper left 

corner (point B). From June to October, the weather remains warm and wet. During 

this period, the mean surface temperature remains high and increases the mean NDVI 

value. As a result, vegetation dynamics move to the upper right corner (point C). After 

October, surface temperatures decrease due to the cold weather. Meanwhile, the 

vegetation growing condition usually does not decrease significantly. As a result, the 

mean point of NDVI and Ts returns back to point A. However, residual cloud present 

in the study will reduce the NDVI dramatically. Thus, some points, such as February, 

May, and October 2002 and May and August 2004 have lower NDVI values than 

expected. In contrast, the average surface temperatures show a very stable pattern and 

properly reflect their seasonal effect on the growing conditions of the vegetation.  

Based on the result, an assumption is proposed in this study, which is that the 

dynamics of the vegetation growing conditions in VI-Ts space reveal a triangle shape 

(formed by points A, B, and C). The shape and location of the triangle in VI-Ts space 

may vary with drought conditions. The effects of drought on vegetation, resulting in 

higher temperature and lower NDVI values, are well known; these are reflected in the 

triangle. Therefore, the diagram proposed by (Lambin and Ehrlich, 1995) can be 

upgraded, as shown in Figure 4-18. In a wet and cold season, the main distributions of 

vegetation growing condition tend to be located at point A. When a dry and warm 
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Figure 4-15 Comparison of drought year and non-drought year for 12 months. 
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Figure 4-15 Comparison of drought year and non-drought year for 12 months 
(Continued). 
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Figure 4-16 Vegetation dynamics of 2002 in VI-Ts space. 

 

 
Figure 4-17 Vegetation dynamics of 2004 in VI-Ts space. 
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season comes, the distribution moves to point B due to the increased temperature and 

the water stress of vegetation. During a wet and warm season, which is a vegetation 

growing season, the vegetation dynamics moves to point C. With another wet and 

cold season, the trend of the vegetation dynamics forms a triangular cycle. With the 

prior knowledge of biophysical characteristics of vegetation during a drought event, 

high temperature and low vegetation index value, the triangular cycle is assumed to 

move from the lower right corner to the upper left corner. However, the AVHRR data 

used in Figure 4-16 and Figure 4-17 do not show a clear pattern that supports this 

assumption. Therefore, more data are needed in the future to validate this assumption 

and quantify drought severity. 

4.5 Conclusions 

In this study, we classified drought severity into four classes using NDVI values 

derived from SPOT images. The relationship between NDVI values derived from 

SPOT images and AVHRR images was also discussed. The AVHRR images for 2002 

and 2004 were used to assess the dynamics of vegetation growing conditions in VI-Ts 

space. A new concept to assess drought conditions in VI-Ts space was proposed to 

upgrade the previous concept of the VI-Ts diagram. A few concluding remarks are 

made, as follows. 

(1) From a meteorological perspective, the SPI value at the GaoYi station in the 

upstream basin of the Shihmen reservoir shows that 2002 was a drought year, and 

the rest of the years, from 1999 to 2004, can be considered non-drought (or wet) 

years. 

(2) The NDVI value distributions in the upstream basin of the Shihmen reservoir 

which were derived from SPOT images, taken in each May from 1999 to 2004, 
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Figure 4-18 An upgraded version of the schematic plot of VI-Ts space. 
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are applied for classification of drought severity. The relationship between the 

standardized cumulative SPI and the average NDVI is most significant when the 

cumulative period is three months. The drought categories by NDVI are proposed 

which is corresponding to the drought categories by SPI original proposed by 

McKee (1993).  

(3) A linear relationship between the NDVI values derived from filtered SPOT 

images and AVHRR images is proposed in this study. This linear relationship may 

be applied for comparative purposes in vegetation studies using multi-resolution 

images. The relationships between the NDVI derived from filtered SPOT images 

and the land coverage ratio are also illustrated in this study.  

(4) By comparing the dynamics of vegetation of 2002 and 2004 in VI-Ts space, the 

facts higher temperatures and lower vegetation indices were shown in the VI-Ts 

space. Based on the result, an assumption is proposed in this study, which is that 

the dynamics of vegetation growing conditions in VI-Ts space reveals a triangle 

shape (formed by points A, B, and C). The shape and location of the triangle in the 

VI-Ts space may vary with the drought condition. An upgrade of the concept of 

the VI-Ts diagram (Figure 4-6) has also been proposed in this study. However, 

more data are needed to validate the assumption and quantify drought severity in 

the future.  
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Chapter 5 Summary and future work 

In this dissertation, we utilized various remote sensing techniques to extract 

information from remotely-sensed electromagnetic signal. These techniques include 

retrieval of surface reflectance, surface temperature estimation using Split Window 

Technique, landcover type classification by maximum likelihood classifier and cloud 

screening with texture variable and cloud top temperature. For most of remote sensing 

applications, remote sensing techniques cooperate with statistical method and digital 

image process techniques to monitor and assess natural resources.  

In the dissertation, water quality, air temperature and drought effect on forest were 

monitored and assessed using multisensor images. For water quality study, we thought 

that the water surface reflectance, instead of at-sensor signal, is better to construct the 

water quality estimation model. Natural water body is a mixture of water and other 

constituents including suspended solids, dissolved organic matters, zooplankton, etc. 

These constituents affect the water surface reflectance in different wavelengths. The 

wavelength-dependent combined effect of individual constituents on the sea surface 

reflectance does not be taken into consideration in conventional univariate model. 

Therefore, the multivariate water quality model was proposed in this study. The 

multivariate model not only keeps the physical properties of natural water but also 

yields more accurate water quality estimation results.  

In Chapter three, we reviewed the details of surface temperature estimation method, 

split window technique, and the relationship between surface and air temperatures. 

Multi-sensor images, SPOT and AVHRR, were utilized to assess the effect of 

landcover type changes on ambient air temperature within 1.21 km square area. A new 

method for assessment of landcover effect on ambient air temperature using remote 
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sensing images is proposed in this study. The proposed method takes into 

consideration the existing local landcover pattern and successfully applied in northern 

Taiwan. The proposed method enable decision maker to set scenarios of landcover 

changes and yield the resultant changing of ambient air temperature.  

In chapter four we utilized SPOT and AVHRR images to assess drought effect on 

forest. The SPI was used to describe the precipitation anomalies and quantify drought 

condition. The relationship between the standardized cumulative SPI and the forest 

average NDVI, in May, was most significant when the cumulative period is three 

months. The drought categories result from NDVI values are corresponding to the 

drought categories result from the SPI originally was proposed by McKee in 1993. 

The linear relationship between the NDVI values derived from filtered SPOT image 

and AVHRR image was also presented. By comparing the dynamics of vegetation of 

year 2002 and year 2004 in VI-Ts space using AVHRR data, the facts of that the 

higher temperature and lower vegetation index were shown in the VI-Ts space. An 

assumption was suggested that the dynamics of vegetation grown condition in VI-Ts 

space reveals a triangle shape (form by point A, B, and C in Figure 4-18). The shape 

and location of the triangle in VI-Ts space may vary with drought condition. However, 

more data were needed to validate the assumption and quantify drought severity. 

Drought monitoring is always a tough job for scientists and needs continual effort to 

realize and monitor drought phenomenon.  
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