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Abstract

The best suggested way to find secure elliptic curves is point-counting. So
far Schoof-Elkies-Atkin algorithm (SEA algorithm) is the most efficient point-
counting algorithm for elliptic curves over prime fields. Lercier proposed an
algorithm to compute isogenies in F2n such that SEA algorithm can be used
for binary case. In this thesis we will follow Lericier’s approach to implement
SEA algorithm computing the order of an elliptic curve over binary fields.

Keywords: elliptic curve, group order, SEA algorithm, Schoof algorithm,
Elkies prime, Atkin prime
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1 Introduction

After being proposed by Koblitz and Miller independently around 1985, the elliptic

curve cryptosystem (ECC) became one of the most popular public key cryptosystems

these years. The security of ECC is based on the difficulty of the discrete logarithm

problem on elliptic curve groups (ECDLP). One important reason of that ECC is

widely used is that there is no known sub-exponensual algorithm to solve ECDLP so

far. Moreover, in comparison with RSA, another popular public key cryptosystem,

ECC can have the same level of security with much shorter keys. This makes ECC

suitable for environments with limited storage and power, for example, a smart card.

However, not all elliptic curves are suitable for cryptographic use. An elliptic

curve is considered to be secure only when its order is nearly prime. The best way

to find secure curves is point-counting. That is, pick an arbitrary curve and count

points on it, then see if it satisfies the conditions we need.

Schoof’s algorithm is the first polynomial time point-counting algorithm. It was

presented by Schoof in 1985, and has complexity O(log8 q). However it is extremely

inefficient when the size of base field is large. One of the main reason is that the de-

grees of the division polynomials are so large that the calculations are impracticable.

Elkies and Atkin dealt with the problem to give the Schoof-Elkies-Atkin algorithm

(SEA algorithm [6]),their improvements degrades the complexity to O(log5 q). Also

thanks to the improvements of Morain, Couveignes, Dewaghe, Müller, SEA algo-

rithm is the most efficient point-counting algorithm so far, and we can use it to

generate a secure elliptic curve over prime fields in a reasonable time.

However, elliptic curves over binary fields are of more interests in cryptography.

The problem is given two elliptic curves over binary fields, how to compute isogenies
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between them. Couveignes gave an algorithm to deal with this problem. It works

in the formal group defined by the elliptic curve. But this algorithm requires huge

series computations, it turns out to be inefficient in practice.

Lercier proposed another algorithm to compute isogenies in [2]. It is based on

identities satisfied by them. Lercier’s algorithm has similar complexity as Cou-

veignes’s algorithm, but it is easier to implement and more efficient in practice. In

this thesis we will follow Lercier’s approach to compute isogenies, and implement

SEA algorithm to compute the order of elliptic curves over binary fields.

The rest of the article is structured as follows: in Section 2 we give some mathe-

matical backgrounds which are needed in Schoof’s algorithm and SEA algorithm. In

Section 3 we give an overview of Schoof’s algorithm and SEA algorithm. In Section

4 we explain how to compute modular polynomials over binary fields and introduce

Lercier’s method to compute isogenies between elliptic curves. In Section 5 we com-

pare our program with an open source implementation of Schoof algorithm given in

[7]. And parts of our source code is given in the appendix.
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2 Mathematical Backgrounds

In this section we introduce some mathematical backgrounds about Schoof’s algo-

rithm and SEA algorithm. Here we list some notations used a lot in this thesis.

q a power of 2

Fq the finite field with q elements

Fq algebraic closure of Fq

Eb a fixed elliptic curve over Fq with parameter b

Eb the set of rational points on Eb

#S cardinality of the set S

O the point at infinity

t the trace of Frobenius

tl the residue of t modulo l

Tl the set of possible values for t modulo l

[m] multiplication-by-m map

E[m] m-torsion subgroup

Zm cyclic group of order m

ϕ Frobenius map on Eb

ψl(x) l-th division polynomial

Fl(x) a factor of ψl(x)

Φl(x, y) l-th modular polynomial

Z the set of intergers

C the set of complex numbers
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Suppose q is a power of two, and suppose a, b are two elements in Fq. We denote

Ea,b the elliptic curve over Fq defined by

Ea,b = {(x, y) ∈ Fq × Fq | y2 + xy = x3 + ax2 + b} ∪ {O},

where O is the point at infinity on Ea,b. When b = 1, Ea,b is called an Koblitz curve.

Then let

Ea,b = {(x, y) ∈ Ea,b | x, y ∈ Fq} ∪ {O},

which is called the set of rational points on Ea,b. We are trying to find the cardinality

of E0,b for every b ∈ F
∗
q (that is, b ∈ Fq with b �= 0).

Remark 2.1. An elliptic curve Ea,b is called supersingular if b = 0. The difficulty of

ECDLP on a supersingular curve is lowered by MOV attack [4], so we are only inter-

ested in non-supersingular curves. By Theorem 3.5 in [3], every non-supersingular

elliptic curve over Fq is isomorphic (in group structure) to Ea,b for some a ∈ {0, γ}

and b ∈ F
∗
q, where γ is a fixed element in Fq such that Tr(γ)=1. (Tr(γ) is the trace

of γ in Fq over F2.) Moreover, since (see [1], P.38)

#E0,b + #Eγ,b = 2q + 2,

we need only to find #E0,b for every b ∈ F
∗
q. E0,b and E0,b are also denoted by Eb

and Eb respectively.

Let b be a fixed nonzero element in Fq, and let

t = q + 1 − #Eb. (1)

t is called the trace of Frobenius, it is just what we want to find out (since once t is

found, then #Eb is obtained by Equation 1). Hasse’s theorem gives a bound of t.
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Theorem 2.2. (Hasse) The trace of Frobenius satisfies

|t| ≤ 2
√
q.

Remark 2.3. By Hasse’s theorem, if we can find the residue of t modulo l (tl for

short) for enough primes l such that
∏
l > 4

√
q, then the exact value of t can be

obtained by Chinese Remainder Theorem. How to find tl is the main part of Schoof’s

algorithm and SEA algorithm, we will come back to this in the next section.

It is well-known that Eb has a group structure with the chord-tangent operation.

With this operation we can give the definition of multiplication-by-m maps and

m-torsion subgroups, which are of much importance in elliptic curve theory.

Definition 2.4. (multiplication-by-m map and m-torsion subgroup)

Let m be an integer, the multiplication-by-m map [m] : Eb → Eb is defined by

[m]P =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

P + P + · · · + P (m summands), if m > 0,

O, if m = 0,

−(P + P + · · · + P ) (−m summands), if m < 0,

for every P ∈ Eb, where ‘+’ denotes the group operation on Eb.

The m-torsion subgroup E[m] is defined by

E[m] = {P ∈ Eb | [m]P = O}.

One can see that E[m] is a subgroup of Eb. However, we can describe the

structure of E[m] by the following lemma.

Lemma 2.5. Suppose m is a positive integer with (m, q) = 1, then

E[m] ∼= Zm ⊕ Zm,

where Zm is the cyclic group of order m.
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Now we give another important definition.

Definition 2.6. (Frobenius Map)

The Frobenius map ϕ on Eb is defined by

ϕ : Eb → Eb :

⎧⎪⎪⎨
⎪⎪⎩

(x, y) 
→ (xq, yq),

O 
→ O.

ϕ can be checked to be a group endomorphism of Eb. Moreover, ϕ satisfies the

following identity.

Theorem 2.7. The Frobenius map ϕ on Eb satisfies

ϕ2 − [t]ϕ+ [q] = [0].

That is,

(xq2

, yq2

) − [t](xq, yq) + [q](x, y) = O,

for every (x, y) ∈ Eb.

Finally we introduce the division polynomials.

Definition 2.8. (Division Polynomial)

For each nonnegative integer m, the m-th division polynomial ψm(x) ∈ Fq[x] with

6



respect to Eb is defined recusively by the following formulas:

ψ0 = 0,

ψ1 = 1,

ψ2 = x,

ψ3 = x4 + x3 + b,

ψ4 = x6 + bx2,

ψ2m+1 = ψm+2ψ
3
m + ψm−1ψ

3
m+1, m ≥ 2,

ψ2m = (ψm+2ψ
2
m−1 + ψm−2ψ

2
m+1)ψm/x, m > 2.

By the group law of elliptic curves and mathematical induction, one can check

that the multiplication-by-m map [m] and the division polynomial ψm satisfy the

following equality:

[m]P = (x+
ψm−1ψm+1

ψ2
m

, x+ y +
(x2 + x+ y)ψm−1ψmψm+1 + ψm−2ψ

2
m+1

xψ3
m

), (2)

for each P = (x, y) ∈ Eb\E[m]. Moreover, we have

Lemma 2.9. Let P = (x, y) be a point in Eb\E[2] and m ≥ 2 an integer. Then

P ∈ E[m] if and only if ψm(x) = 0.

Now we are in a place to introduce Schoof’s algorithm and SEA algorithm.
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3 SEA Algorithm

In this section we give an overview of Schoof’s algorithm and SEA algorithm.

3.1 Schoof’s Algorithm

As mentioned before, Schoof’s algorithm is an algorithm to count points on elliptic

curves. It was presented by Schoof in 1985, and has time complexity O(log8 q).

Let b ∈ F
∗
q and Eb : y2 + xy = x3 + b. By Remark 2.3, to find #Eb we need only

to find tl (the residue of t modulo l) for enough primes l.

Suppose l is an odd prime. We reduce the Frobenius map ϕ on E[l], then by

Theorem 2.7, we have

ϕ2(P ) − [tl]ϕl(P ) + [ql](P ) = O

for every P ∈ E[l], where ql = q (mod l). Or equivalently,

(xq2

, yq2

) + [ql](x, y) = [tl](x
q, yq), (3)

for every (x, y) ∈ E[l].

The left hand side of Equation 3 can be represented by (R1(x, y),R2(x, y)) for

some rational functions R1, R2 in Fq(x, y)(= {f/g | f, g ∈ Fq[x, y] with g �= 0})

by using group law and Equation 2. Meanwhile, by Equation 2 again, for every

τ ∈ {0, 1, 2, . . . , l − 1}, [τ ](xq, yq) can also be represented by (Rτ
1(x, y),R

τ
2(x, y)) for

some Rτ
1 , R

τ
2 ∈ Fq(x, y).

Therefore, if we can find a value τ ∈ {0, 1, 2, . . . , l − 1} such that

R1(x, y) ≡ Rτ
1(x, y) (mod ψl(x), y

2 + xy + x3 + b) (4)

and

R2(x, y) ≡ Rτ
2(x, y) (mod ψl(x), y

2 + xy + x3 + b), (5)
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by Lemma 2.9, we must have

(xq2

, yq2

) + [ql](x, y) = [τ ](xq, yq),

for every (x, y) ∈ E[l], and so tl = τ .

After finding tl for enough l such that
∏
l > 4

√
q, by Hasse’s theorem and

Chinese remainder theorem (CRT) we can find the exact value of t. The following

is the summarization of Schoof’s algorithm.

Schoof’s Algorithm

Input: an elliptic curve Eb : y2 + xy = x3 + b

Output: #Eb

1. Pick enough primes l such that
∏
l > 4

√
q

2. For each l, find τ from {0,1,. . . ,l − 1} such that Equation 4 and 5 holds.

3. Set tl = τ .

4. Use CRT to recover the value of t.

5. return q + 1 − t.

Schoof’s algorithm becomes extremly inefficient when q is large. The main rea-

son is that the division polynomial ψl has degree (l2 − 1)/2 such that we have to do

too many calculations (in Step 2 of the above algorithm) when l is large. We will

use another kind of polynomial Fl instead of ψl in SEA algorithm. But before intro-

ducing this, we should introduce modular polynomials, which plays an important

role in SEA algorithm.
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3.2 Modular Polynomials

Modular polynomials play an important role in SEA algorithm. Here we give the

definition and some properties of them, and we will discuss how to compute them

next section.

Let H be the upper half plane of C (the field of complex numbers), that is,

H = {z ∈ C | Im(z) > 0}. It can be shown that for every τ ∈ H, one can find an

elliptic curve E(τ) over C such that

E(τ) ∼= C

Z + Zτ
. (6)

So we can define a map E from H to the set I of isomorphism classes of elliptic

curves over C by

E : H → I, τ 
→ E(τ),

where E(τ) is any curve which satisfies Equation 6.

Clearly this map is well-defined (in fact it is onto), and if we denote Δ(τ) and

j(τ) the discriminant and j-invariant of E(τ) respectively, with denoting q = e2πiτ ,

Δ(τ) and j(τ) can be represented as the following form:

Δ(τ) = q
∏
n≥1

(1 − qn)24 = q(1 +
∑
n≥1

(−1)n(qn(3n−1)/2 + qn(3n+1)/2))24 (7)

and

j(τ) =
(256f(τ) + 1)3

f(τ)
, (8)

where f(τ) = Δ(2τ)/Δ(τ).

Let l be an odd prime, and let

Φl(x, j(τ)) = (x− j(lτ))
l−1∏
i=0

(x− j(
τ + i

l
)).
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It can be shown that Φl(x, j(τ)) ∈ Z[x, j(τ)]. The l-th modular polynomial

Φl(x, y) is defined by replacing j(τ) in Φl(x, j(τ)) by y, which is an integral polyno-

mial with two variables.

The modular polynomials Φl(x, y) ∈ Z[x, y] are symmetric, and of degree l+1 in

each variable. To reduce it to a finite field of characteristic p, we need only to modulo

each coefficient of Φl(x, y) by p. In our case (over a binary field), we need to modulo

2 in each coefficient of Φl(x, y). However the coefficients of Φl(x, y) are very large and

difficult to compute, fortunately there are some variants of modular polynomials, for

example, Müller’s modular polynomials. We will not discuss them here, but next

section we will give an efficient algorithm to compute modular polynomials over

binary fields, which is also presented by Müller [5].
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3.3 SEA Algorithm

SEA algorithm is based on Schoof’s algorithm, and improved by Elkies and Atkin.

As said in the end of Section 3.1, we will replace the l-th division polynomial ψl in

Schoof’s algorithm by its factor Fl. The polynomial Fl ∈ Fq[x] has degree (l− 1)/2,

with comparison ψl with degree (l2 − 1)/2, the computations in Fq[x]/(Fl(x)) are

much less and so are more practicable while l is large. However only about one half

of primes have this advantage. We call this kind of primes Elkies primes, the other

half are called Atkin primes. Before we introduce them officially, we have to recall

some mathematical facts.

Given an odd prime l, by Lemma 2.5, E[l] is isomorphic to Zl ⊕ Zl. Moreover,

since l is a prime, E[l] can be regarded as a two-dimensional linear space over Fl.

Consider the Frobenius map ϕ restricted on E[l], then ϕ : E[l] → E[l] is a linear

transformation. Moreover, by Theorem 2.7 we have the following lemma.

Lemma 3.1. The Frobenius map ϕ is a linear transformation on E[l]. Moreover,

the characteristic polynomial of ϕ

Δϕ(x) = x2 − tlx+ ql,

where tl = t (mod l), ql = q (mod l).

If the characteristic polynomial Δϕ has a root λ in Fl, then the other solution

must be ql/λ (λ cannot be zero). So Δϕ(x) = (x− λ)(x− ql/λ). Hence

tl = λ+
ql
λ
. (9)

So if we can find an eigenvalue λ of the Frobenius map ϕ : E[l] → E[l], then we

can find tl by Equation 9. This can only be done in the situation Δϕ has a root in

Fl, we call a prime satisfying this condition an Elkies prime.
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Definition 3.2. With respect to an elliptic curve Eb, a prime l is called an Elkies

prime if Δt = t2 − 4q is a square in Fl. Otherwise l is called an Atkin prime.

If l is an Elkies prime, one can find tl by searching for an eigenvalue λ (we will

discuss more details later). However, since we do not know what value t is (this

is what we are trying to find out), we cannot decide which kind of prime l is by

the above definition. The following theorem gives us a way to do that, which is

presented by Atkin.

Theorem 3.3. (Atkin) Let Eb be a non-supersingular elliptic curve with j-invariant

j1. And suppose Φl(x, j) = h1h2 . . . hs is the factorization of Φl(x, j) in Fq[x] as

a product of irreducible polynomials, where Φl(x, y) is the l-th modular polyno-

mial over binary fields. Then there are the following possibilities for the degrees

of h1, h2, . . . , hs:

(i) (l,1) or (1,1,. . . ,1): in both cases t2 − 4q ≡ 0 (mod l). In the former case we

set r = l and in the latter r = 1.

(ii) (1,1,r,r,. . . ,r): in this case t2 − 4q is a square modulo l. r divides l− 1 and ϕ

acts on E[l] as a matrix ⎛
⎜⎜⎝

λ 0

0 μ

⎞
⎟⎟⎠ ,

where λ, μ ∈ F
∗
l .

(iii) (r,r,. . . ,r): in this case t2 − 4q is not a square modulo l, r divides l+ 1 and ϕ

has an irreducible characteristic polynomial over Fl.

In all cases r is the order of ϕ in the projective general linear group PGL2(Fl) and

1Recall that the j-invariant of the elliptic curve Eb is 1/b.
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the trace of Frobenius t satisfies

t2 = q(ξ + ξ−1)2 (mod l), (10)

for some primitive r-th root of unity ξ in Fl.

From the above theorem we can see that in the first two cases t2 − 4q is a square

in Fl and is not in the third case. In other words, if the factorization of Φl(x, j) in

Fq[x] satisfies case (i) or (ii), then l is an Elkies prime; otherwise l is Atkin. We can

also observe that only in the first two cases Φl(x, j) has a factor of degree 1, this

fact leads to the following corollary:

Corollary 3.4. A prime l is an Elkies prime if and only if gcd(xq + x,Φl(x, j)) in

Fq[x] is nontrivial.

By Corollary 3.4 we can decide a prime l is Elkies or Atkin by compute

gcd(xq + x,Φl(x, j)).

If l is Elkies, we will use the polynomial Fl(x) defined below to find an eigenvalue

λ of ϕ : E[l] → E[l].

Definition 3.5. Suppose λ ∈ Fl is an eigenvalve of the Frobenius map ϕ : E[l] →

E[l], and Cλ is a 1-dimensional eigenspace with respect to λ. Then we define

Fl(x) =
∏

±P∈Cλ\{O}
(x− x(P )),

where x(P ) is the affine x-coordinate of P .

One can prove that Fl(x) ∈ Fq[x]. And since #Cλ = l, Fl(x) has degree (l−1)/2.

Lercier gave an algorithm to find Fl ([2]), we will introduce this in the next section.
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As said before, the polynomial Fl can be used to find an eigenvalue λ. We want

to find λ ∈ {1, 2, . . . , l − 1} satisfying

ϕ(P ) = [λ](P )

for each P ∈ Cλ, or equivalently (by Equation 2),

(xq, yq) = (x+
ψλ−1ψλ+1

ψ2
λ

, x+ y +
(x2 + x+ y)ψλ−1ψλψλ+1 + ψλ−2ψ

2
λ+1

xψ3
λ

), (11)

for each (x, y) ∈ Cλ.

So by the definition of Fl(x), we need to find λ such that

xq ≡ x+
ψλ−1ψλ+1

ψ2
λ

(mod Fl(x), y
2 + xy + x3 + b)

and

yq ≡ x+ y +
(x2 + x+ y)ψλ−1ψλψλ+1 + ψλ−2ψ

2
λ+1

xψ3
λ

(mod Fl(x), y
2 + xy + x3 + b),

hold, once such λ is found, by Equation 9 we can find tl.

If l is an Atkin prime, since ϕ : E[l] → E[l] does not have an eigenvalue in Fl, we

cannot do the same thing as in the case that l is Elkies. However, by Equation 10

in Theorem 3.3, we can find candidates of t (mod l). Here is what we do.

First of all, to determine r in Theorem 3.3, we compute

gcd(xqi

+ x,Φl(x, j)) (12)

for i = 2, 3, . . . , l + 1, where j is the j-invariant of Eb. The smallest i such that the

gcd is equal to Φl(x, j) is just the value r. Moreover, by Theorem 3.3 we can see

that r divides l ± 1, this information can reduce some computations.

After r is found, suppose λ, μ are roots of

x2 − tlx+ ql = 0.
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Then γr = λ/μ is then an element of order r in Fl2 . By first finding a generator

g of F
∗
l2 , we can compute all possibilities of γr = {gi(l2−1)/r | i = 1, 2, . . . , r − 1

with (i, r) = 1}. Then we can find a set of possible values for tl by the following

equations:

tl = λ+ μ (mod l), (13)

ql = λμ (mod l),

and

γr = λ/μ.

Let d be a quadratic non-residue in Fl and write λ = x1 + x2

√
d, γr = g1 + g2

√
d

for x1, x2, g1, g2 ∈ Fl. The possible values for g1 and g2 are already known, we want

to find the possible values for x1 and x2. Since μ is the conjugate of λ, we have

μ = x1 − x2

√
d, and so

g1 + g2

√
d =

λ

μ
=

1

ql
(x2

1 + dx2
2 + 2x1x2

√
d).

Hence

qlg1 = x2
1 + dx2

2,

qlg2 = 2x1x2,

and

ql = x2
1 − dx2

2.

By the first an the third equilities we get x2
1 = ql(g1 +1)/2, this can give at most

two possibilities of x1. And by Equation 13 we have

tl = 2x1.

Here we can see that there are at most 2φ(r) possible values for tl, where φ is the

Euler φ-function.
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After the procedures above are done for enough primes l such that
∏
l > 4

√
q,

that is, if l is Elkies we have found tl, and if l is Atkin we have found a set Tl of

possible values for tl. We can combine these information to find t with Chinese

remainder theorem (CRT) and baby-step giant-step algorithm (BSGS). The process

is as follows. It was given by Müller in [5].

First we divide Atkin primes into two parts A1 and A2 such that their product

of possible values of tl (that is,
∏

#Tl) are roughly the same as each other. Let m1,

m2 be the products of primes in A1 and A2 respectively. By using CRT we can find

a set of possibilities for t (mod m1) and t (mod m2), say S1 and S2. That is,

t ≡ t1 (mod m1) for some t1 ∈ S1

and

t ≡ t2 (mod m2) for some t2 ∈ S2.

On the other hand, let m3 be the product of Elkies primes and find t3 such that

t ≡ t3 (mod m3)

by CRT. Then we can write

t = t3 +m3(m1r2 +m2r1) (14)

for some integers r1, r2 with

r1 ≡ t1 − t3
m2m3

(mod m1)

and

r2 ≡ t2 − t3
m1m3

(mod m2),

where t1 ∈ S1, t2 ∈ S2. Since m1m2m3 > 4
√
q, if we choose

0 ≤ t3 < m3 and 
−m1

2
� < r1 ≤ 
m1

2
�,
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we must have |r2| ≤ m2.

Now we pick a point P on Eb randomly. Since the group order of Eb is q+ 1− t,

we must have

[q + 1]P = [t3 +m3(m1r2 +m2r1)]P.

Rearranging this we get

[q + 1 − t3]P − [r1m2m3]P = [r2m1m3]P.

Then we compute and store

Qr1 = [q + 1 − t3]P − [r1m2m3]P

for possible values of r1 with |r1| ≤ 
m1/2�, this can be considered as the phase of

the giant steps in BSGS. After that we compute

Rr2 = [r2m1m3]P,

by the previous observation we need only to take r2 with |r2| ≤ m2. Once we find

Qr1 = Rr2

for some r1, r2, then t can be found by Equation 14.

Remark 3.6. This BSGS procedure above only works when #Eb is nearly prime.

When #Eb has many small prime factors (this kind of curve is not of cryptographic

interest), we need to choose more random points on Eb to determine the exact calue

of t.
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Here is the summarization of SEA algorithm.

SEA Algorithm

Input: an elliptic curve Eb

Output: #Eb

1. Pick enough primes l such that
∏
l > 4

√
q

2. For each l, decide l is Elkies prime or Atkin prime by

gcd(xq + x,Φl(x, j)).

3. If l is Elkies, search an eigenvalue λ of ϕ by Equation 11.

4. Set tl = λ+ ql/λ.

5. If l is Atkin, find candidates of tl.

6. Use CRT and BSGS to recover the value of t.

7. return q + 1 − t.
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4 Implementation of SEA Algorithm

Until now there are only two gaps left to implement SEA algorithm over binary

fields. One is to find modular polynomials, the other is to find Fl. We fill the two

gaps this section.

4.1 Computing Modular Polynomials

As introduced in Section 3, l-th modular polynomial Φl(x, y) can be used to decide

a prime l is Elkies or Atkin, and is needed while we compute Fl. Here we give a

method to compute Φl(x, y) over binary fields. This method was given by Müller in

[5], and also can be found in [8].

First l-th modular polynomial Φl(x, y) over binary fields has the form

Φl(x, y) =
l+1∑
i=0

l+1∑
j=0

aijx
iyj,

where aij ∈ F2.

Recall the definition in Section 3.2,

Φl(x, j(τ)) = (x− j(lτ))
l−1∏
i=0

(x− j(
τ + i

l
)), (15)

where (by Equation 7 and 8)

j(τ) =
Δ(τ)

Δ(2τ)
= q−1

1 +
∑

n≥1 (q4n(3n−1) + q4n(3n+1))

1 +
∑

n≥1 (q16n(3n−1) + q16n(3n+1))
. (16)

In particular, we have

Φl(j(lτ), j(τ)) = 0,

or

jl+1(τ) + jl+1(lτ) =
l∑

i=0

l∑
j=0

ji(lτ)jj(τ). (17)

We will compare the leading power of both sides in Equation 17 to find the coeffi-

cients aij.
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First observe from Equation 16, j(τ) has leading power -1. Since the q-expansion

of j(lτ) is replacing q in Equation 16 by ql (recall that q = e2πiτ ), j(lτ) has leading

power −l. Hence, the left hand side (LHS) of Equation 17 has leading power −l(l+1).

On the other hand, ji(lτ)jj(τ) has leading power −(li+ j), since the right hand side

of Equation 17 must also have leading power −l(l + 1), we need only to find i,

j ∈ {0, 1, . . . , l} such that max{li+ j, lj + i} = l(l+ 1). The solution is i = l, j = l,

so we must have all = 1. Then we substract jl(lτ)jl(τ) from both sides of Equation

17 and compare their leading powers again. Let p(L) be the leading power of LHS,

we again want to find i, j ∈ {0, 1, . . . , l} such that max{i + jl, j + il} = −p(L),

then set aij = aji = 1 (since Φl(x, y) is symmetric). Continue this process until the

leading power of LHS is nonnegative, then all nonzero coefficients must be found.

We summarize this algorithm as follows:
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Algorithm to compute modular polynomials over binary fields

Input: an elliptic curve Eb, a prime l

Output: Φl(x, y)

1. Determine j(τ) with precision l(l + 1) + 1 by Equation 16

2. Compute ji(τ) for 1 < i ≤ l + 1

3. Determine jj(lτ) for 1 ≤ j ≤ l + 1 by substituting q by ql in jj(τ)

4. Set L = jl+1(τ) + jl+1(lτ)

5. while (p(L) < 0) where p(L) is the leading power of L

6. Determine (i, j) such that max{li+ j, lj + i} = −p(L)

7. Set aij = aji = 1

8. If (i = j) set L = L+ ji(lτ)jj(τ)

9. Else set L = L+ ji(lτ)jj(τ) + jj(lτ)ji(τ)

10. Return
∑l+1

i=0

∑l+1
j=0 aijx

iyj
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4.2 Computing Isogenies

In this section we give an algorithm to find Fl introduced in Section 3. Sometimes we

call this process computing isogenies, because to find Fl is equivalent to find isogenies

between elliptic curves. This algorithm was given by Lercier [2]. Lercier estimates

the complexity of this algorithm is O(l3) field operations, based on heuristics and

experimental evidence.

Suppose Eb1 : y2 + xy = x3 + b1 is an elliptic curve over Fq. Given an Elkies

prime l and an eigenvalue λ of the Frobenius map ϕ : E[l] → E[l], recall that

Fl(x) =
∏

±P∈Cλ\{O}
(x− x(P )),

where Cλ is the eigenspace corredponding to λ.

Note that Fl has degree (l − 1)/2, and suppose

Fl(x) =

(l−1)/2∑
i=0

q2
i x

i. (18)

Remark 4.1. Recall that every element in a binary field Fq has a unique square root,

so we can assume Fl(x) has the form in Equation 18.

To find qi’s, first let j1 = 1/b1 , which is the j-invariant of Eb1 . Since l is an

Elkies prime, the polynomial Φl(x, j1) ∈ Fq[x] has a root in Fq, pick one and call it

j2 (this is the j-invariant of another curve which is isogenous to Eb1). Let b2 = 1/j2,

and let

α = 4
√
b1, β = 4

√
b2.

For convience we assume

qi =
4
√
α

4
√
β

√
α

d−2i
pd−i. (19)

To find Fl we need only to find these pi’s. First of all, p0, pd, pd−1, pd−2 can be

found by the following equalities:
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p0 = 4
√
α2d + α2d−1pd−1, pd = 1, pd−1 = α+ β, (20)

pd−2 =

⎧⎪⎪⎨
⎪⎪⎩

p4
d−1 + αpd−1 + α2, if d is even,

p4
d−1 + αpd−1, if d is odd.

For p1, p2,. . . , pd−3, we can use the following three equations:

4
√
α

k∑
i=0

p2
i p

2
d−k+iα

2i = 4
√
β
√
α

d+2k

� k
2
�∑

i=0

pk−2iB(d− k + 2i, i), (21)

for k = 0, 1, . . . , d,

p4
k = α2d−4k−1

k∑
i=0

pd−2k−1+2iB(d− 2k − 1 + 2i, i)α2i+ (22)

α2d−4k

k∑
i=0

pd−2k+2iB(d− 2k + 2i, i)α2i,

for k = 0, 1, . . . , 
(d− 1)/2�. And

p4
d−k−1 = α

k∑
i=0

pd−2k−1+2iB(d− 2k − 1 + 2i, i)α2i+ (23)

k+1∑
i=0

pd−2−2k+2iB(d− 2 − 2k + 2i, i)α2i,

for k = 0, 1, . . . , 
d/2� − 1, where

B(i, j) =
i!

j!(i− j)!
(mod 2)

for nonnegative integers i, j.

We rewrite the three equations by

p2
k + bkpk + ck = 0, (24)
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where

bk =
4
√
β
√
α

d+2k

α2k 4
√
α

(25)

and

ck =
4
√
α

∑k−1
i=0 p

2
i p

2
d−k+iα

2i + 4
√
β
√
α

d+2k ∑�k/2�
i=1 pk−2iB(d− k + 2i, i)

α2k 4
√
α

, (26)

pd−2k−1 =
p4

k

α2d−4k−1
+

k∑
i=1

pd−2k−1+2iB(d− 2k − 1 + 2i, i)α2i+ (27)

α
k∑

i=0

pd−2k+2iB(d− 2k + 2i, i)α2i,

and

pd−2k−2 = p4
d−k−1 +

k+1∑
i=1

pd−2k−2+2iB(d− 2k − 2 + 2i, i)α2i+ (28)

α

k∑
i=0

pd−2k−1+2iB(d− 2k − 1 + 2i, i)α2i.

To find p1, p2, . . . , pd−3, first we set k = 1 in Equation 24, which gets

p2
1 + b1p1 + c1 = 0.

So

p1 = γ1 + π0b1,

where γ1 is a root of x2 + b1x + c1 = 0 and π0 = 0 or 1. Then we set k = 1 in

Equation 27 and Equation 28, we can see that pd−3 and pd−4 can be represented as

a polynomial in Fq[π0].

Similarly, set k = 2 in Equation 24, which gets

p2
2 + b2p2 + c2 = 0.

This time we get

p2 = γ2 + π1b2,
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where γ2 is a root of x2 + b2x+ c2 = 0 and π1 = 0 or 1. Note that p2 is in Fq[π0, π1].

And let k = 2in Equation 27, Equation 28 in turn, pd−5, pd−6 can also be represented

as polynomials in Fq[π0, π1].

Continue this process until all p1, p2,. . . ,pd−3 are represented as polynomails in

Fq[π0, π1, . . . , πK ] (K = �(d − 3)/3�), then we substitute the representations of p1,

p2,. . . ,pd−3 to the equations in Equation 27 and Equation 28 which are not used yet.

This will give us enough equations to solve π0, π1, . . . , πK . After these unknowns are

solved, pk’s are found, and so Fl is obtained.

We summarize this algorithm as follows:

Algorithm to compute isogenies

Input: Eb1 : y2 + xy = x3 + b1, an Elkies prime l

Output: Fl(x)

1. Let j1 = 1/b1

2. Find a root of Φl(x, j1) = 0 in Fq, say j2

3. Set b2 = 1/j2

4. Set α = 4
√
b1, β = 4

√
b2

5. Set d = (l − 1)/2

6. Compute p0, pd, pd−1, pd − 2 by Equation 20

7. Represent p1, p2, . . . , pd−3 by π0, π1, . . . , πK

8. Put these representations into unused equations in Equation 27 and 28

9. Solve π0, π1, . . . , πK and obtain p1, p2, . . . , pd−3

10. Compute qi, i = 0, 1, . . . , d by Equation 19

11. Return
∑d

i=0 q
2
i x

i
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5 Experimental Results

We implemented the SEA algorithm by two steps. The first one decides which kind

of prime a prime l is, then computes Fl (if l is Elkies) and stores it, we call this step

Fl. The other one combines data got before and recovers t, we call this step sea2

(to distinguish from SEA program with respect to prime fields).

We computed the orders of ten binary elliptic curves (five of them are Koblitz

curves) recommended by NIST (National Institute of Standards and Technology)

with our implementation of SEA2 and an open source of Schoof2 [7] respectively. In

both SEA2 and Schoof2 we used the MIRACL(Multiprecision Integer and Rational

Arithmetic C/C++ Library [7]) library. It provides big number arithmetic, finite

field arithmetic, and can do computations in polynomial rings, power series ring,

etc. The comparisons of performance results are listed as the table below.

Table: Comparison of two programs

Curve Schoof2 SEA2
Fl sea2 Total

B-163 42s 2s 2s 4s

B-233 9m 26s 6s 5s 11s

B-283 34m 39s 20s 24s 44s

B-409 6h 45m 48s 1m 30s 1m 11s 2m 41s

B-571 71h 54m 25s 33m 43s 7m 13s 40m 56s

K-163 17s 1s 2s 3s

K-233 1m 40s 2s 4s 6s

K-283 5m 34s 3s 16s 19s

K-409 1h 4m 18s 20s 17s 37s

K-571 10h 29m 25s 1m 9s 46s 1m 55s

Table: Computing Environments

Hostname CPU Cores 64-bit OS Memory(MB) L2 Cache (KB)
linux7 Xeon L5420 2.5G 8 v Linux 16384 12288
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6 Conclusion

We have implemented SEA algorithm in the case of binary fields. With our pro-

gram we can compute the orders of elliptic curves over binary fields reasonably fast.

Moreover, since for each prime l, the procedure to find tl is independent from each

other, this program can be easily parallelized if we want to find a secure curve in a

shorter time.
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A  Source Code with Explanation 

In the appendix we will give the part of our source code computing isogenies. The 
words with talic font are our explanation about every function. 

A.1  Some Preprocessors 
int M, d_Fl, num_pi, count[200], term[10000][1000];

GF2m alpha, alphaq, alphad, beta, betaq, delta, alpha2[120], eq[30][10000]; 

vector<GF2m> p[200], p2[200]; 

bool pi[100], pK[200], B[350][350], BC[12000][10000]; 

int main (const int argc, char * argv[]) { 

 int L, a, b, c; 

 ofstream ofile; 

 FILE *myfptr; 

 miracl *mip=&precision; 

 Big A, b1;   

 mip->IOBASE=10; 

usage:  
M: size of the base field. 
a, b, c: the degrees of the middle three terms of the irreducible polynomial f(x)  
A, B: parameters of the curve

 if (argc != 7 && argc != 5) {    

  cout << "Usage: " << argv[0] << " M a b c A B" << endl; 

  cout << "Usage: " << argv[0] << " M a A B" << endl; 

  return -1; 

 } 

 else if (argc == 5) { 

  M = atoi(argv[1]); 

  a = atoi(argv[2]); 

  b = 0; 

  c = 0; 

  A = argv[3]; 
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  b1 = argv[4]; 

 } 

 else { 

  M = atoi(argv[1]); 

  a = atoi(argv[2]); 

  b = atoi(argv[3]); 

  c = atoi(argv[4]); 

  A = argv[5]; 

  b1 = argv[6]; 

 } 

 ofile.open("fl_output.txt");  

 ecurve2(M,a,b,c,A,b1,TRUE,MR_AFFINE); 

 ofile << M << " " << a << " " << b << " " << c << " " << A << " " << b1 << endl; 

 cout << "M= " << M << ", B= " << b1 << endl; 

 get_bij(); 

 if (M>= 56) {  // when M < 56, we use Pollard’s meththod immediately 

  Poly2 MP, Fl;  

 GF2m j2,b2; 

  int n; 

  Big accum= 2, d= howmanyprimes(M);  //  accum is the product of used  

primes

  ofile << d << endl; 

// When M is even, we need this delta to solve quadratic equations 

  delta= 2;    

  if (M%2==0) { 

   while (trace(delta)==0) delta*=2; 

  } 

  // For Koblitz curves we will use a different method 

  bool Koblitz= false;  

  if (b1==1) Koblitz= true;   

  // get modular pilynomials from "modpol2.txt" 

  myfptr = fopen("modpol2.txt", "r");   

  while((fscanf(myfptr, " %d %d", &L, &n)!=EOF) && (accum<= d)){ 



32 

         cout << "L= " << setw(3) << L << ", "; 

   MP= sub_j_in_modpol(b1,n,myfptr);  

   if (Koblitz) {       // Koblitz case 

    if (n%2==1) {  // Atkin case 

     cout << "         atkin!!" << endl; 

     Atkin();

     continue; 

    } 

    else Fl= get_FlK(L,b1,1);  // Elkies case 

   } 

   else {  // the case B ≠ 1

    j2= Atkin_or_Elkies(MP); 

    if (j2==0) {  // Atkin case 

     cout << "         atkin!!" << endl; 

     Atkin(); 

     continue; 

    }   

    /* Elkies */ 

    b2= 1/j2; 

    Fl= get_Fl(L,b1,b2); 

   } 

   accum*= L; 

   cout << "elkies!!" << endl; 

   /* output of FL*/ 

   ofile << L << endl; 

   term2 *tempptr=Fl.start; 

   int mytemp = tempptr->n + 1; 

   while (tempptr!=NULL) { 

    mytemp--; 

    if (tempptr->n == mytemp) { 

     ofile << tempptr->an << endl; 

     tempptr=tempptr->next; 

    } 

    else ofile << "0" << endl; 

   } 

   ofile << endl; 

  } 

 } 
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 fclose(myfptr); 

 ofile.close(); 

 return 0; 

} 

We use index[10000] to store the terms of the monomials 
For example,  
(i) index[0].deg = 2; index[0].mono[0]= 1; index[0].mono[1]= 3;

 then index[0] = π1π3

(ii) index[1].deg = 4; index[1].mono[0]= 1; index[1].mono[1]= 3;  
index[1].mono[2]= 4; index[1].mono[3]= 5;

 then index[1] = π1π3π4π5

struct INDEX {  

 int deg;  

 int mono[10];  

} index[10000]; 

sol_qua: solve quadratic equations when M is odd 
sol_qua2: solve quadratic equations when M is even

GF2m sol_qua(GF2m b, GF2m c) { 

int i; 

GF2m x= c/(b*b),sol=0; 

 for (i=0; i<= (M-1)/2; i++) { 

  sol+= x; 

  x= pow(x,4); 

 } 

 sol*= b; 

 return sol; 

} 

GF2m sol_qua2(GF2m b, GF2m c) { 

 int i; 

 GF2m x= c/(b*b),sol=0; 
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 GF2m s=0, t=delta; 

 x= sqrt(x); 

 for (i= 0; i< M-1; i++) { 

  x= sqrt(x); 

  t= sqrt(t); 

  s+= t; 

  sol+= s*x; 

 } 

 sol*= b; 

 return sol; 

} 

get_index: see how many monomials will be used, and give each of them an index. 
When we compute pk, the monomials being used are  
{πiπj…πmπnW2i+2j+…+2m+n+(3d−2) = k , d = deg(πiπj…πmπn)}

void get_index(int k) { 

 int i,j,counta; 

 int d=2,temp[10]; 

 counta= count[k-1]-1;  

 while (d*(d+1)-1< k+1) { 

  for (i=0; i< d-1; i++) temp[i]= i; 

  temp[d-1]= k-3*d+2; 

  for (i=0; i< d-1; i++) temp[d-1]-= 2*temp[i]; 

  while (temp[d-2]< temp[d-1]) { 

   counta++; 

   index[counta].deg= d; 

   for (i=0; i< d; i++) index[counta].mono[i]= temp[i]; 

   temp[d-1]-= 2; 

   temp[d-2]++; 

   for (i=1; i< d; i++) { 

    if (temp[d-2]>= temp[d-1]) { 

     temp[d-1-i]++; 

     for (j=d-i; j< d-1; j++) temp[j]= temp[j-1]+1;

     temp[d-1]= k-3*d+2; 

     for (j=0; j< d-1; j++) temp[d-1]-= 2*temp[j]; 

    } 
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   } 

  } 

  d++; 

 } 

 counta++; 

 index[counta].deg= 1; 

 index[counta].mono[0]= k-1; 

 count[k]= counta+1; 

 return; 

} 

get_mono:  
input: two monomials 
return value: product of the two monomial

INDEX get_mono(INDEX ind1,INDEX ind2) { 

 INDEX temp; 

 int i,j,k; 

 for (i=0; i< ind1.deg; i++) temp.mono[i]= ind1.mono[i]; 

 temp.deg= ind1.deg; 

 for (i=0; i< ind2.deg; i++) { 

  for (j=0; j< temp.deg; j++) { 

   if (ind2.mono[i]==temp.mono[j]) break; 

   if (ind2.mono[i]< temp.mono[j]) { 

    for (k= temp.deg; k>j; k--) temp.mono[k]= temp.mono[k-1]; 

    temp.mono[j]= ind2.mono[i]; 

    temp.deg++; 

    break; 

   } 

  } 

  if (j==temp.deg) { 

   temp.mono[j]= ind2.mono[i]; 

   temp.deg++; 

  } 

 } 

 return temp; 

} 
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get_term:  
input: monomial 
return value: the index refered in get_index of the monomial 

int get_term(INDEX ind) { 

 int i,j,k=0,d=2,temp[10],counta; 

 bool match; 

 if (ind.deg==0) return 0;  

 else if (ind.deg==1) return (count[ind.mono[0]+1]-1); 

 else { 

  for (i=0; i< ind.deg-1; i++) k+= 2*ind.mono[i]; 

  k+= ind.mono[ind.deg-1]+3*ind.deg-2; 

  counta= count[k-1]-1; 

  while (d*(d+1)-1< k+1) { 

   for (i=0; i< d-1; i++) temp[i]= i; 

   temp[d-1]= k-3*d+2; 

   for (i=0; i< d-1; i++) temp[d-1]-= 2*temp[i]; 

   while (temp[d-2]< temp[d-1]) { 

    counta++; 

    match= true; 

    for (i=0; i< ind.deg; i++) if (ind.mono[i]!=temp[i]) match= false; 

    if (match) break; 

    temp[d-1]-= 2; 

    temp[d-2]++; 

    for (i=1; i< d; i++) { 

     if (temp[d-2]>= temp[d-1]) { 

      temp[d-1-i]++; 

      for (j=d-i; j< d-1; j++) temp[j]= temp[j-1]+1; 

      temp[d-1]= k-3*d+2; 

      for (j=0; j< d-1; j++) temp[d-1]-= 2*temp[j];

     } 

    } 

   } 

   if (match) break; 

   d++; 

  }  
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  return counta; 

 } 

} 

sub_j_in_modpol: read modular polynomials from “modpol2.txt”, and substitute 
j-invariant in one of the variables 
Poly2 sub_j_in_modpol(GF2m b1, int n,FILE* myfptr) { 

 int i; 

 GF2m j1; 

 Poly2 MP; 

 j1= ((GF2m)1)/(GF2m)b1; 

 MP.clear(); 

 for(i = 0; i < n; i++){ 

  int degx, degy; 

  fscanf(myfptr, " %d %d", &degx, &degy); 

  MP.addterm(pow(j1, degx), degy); 

 } 

 return MP; 

} 

Atkin_or_Elkies: See a prime L is Elkies or Atkin 
GF2m Atkin_or_Elkies(Poly2 MP) { 

 int i; 

 GF2m b,c,j2; 

 Poly2Mod G, XQ, XX; 

 setmod(MP); 

 XX= 0; 

 XX.addterm((GF2m)1,1); 

 XQ= XX; 

 for (i=0; i< M; i++) XQ*= XQ; 

 G= gcd(XQ+XX); 

 b= G.coeff(1); 

 c= G.coeff(0); 

 cout << "degree(G) = " << degree(G) << ", "; 
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 if (degree(G)==1) j2= c; 

 else if (degree(G)==2) { 

  if (M%2==1) j2= sol_qua(b,c); 

  else j2= sol_qua2(b,c); 

 } 

 else j2= 0; 

 return j2; 

} 

howmanyprimes: decide how many primes we need 

Big howmanyprimes(int M) { 

 Big p= pow((Big)2,M); 

 Big d; 

    if (M<=256) d=pow((Big)2,64);   

 else d=pow((Big)2,72);   

    d=sqrt(p/d); 

    if (d<256) d=256; 

 return d; 

} 

get_bij : compute B(i , j) = i ! / ( j! (i−j)! ) mod 2 for later use 

void get_bij(void) { 

 int i,j; 

 for (i=0; i< M/2; i++) B[i][0]= B[i][i]= true;   //  B(i,j)= i!/(j!(i-j)!) mod2 

 for (i=2; i< M/2; i++) { 

  for (j=1; j< i; j++) { 

   B[i][j]= B[i-1][j-1]^B[i-1][j]; 

  } 

 } 

 return; 

} 

column_exch: exchange two columns in a coefficient matrix 
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void column_exch(int i,int j,int n) { 

 int k; 

 GF2m temp; 

 for (k=0; k< n; k++) { 

  temp= eq[k][i]; 

  eq[k][i]= eq[k][j]; 

  eq[k][j]= temp; 

 } 

 return; 

} 

row_op: add one row to another in a coefficient matrix 
void row_op(bool row1[], bool row2[], int c) { 

 int i; 

 for (i=c; i>=0; i--)  row2[i]^= row1[i]; 

 return; 

} 

row_exch: exchange two rows in a coefficient matrix
void row_exch(bool row1[], bool row2[], int K) { 

 int i; 

 bool c; 

 for (i=0; i< K+1; i++) { 

  c= row1[i]; 

  row1[i]= row2[i]; 

  row2[i]= c; 

 } 

 return; 

}
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A.2  Computing Isogenies 
get_pk: represent pk as a polynomial in Fq[π0, π1,…, πK] by Equation 19, 22, 23.

void get_pk(void) { 

 int i,j,k,m;  

 GF2m bk; 

 index[0].deg= 0;   // the constant term 

 count[0]= 1; 

 // num_pi is the number of the unknowns, here we give indices to monomials 

 for (i=1; i< num_pi+1; i++) get_index(i);   

 for (i=0; i< num_pi; i++) { 

  k= count[(num_pi-i-1)/2]; 

for (j=0; j< count[i]; j++) {  

   for (m=0; m< k; m++) {  

    INDEX u;  

    u= get_mono(index[j],index[m]); 

    term[j][m]= get_term(u); 

   } 

  } 

 } 

 alpha2[0]= 1;   // α2i will be used a lot later, we compute and store then here     

 alpha2[1]= pow(alpha,2); 

 j= d_Fl/2+1; 

 for (i=2; i< j; i++) alpha2[i]= alpha2[i-1]*alpha2[1]; 

 bk= betaq*sqrt(alphad)/alphaq;      //  bk 

 for (k=1; k< num_pi; k++) { 

  bk/= alpha;          //  bk= betaq*sqrt(alphad)/(pow(alpha,k)*alphaq) 

  vector<GF2m> ck(count[k]); 

  for (j=0; j< count[k]; j++) ck[j]= 0;  //  Compute ck by Equation 21 

  int s= k; 

  GF2m temp= bk*alpha2[k]; 

  for(i=1; i<= k/2; i++) { 

   s-= 2; 

   if (B[d_Fl-s][i]) for (j=0; j< count[s]; j++) ck[j]+= p[s][j]*temp; 
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  } 

  for (i=0; i< k; i++) { 

   s= d_Fl-k+i; 

   for (j=0; j< count[i]; j++) { 

    for (m=0; m< count[s]; m++) { 

     ck[term[j][m]]+= p2[i][j]*p2[s][m]; 

    } 

   } 

  } 

  int t1= d_Fl-2*k-1; 

  int t2= t1-1; 

  p[k]= p2[k]= p[t1]= p[t2]= ck;     //  set vector size 

  count[t1]= count[t2]= count[k]; 

   

  p[k][--count[k]]= bk; 

  p2[k][count[k]]= pow(bk,2)*alpha2[k]; 

  temp= pow(alpha2[k],2)*alpha/(alphad*alphad); 

  if (M%2==1) { 

   for (j=0; j< count[k]; j++) { 

    ck[j]/= alpha2[k]; 

    //  By Equation 19, pk is a root of x2+bkx+ck=0. 

    p[k][j]= sol_qua(bk,ck[j]);  

    p2[k][j]= pow(p[k][j],2)*alpha2[k]; 

    p[t1][j]= pow(p[k][j],4)*temp;    //  p[d-2k-1]

    p[t2][j]= 0;       //  p[d-2k-2] 

   } 

  } 

  else { 

   for (j=0; j< count[k]; j++) { 

    ck[j]/= alpha2[k]; 

    p[k][j]= sol_qua2(bk,ck[j]); 

    p2[k][j]= pow(p[k][j],2)*alpha2[k]; 

    p[t1][j]= pow(p[k][j],4)*temp;    //  p[d-2k-1]

    p[t2][j]= 0;       //  p[d-2k-2] 

   } 

  } 
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  //  Compute p[d_Fl-2*k-1], p[d_Fl-2*k-2] by Equation 22, 23 

  p[t1][count[k]]= pow(bk,4)*temp; 

  p[t2][count[k]++]= 0; 

  s= t1; 

  for(i=1; i< k+1; i++) { 

   int qq= count[k-i]; 

   if (B[++s][i-1]) { 

    temp= alpha*alpha2[i-1]; 

    for (j=0; j< qq; j++) p[t1][j]+= p[s][j]*temp; 

   } 

   if (B[s][i]) for (j=0; j< qq; j++) p[t2][j]+= p[s][j]*alpha2[i]; 

   if (B[++s][i]) { 

    temp= alpha*alpha2[i]; 

    for (j=0; j< qq; j++) { 

     p[t1][j]+= p[s][j]*alpha2[i]; 

     p[t2][j]+= p[s][j]*temp; 

    } 

   } 

  } 

  if (B[d_Fl][k]) p[t1][0]+= alpha2[k]*alpha; 

  if (B[d_Fl][k+1]) p[t2][0]+= p[d_Fl][0]*alpha2[k+1]; 

  i= d_Fl-k-1; m= k/2; 

  for (j=0; j< count[m]; j++) p[t2][j]+= pow(p[i][j],4)+ alpha*p[t1][j]; 

  for (j=count[m]; j< count[k]; j++) p[t2][j]+= alpha*p[t1][j]; 

  if (k< num_pi/2+1) {  

   p2[t1]= p2[t2]= ck;     //  set vector size 

   for (j=0; j< count[k]; j++) { 

    p2[t1][j]= pow(p[t1][j],2); 

    p2[t2][j]= pow(p[t2][j],2); 

   } 

  } 

   

 } 

    for (k=num_pi; k< num_pi+1; k++) { 

  bk/= alpha;      //  bk= betaq*sqrt(alphad)/(pow(alpha,k)*alphaq) 

  vector<GF2m> ck(count[k]); 
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  for (j=0; j< count[k]; j++) ck[j]= 0; 

  int s= k; 

  GF2m temp= bk*alpha2[k]; 

  for(i=1; i<= k/2; i++) { 

   s-= 2; 

   if (B[d_Fl-s][i]) for (j=0; j< count[s]; j++) ck[j]+= p[s][j]*temp; 

  } 

  for (i=0; i< k; i++) { 

   s= d_Fl-k+i; 

   for (j=0; j< count[i]; j++) { 

    for (m=0; m< count[s]; m++) { 

     ck[term[j][m]]+= p2[i][j]*p2[s][m]; 

    } 

   } 

  } 

  p[k]= ck;   //  set vector size 

  count[k]--; 

  if (M%2==1) { 

   for (j=0; j< count[k]; j++) { 

    ck[j]/= alpha2[k]; 

    p[k][j]= sol_qua(bk,ck[j]); 

   } 

  } 

  else { 

   for (j=0; j< count[k]; j++) { 

    ck[j]/= alpha2[k]; 

    p[k][j]= sol_qua2(bk,ck[j]); 

   } 

  } 

  p[k][count[k]++]= bk; 

  if (3*k==(d_Fl-1)) break; 

  int t= d_Fl-2*k-1; 

  p[t]= ck; 

  count[t]= count[k]; 
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  temp= pow(alpha2[k],2)*alpha/(alphad*alphad); 

  for (j=0; j< count[k]; j++) p[t][j]= pow(p[k][j],4)*temp;   //  p[d-2k-1] 

  s= t; 

  for(i=1; i< k+1; i++) { 

   int qq= count[k-i]; 

   if (B[++s][i-1]) { 

    temp= alpha*alpha2[i-1]; 

    for (j=0; j< qq; j++) p[t][j]+= p[s][j]*temp; 

   } 

   if (B[++s][i]) for (j=0; j< qq; j++) p[t][j]+= p[s][j]*alpha2[i]; 

  } 

  if (B[d_Fl][k]) p[t][0]+= alpha2[k]*alpha; 

  if (3*k==(d_Fl-2)) break; 

  p[--t]= ck; 

  count[t]= count[k]; 

  i= d_Fl-k-1; m= k/2; 

  s= t+1; 

  for (j=0; j< count[m]; j++) p[t][j]= pow(p[i][j],4) + alpha*p[s][j]; 

  for (j= count[m]; j< count[k]; j++) p[t][j]= alpha*p[s][j];   //   p[d-2k-2] 

  for(i=1; i< k+1; i++)  { 

   int qq= count[k-i]; 

   if (B[++s][i]) for (j=0; j< qq; j++) p[t][j]+= p[s][j]*alpha2[i]; 

   if (B[++s][i]) { 

    temp= alpha*alpha2[i]; 

    for (j=0; j< qq; j++) p[t][j]+= p[s][j]*temp; 

   } 

  } 

  if (B[d_Fl][k+1]) p[t][0]+= alpha2[k+1]; 

 } 

 return; 

} 

get_cf: After representing pk’s as polynomials in Fq[π0,π1,…,πK], substitute them into 
equations which are unused in Equation 22.  

void get_cf(int n) { 
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 int i,j,k,t; 

 GF2m temp,temp2= alphad*alphad/(alpha*pow(alpha,4*num_pi)); 

 for (t=0; t< n; t++) { 

  for (j=0; j< count[num_pi]; j++) eq[t][j]= 0; 

  k= num_pi+1+t; 

  int s= d_Fl-2*k-1; 

  for (j=0; j< count[s]; j++) eq[t][j]+= p[s][j]; 

  for (i=1; i< k+1; i++) { 

   if (B[++s][i-1]) { 

    temp= alpha2[i-1]*alpha; 

    for (j=0; j< count[s]; j++) eq[t][j]+= p[s][j]*temp; 

   } 

   if (B[++s][i]) for (j=0; j< count[s]; j++) eq[t][j]+= p[s][j]*alpha2[i]; 

  } 

  if (B[d_Fl][k]) eq[t][0]+= alpha2[k]*alpha; 

  temp2/= alpha2[2]; 

  for (j=0; j< count[num_pi]; j++) eq[t][j]*= temp2; 

  for (j=0; j< count[k]; j++) eq[t][j]+= pow(p[k][j],4); 

 } 

 return; 

} 

solve_pi: solve the equations obtained before by Gaussian elimination 

void solve_pi (int noe, int K) { 

 int i,j,k,r; 

 for (k=0; k< noe; k++)  { 

  for (i=0; i< K; i++) { 

   for (j=0; j< M; j++) { 

    if (eq[k][i]%2 == 1) BC[k*M+j][i]= true; 

    else BC[k*M+j][i]= false; 

    eq[k][i]/= 2; 

   } 

  } 

 } 

 r=0;     //  rank 

 for (i= --K; i> 0; i--) { 



46 

  j= r; 

  while ((!BC[j][i]) && (j< M*noe-1))  j++; 

  row_exch(BC[r],BC[j],K); 

  if (!BC[r][i]) continue; 

  for (j=r+1; j< M*noe; j++) if (BC[j][i]) row_op(BC[r],BC[j],i); 

  r++; 

 } 

 for (i=0; i< num_pi; i++) { 

  pi[i]= BC[r-1-i][0]; 

  if (pi[i]) for (j=0; j< r-1-i; j++) BC[j][0]^= BC[j][i+1]; 

 } 

 return; 

} 

get_Fl: get Fl by using the information obtained before 
Poly2 get_Fl(int L, GF2m b1, GF2m b2) { 

 int i,j,k; 

 int noe; 

 GF2m q[200]; 

 Poly2 Q; 

 d_Fl= (L-1)/2;              // degree of Fl  

 num_pi= (d_Fl-3)/3 +1;       

 if (d_Fl%3==0) num_pi--;    // number of unknowns 

 alpha= sqrt(sqrt(b1));   //  alpha, alpha^(1/4), alpha^d 

 alphaq= sqrt(sqrt(alpha)); 

 alphad= pow(alpha,d_Fl); 

 beta= sqrt(sqrt(b2));    //  beta, beta^(1/4) 

 betaq= sqrt(sqrt(beta)); 

 vector<GF2m> c(1);               // Compute p0,pd,pd−1,pd−2 by Equation 15 

 count[d_Fl]= count[0]= 1;           //  p[0], p[d], p[d-1], p[d-2] 

 p[d_Fl]= p2[d_Fl]= p[0]= p2[0]= c;   //  set vector size 

 p[d_Fl][0]= p2[d_Fl][0]= 1; 

 p[0][0]= sqrt(alphad)*betaq/alphaq; 
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 p2[0][0]= pow(p[0][0],2); 

 if (d_Fl>1) { 

  count[d_Fl-1]= 1; 

  p[d_Fl-1]= p2[d_Fl-1]= c; 

  p[d_Fl-1][0]= alpha+beta; 

  p2[d_Fl-1][0]= pow(p[d_Fl-1][0],2); 

 } 

 if (d_Fl>2) { 

  count[d_Fl-2]= 1; 

  p[d_Fl-2]= p2[d_Fl-2]= c; 

  p[d_Fl-2][0]= pow(p[d_Fl-1][0],4)+alpha*p[d_Fl-1][0]; 

  if (d_Fl%2==1) p[d_Fl-2][0]+= alpha*alpha; 

  p2[d_Fl-2][0]= pow(p[d_Fl-2][0],2); 

 } 

 if (d_Fl< 5) {          //  if deg(Fl)< 5 we are done 

  GF2m temp= alphaq*sqrt(alphad)*alpha/betaq; 

  for(k=0; k< d_Fl+1; k++) { 

   temp/= alpha; 

   q[k]= temp*p[d_Fl-k][0]; 

   Q.addterm(pow(q[k],2),k); 

  } 

  return Q; 

 } 

 get_pk();  

 noe= count[num_pi]/(M-2) +2;    //  number of equations needed 

 get_cf(noe);  

 for (i=1; i< num_pi+1; i++) column_exch(i,count[i]-1,noe); 

 solve_pi(noe,count[num_pi]);  

 int t[10000],s[100],m; 

 i=0;  

 for (m=1; m< num_pi+1; m++) { 

  for (j= count[m-1]; j< count[m]; j++) { 

   bool temp= true; 

   for (k=0; k< index[j].deg; k++) { 

    if (!pi[index[j].mono[k]]) { 
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     temp= false; 

     break; 

    } 

   } 

   if (temp) t[i++]= j; 

  } 

  s[m]= i; 

 } 

 if (d_Fl%3==0) num_pi++; 

 for (k=1; k< num_pi; k++) {  

  for (j=0; j< s[k]; j++) { 

   p[k][0]+= p[k][t[j]]; 

   p[d_Fl-2*k-1][0]+= p[d_Fl-2*k-1][t[j]]; 

   p[d_Fl-2*k-2][0]+= p[d_Fl-2*k-2][t[j]]; 

  } 

 } 

     

     for (k=0; k< d_Fl%3; k++) { 

  for (j=0; j< s[num_pi]; j++) p[num_pi+k][0]+= p[num_pi+k][t[j]]; 

 } 

    Q.clear();   // compute qk by Equation 14 

 GF2m temp= alphaq*sqrt(alphad)*alpha/betaq; 

 for(k=0; k< d_Fl+1; k++) { 

  temp/= alpha; 

  q[k]= temp*p[d_Fl-k][0]; 

  Q.addterm(pow(q[k],2),k); 

 } 

 return Q; 

} 
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A.3  Computing Isogenies for Koblitz Curves 
get_pkK: for Koblitz curves, the values of pk’s are always 0 or 1, and we don’t have to 

compute monomials which have degree greater than 1, so we use another function 

void get_pkK (void) { 

 int i,k; 

    for (k=1; k< num_pi + 1; k++) { 

  pK[k]= pi[k-1]; 

  if (3*k==(d_Fl-1)) break; 

  pK[d_Fl-2*k-1]= false;                //  p[d-2k-1] 

        for(i=1; i< k+1; i++)  { 

         if (B[d_Fl-2*k-1+2*i][i]) pK[d_Fl-2*k-1]^= pK[d_Fl-2*k-1+2*i]; 

         if (B[d_Fl-2*k+2*i][i])   pK[d_Fl-2*k-1]^= pK[d_Fl-2*k+2*i]; 

  } 

     pK[d_Fl-2*k-1]^= (pK[d_Fl-2*k]^pK[k]); 

  if (3*k==(d_Fl-2)) break; 

  pK[d_Fl-2*k-2]= false;                //   p[d-2k-2] 

        for(i=1; i< k+1; i++)  { 

         if (B[d_Fl-2-2*k+2*i][i])  pK[d_Fl-2*k-2]^= pK[d_Fl-2-2*k+2*i]; 

         if (B[d_Fl-1-2*k+2*i][i])  pK[d_Fl-2*k-2]^= pK[d_Fl-1-2*k+2*i]; 

  } 

        pK[d_Fl-2*k-2]^= pK[d_Fl-2*k-1]^pK[d_Fl-k-1]^B[d_Fl][k+1]; 

 } 

 return; 

} 

get_cf1, get_cf2: In Koblitz case, the equations in Equation 22 maybe not enough, we 
also need equations in Equaton 23. 

bool get_cf1(int j) { 

 int i; 

 int k= j+1; 

 bool c= false; 

 for (i=0;i< k+1;i++) { 
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  if(B[d_Fl-2*k-1+2*i][i]) c^= pK[d_Fl-2*k-1+2*i]; 

     if(B[d_Fl-2*k+2*i][i]) c^= pK[d_Fl-2*k+2*i];  

 } 

    c^= pK[k]; 

 return c; 

} 

bool get_cf2(int k) { 

 int i; 

 bool c= false; 

 for (i=0;i< k+1;i++) { 

  if(B[d_Fl-2*k-1+2*i][i]) c^= pK[d_Fl-2*k-1+2*i]; 

     if(B[d_Fl-2*k-2+2*i][i]) c^= pK[d_Fl-2*k-2+2*i];  

 } 

    c^= pK[d_Fl-k-1]^B[d_Fl][k+1]; 

 return c; 

} 

get_FlK: compute Fl for Koblitz curves 

Poly2 get_FlK(int L, GF2m b1, GF2m b2) { 

 int i,j,k; 

 int noe,noe1,noe2; 

 bool Fl_test= false; 

 Poly2 Q; 

 d_Fl= (L-1)/2;              //  degree of Fl 

 num_pi= (d_Fl-3)/3 +1;      //  number of unknowns have to be added 

 if (d_Fl%3 == 0) num_pi--; 

 noe1= (d_Fl-1)/2-num_pi+1; 

 noe2= d_Fl/2-num_pi; 

 noe= noe1+noe2; 

 pK[d_Fl]= true;     //  p[0], p[d], p[d-1], p[d-2]

 pK[0]= true; 

 if (d_Fl>1) pK[d_Fl-1]= false; 

 if (d_Fl>2) { 
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  if (d_Fl%2==1)  pK[d_Fl-2]= true; 

  else pK[d_Fl-2]= false; 

 } 

 if (d_Fl< 5) {          //  if deg(Fl)< 5 we are done 

  for(k=0; k< d_Fl+1; k++) Q.addterm((GF2m)pK[d_Fl-k],k); 

  return Q; 

 } 

   

 for (i=0; i< num_pi; i++)  pi[i]= false;        //   degree 0 

 get_pkK(); 

 for (j=0; j< noe1; j++) BC[j][0]= get_cf1(num_pi+j); 

 for (j=0; j< noe2; j++) BC[noe1+j][0]= get_cf2(num_pi+j); 

                           

 for (i=0; i< num_pi; i++) {                     //   degree 1 for Koblitz 

  for (j=0; j< num_pi; j++)  pi[j]= false; 

  pi[i]= true; 

  get_pkK(); 

  for (j=0; j< noe1; j++) BC[j][i+1]= get_cf1(num_pi+j)^BC[j][0]; 

  for (j=0; j< noe2; j++) { 

BC[noe1+j][i+1]= get_cf2(num_pi+j)^BC[noe1+j][0]; 

} 

 } 

 int r=0; 

 solve_piK(noe,num_pi,r); 

 int vio[20]; 

 i=0;   

 for (j=0; j< num_pi; j++) {  

  if (!BC[j][num_pi-j]) { 

   for (k= num_pi-1; k>j; k--) row_exch(BC[k],BC[k-1],num_pi); 

   vio[i++]= num_pi-j-1; 

  } 

 } 

 int upperbound= 1 << (num_pi-r); 
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 i=0; 

 while (!Fl_test) { 

  for(j=0; j< num_pi-r; j++) pi[vio[j]]= (i & (1 << j)) && 1; 

  i++; 

  bool vio_test; 

  for (j=0; j< num_pi; j++) { 

   vio_test= false; 

   for (k=0; k< num_pi-r; k++) if (j==vio[k]) vio_test= true; 

   if (!vio_test) { 

    pi[j]= false; 

    for (k=0; k< j; k++) if (BC[num_pi-1-j][k+1]) pi[j]^= pi[k]; 

    pi[j]^= BC[num_pi-1-j][0]; 

   } 

  } 

  get_pkK(); 

  Q.clear(); 

  for(k=0; k< d_Fl+1; k++) if (pK[d_Fl-k]) Q.addterm(1,k); 

  if (i< upperbound+1) Fl_test= DP_test(Q,b1,L); 

  else Fl_test= true; 

  if (i==upperbound) break; 

 } 

 return Q; 

} 

DP_test: division polynomial test.  

bool DP_test(Poly2 Q,GF2m b1, int L) {  

 Poly2 Pf[5], G; 

 Poly2Mod P[600]; 

 Pf[0]=0; Pf[1]=1; Pf[2]=0; Pf[3]=0; Pf[4]=0; 

    Pf[2].addterm(1,1); 

     Pf[3].addterm(b1,0);    

     Pf[3].addterm(1,3); 

     Pf[3].addterm(1,4);   

     Pf[4].addterm(b1,2); 

     Pf[4].addterm(1,6); 

 setmod(Q); 
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 int m; 

 for (m=0; m< 5; m++) P[m]= (Poly2Mod) Pf[m]; 

 m=3; 

 while (2*m < L+3) { 

  P[2*m-1]= P[m+1]*P[m-1]*P[m-1]*P[m-1]+ P[m-2]*P[m]*P[m]*P[m]; 

  P[2*m]= (P[m+2]*P[m-1]*P[m-1]+  

P[m-2]*P[m+1]*P[m+1])*P[m]*inverse(P[2]); 

  m++; 

 } 

 G= gcd(P[L]); 

 if (G==Q) return true; 

 else return false; 

} 

solve_piK: solve_pi function in Koblitz case 

void solve_piK (int noe, int K, int& r) { 

 int i,j; 

 r=0;     //  rank 

 for (i= K; i> 0; i--) { 

  j= r; 

  while ((!BC[j][i]) && (j< noe-1))  j++; 

  row_exch(BC[r],BC[j],K); 

  if (!BC[r][i]) continue; 

  for (j=r+1; j< noe; j++) if (BC[j][i]) row_op(BC[r],BC[j],i); 

  r++; 

 } 

 return; 

} 
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B  Implementation Data
compiler option: -O2 
Thread model: posix 
gcc version 4.3.2 (Debian 4.3.2-1) 

B.1  NIST Binary Curves
(1) Computing Isogenies 

B-163 

b93030@linux7:~/Work/Schoof/miracl$ time ./fl 163 7 6 3 1 
2982236234343851336267446656627785008148015875581 
M= 163, b1= 2982236234343851336267446656627785008148015875581 
d= 796131459065721 
L=   3, degree(G) = 0,          atkin!! 
L=   5, degree(G) = 0,          atkin!! 
L=   7, degree(G) = 0,          atkin!! 
L=  11, degree(G) = 2, elkies!! 
L=  13, degree(G) = 0,          atkin!! 
L=  17, degree(G) = 0,          atkin!! 
L=  19, degree(G) = 2, elkies!! 
L=  23, degree(G) = 0,          atkin!! 
L=  29, degree(G) = 0,          atkin!! 
L=  31, degree(G) = 2, elkies!! 
L=  37, degree(G) = 2, elkies!! 
L=  41, degree(G) = 0,          atkin!! 
L=  43, degree(G) = 0,          atkin!! 
L=  47, degree(G) = 2, elkies!! 
L=  53, degree(G) = 0,          atkin!! 
L=  59, degree(G) = 0,          atkin!! 
L=  61, degree(G) = 2, elkies!! 
L=  67, degree(G) = 2, elkies!! 
L=  71, degree(G) = 0,          atkin!! 
L=  73, degree(G) = 2, elkies!! 
L=  79, degree(G) = 0,          atkin!! 
L=  83, degree(G) = 0,          atkin!! 
L=  89, degree(G) = 2, elkies!! 
L=  97, degree(G) = 0,          atkin!! 
L= 101, degree(G) = 2, elkies!! 

real    0m2.328s 
user    0m2.224s 
sys     0m0.104s 

B-233 

b93030@linux7:~/Work/Schoof/miracl$ time ./fl 233 74 1 
276049798002920418707884550237789852030770725625900396439857014712337
3 
M= 233, b1= 
276049798002920418707884550237789852030770725625900396439857014712337
3 
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d= 27354868640032294882193329 
L=   3, degree(G) = 0,          atkin!! 
L=   5, degree(G) = 2, elkies!! 
L=   7, degree(G) = 1, elkies!! 
L=  11, degree(G) = 0,          atkin!! 
L=  13, degree(G) = 0,          atkin!! 
L=  17, degree(G) = 2, elkies!! 
L=  19, degree(G) = 2, elkies!! 
L=  23, degree(G) = 0,          atkin!! 
L=  29, degree(G) = 0,          atkin!! 
L=  31, degree(G) = 2, elkies!! 
L=  37, degree(G) = 0,          atkin!! 
L=  41, degree(G) = 0,          atkin!! 
L=  43, degree(G) = 2, elkies!! 
L=  47, degree(G) = 0,          atkin!! 
L=  53, degree(G) = 0,          atkin!! 
L=  59, degree(G) = 2, elkies!! 
L=  61, degree(G) = 0,          atkin!! 
L=  67, degree(G) = 2, elkies!! 
L=  71, degree(G) = 2, elkies!! 
L=  73, degree(G) = 2, elkies!! 
L=  79, degree(G) = 2, elkies!! 
L=  83, degree(G) = 0,          atkin!! 
L=  89, degree(G) = 0,          atkin!! 
L=  97, degree(G) = 2, elkies!! 
L= 101, degree(G) = 0,          atkin!! 
L= 103, degree(G) = 2, elkies!! 
L= 107, degree(G) = 2, elkies!! 
L= 109, degree(G) = 2, elkies!! 
L= 113, degree(G) = 0,          atkin!! 
L= 127, degree(G) = 2, elkies!! 

real    0m6.408s 
user    0m5.828s 
sys     0m0.576s 

B-283 

b93030@linux7:~/Work/Schoof/miracl$ time ./fl 283 12 7 5 1 
482181357605607237400699778039908118031227003030060127012045034120
5914644378616963829 
M= 283, b1= 
482181357605607237400699778039908118031227003030060127012045034120
5914644378616963829 
d= 57367317478181007276781504744917 
L=   3, degree(G) = 0,          atkin!! 
L=   5, degree(G) = 0,          atkin!! 
L=   7, degree(G) = 2, elkies!! 
L=  11, degree(G) = 0,          atkin!! 
L=  13, degree(G) = 0,          atkin!! 
L=  17, degree(G) = 0,          atkin!! 
L=  19, degree(G) = 2, elkies!! 
L=  23, degree(G) = 2, elkies!! 
L=  29, degree(G) = 2, elkies!! 
L=  31, degree(G) = 0,          atkin!! 
L=  37, degree(G) = 2, elkies!! 
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L=  41, degree(G) = 0,          atkin!! 
L=  43, degree(G) = 0,          atkin!! 
L=  47, degree(G) = 2, elkies!! 
L=  53, degree(G) = 0,          atkin!! 
L=  59, degree(G) = 0,          atkin!! 
L=  61, degree(G) = 2, elkies!! 
L=  67, degree(G) = 2, elkies!! 
L=  71, degree(G) = 0,          atkin!! 
L=  73, degree(G) = 0,          atkin!! 
L=  79, degree(G) = 2, elkies!! 
L=  83, degree(G) = 2, elkies!! 
L=  89, degree(G) = 0,          atkin!! 
L=  97, degree(G) = 2, elkies!! 
L= 101, degree(G) = 0,          atkin!! 
L= 103, degree(G) = 2, elkies!! 
L= 107, degree(G) = 2, elkies!! 
L= 109, degree(G) = 2, elkies!! 
L= 113, degree(G) = 0,          atkin!! 
L= 127, degree(G) = 2, elkies!! 
L= 131, degree(G) = 0,          atkin!! 
L= 137, degree(G) = 2, elkies!! 
L= 139, degree(G) = 0,          atkin!! 
L= 149, degree(G) = 2, elkies!! 
L= 151, degree(G) = 0,          atkin!! 
L= 157, degree(G) = 0,          atkin!! 
L= 163, degree(G) = 0,          atkin!! 
L= 167, degree(G) = 2, elkies!! 

real    0m20.771s 
user    0m20.229s 
sys     0m0.536s 

B-409 

b93030@linux7:~/Work/Schoof/miracl$ time ./fl 409 87 1 
868862616340907076728177706403844252645058294790436418244386586141
11870471004564988634410809058207142318571212147935892575 
M= 409, b1= 
868862616340907076728177706403844252645058294790436418244386586141
11870471004564988634410809058207142318571212147935892575 
d= 529120111857624937813183735811535109761073714132242 
L=   3, degree(G) = 0,          atkin!! 
L=   5, degree(G) = 0,          atkin!! 
L=   7, degree(G) = 0,          atkin!! 
L=  11, degree(G) = 2, elkies!! 
L=  13, degree(G) = 2, elkies!! 
L=  17, degree(G) = 2, elkies!! 
L=  19, degree(G) = 2, elkies!! 
L=  23, degree(G) = 2, elkies!! 
L=  29, degree(G) = 0,          atkin!! 
L=  31, degree(G) = 0,          atkin!! 
L=  37, degree(G) = 2, elkies!! 
L=  41, degree(G) = 2, elkies!! 
L=  43, degree(G) = 2, elkies!! 
L=  47, degree(G) = 0,          atkin!! 
L=  53, degree(G) = 0,          atkin!! 
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L=  59, degree(G) = 2, elkies!! 
L=  61, degree(G) = 0,          atkin!! 
L=  67, degree(G) = 0,          atkin!! 
L=  71, degree(G) = 2, elkies!! 
L=  73, degree(G) = 0,          atkin!! 
L=  79, degree(G) = 0,          atkin!! 
L=  83, degree(G) = 2, elkies!! 
L=  89, degree(G) = 2, elkies!! 
L=  97, degree(G) = 2, elkies!! 
L= 101, degree(G) = 2, elkies!! 
L= 103, degree(G) = 0,          atkin!! 
L= 107, degree(G) = 2, elkies!! 
L= 109, degree(G) = 0,          atkin!! 
L= 113, degree(G) = 0,          atkin!! 
L= 127, degree(G) = 0,          atkin!! 
L= 131, degree(G) = 2, elkies!! 
L= 137, degree(G) = 2, elkies!! 
L= 139, degree(G) = 0,          atkin!! 
L= 149, degree(G) = 0,          atkin!! 
L= 151, degree(G) = 2, elkies!! 
L= 157, degree(G) = 2, elkies!! 
L= 163, degree(G) = 0,          atkin!! 
L= 167, degree(G) = 2, elkies!! 
L= 173, degree(G) = 0,          atkin!! 
L= 179, degree(G) = 2, elkies!! 
L= 181, degree(G) = 2, elkies!! 
L= 191, degree(G) = 2, elkies!! 
L= 193, degree(G) = 2, elkies!! 
L= 197, degree(G) = 2, elkies!! 
L= 199, degree(G) = 0,          atkin!! 
L= 211, degree(G) = 2, elkies!! 
L= 223, degree(G) = 2, elkies!! 

real    1m31.203s 
user    1m30.522s 
sys     0m0.564s 

B-571 

b93030@linux7:~/Work/Schoof/miracl$ time ./fl 571 10 5 2 1 
285332924526134353556008696418155129688929877610683298089156085094
418001170112330790532601964265265353300348275302366901684288410817
2514870944140611113679225347419720217210 
M= 571, b1= 
285332924526134353556008696418155129688929877610683298089156085094
418001170112330790532601964265265353300348275302366901684288410817
2514870944140611113679225347419720217210 
d= 
127933392980412699402423752410905669230480363236317557909096646251
1824293476 
L=   3, degree(G) = 0,          atkin!! 
L=   5, degree(G) = 0,          atkin!! 
L=   7, degree(G) = 2, elkies!! 
L=  11, degree(G) = 2, elkies!! 
L=  13, degree(G) = 2, elkies!! 
L=  17, degree(G) = 0,          atkin!! 
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L=  19, degree(G) = 2, elkies!! 
L=  23, degree(G) = 2, elkies!! 
L=  29, degree(G) = 0,          atkin!! 
L=  31, degree(G) = 0,          atkin!! 
L=  37, degree(G) = 0,          atkin!! 
L=  41, degree(G) = 2, elkies!! 
L=  43, degree(G) = 2, elkies!! 
L=  47, degree(G) = 0,          atkin!! 
L=  53, degree(G) = 2, elkies!! 
L=  59, degree(G) = 0,          atkin!! 
L=  61, degree(G) = 0,          atkin!! 
L=  67, degree(G) = 0,          atkin!! 
L=  71, degree(G) = 0,          atkin!! 
L=  73, degree(G) = 0,          atkin!! 
L=  79, degree(G) = 2, elkies!! 
L=  83, degree(G) = 0,          atkin!! 
L=  89, degree(G) = 2, elkies!! 
L=  97, degree(G) = 0,          atkin!! 
L= 101, degree(G) = 0,          atkin!! 
L= 103, degree(G) = 0,          atkin!! 
L= 107, degree(G) = 0,          atkin!! 
L= 109, degree(G) = 0,          atkin!! 
L= 113, degree(G) = 0,          atkin!! 
L= 127, degree(G) = 2, elkies!! 
L= 131, degree(G) = 0,          atkin!! 
L= 137, degree(G) = 1, elkies!! 
L= 139, degree(G) = 2, elkies!! 
L= 149, degree(G) = 2, elkies!! 
L= 151, degree(G) = 0,          atkin!! 
L= 157, degree(G) = 2, elkies!! 
L= 163, degree(G) = 0,          atkin!! 
L= 167, degree(G) = 2, elkies!! 
L= 173, degree(G) = 2, elkies!! 
L= 179, degree(G) = 2, elkies!! 
L= 181, degree(G) = 0,          atkin!! 
L= 191, degree(G) = 2, elkies!! 
L= 193, degree(G) = 2, elkies!! 
L= 197, degree(G) = 2, elkies!! 
L= 199, degree(G) = 2, elkies!! 
L= 211, degree(G) = 0,          atkin!! 
L= 223, degree(G) = 0,          atkin!! 
L= 227, degree(G) = 0,          atkin!! 
L= 229, degree(G) = 0,          atkin!! 
L= 233, degree(G) = 0,          atkin!! 
L= 239, degree(G) = 2, elkies!! 
L= 241, degree(G) = 2, elkies!! 
L= 251, degree(G) = 0,          atkin!! 
L= 257, degree(G) = 2, elkies!! 
L= 263, degree(G) = 2, elkies!! 
L= 269, degree(G) = 2, elkies!! 
L= 271, degree(G) = 0,          atkin!! 
L= 277, degree(G) = 2, elkies!! 
L= 281, degree(G) = 2, elkies!! 
L= 283, degree(G) = 0,          atkin!! 
L= 293, degree(G) = 0,          atkin!! 
L= 307, degree(G) = 0,          atkin!! 
L= 311, degree(G) = 2, elkies!! 
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L= 313, degree(G) = 2, elkies!! 
L= 317, degree(G) = 2, elkies!! 
L= 331, degree(G) = 2, elkies!! 
L= 337, degree(G) = 0,          atkin!! 
L= 347, degree(G) = 2, elkies!! 
L= 349, degree(G) = 0,          atkin!! 
L= 353, degree(G) = 0,          atkin!! 
L= 359, degree(G) = 0,          atkin!! 
L= 367, degree(G) = 0,          atkin!! 
L= 373, degree(G) = 0,          atkin!! 
L= 379, degree(G) = 2, elkies!! 
L= 383, degree(G) = 0,          atkin!! 
L= 389, degree(G) = 0,          atkin!! 
L= 397, degree(G) = 2, elkies!! 

real    34m57.203s 
user    33m43.374s 
sys     0m1.172s 

(2) SEA Algorithm Part 

B-163 

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 11 =    3 
NP mod 19 =   13 
NP mod 31 =   18 
NP mod 37 =   18 
NP mod 47 =   18 
NP mod 61 =   37 
NP mod 67 =   36 
NP mod 73 =   31 
NP mod 89 =   81 
NP mod 101 =   80 
p = 11692013098647223345629478661730264157247460343808 
order = 11026744243059526 
ordermod = 60433317538894718 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
.......................................................................... 
NP is 2*Prime! 
NP= 2*5846006549323611672814742442876390689256843201587 

real    0m3.924s 
user    0m1.988s 
sys     0m0.004s 

B-233 

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2 
EP[0]= 2 
t[0]= 1 
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NP mod 5 =    1 
NP mod 7 =    2 
NP mod 17 =    5 
NP mod 19 =    6 
NP mod 31 =   25 
NP mod 43 =   10 
NP mod 59 =    9 
NP mod 67 =   40 
NP mod 71 =   70 
NP mod 73 =   23 
NP mod 79 =    1 
NP mod 97 =    3 
NP mod 103 =   56 
NP mod 107 =    9 
NP mod 109 =   36 
NP mod 127 =   45 
p = 
1380349269358112757486951172455405090490221794434077311032504844759859
2 
order = 10266661174316706296053786 
ordermod = 721919514870007022097525430 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
...................................... 
NP is 2*Prime! 
NP= 
2*69017463467905637874347558622770255558398127373450135553793836344854
63 

real    0m7.999s 
user    0m5.188s 
sys     0m0.012s 

B-283 

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    6 
NP mod 19 =    8 
NP mod 23 =   12 
NP mod 29 =   11 
NP mod 37 =   33 
NP mod 47 =   32 
NP mod 61 =   51 
NP mod 67 =   15 
NP mod 79 =   12 
NP mod 83 =   68 
NP mod 97 =   75 
NP mod 103 =   52 
NP mod 107 =   26 
NP mod 109 =    3 
NP mod 127 =   91 
NP mod 137 =   28 
NP mod 149 =  120 
NP mod 167 =   73 
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p = 
155413511378058325673556952545881512531392547124171161700144992779
11234281641667985408 
order = 356009306024364040769107395835602 
ordermod = 417122038447871102863749694823942 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
.......................................................... 
NP is 2*Prime! 
NP= 
2*7770675568902916283677847627294075626569625924376904889109196526
770044277787378692871 

real    0m24.733s 
user    0m24.258s 
sys     0m0.044s 

B-409 

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 11 =    1 
NP mod 13 =    6 
NP mod 17 =    5 
NP mod 19 =    2 
NP mod 23 =   13 
NP mod 37 =   26 
NP mod 41 =   17 
NP mod 43 =   18 
NP mod 59 =   24 
NP mod 71 =    7 
NP mod 83 =   26 
NP mod 89 =   18 
NP mod 97 =   68 
NP mod 101 =   78 
NP mod 107 =   87 
NP mod 131 =  119 
NP mod 137 =  113 
NP mod 151 =   93 
NP mod 157 =    7 
NP mod 167 =   77 
NP mod 179 =   74 
NP mod 181 =    1 
NP mod 191 =   89 
NP mod 193 =  120 
NP mod 197 =   98 
NP mod 211 =   29 
NP mod 223 =   68 
p = 
132211193758049719790383061606554207965680936592856243856929759054
8811582472622691650378420879430569695182424050046716608512 
order = 3127943980040448794073703873444583696589521497167758 
ordermod = 3536441946874615910527089127673983525178438684984198 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
............................. 
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NP is 2*Prime! 
NP= 
2*6610559687902485989519153080327710398284046829642812192846487983
04157774827374805208143723762179110965979867288366567526771 

real    1m17.834s 
user    1m11.440s 
sys     0m0.136s 

B-571 

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    6 
NP mod 11 =    3 
NP mod 13 =    1 
NP mod 19 =    6 
NP mod 23 =   21 
NP mod 41 =   13 
NP mod 43 =    3 
NP mod 53 =   21 
NP mod 79 =   48 
NP mod 89 =   45 
NP mod 127 =   32 
NP mod 137 =  107 
NP mod 139 =   71 
NP mod 149 =   57 
NP mod 157 =   97 
NP mod 167 =  123 
NP mod 173 =   69 
NP mod 179 =   10 
NP mod 191 =  176 
NP mod 193 =  140 
NP mod 197 =   23 
NP mod 199 =   50 
NP mod 239 =   89 
NP mod 241 =  218 
NP mod 257 =  238 
NP mod 263 =   88 
NP mod 269 =  162 
NP mod 277 =  180 
NP mod 281 =  134 
NP mod 311 =  227 
NP mod 313 =  160 
NP mod 317 =  219 
NP mod 331 =  130 
NP mod 347 =  152 
NP mod 379 =   16 
NP mod 397 =   95 
p = 
772907504603451668939070378186397468859785465941286999731447050290
303828457912084907238753316384515592492723206300435435473015732208
5975311485817346934161497393961629646848 
order = 
970034550053118781795951067441961126647316372165136120077405153276
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1794863602 
ordermod = 
105641544396289499044637429723725678203472534631045243223462822269
12750332226 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
............................ 
NP is 2*Prime! 
NP= 
2*3864537523017258344695351890931987344298927329706434998657235251
451519142289560424536143999389415773083133881121926944486246872462
816813070234528288303332411393191105285703 

real    7m16.755s 
user    7m12.763s 
sys     0m0.656s 
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B.2  NIST Koblitz Curves

b93030@bsd2:~/Work/Schoof/miracl$ ./DtoH 
5846006549323611672814741753598448348329118574063 
dec:    5846006549323611672814741753598448348329118574063 
hex:    00000004 00000000 00000000 00020108 A2E0CC0D 99F8A5EF 

b93030@bsd2:~/Work/Schoof/miracl$ ./DtoH 
3450873173395281893717377931138512760570940988862252126328087024741343 
dec:    
3450873173395281893717377931138512760570940988862252126328087024741343 
hex:    00000080 00000000 00000000 00000000 00069D5B B915BCD4 
6EFB1AD5 F173ABDF 

b93030@bsd2:~/Work/Schoof/miracl$ ./DtoH 
388533778445145814183892381364703781328481173379306132429587499752
9815829704422603873 
dec:    
388533778445145814183892381364703781328481173379306132429587499752
9815829704422603873 
hex:    01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577 
265DFF7F 94451E06 1E163C61 

b93030@bsd2:~/Work/Schoof/miracl$ ./DtoH 
330527984395124299475957654016385519914202341482140609642324395022
880711289249191050673258457777458014096366590617731358671 
dec:    
330527984395124299475957654016385519914202341482140609642324395022
880711289249191050673258457777458014096366590617731358671 
hex:    007FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFE5F 83B2D4EA 20400EC4 557D5ED3 E3E7CA5B 4B5C83B8 
E01E5FCF 

b93030@bsd2:~/Work/Schoof/miracl$ ./DtoH 
193226876150862917234767594546599367214946366485321749932861762572
575957114478021226813397852270671183470671280082535146127367497406
66173119296824216\ 
17092503555733685276673 
dec:    
193226876150862917234767594546599367214946366485321749932861762572
575957114478021226813397852270671183470671280082535146127367497406
6617311929682421617092503555733685276673 
hex:    02000000 00000000 00000000 00000000 00000000 00000000 
00000000 00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138 
B630D84B E5D63938 1E91DEB4 5CFE778F 637C1001 

K-163: a=1, b=1, h=2, f(x) = x^163 + x^7 + x^6 + x^3 + 1 
n = 0x 00000004 00000000 00000000 00020108 A2E0CC0D 99F8A5EF 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 163 7 6 3 1 1 
M= 163, B= 1 
L=   3,          atkin!! 
L=   5,          atkin!! 
L=   7, elkies!! 
L=  11, elkies!! 



65 

L=  13,          atkin!! 
L=  17,          atkin!! 
L=  19,          atkin!! 
L=  23, elkies!! 
L=  29, elkies!! 
L=  31,          atkin!! 
L=  37, elkies!! 
L=  41,          atkin!! 
L=  43, elkies!! 
L=  47,          atkin!! 
L=  53, elkies!! 
L=  59,          atkin!! 
L=  61,          atkin!! 
L=  67, elkies!! 
L=  71, elkies!! 
L=  73,          atkin!! 
L=  79, elkies!! 

real    0m0.663s 
user    0m0.460s 
sys     0m0.160s 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    2 
NP mod 11 =    3 
NP mod 23 =   12 
NP mod 29 =   17 
NP mod 37 =   19 
NP mod 43 =   41 
NP mod 53 =   36 
NP mod 67 =   62 
NP mod 71 =   44 
NP mod 79 =   63 
p = 11692013098647223345629478661730264157247460343808 
order = 3029291667134560 
ordermod = 3255013894150942 
TR = 1 
Releasing 5 Tame and 5 Wild Kangaroos 
................................................ 
NP is 2*Prime! 
NP= 2*5846006549323611672814741753598448348329118574063 

real    0m2.174s 
user    0m2.056s 
sys     0m0.004s 

K-233: a=0, b=1, h=4, f(x) = x^233 + x^74 + 1 
n = 0x 00000080 00000000 00000000 00000000 00069D5B B915BCD4 
6EFB1AD5 
       F173ABDF 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 233 74 0 1 
M= 233, B= 1 
L=   3,          atkin!! 
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L=   5,          atkin!! 
L=   7, elkies!! 
L=  11, elkies!! 
L=  13,          atkin!! 
L=  17,          atkin!! 
L=  19,          atkin!! 
L=  23, elkies!! 
L=  29, elkies!! 
L=  31,          atkin!! 
L=  37, elkies!! 
L=  41,          atkin!! 
L=  43, elkies!! 
L=  47,          atkin!! 
L=  53, elkies!! 
L=  59,          atkin!! 
L=  61,          atkin!! 
L=  67, elkies!! 
L=  71, elkies!! 
L=  73,          atkin!! 
L=  79, elkies!! 
L=  83,          atkin!! 
L=  89,          atkin!! 
L=  97,          atkin!! 
L= 101,          atkin!! 
L= 103,          atkin!! 
L= 107, elkies!! 
L= 109, elkies!! 
L= 113, elkies!! 
L= 127, elkies!! 
L= 131,          atkin!! 
L= 137, elkies!! 

real    0m2.133s 
user    0m1.940s 
sys     0m0.184s 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    2 
NP mod 11 =    4 
NP mod 23 =    8 
NP mod 29 =   15 
NP mod 37 =   29 
NP mod 43 =    3 
NP mod 53 =   39 
NP mod 67 =   41 
NP mod 71 =   16 
NP mod 79 =    2 
NP mod 107 =   73 
NP mod 109 =   63 
NP mod 113 =   56 
NP mod 127 =  119 
NP mod 137 =   77 
p = 
138034926935811275748695117245540509049022179443407731103250484475985
92 
order = 33281498335308066775517546 
ordermod = 74639007176103601221415502 
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TR = 0 
Releasing 5 Tame and 5 Wild Kangaroos 
.................................. 
NP is 4*Prime! 
NP= 
4*34508731733952818937173779311385127605709409888622521263280870247413
43 

real    0m4.715s 
user    0m4.236s 
sys     0m0.012s 

K-283: a=0, b=1, h=4, f(x) = x^283 + x^12 + x^7 + x^5 + 1 
n = 0x 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577 
265DFF7F 
       265DFF7F 94451E06 1E163C61 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 283 12 7 5 0 1 
M= 283, B= 1 
L=   3,          atkin!! 
L=   5,          atkin!! 
L=   7, elkies!! 
L=  11, elkies!! 
L=  13,          atkin!! 
L=  17,          atkin!! 
L=  19,          atkin!! 
L=  23, elkies!! 
L=  29, elkies!! 
L=  31,          atkin!! 
L=  37, elkies!! 
L=  41,          atkin!! 
L=  43, elkies!! 
L=  47,          atkin!! 
L=  53, elkies!! 
L=  59,          atkin!! 
L=  61,          atkin!! 
L=  67, elkies!! 
L=  71, elkies!! 
L=  73,          atkin!! 
L=  79, elkies!! 
L=  83,          atkin!! 
L=  89,          atkin!! 
L=  97,          atkin!! 
L= 101,          atkin!! 
L= 103,          atkin!! 
L= 107, elkies!! 
L= 109, elkies!! 
L= 113, elkies!! 
L= 127, elkies!! 
L= 131,          atkin!! 
L= 137, elkies!! 
L= 139,          atkin!! 
L= 149, elkies!! 
L= 151, elkies!! 
L= 157,          atkin!! 
L= 163, elkies!! 
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real    0m4.138s 
user    0m3.232s 
sys     0m0.136s 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    4 
NP mod 11 =    4 
NP mod 23 =   12 
NP mod 29 =    4 
NP mod 37 =    6 
NP mod 43 =   29 
NP mod 53 =   31 
NP mod 67 =   21 
NP mod 71 =    4 
NP mod 79 =   55 
NP mod 107 =   13 
NP mod 109 =   43 
NP mod 113 =   14 
NP mod 127 =   38 
NP mod 137 =   61 
NP mod 149 =   61 
NP mod 151 =  127 
NP mod 163 =   45 
p = 
155413511378058325673556952545881512531392547124171161700144992779
11234281641667985408 
order = 97622156270795148568575272626280 
ordermod = 273726392660190252592542262858174 
TR = 0 
Releasing 5 Tame and 5 Wild Kangaroos 
...................................................
NP is 4*Prime! 
NP= 
4*3885337784451458141838923813647037813284811733793061324295874997
529815829704422603873 

real    0m17.758s 
user    0m16.393s 
sys     0m0.012s 

K-409: a=0, b=1, h=4, f(x) = x^409 + x^87 + 1 
n = 0x 007FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF 
FFFFFE5F 
       83B2D4EA 20400EC4 557D5ED3 E3E7CA5B 4B5C83B8 E01E5FCF 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 409 87 0 1 
M= 409, B= 1 
L=   3,          atkin!! 
L=   5,          atkin!! 
L=   7, elkies!! 
L=  11, elkies!! 
L=  13,          atkin!! 
L=  17,          atkin!! 
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L=  19,          atkin!! 
L=  23, elkies!! 
L=  29, elkies!! 
L=  31,          atkin!! 
L=  37, elkies!! 
L=  41,          atkin!! 
L=  43, elkies!! 
L=  47,          atkin!! 
L=  53, elkies!! 
L=  59,          atkin!! 
L=  61,          atkin!! 
L=  67, elkies!! 
L=  71, elkies!! 
L=  73,          atkin!! 
L=  79, elkies!! 
L=  83,          atkin!! 
L=  89,          atkin!! 
L=  97,          atkin!! 
L= 101,          atkin!! 
L= 103,          atkin!! 
L= 107, elkies!! 
L= 109, elkies!! 
L= 113, elkies!! 
L= 127, elkies!! 
L= 131,          atkin!! 
L= 137, elkies!! 
L= 139,          atkin!! 
L= 149, elkies!! 
L= 151, elkies!! 
L= 157,          atkin!! 
L= 163, elkies!! 
L= 167,          atkin!! 
L= 173,          atkin!! 
L= 179, elkies!! 
L= 181,          atkin!! 
L= 191, elkies!! 
L= 193, elkies!! 
L= 197, elkies!! 
L= 199,          atkin!! 
L= 211, elkies!! 
L= 223,          atkin!! 
L= 227,          atkin!! 
L= 229,          atkin!! 
L= 233, elkies!! 
L= 239, elkies!! 
L= 241,          atkin!! 
L= 251,          atkin!! 
L= 257,          atkin!! 
L= 263, elkies!! 

real    0m23.650s 
user    0m19.669s 
sys     0m0.184s 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2 
EP[0]= 2 
t[0]= 1 
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NP mod 7 =    4 
NP mod 11 =    2 
NP mod 23 =    8 
NP mod 29 =    8 
NP mod 37 =   20 
NP mod 43 =   29 
NP mod 53 =   39 
NP mod 67 =   39 
NP mod 71 =   40 
NP mod 79 =   38 
NP mod 107 =   61 
NP mod 109 =   68 
NP mod 113 =   94 
NP mod 127 =   38 
NP mod 137 =    4 
NP mod 149 =   89 
NP mod 151 =   92 
NP mod 163 =  158 
NP mod 179 =  160 
NP mod 191 =   83 
NP mod 193 =    4 
NP mod 197 =  164 
NP mod 211 =  102 
NP mod 233 =   14 
NP mod 239 =   67 
NP mod 263 =  236 
p = 
132211193758049719790383061606554207965680936592856243856929759054
8811582472622691650378420879430569695182424050046716608512 
order = 451261253628769951457701156953998866108601372250384 
ordermod = 1099559241939080626606171699183602379531595423882746 
TR = 0 
Releasing 5 Tame and 5 Wild Kangaroos 
........... 
NP is 4*Prime! 
NP= 
4*3305279843951242994759576540163855199142023414821406096423243950
22880711289249191050673258457777458014096366590617731358671 

real    0m18.069s 
user    0m17.333s 
sys     0m0.020s 

K-571: a=0, b=1, h=4, f(x) = x^571 + x^10 + x^5 + x^2 + 1 
n = 0x 02000000 00000000 00000000 00000000 00000000 00000000 00000000 
       00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138 B630D84B 
       E5D63938 1E91DEB4 5CFE778F 637C1001 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 571 10 5 2 0 1 
M= 571, B= 1 
L=   3,          atkin!! 
L=   5,          atkin!! 
L=   7, elkies!! 
L=  11, elkies!! 
L=  13,          atkin!! 
L=  17,          atkin!! 
L=  19,          atkin!! 
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L=  23, elkies!! 
L=  29, elkies!! 
L=  31,          atkin!! 
L=  37, elkies!! 
L=  41,          atkin!! 
L=  43, elkies!! 
L=  47,          atkin!! 
L=  53, elkies!! 
L=  59,          atkin!! 
L=  61,          atkin!! 
L=  67, elkies!! 
L=  71, elkies!! 
L=  73,          atkin!! 
L=  79, elkies!! 
L=  83,          atkin!! 
L=  89,          atkin!! 
L=  97,          atkin!! 
L= 101,          atkin!! 
L= 103,          atkin!! 
L= 107, elkies!! 
L= 109, elkies!! 
L= 113, elkies!! 
L= 127, elkies!! 
L= 131,          atkin!! 
L= 137, elkies!! 
L= 139,          atkin!! 
L= 149, elkies!! 
L= 151, elkies!! 
L= 157,          atkin!! 
L= 163, elkies!! 
L= 167,          atkin!! 
L= 173,          atkin!! 
L= 179, elkies!! 
L= 181,          atkin!! 
L= 191, elkies!! 
L= 193, elkies!! 
L= 197, elkies!! 
L= 199,          atkin!! 
L= 211, elkies!! 
L= 223,          atkin!! 
L= 227,          atkin!! 
L= 229,          atkin!! 
L= 233, elkies!! 
L= 239, elkies!! 
L= 241,          atkin!! 
L= 251,          atkin!! 
L= 257,          atkin!! 
L= 263, elkies!! 
L= 269,          atkin!! 
L= 271,          atkin!! 
L= 277, elkies!! 
L= 281, elkies!! 
L= 283,          atkin!! 
L= 293,          atkin!! 
L= 307,          atkin!! 
L= 311,          atkin!! 
L= 313,          atkin!! 
L= 317, elkies!! 
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L= 331, elkies!! 
L= 337, elkies!! 
L= 347, elkies!! 
L= 349,          atkin!! 
L= 353,          atkin!! 
L= 359, elkies!! 
L= 367,          atkin!! 
L= 373, elkies!! 
L= 379, elkies!! 
L= 383,          atkin!! 
L= 389, elkies!! 

real    1m9.348s 
user    1m8.760s 
sys     0m0.588s 

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2 
EP[0]= 2 
t[0]= 1 
NP mod 7 =    4 
NP mod 11 =    4 
NP mod 23 =    2 
NP mod 29 =   28 
NP mod 37 =    6 
NP mod 43 =   10 
NP mod 53 =    2 
NP mod 67 =   34 
NP mod 71 =   57 
NP mod 79 =   39 
NP mod 107 =   98 
NP mod 109 =    3 
NP mod 113 =   82 
NP mod 127 =   16 
NP mod 137 =   82 
NP mod 149 =    9 
NP mod 151 =   19 
NP mod 163 =  158 
NP mod 179 =   18 
NP mod 191 =    4 
NP mod 193 =  122 
NP mod 197 =  123 
NP mod 211 =   27 
NP mod 233 =  163 
NP mod 239 =  161 
NP mod 263 =   35 
NP mod 277 =  239 
NP mod 281 =  149 
NP mod 317 =  135 
NP mod 331 =   74 
NP mod 337 =  317 
NP mod 347 =   77 
NP mod 359 =  218 
NP mod 373 =  324 
NP mod 379 =  150 
NP mod 389 =    5 
p = 
772907504603451668939070378186397468859785465941286999731447050290
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303828457912084907238753316384515592492723206300435435473015732208
5975311485817346934161497393961629646848 
order = 
996400197857582456187342835750237922856646781353582747097669177619
7661738262 
ordermod = 
207321071864533349878302816672499785552563184397961155174122021914
84681515202 
TR = 0 
Releasing 5 Tame and 5 Wild Kangaroos 
...................................................... 
NP is 4*Prime! 
NP= 
4*1932268761508629172347675945465993672149463664853217499328617625
725759571144780212268133978522706711834706712800825351461273674974
066617311929682421617092503555733685276673 

real    0m51.395s 
user    0m46.179s 
sys     0m0.132s 


