SRS P S E LT T
RS

Department of Mathematics

College of Science

National Taiwan University

Master Thesis

I E B R AR BE 4 SEA BB RN ETE

Implementations of SEA Algorithm Counting the Orders of
Elliptic Curve Groups over Binary Fields

77 S o =1

Tzu-Huan Lin

BEHIR CREA B
Advisor: Jiun-Ming Chen, Ph.D.

tERE 98 F 1A
January, 2009

Acknowledgements

First I want to thank my thesis advisor professor Jiun-Ming Chen for his guidance
and help in the last year of my graduate student career, and his answering to all my
questions in this field. And I want to thank Chih-Hung Lin for his help in writing
codes and all things about computers. I also want to thank Yu-Chen Wang and
other classmates for their discussion with me when I had problems. Finally I want
to thank my parents and my family, they always support and encourage me when I

got into trouble. Without any of their help, this thesis can never be done.

ES
H Al =57 22 2 A (B il AR 1 B B 5 R T BERR AT 5045 (Point-counting Method) -
Schoof-Elkies-Atkin 5% (SEA #EE) REEEE LAt BEHE R MR R A
SCRIERLE » Lercier £ 7Rt —ooie EREEY 5L - (#i15 SEA yEAD
ATHEFH B TR AIREIEIIGER E - SERaSCIAMTRHRIR Lercier SRRV TERE L
SEA JHEE - HEAGHRRBIBIZERHERErFEbe (NIST) HERERY-T-Preihi
PRI B 58 LS

gk MEEIHRR ~ FEPL » SEA R0k ~ Schoof J#H5RE ~ Elkies HH(~ Atkin &
#

i

Abstract

The best suggested way to find secure elliptic curves is point-counting. So
far Schoof-Elkies-Atkin algorithm (SEA algorithm) is the most efficient point-
counting algorithm for elliptic curves over prime fields. Lercier proposed an
algorithm to compute isogenies in Fa» such that SEA algorithm can be used
for binary case. In this thesis we will follow Lericier’s approach to implement
SEA algorithm computing the order of an elliptic curve over binary fields.

Keywords: elliptic curve, group order, SEA algorithm, Schoof algorithm,
Elkies prime, Atkin prime

iii

Contents

Acknowledgements

Abstract in Chinese

Abstract in English

1 Introduction

2 Mathematical Backgrounds

3 SEA Algorithm
3.1 Schoot’s Algorithm
3.2 Modular Polynomials
3.3 SEA Algorithm

4 Implementation of SEA Algorithm
4.1 Computing Modular Polynomials
4.2 Computing Isogenies

5 Experimental Results

6 Conclusion

References

A Source Code with Explanation

A.1 Some Preprocessors

A.2 Computing Isogenies

A.3 Computing Isogenies for Koblitz Curves

Experimental Data
B.1 NIST Binary Curves
B.2 NIST Koblitz Curves

ii

iii

10
12

20
20
23

27

28

29

30
30
40
49

1 Introduction

After being proposed by Koblitz and Miller independently around 1985, the elliptic
curve cryptosystem (ECC) became one of the most popular public key cryptosystems
these years. The security of ECC is based on the difficulty of the discrete logarithm
problem on elliptic curve groups (ECDLP). One important reason of that ECC is
widely used is that there is no known sub-exponensual algorithm to solve ECDLP so
far. Moreover, in comparison with RSA, another popular public key cryptosystem,
ECC can have the same level of security with much shorter keys. This makes ECC
suitable for environments with limited storage and power, for example, a smart card.

However, not all elliptic curves are suitable for cryptographic use. An elliptic
curve is considered to be secure only when its order is nearly prime. The best way
to find secure curves is point-counting. That is, pick an arbitrary curve and count
points on it, then see if it satisfies the conditions we need.

Schoof’s algorithm is the first polynomial time point-counting algorithm. It was
presented by Schoof in 1985, and has complexity O(log® ¢). However it is extremely
inefficient when the size of base field is large. One of the main reason is that the de-
grees of the division polynomials are so large that the calculations are impracticable.
Elkies and Atkin dealt with the problem to give the Schoof-Elkies-Atkin algorithm
(SEA algorithm [6]),their improvements degrades the complexity to O(log” q). Also
thanks to the improvements of Morain, Couveignes, Dewaghe, Miiller, SEA algo-
rithm is the most efficient point-counting algorithm so far, and we can use it to
generate a secure elliptic curve over prime fields in a reasonable time.

However, elliptic curves over binary fields are of more interests in cryptography.

The problem is given two elliptic curves over binary fields, how to compute isogenies

between them. Couveignes gave an algorithm to deal with this problem. It works
in the formal group defined by the elliptic curve. But this algorithm requires huge
series computations, it turns out to be inefficient in practice.

Lercier proposed another algorithm to compute isogenies in [2]. It is based on
identities satisfied by them. Lercier’s algorithm has similar complexity as Cou-
veignes’s algorithm, but it is easier to implement and more efficient in practice. In
this thesis we will follow Lercier’s approach to compute isogenies, and implement
SEA algorithm to compute the order of elliptic curves over binary fields.

The rest of the article is structured as follows: in Section 2 we give some mathe-
matical backgrounds which are needed in Schoof’s algorithm and SEA algorithm. In
Section 3 we give an overview of Schoof’s algorithm and SEA algorithm. In Section
4 we explain how to compute modular polynomials over binary fields and introduce
Lercier’s method to compute isogenies between elliptic curves. In Section 5 we com-
pare our program with an open source implementation of Schoof algorithm given in

[7]. And parts of our source code is given in the appendix.

2 Mathematical Backgrounds

In this section we introduce some mathematical backgrounds about Schoof’s algo-

rithm and SEA algorithm. Here we list some notations used a lot in this thesis.

g a power of 2
F, the finite field with ¢ elements
¢ algebraic closure of I,
E, a fixed elliptic curve over F, with parameter b
E, the set of rational points on E,
#S cardinality of the set S
O the point at infinity
t the trace of Frobenius
t; the residue of ¢t modulo [
T, the set of possible values for ¢ modulo [
[m] multiplication-by-m map
E[m] m-torsion subgroup
Ly, cyclic group of order m
¢ Frobenius map on E,
Y(z) I-th division polynomial
Fi(z) a factor of i(z)
®)(z,y) [-th modular polynomial
Z the set of intergers

C the set of complex numbers

Suppose ¢ is a power of two, and suppose a, b are two elements in F,. We denote

E, the elliptic curve over I, defined by

Eop={(z,y) € Fy xFy | y* + 2y = 2° + az® + b} U {O},

where O is the point at infinity on E&b. When b = 1, Ea’b is called an Koblitz curve.
Then let

Eop = {(2,y) € Eop | 2,y € Fo} U{O},
which is called the set of rational points on Ea,b. We are trying to find the cardinality
of Ey, for every b € I} (that is, b € F, with b # 0).

Remark 2.1. An elliptic curve E@b is called supersingular if b = 0. The difficulty of
ECDLP on a supersingular curve is lowered by MOV attack [4], so we are only inter-
ested in non-supersingular curves. By Theorem 3.5 in [3], every non-supersingular
elliptic curve over F, is isomorphic (in group structure) to E,;, for some a € {0,~}
and b € F;, where 7 is a fixed element in F, such that Tr(y)=1. (Tr(y) is the trace

of v in F, over Fy.) Moreover, since (see [1], P.38)
#Lop + H#Eyp =2q + 2,

we need only to find #£Ey for every b Fy. Eo,b and Ej; are also denoted by E,

and F, respectively.

Let b be a fixed nonzero element in F,, and let

t is called the trace of Frobenius, it is just what we want to find out (since once t is

found, then #F}, is obtained by Equation 1). Hasse’s theorem gives a bound of ¢.

Theorem 2.2. (Hasse) The trace of Frobenius satisfies

It < 2./2.

Remark 2.3. By Hasse’s theorem, if we can find the residue of ¢ modulo [(¢; for
short) for enough primes [such that [[/ > 4,/q, then the exact value of ¢ can be
obtained by Chinese Remainder Theorem. How to find ¢; is the main part of Schoof’s

algorithm and SEA algorithm, we will come back to this in the next section.

It is well-known that), has a group structure with the chord-tangent operation.
With this operation we can give the definition of multiplication-by-m maps and

m-torsion subgroups, which are of much importance in elliptic curve theory.

Definition 2.4. (multiplication-by-m map and m-torsion subgroup)

Let m be an integer, the multiplication-by-m map [m] : B, — E, is defined by
(

P+ P+---+ P (m summands), if m >0,

[mlP =4 0, if m=0,

—(P+P+---+ P) (—m summands), if m <0,

\

for every P € E), where ‘4+’ denotes the group operation on Fj.

The m-torsion subgroup E[m] is defined by
E[m] ={P € E, | [m]P = O}.

One can see that E[m] is a subgroup of FEj,. However, we can describe the

structure of E[m| by the following lemma.

Lemma 2.5. Suppose m is a positive integer with (m,q) =1, then
Em| = Z,, ® Ly,

where L, is the cyclic group of order m.

Now we give another important definition.

Definition 2.6. (Frobenius Map)

The Frobenius map ¢ on E is defined by

_ (@,y) — (a997),
p: By — Ey:

0O - O.

¢ can be checked to be a group endomorphism of E,. Moreover, ¢ satisfies the

following identity:.

Theorem 2.7. The Frobenius map ¢ on Ey satisfies

@ — [tle + [q] = [0].

That 1is,

(@, y") = [t y") + [dl(z,y) = O,

for every (x,y) € E}.
Finally we introduce the division polynomials.

Definition 2.8. (Division Polynomial)

For each nonnegative integer m, the m-th division polynomial ,,(x) € F,[z] with

respect to E, is defined recusively by the following formulas:

¢0:07
¢1:17
¢2:x7

V3 =zt +2° + b,
Py = 2% + ba?,
Voma1 = Vot + Y1031, m > 2,

Vom = (Dmyat? 1 + bmo?)om /2, M > 2.

By the group law of elliptic curves and mathematical induction, one can check
that the multiplication-by-m map [m] and the division polynomial v, satisfy the

following equality:

2 2
[m]P = (z + —wm‘gm“ oy T yw’”—lfgsmﬂ + U2V

), (2)
for each P = (x,y) € E,\E[m]. Moreover, we have

Lemma 2.9. Let P = (x,%) be a point in E\E[2] and m > 2 an integer. Then

P € E[m] if and only if ¥, (z) = 0.

Now we are in a place to introduce Schoof’s algorithm and SEA algorithm.

3 SEA Algorithm

In this section we give an overview of Schoof’s algorithm and SEA algorithm.

3.1 Schoof’s Algorithm

As mentioned before, Schoof’s algorithm is an algorithm to count points on elliptic
curves. It was presented by Schoof in 1985, and has time complexity O(log® q).

Let b € F} and By y*+xy = 2% +b. By Remark 2.3, to find #F, we need only
to find ¢; (the residue of ¢ modulo 1) for enough primes .

Suppose [is an odd prime. We reduce the Frobenius map ¢ on E[l|, then by

Theorem 2.7, we have
Y*(P) = [tleu(P) + [a)(P) = O
for every P € E|l], where ¢, = ¢ (mod [). Or equivalently,

(@, y") + [a) (2, y) = [L)(=",), (3)

for every (z,y) € E[l].

The left hand side of Equation 3 can be represented by (R;(z,v),Rs(z,y)) for
some rational functions Ry, Ry in Fy(x,y)(= {f/g | [,g9 € Flx,y] with g # 0})
by using group law and Equation 2. Meanwhile, by Equation 2 again, for every
7 €{0,1,2,...,0 — 1}, [7](29, y?) can also be represented by (R](z,y),R}(x,y)) for
some R}, R} € Fy(x,y).

Therefore, if we can find a value 7 € {0,1,2,...,] — 1} such that
Ri(z,y) = R](z,y) (mod vy(x),y* +zy + 2> +b) (4)

and
RQ(xvy) ER;(IL’,y) (mOd ¢l(x)7y2+xy+x3+b)v (5)

8

by Lemma 2.9, we must have

2

(xQQv yq) + [ql](xv y) - [T}(l.qhyq)’

for every (z,y) € E[l], and so t; = 7.
After finding t; for enough [such that [[/ > 4,/g, by Hasse’s theorem and
Chinese remainder theorem (CRT) we can find the exact value of ¢. The following

is the summarization of Schoof’s algorithm.

Schoof’s Algorithm

Input: an elliptic curve By : y?> + a2y = 2% + b

Output: #E,

1. Pick enough primes [such that [[1 > 4,/q

2. For each [, find 7 from {0,1,...,l — 1} such that Equation 4 and 5 holds.

3. Settl:T.

W

. Use CRT to recover the value of t.

5. return g + 1 —¢.

Schoof’s algorithm becomes extremly inefficient when ¢ is large. The main rea-
son is that the division polynomial 1; has degree (I* —1)/2 such that we have to do
too many calculations (in Step 2 of the above algorithm) when [is large. We will
use another kind of polynomial F; instead of v, in SEA algorithm. But before intro-
ducing this, we should introduce modular polynomials, which plays an important

role in SEA algorithm.

3.2 Modular Polynomials

Modular polynomials play an important role in SEA algorithm. Here we give the
definition and some properties of them, and we will discuss how to compute them
next section.

Let H be the upper half plane of C (the field of complex numbers), that is,
H = {z € C | Im(z) > 0}. It can be shown that for every 7 € H, one can find an

elliptic curve E(7) over C such that

(6)

So we can define a map F from H to the set Z of isomorphism classes of elliptic

curves over C by

E:-H—-ZI 71— E(1),

where E(7) is any curve which satisfies Equation 6.

Clearly this map is well-defined (in fact it is onto), and if we denote A(7) and
7(7) the discriminant and j-invariant of E(7) respectively, with denoting ¢ = €*™",
A(7) and j(7) can be represented as the following form:

N=a][Q=g =g D (G0N g (@)
n>1 n>1

and

where f(7) = A(27)/A(T).
Let [be an odd prime, and let
-1

. T—|—Z
Oy, (7)) = (& — () [] (= = i(

i=0

10

It can be shown that ®;(x,j(7)) € Z[z,;j(7)]. The I-th modular polynomial
®,(z,y) is defined by replacing j(7) in ®;(z, (7)) by y, which is an integral polyno-
mial with two variables.

The modular polynomials ®;(x,y) € Z[x,y] are symmetric, and of degree [+ 1 in
each variable. To reduce it to a finite field of characteristic p, we need only to modulo
each coefficient of ®;(z,y) by p. In our case (over a binary field), we need to modulo
2 in each coefficient of ®;(x,y). However the coefficients of ®;(x, y) are very large and
difficult to compute, fortunately there are some variants of modular polynomials, for
example, Miiller’s modular polynomials. We will not discuss them here, but next
section we will give an efficient algorithm to compute modular polynomials over

binary fields, which is also presented by Miiller [5].

11

3.3 SEA Algorithm

SEA algorithm is based on Schoof’s algorithm, and improved by Elkies and Atkin.
As said in the end of Section 3.1, we will replace the [-th division polynomial v; in
Schoot’s algorithm by its factor F;. The polynomial F; € F,[x] has degree (I —1)/2,
with comparison ¢; with degree (I* — 1)/2, the computations in F,[z]/(F}(z)) are
much less and so are more practicable while [is large. However only about one half
of primes have this advantage. We call this kind of primes FElkies primes, the other
half are called Atkin primes. Before we introduce them officially, we have to recall
some mathematical facts.

Given an odd prime [, by Lemma 2.5, E[l] is isomorphic to Z; & Z;. Moreover,
since [is a prime, E[l] can be regarded as a two-dimensional linear space over F.
Consider the Frobenius map ¢ restricted on EJl], then ¢ : E[l] — EJI] is a linear

transformation. Moreover, by Theorem 2.7 we have the following lemma.

Lemma 3.1. The Frobenius map ¢ is a linear transformation on E[l]. Moreover,

the characteristic polynomial of ¢
A, (z) = 2* — iz + q,
where t; =t (mod 1), ¢, = ¢ (mod).

If the characteristic polynomial A, has a root A in F;, then the other solution

must be ¢;/A (A cannot be zero). So A,(z) = (z — A)(z — ¢;/\). Hence

m:A+%. 9)

So if we can find an eigenvalue A of the Frobenius map ¢ : E[l] — E|l], then we
can find ¢; by Equation 9. This can only be done in the situation A, has a root in
IF;, we call a prime satisfying this condition an Elkies prime.

12

Definition 3.2. With respect to an elliptic curve Ej, a prime [is called an Elkies

prime if A, =t — 4q is a square in F;. Otherwise [is called an Atkin prime.

If [is an Elkies prime, one can find t; by searching for an eigenvalue A (we will
discuss more details later). However, since we do not know what value ¢ is (this
is what we are trying to find out), we cannot decide which kind of prime [is by
the above definition. The following theorem gives us a way to do that, which is

presented by Atkin.

Theorem 3.3. (Atkin) Let £}, be a non-supersingular elliptic curve with j-invariant
gt And suppose ®i(x,j) = hihs...hs is the factorization of ®i(z,j) in F,x] as

a product of irreducible polynomials, where ®i(x,y) is the [-th modular polyno-

mial over binary fields. Then there are the following possibilities for the degrees

thl,hg, .. .,h,s.'

(i) (I,1) or (1,1,...,1): in both cases t* —4q =0 (mod l). In the former case we

set r =1 and in the latter r = 1.

(i) (1,1,r,r,...,r): in this case t*> — 4q is a square modulo . v divides | — 1 and ¢

acts on Ell] as a matriz

where A\, € F} .

(iii) (r,r,...,r): in this case t* —4q is not a square modulo I, v divides | +1 and ¢

has an irreducible characteristic polynomial over ;.

In all cases 1 is the order of ¢ in the projective general linear group PGLy(F;) and

'Recall that the j-invariant of the elliptic curve Ej, is 1/b.

13

the trace of Frobenius t satisfies
t?=q(€+¢71)? (mod 1), (10)
for some primitive r-th root of unity & in F,.

From the above theorem we can see that in the first two cases t? — 4q is a square
in I, and is not in the third case. In other words, if the factorization of ®;(x, j) in
IF,[z] satisfies case (i) or (ii), then [is an Elkies prime; otherwise [is Atkin. We can
also observe that only in the first two cases ®;(z,) has a factor of degree 1, this

fact leads to the following corollary:

Corollary 3.4. A prime [is an Elkies prime if and only if ged(z? + z, ®)(x, 7)) in

F,[z] is nontrivial.

By Corollary 3.4 we can decide a prime [is Elkies or Atkin by compute
ng(l’q +, (I)l(xaj))

If [is Elkies, we will use the polynomial Fj(z) defined below to find an eigenvalue

Aof ¢ : Ell] — EJl].

Definition 3.5. Suppose A € F; is an eigenvalve of the Frobenius map ¢ : E[l] —

Ell], and C) is a 1-dimensional eigenspace with respect to A. Then we define

F@)=][I @—-a(p),

+PeC\{O}

where z(P) is the affine z-coordinate of P.

One can prove that Fy(z) € F,[z]. And since #C) = [, Fj(x) has degree (I—1)/2.

Lercier gave an algorithm to find F; ([2]), we will introduce this in the next section.

14

As said before, the polynomial F; can be used to find an eigenvalue A\. We want

to find A € {1,2,...,1 — 1} satisfying

for each P € C), or equivalently (by Equation 2),

Pa-1¥at1 (2% 4+ 2 + Y)Ur1tathas1 + Vr_23

q ,9) — AT

), (11)

for each (z,y) € C).

So by the definition of Fj(z), we need to find A such that

r=z+ % (mod Fy(z),y* + zy + 2° + b)
)
and
2 2
yv=xr+y+ (" + 2 Fy)r 1t + Pra¥ing (mod Fy(z),y* + xy + 2° + b),

3
hold, once such A is found, by Equation 9 we can find ;.

If 1 is an Atkin prime, since ¢ : E[l] — E[l] does not have an eigenvalue in [, we
cannot do the same thing as in the case that [is Elkies. However, by Equation 10
in Theorem 3.3, we can find candidates of ¢ (mod 7). Here is what we do.

First of all, to determine r in Theorem 3.3, we compute
gcd(mqi +, CI)l(ZE,j)) (12)

for i = 2,3,...,1+ 1, where j is the j-invariant of E}. The smallest i such that the
ged is equal to @;(z,j) is just the value r. Moreover, by Theorem 3.3 we can see
that r divides [4 1, this information can reduce some computations.

After r is found, suppose A, p are roots of

:172—tlx—|—ql:0.

15

Then v, = A/p is then an element of order r in Fp2. By first finding a generator
g of Fj;, we can compute all possibilities of 7, = {g@D/r i =1,2,...,r—1
with (¢,7) = 1}. Then we can find a set of possible values for ¢, by the following
equations:
tr=A+p (mod), (13)
q = A (mod i),
and
Vr = A/
Let d be a quadratic non-residue in [F; and write A = x; + xg\/c_i, Yo = g1+ gQ\/E
for x1, 9, g1, g2 € ;. The possible values for g; and g, are already known, we want

to find the possible values for x; and x5. Since p is the conjugate of A, we have

= x] — xQ\/E, and so

A1
g1+ 92\/_ = ; = q—(.CC% + d.’L’g + 21’1%2\/3).
l

Hence
qgr = 7 + dzs,
Qg2 = 27122,
and
q = v3 — da3.
By the first an the third equilities we get 27 = (g1 +1)/2, this can give at most
two possibilities of z;. And by Equation 13 we have

tl = 21‘1.

Here we can see that there are at most 2¢(r) possible values for t;, where ¢ is the
Euler ¢-function.

16

After the procedures above are done for enough primes [such that []1 > 4,/q,
that is, if [is Elkies we have found ¢;, and if [is Atkin we have found a set T; of
possible values for ¢;. We can combine these information to find ¢ with Chinese
remainder theorem (CRT) and baby-step giant-step algorithm (BSGS). The process
is as follows. It was given by Miiller in [5].

First we divide Atkin primes into two parts A; and A, such that their product
of possible values of #; (that is, [[#7;) are roughly the same as each other. Let my,
mso be the products of primes in A; and A, respectively. By using CRT we can find

a set of possibilities for ¢ (mod m;) and ¢ (mod my), say S; and Sy. That is,
t=t; (mod my) for some t; € Sy

and

t =ty (mod my) for some ty € Ss.

On the other hand, let m3 be the product of Elkies primes and find ¢3 such that
t=t3 (mod ms3)
by CRT. Then we can write
t =tz + mz(myry + mory) (14)

for some integers rq, ro with

th—t
r=-—="(mod m)
moms
and
to —t
ry = —-—2 (mod my),
myms

where t; € Sy, ty € Sa. Since mymams > 4,/q, if we choose

0 < t5 < my and [Tmlj <r1§L%j,

17

we must have |ry| < mo.
Now we pick a point P on Ej, randomly. Since the group order of Ej is g+ 1 —t,
we must have

[C] + 1]P = [tg + mg(ml’l"g + mng)}P.

Rearranging this we get

[q + 1-— tg]P — [Tlmgmg]P = [Tgmlmg]P.

Then we compute and store

er = [q +1-— tg]P — [T1m2m3]P

for possible values of r; with || < [m;/2], this can be considered as the phase of

the giant steps in BSGS. After that we compute

R,, = [romims] P,

by the previous observation we need only to take ry with |re| < msy. Once we find

Qn = R7”2

for some rq, 1o, then ¢ can be found by Equation 14.

Remark 3.6. This BSGS procedure above only works when #FEj, is nearly prime.
When #FE}, has many small prime factors (this kind of curve is not of cryptographic
interest), we need to choose more random points on Ej, to determine the exact calue

of t.

18

Here is the summarization of SEA algorithm.

SEA Algorithm

Input: an elliptic curve B,

Output: #E,

1. Pick enough primes [such that [[1 > 4,/q

2. For each [, decide [is Elkies prime or Atkin prime by
ged(x? + x, Py(x, j)).

3. If | is Elkies, search an eigenvalue A of ¢ by Equation 11.

4. Set t; = A+ q/\.

5. If [is Atkin, find candidates of ;.

6. Use CRT and BSGS to recover the value of t.

7. return g + 1 —¢.

19

4 Implementation of SEA Algorithm

Until now there are only two gaps left to implement SEA algorithm over binary
fields. One is to find modular polynomials, the other is to find F;. We fill the two

gaps this section.
4.1 Computing Modular Polynomials

As introduced in Section 3, I-th modular polynomial ®;(x,) can be used to decide
a prime [is Elkies or Atkin, and is needed while we compute F;. Here we give a
method to compute ®;(z,y) over binary fields. This method was given by Miiller in
[5], and also can be found in [8].

First [-th modular polynomial ®;(z,y) over binary fields has the form

I+1 141
D) W
i=0 j=0
where a;; € Fs.
Recall the definition in Section 3.2,
- 7' —|— z
(I>Z<x7j(7—)> ‘1._.7 ZT H 3:_.7 7 (15)
=0
where (by Equation 7 and 8)
A(T) . 1+ Zn21 (q4n(3n71) + q4n(3n+1))

(7)) = = . 16
j(T) A(z’?’) q 1+ anl (q16n(3n—1) + qlﬁn(?)n—i-l)) ()

In particular, we have
®y(j(l7),j(7)) = 0,

or

FE) A5) =D 0D i) (7). (17)

=0 7=0

We will compare the leading power of both sides in Equation 17 to find the coeffi-
cients a;;.

20

First observe from Equation 16, j(7) has leading power -1. Since the g-expansion
of j(I7) is replacing ¢ in Equation 16 by ¢! (recall that ¢ = ™), j(I7) has leading
power —[. Hence, the left hand side (LHS) of Equation 17 has leading power —I(I+1).
On the other hand, j%(I7);7(7) has leading power —(li+ j), since the right hand side
of Equation 17 must also have leading power —I[(l + 1), we need only to find i,
Jj €40,1,...,1} such that max{li+ j,{j +i} = {(l+1). The solutionis i =, j =,
so we must have a; = 1. Then we substract j'(I7)j!(7) from both sides of Equation
17 and compare their leading powers again. Let p(L) be the leading power of LHS,
we again want to find i,57 € {0,1,...,1} such that max{i + jl,j + il} = —p(L),
then set a;; = a;; = 1 (since ®;(x,y) is symmetric). Continue this process until the
leading power of LHS is nonnegative, then all nonzero coefficients must be found.

We summarize this algorithm as follows:

21

Algorithm to compute modular polynomials over binary fields

Input: an elliptic curve Ej, a prime [

Output: @;(z,y)

1. Determine j(7) with precision (I + 1) + 1 by Equation 16
2. Compute j(7) for 1 <i <[+1

3. Determine j7(I7) for 1 < j <1+ 1 by substituting ¢ by ¢' in j7(7)
4. Set L = g+ (1) + 5 (I7)

5. while (p(L) < 0) where p(L) is the leading power of L

6. Determine (7, 7) such that max{li + j,lj +i} = —p(L)
7. Set a;; = aj; =1

8. If (i =j) set L =L+ ji(lr)j7(7)

9. Elseset L =L+ 3'(I7)j7(7) + 7 (I7)7(7)

I+1 ~I+1 »,
10. Return 3.7 jJ;O a;;x'y’

22

4.2 Computing Isogenies

In this section we give an algorithm to find F; introduced in Section 3. Sometimes we
call this process computing isogenies, because to find Fj is equivalent to find isogenies
between elliptic curves. This algorithm was given by Lercier [2]. Lercier estimates
the complexity of this algorithm is O(I?) field operations, based on heuristics and
experimental evidence.

Suppose Ey, : y* + zy = x° + by is an elliptic curve over F,. Given an Elkies

prime [and an eigenvalue A of the Frobenius map ¢ : E[l] — E|[l], recall that

F)=] (@@-zP),

LPeC\{O}

where C' is the eigenspace corredponding to A.

Note that F; has degree (I —1)/2, and suppose

1-1)/2

(-1
F(z)= Y ¢ (18)

i=0
Remark 4.1. Recall that every element in a binary field F, has a unique square root,

so we can assume Fj(x) has the form in Equation 18.

To find ¢;’s, first let j, = 1/b; , which is the j-invariant of Ej,. Since [is an
Elkies prime, the polynomial ®;(x,j;) € F,[z] has a root in F,, pick one and call it
j2 (this is the j-invariant of another curve which is isogenous to Ej,). Let by = 1/7s,

and let
a = /b1, B = /b

For convience we assume

qi = %ﬁdZipd—i- (19)

To find F; we need only to find these p;’s. First of all, pg, pg, pa—_1, pa—_2 can be
found by the following equalities:

23

Do = \4/042d + a2 1py 1, pg = 1,p4i1 = a+ f,

Pi1 + apg_1 + o, if d is even,
Pd—2 =
p?zq + apd-1, if d is odd.

For py, pa,..., pg_3, we can use the following three equations:

k 1£]
i d+2k o
é/azp?p?l*kﬂa? = V/BVa ! ZpkaiB(d— k+ 2i,1),
=0 i=0

for k=0,1,...,d,

k
pp = a* ! Zpd—Qk—H-Qz‘B(d — 2k — 1+ 2i,i)a”+
=0
k
a2t Zpd—2k+2iB(d — 2k + 2i,4i)a”,
=0

for k=0,1,...,|(d—1)/2]. And

k
Pi—j1 = @ Zpd72k71+2iB(d — 2k — 1+ 2i,4)a*'+

=0
k1
Zpd72f2k+2iB(d —2— 2k + 2i,i)a”,
=0

for k=0,1,...,|d/2| — 1, where

for nonnegative integers 1, j.

We rewrite the three equations by

P+ brpr +cp = 0,

24

(20)

(21)

(22)

(24)

where

é/ﬁ\/adJer

b= Ty %)
and
VAR 0%+ BT L B(d — b+ 2i,4)
Ck‘ - Oé2k\<y& Y (26)
P -
Pd—2k—1 = a2d——]flk—1 + Zpdf2k71+2z’B(d — 2k — 14 24,i)a”+ (27)
i—1
k
O paokraiB(d — 2k + 2i,i)a™,
i=0
and
k+1
Pd—2k-2 = Pg_p_1 + Zpd,gk,%g,-B(d — 2k — 2+ 2i,i)a”+ (28)
=1
k
o Zpd72k71+2iB(d —2k—1+ 22, Z'>Oé2i.
i=0

To find py,pa, ..., ps_3, first we set £k =1 in Equation 24, which gets
pf +bip1 + ¢, =0.
So

p1 =71 + moby,

where v; is a root of 22 + bjx +¢; = 0 and mp = 0 or 1. Then we set k = 1 in
Equation 27 and Equation 28, we can see that p;_3 and p;_4 can be represented as
a polynomial in F[m].

Similarly, set £ = 2 in Equation 24, which gets

P35+ bapy + ¢ = 0.

This time we get

P2 = Y2 + miby,

25

where 7, is a root of 2% + byx + 3 = 0 and m = 0 or 1. Note that py is in F,[mg, m1].
And let & = 2in Equation 27, Equation 28 in turn, p;_s, ps—g¢ can also be represented
as polynomials in F,[mo, m].

Continue this process until all py, po,. .. ,ps_3 are represented as polynomails in
Fy[mo, m1,. .., x| (K = [(d — 3)/3]), then we substitute the representations of py,
D2, - - ,Pd—3 to the equations in Equation 27 and Equation 28 which are not used yet.
This will give us enough equations to solve mg, 71, ..., 7. After these unknowns are
solved, p’s are found, and so F; is obtained.

We summarize this algorithm as follows:

Algorithm to compute isogenies

Input: Ey, : y* + zy = 2 + by, an Elkies prime [
Output: Fj(z)

1. Let j; =1/b;

2. Find a root of ®(z,j;) =0 in F,, say j,

3. Set by = 1/js

4. Set av = /by, B = /by

5. Set d=(1—1)/2

6. Compute pg, pa, Pa—1, Pa — 2 by Equation 20

7. Represent py,ps,...,pa_3 by mo, 71, ..., Tk

8. Put these representations into unused equations in Equation 27 and 28
9. Solve mg, 7, ..., T and obtain p, pa, ..., P4_3
10. Compute ¢;, ¢ = 0,1,...,d by Equation 19

11. Return Y0 ¢

26

5 Experimental Results

We implemented the SEA algorithm by two steps. The first one decides which kind
of prime a prime [is, then computes F; (if [is Elkies) and stores it, we call this step
Fl. The other one combines data got before and recovers ¢, we call this step sea?2
(to distinguish from SEA program with respect to prime fields).

We computed the orders of ten binary elliptic curves (five of them are Koblitz
curves) recommended by NIST (National Institute of Standards and Technology)
with our implementation of SEA2 and an open source of Schoof2 [7] respectively. In
both SEA2 and Schoof2 we used the MIRACL(Multiprecision Integer and Rational
Arithmetic C/C++ Library [7]) library. It provides big number arithmetic, finite
field arithmetic, and can do computations in polynomial rings, power series ring,

etc. The comparisons of performance results are listed as the table below.

Table: Comparison of two programs

Curve Schoof2 SEA2

Fl sea?2 Total
B-163 42s 2s 2s 4s
B-233 9m 26s 6s 5s 11s
B-283 34m 39s 20s 24s 44s

B-409 6h 45m 48s Im 30s 1m 11s 2m 41s
B-571 71h 54m 25s 33m 43s 7m 13s 40m 56s

K-163 17s 1s 2s 3s
K-233 1m 40s 2s 4s 6s
K-283 om 34s 3s 16s 19s
K-409 1h 4m 18s 20s 17s 37s

K-571 10h 29m 25s 1m 9s 46s 1m 55s

Table: Computing Environments

Hostname CPU Cores 64-bit OS Memory(MB) L2 Cache (KB)
linux7 Xeon L5420 2.5G 8 v Linux 16384 12288

27

6 Conclusion

We have implemented SEA algorithm in the case of binary fields. With our pro-
gram we can compute the orders of elliptic curves over binary fields reasonably fast.
Moreover, since for each prime [, the procedure to find ¢; is independent from each
other, this program can be easily parallelized if we want to find a secure curve in a

shorter time.

28

References

1]

[5]

8]

LF. Blake, G. Seroussi and N.P. Smart. Elliptic curve in cryptography. volume
265 of London Mathematical Society Lecture Note Series.Cambridge University

Press, Cambridge, 2000.

R. Lercier. Computing isogenies in Fon. ANTS-II: Algorithmic Number Theory,
Lecture Notes Computation Science, vol. 1122, Springer-Verlag, 1996, p. 197-

212

A. J. Menezes. Elliptic curve public key cryptosystems. Springer, 1993

F. A. Meneze, S. Vanstone and T. Okamoto. Reducing elliptic curve loga-
rithms to logarithms in a finite field. IEEE Transactions on Information Theory,

39:1639-1646, 1993

V. Miller. Ein Algorithmus zur Bestimmung der Punktzahl elliptischer Kurven
uber endlichen Korpern der Charackteristik grosser drei, Ph.D. Thesis, Univer-

sitaet des Saarlandes, 1995

R. Schoof. Counting points on elliptic curves over finite fields. Journal de théorie

des nombres de Bordeaux,7 no. 7 (1995), p.219-254

Shamus Software. Multiprecision Integer and Rational Arithmetic C/C++ Li-

brary. http://www.shamus.ie/

F. Vercauteren. The SEA algorithm in characteristic 2. Preprint, 2000.

29

A Source Code with Explanation

In the appendix we will give the part of our source code computing isogenies. The

words with talic font are our explanation about every function.

A.1 Some Preprocessors

int M, d_FL, num_pi, count[200], term[10000][1000];

GF2m alpha, alphaq, alphad, beta, betaq, delta, alpha2[120], eq[30][{10000];
vector<GF2m> p[200], p2[200];

bool pi[100], pK[200], B[350][350], BC[12000][10000];

int main (const int argc, char * argv[]) {
intL,a,b,c;
ofstream ofile;
FILE *myfptr;
miracl *mip=&precision;
Big A, bl;
mip->IOBASE=10;

usage:
M: size of the base field.
a, b, c: the degrees of the middle three terms of the irreducible polynomial f(x)

A, B: parameters of the curve

if (arge !=7 && arge 1= 5) {
cout << "Usage: " << argv[0] <<" M ab c AB" <<end];
cout << "Usage: " << argv[0] <<" M a AB" <<endl;
return -1;
H
else if (argc == 5) {
M = atoi(argv[1]);
a = atoi(argv[2]);
b=0;
c=0;
A =argv[3];

30

bl = argv[4];

}

else {
M = atoi(argv[1]);
a = atoi(argv([2]);
b = atoi(argv[3]);
¢ = atoi(argv[4]);
A= argv[5];
bl = argv[6];

H

ofile.open("fl_output.txt");
ecurve2(M,a,b,c,A,bl, TRUE,MR AFFINE);

ofile<< M<<""<<a<<""<<bhb<<""<<c<<""<<A<<" " << Dbl << endl:

cout<<"M="<<M <<" B="<<bl <<end];

get_bij();

if (M>=56) { //when M < 56, we use Pollard’s meththod immediately

Poly2 MP, FI;
GF2m j2,b2;

intn;

Big accum= 2, d= howmanyprimes(M); // accumis the product of used

primes

ofile << d << endl;

// When M is even, we need this delta to solve quadratic equations
delta= 2;
if M%2==0) {

while (trace(delta)==0) delta*=2;

// For Koblitz curves we will use a different method
bool Koblitz= false;
if (b1==1) Koblitz= true;

// get modular pilynomials from "modpol2.txt"
myfptr = fopen("modpol2.txt", "r'");
while((fscanf(myfptr, " %d %d", &L, &n)!=EOF) && (accum<= d)){

31

b

cout << "L="<<setw(3) << L <<",";
MP=sub _j in modpol(bl,n,myfptr);
if (Koblitz) { // Koblitz case
if (n%2==1) { // Atkin case
cout << " atkin!!" << endl;
Atkin();
continue;

H
else Fl= get FIK(L,bl,1); // Elkies case

H
else { //thecaseB=#1
j2=Atkin_or Elkies(MP);
if j2==0) { // Atkin case
cout << " atkin!!" << endl;
Atkin();
continue;
H
/* Elkies */
b2=1/j2;
Fl= get FI(L,bl1,b2);
H
accum*=L;
cout << "elkies!!" << endl;
/* output of FL*/
ofile << L << endl;
term2 *tempptr=Fl.start;
int mytemp = tempptr->n + 1;
while (tempptr!=NULL) {
mytemp--;
if (tempptr->n == mytemp) {
ofile << tempptr->an << endl;
tempptr=tempptr->next;

}

else ofile << "0" << endl;

}

ofile << endl;

32

fclose(myfptr);
ofile.close();

return 0;

We use index[10000] to store the terms of the monomials

For example,

(1) index[0].deg = 2; index[0].mono[0]= 1; index[0].mono[1]= 3;
then index[0] = mm

(ii) index[1].deg = 4; index[1].mono[0]= 1; index[1].mono[1]= 3;
index[1].mono[2]= 4; index[1].mono[3]= 5;

then index[1] = m mm s

struct INDEX {
int deg;
int mono[10];

} index[100007;

sol_qua: solve quadratic equations when M is odd

sol_qua?: solve quadratic equations when M is even

GF2m sol_qua(GF2m b, GF2m c¢) {
int 1;
GF2m x= ¢/(b*Db),s0l=0;
for (i=0; i<= (M-1)/2; i++) {
sol+= x;
x= pow(x,4);
H
sol*=b;

return sol;

GF2m sol qua2(GF2m b, GF2mc¢) {
int 1;

GF2m x= ¢/(b*Db),s01=0;

33

GF2m s=0, t=delta;
X= sqrt(x);
for (i= 0; i< M-1; i++) {
X= sqrt(x);
t= sqrt(t);
st=1t;
sol+= s*x;
H
sol*=b;

return sol;

get _index: see how many monomials will be used, and give each of them an index.
When we compute py, the monomials being used are
(TT5... 75, | 2i+2j+...A2m+n+(3d-2) =k, d = deg(m7... 4, 75,) }

void get_index(int k) {
int i,j,counta;

int d=2,temp[10];

counta= count[k-1]-1;
while (d*(d+1)-1< k+1) {
for (i=0; i< d-1; i++) temp[i]=i;
temp[d-1]=k-3*d+2;
for (i=0; i< d-1; i++) temp[d-1]-= 2*temp][i];
while (temp[d-2]< temp[d-1]) {
counta+-+;
index[counta].deg=d;
for (i=0; i< d; i++) index[counta].mono[i]= temp[i];
temp[d-1]-=2;
temp[d-2]++;
for (i=1; i< d; i++) {
if (temp[d-2]>= temp[d-1]) {
temp[d-1-i]++;
for (j=d-i; j< d-1; j++) temp[j]= temp[j-1]+1;
temp[d-1]= k-3*d+2;
for (j=0; j< d-1; j++) temp[d-1]-= 2*temp[j];

34

;

d++;
;
countat+t;

index[counta].deg= 1;
index[counta].mono[0]= k-1;
count[k]= counta+1;

return;

gel_mono:
input: two monomials

return value: product of the two monomial

INDEX get mono(INDEX ind1,INDEX ind2) {
INDEX temp;

int 1,j,k;

for (i=0; i< ind1.deg; i++) temp.mono[i]= ind1.monol[i];
temp.deg= ind1.deg;
for (i=0; i< ind2.deg; i++) {
for (j=0; j< temp.deg; j++) {
if (ind2.mono[i]==temp.mono[j]) break;
if (ind2.mono[i]< temp.mono|j]) {
for (k= temp.deg; k>j; k--) temp.mono[k]= temp.mono[k-17;
temp.mono[j]= ind2.monol[i];
temp.deg++;
break;

H
if j==temp.deg) {
temp.mono[j]= ind2.mono[i];

temp.deg++;

}

return temp;

35

gel term:
input: monomial

return value: the index refered in get _index of the monomial

int get_term(INDEX ind) {
int 1,j,k=0,d=2,temp[10],counta;
bool match;
if (ind.deg==0) return 0;
else if (ind.deg==1) return (count[ind.mono[0]+1]-1);
else {
for (i=0; i< ind.deg-1; i++) k+= 2*ind.monol[i];

k+= ind.mono[ind.deg-1]+3*ind.deg-2;

counta= count[k-1]-1;
while (d*(d+1)-1<k+1) {
for (i=0; i< d-1; i++) temp[i]= i;
temp[d-1]= k-3*d+2;
for (i=0; i< d-1; i++) temp[d-1]-= 2*temp][i];
while (temp[d-2]< temp[d-1]) {
counta++;
match= true;
for (i=0; i< ind.deg; i++) if (ind.mono[i]!=temp[i]) match= false;
if (match) break;
temp[d-1]-=2;
temp[d-2]++;
for (i=1; i< d; i++) {
if (temp[d-2]>= temp[d-1]) {
temp[d-1-i]++;
for (j=d-i; j< d-1; j++) temp[j]= temp[j-1]+1;
temp[d-1]= k-3*d+2;
for (j=0; j< d-1; j++) temp[d-1]-= 2*temp[j];

H
H
H
if (match) break;
d++;

E

36

return counta;

sub_j in_modpol: read modular polynomials from “modpol2.txt”, and substitute
Jj-invariant in one of the variables
Poly2 sub_j in modpol(GF2m b1, int n,FILE* myfptr) {
int 1;
GF2mj1;
Poly2 MP;
j1=((GF2m)1)/(GF2m)bl;
MP.clear();
for(i=0; i <n; i++){
int degx, degy;
fscanf(myfptr, " %d %d", °x, °y);
MP.addterm(pow(j1, degx), degy);
H

return MP;

Atkin_or_Elkies: See a prime L is Elkies or Atkin
GF2m Atkin _or Elkies(Poly2 MP) {

int 1;

GF2m b,c,j2;

Poly2Mod G, XQ, XX;

setmod(MP);

XX=0;
XX.addterm((GF2m)1,1);
XQ=XX;

for (i=0; i< M; i++) XQ*= XQ;

G= gcd(XQ+XX);
b= G.coeff(1);
c= G.coeff(0);

cout << "degree(G) =" << degree(G) <<",";

37

if (degree(G)==1) j2=c;

else if (degree(G)==2) {
if M%2==1) j2=sol qua(b,c);
else j2=sol_qua2(b,c);

H

else j2=0;

return j2;

howmanyprimes. decide how many primes we need

Big howmanyprimes(int M) {
Big p= pow((Big)2,M);
Big d;
if (M<=256) d=pow((Big)2,64);
else d=pow((Big)2,72);
d=sqrt(p/d);
if (d<256) d=256;

return d;
get_bij : compute B(i, j) =i!/(j! (i+)!) mod 2 for later use
void get_bij(void) {
int i,j;
for (i=0; i< M/2; i++) B[i][0]= B[i][i]= true; // B(ij)=i/(!(i-j)!) mod2
for (1i=2; i< M/2; i++) {

for j=1; j<1i; j++) {
B[i][j]= B[i-1][j-11"B[i-1][j1;

return;

column_exch: exchange two columns in a coefficient matrix

38

void column_exch(int i,int j,int n) {

int k;

GF2m temp;

for (k=0; k< n; k++) {
temp= eq[k][i];
eq[k][i]= eq[k][j];
eq[k][j]= temp;

H

return;

row_op: add one row to another in a coefficient matrix
void row_op(bool rowl1[], bool row2[], int ¢) {

int 1;

for (i=c; i>=0; i--) row2[i]"*=rowl[i];

return;

row_exch: exchange two rows in a coefficient matrix
void row_exch(bool row1[], bool row2[], int K) {
int 1;
bool c;
for (i=0; i< K+1; i++) {
c=rowl[i];
rowl[i]=row2[i];
row2[i]=c;
H

return;

39

A.2 Computing Isogenies

get_pk: represent py as a polynomial in Fy[m, m, ..., 7] by Equation 19, 22, 23.

void get_pk(void) {
int i,j,k,m;

GF2m bk;

index[0].deg=0; // the constant term
count[0]=1;
// num_pi is the number of the unknowns, here we give indices to monomials
for (i=1; i< num_pi+1; i++) get_index(i);
for (i=0; i< num_pi; i++) {
k= count[(num_pi-i-1)/2];
for (j=0; j< count[i]; j++) {
for (m=0; m< k; m++) {
INDEX u;
u= get mono(index[j],index[m]);

term[j][m]= get term(u);

alpha2[0]=1; // o will be used a lot later, we compute and store then here

alpha2[1]= pow(alpha,2);

j=d F1/2+1;
for (i=2; i< j; i++) alpha2[i]= alpha2[i-1]*alpha2[1];
bk= betaq*sqrt(alphad)/alphaq; /I bk

for (k=1; k< num_pi; k++) {
bk/= alpha; /I bk= betaq*sqrt(alphad)/(pow(alpha,k)*alphaq)
vector<GF2m> ck(count[k]);
for (j=0; j< count[k]; j++) ck[j]=0; / Compute c,by Equation 21
int s=k;
GF2m temp= bk*alpha2[k];
for(i=1; i<=k/2; i++) {
s-=2;
if (B[d_Fl-s][i]) for (j=0; j< count[s]; j++) ck[j]+= p[s][j]*temp;

40

for (i=0; i< k; i++) {
s=d_Fl-k+i;
for (j=0; j< count[i]; j++) {
for (m=0; m< count[s]; m++) {

ck[term(j][m]]+= p2[i][jT*p2[s][m];

int tl=d_F1-2*k-1;
int 2= t1-1;
plk]= p2[k]= p[tl]= p[t2]= ck; /I set vector size

count[t]l]= count[t2]= count[k];

plk][--count[k]]= bk;
p2[k][count[k]]= pow(bk,2)*alpha2[k];
temp= pow(alpha2[k],2)*alpha/(alphad*alphad);
if M%2==1) {
for (j=0; j< count[k]; j++) {
ck[j]/= alpha2[k];
// By Equation 19, pk is a root of x*+byx+c,=0.
PIKI[j1= sol_qua(bk,ck[j);
p2[k][j1= pow(p[k][j],2)*alpha2[k];
plt1][j]= pow(p[k][jl.4)*temp; // pld-2k-1]
ple21[j1= 0; /I pld-2k-2]

}

else {
for (j=0; j< count[k]; j++) {
ck[j]/= alpha2[k];
plk][j]= sol_qua2(bk,ck[j]);
p2[k](j]= pow(p[k][j],2)*alpha2[k];
p[t1][j]= pow(p[k][jl.4)*temp; // p[d-2k-1]
plt2][j]=0; /I pld-2k-2]

41

/I Compute p[d_F1-2*k-1], p[d_F1-2*k-2] by Equation 22, 23
pltl][count[k]]= pow(bk,4)*temp;
plt2][count[k]++]= 0;

s=tl;
for(i=1; i< k+1; i++) {
int qq= count[k-i];
if (B[++s][i-1]) {
temp= alpha*alpha2[i-1];
for (j=0; j< qq; j++) p[t1][]+= p[s](j]*temp;
H
if (B[s][i]) for (j=0; j< qq; j++) p[t2][jI+= p[s][j]*alpha2[i];
if (B[++s][i]) {
temp= alpha*alpha2[i];
for (j=0; j< qq; j++) {
p[t1][j]+= p[s][j]*alpha2[i];
p[t2][j]+= p[s][j]*temp;

H
if (B[d_FI1][k]) p[t1][0]+= alpha2[k]*alpha;
if (B[d_FI1][k+1]) p[t2][0]+= p[d_F1][0]*alpha2[k+1];
i=d_Fl-k-1; m=k/2;
for (j=0; j< count[ml; j++) p[t2][j]+= pow(p[il[jl.4)+ alpha*p[t1][jl;
for (j=count[m]; j< count[k]; j++) p[t2][j]+= alpha*p[t1][j];
if (k<num_pi/2+1) {
p2[tl]=p2[t2]=ck; /I set vector size
for (j=0; j< count[k]; j++) {
p2[t1][j]= pow(p[t1][j],2);
p2[t2][j]= pow(p[t2][j].2);

for (k=num_pi; k< num_pi+1; k++) {
bk/= alpha; /I bk= betag*sqrt(alphad)/(pow(alpha,k)*alphaq)

vector<GF2m> ck(count[k]);

42

for (j=0; j< count[k]; j++) ck[j]= 0;
int s=k;
GF2m temp= bk*alpha2[k];
for(i=1; i<=k/2; i++) {
s-=2;
if (B[d_FI-s][i]) for (j=0; j< count[s]; j++) ck[j]+= p[s][j]*temp;

for (i=0; i< k; i++) {
s=d_Fl-k+i;
for (j=0; j< count[i]; j++) {
for (m=0; m< count[s]; m++) {

ck[term(j][m]]+= p2[i][j]*p2[s][m];

plkl=ck; // setvector size
count[k]--;
if M%2==1) {
for (j=0; j< count[k]; j++) {
ck[j]/= alpha2[k];
PIKI[j1= sol_qua(bk,ck[j);

H
H
else {
for (j=0; j< count[k]; j++) {
ck[j]/= alpha2[k];
plk][j]= sol_qua2(bk,ck[j]);
H
H

plk][count[k]++]= bk;
if (3*k==(d_FI-1)) break;

int t=d_F1-2*%k-1;
p[t]=ck;

count[t]= count[k];

43

temp= pow(alpha2[k],2)*alpha/(alphad*alphad);
for (j=0; j< count[k]; j++) p[t][j]= pow(p[k][j].4)*temp; // p[d-2k-1]
s=t,
for(i=1; i< k+1; i++) {
int qq= count[k-i];
if (B[++s][i-1]) {
temp= alpha*alpha2[i-1];
for (j=0; j< qq; j++) p[t][]+= p[s]j]*temp;
H
if (B[++s][i]) for (j=0; j< qq; j++) p[tl[j]+= p[s][j]*alpha2[i];
H
if (B[d_FI1][k]) p[t][0]+= alpha2[k]*alpha;
if 3*k==(d_F1-2)) break;

p[-t]= ck;
count[t]= count[k];
i=d_Fl-k-1; m=k/2;
s=t+1;
for (j=0; j< count[m]; j++) p[t][j]= pow(p[i][j].4) + alpha*p[s][j];
for (j= count[m]; j< count[k]; j++) p[t][j]= alpha*p[s][j]; // p[d-2k-2]
for(i=1; i< k+1; i++) {
int qq= count[k-i];
if (B[++s][i]) for (j=0; j< qq; j*++) plt][j1+= ps][j]*alpha2[il;
if (B[++s][i]) {
temp= alpha*alpha2[i];
for (j=0; j< qq; j++) p[t][jI+= p[s][j]*temp;

}
if (B[d_FI][k+1]) p[t][0]+= alpha2[k+1];

return;

get_cf: After representing pi’s as polynomials in Fy[m, 7, ..., 7], substitute them into

equations which are unused in Equation 22.

void get _cf(intn) {

44

int 1,j,k,t;
GF2m temp,temp2= alphad*alphad/(alpha*pow(alpha,4*num_pi));
for (t=0; t<n; t++) {
for (j=0; j< count[num_pi]; j++) eq[t][j]= 0;
k= num_pit+1+t;
int s=d_Fl1-2*k-1;
for (j=0; j< count[s]; j++) eq[t][j]+= p[s]i];
for (i=1; i< k+1; i++) {
if (B[++s][i-1]) {
temp= alpha2[i-1]*alpha;
for (j=0; j< count[s]; j++) eq[t][j]+= p[s][j]*temp;
H
if (B[++s][i]) for (j=0; j< count[s]; j++) eq[t][j]+= p[s][j]*alpha2[i];
H
if (B[d_FI1][k]) eq[t][0]+= alpha2[k]*alpha;
temp2/= alpha2[2];
for (j=0; j< count[num_pi]; j++) eq[t][j]*= temp2;
for (j=0; j< count[k]; j++) eq[t][j]+= pow(p[k][j].4);
H

return;

solve_pi: solve the equations obtained before by Gaussian elimination

void solve pi (int noe, int K) {

int i,j,k,r;

for (k=0; k< noe; k++) {
for (i=0; i< K; i++) {
for (j=0; j< M; j++) {
if (eq[k][i]%2 == 1) BC[k*M+j][i]= true;
else BC[k*M+j][i]= false;
eq[k][i]/=2;

}
r=0; // rank
for (i= --K; > 0; i--) {

45

=

while ('BC[j][i]) && (j< M*noe-1)) j++;

row_exch(BC[r],BC[j],K);
if (!BC[r][1]) continue;

for (j=r+1; j< M*noe; j++) if (BC[j][i]) row_op(BCJ[r],BCJ[j].1);

r++;

>

H
for (i=0; i< num_pi; i++) {

pifi]= BC[r-1-i][0];

if (pifi]) for (j=0; j< 1-1-i; j++) BC[jI[0]"= BC[j][i+1];

}

return;

get _Fl: get F; by using the information obtained before

Poly2 get Fl(int L, GF2m b1, GF2m b2) {

int 1,j,k;

int noe;
GF2m q[200];
Poly2 Q;

d Fl=(L-1)/2;
num_pi= (d_FI-3)/3 +1;
if (d_F1%3==0) num_pi--;

alpha= sqrt(sqrt(b1)); //
alphaq= sqrt(sqrt(alpha));

alphad= pow(alpha,d FI);

beta= sqrt(sqrt(b2)); //
betaq= sqrt(sqrt(beta));

vector<GF2m> c¢(1);

count[d Fl]= count[0]=1;
pld_Fl]=p2[d_Fl]= p[0]= p2[0]=c;
pld_F1][0]= p2[d_F1][0]= 1;

p[0][0]= sqrt(alphad)*betag/alphaq;

// degree of F

// number of unknowns

alpha, alpha”(1/4), alpha”d

beta, beta™(1/4)

/I Compute po,pg,Pa—1,Pd—2 by Equation 15
/I p[0], pld], p[d-1], p[d-2]

// set vector size

46

p2[0][0]= pow(p[0][0].2);
if (d FI>1) {
count[d FI-1]=1;
pld Fl-1]=p2[d Fl-1]=c;
p[d FI-1][0]= alpha+tbeta;
p2[d F1-1][0]= pow(p[d_FI1-1][0],2);
H
if (d_FI>2) {
count[d F1-2]=1;
pld F1-2]=p2[d Fl-2]=c;
pld_F1-2][0]= pow(p[d_FI-1][0],4)+alpha*p[d_F1-1][0];
if (d_F1%2==1) p[d_FI1-2][0]+= alpha*alpha;
p2[d_FI-2][0]= pow(p[d_FI-2][0],2);

H
if (d FI<5) { // if deg(F1)< 5 we are done
GF2m temp= alphaq*sqrt(alphad)*alpha/betaq;
for(k=0; k< d_FI+1; k++) {
temp/= alpha;
q[k]= temp*p[d_FI-k][0];
Q.addterm(pow(q[k],2),k);
H
return Q;
H
get_pk();
noe= count[num_pi]/(M-2) +2; /" number of equations needed

get_cf(noe);
for (i=1; i< num_pi+1; i++) column_exch(i,count[i]-1,noe);

solve pi(noe,count[num_pi]);

int t[10000],s[100],m;
1=0;
for (m=1; m< num_pi+1; m++) {
for (j= count[m-1]; j< count[m]; j++) {
bool temp= true;
for (k=0; k< index[j].deg; k++) {
if (!pi[index[j].mono[k]]) {

47

temp= false;

break;
H
H
if (temp) t[i++]=j;
H
s[m]= 1,

if (d_F1%3==0) num_pi++;
for (k=1; k< num_pi; k++) {
for (j=0; j<s[k]; j*+) {
PIKI[0]+= pIKITt[i]];
pld_F1-2*k-1][0]+= p[d_F1-2*k-1][t[j]];
pld_F1-2%k-2][0]+= p[d_F1-2*k-2][t[j1];

for (k=0; k< d_ FI1%3; k++) {
for (j=0; j< s[num_pi]; j++) p[num_pi+k][0]+= p[num_pi+k][t[j]];
H
Q.clear(); // compute qy by Equation 14
GF2m temp= alphaq*sqrt(alphad)*alpha/betaq;
for(k=0; k< d_FI+1; k++) {
temp/= alpha;
q[k]= temp*p[d_FI-K][0];
Q.addterm(pow(q[k],2),k);
H

return Q;

48

A.3 Computing Isogenies for Koblitz Curves

get _pkK: for Koblitz curves, the values of pis are always 0 or 1, and we don t have to

compute monomials which have degree greater than 1, so we use another function

void get pkK (void) {

int i,k;

for (k=1; k<num_pi + 1; k++) {
pK[k]= pi[k-1];
if 3*k==(d_FI-1)) break;

pK[d F1-2*k-1]= false; /I p[d-2k-1]
for(i=1; i< k+1; i++)
if (B[d_F1-2*k-1+2*i][i]) pK[d F1-2*k-1]"= pK[d FI1-2*k-1+2%*i];
if (B[d_FI-2*k+2*i][i]) pK[d FI1-2*k-1]"=pK[d FI-2*k+2%i];
H
pK[d F1-2*k-1]"= (pK[d_FI-2*k]"pK[k]);
if 3*k==(d_F1-2)) break;

pK[d F1-2*k-2]= false; /I pld-2k-2]
for(i=1; i<k+1;i++) {
if (B[d F1-2-2*k+2*i][i]) pK[d F1-2*¥k-2]"=pK[d FI1-2-2¥k+2*1];
if (B[d FI-1-2*k+2*i][i]) pK[d F1-2*k-2]"=pK[d FI-1-2¥k+2*i];
H
pK[d F1-2*k-2]"=pK[d F1-2*k-1]"pK[d FI-k-1]"B[d_FI][k+1];
H

return;

get cfl, get cf2: In Koblitz case, the equations in Equation 22 maybe not enough, we

also need equations in Equaton 23.

bool get_cfl(intj) {
int i;
int k= j+1;
bool c= false;

for (1i=0;1< k+1;i++) {

49

if(B[d_FI-2*k-1+2*i][i]) ¢"= pK[d_FI-2*k-1+2%*i];
if(B[d_FI1-2*k+2*i][i]) c"= pK[d_FI-2*k+2*i];
H
¢"=pK[k];
return c;
H
bool get_cf2(int k) {
int 1;
bool c= false;
for (1I=0;1< k+1;i++) {
if(B[d_FI1-2¥k-1+2*i][i]) ¢"= pK[d_FI-2*k-1+2*i];
if(B[d_FI-2¥k-2+2*i][i]) ¢"= pK[d FI1-2*k-2+2*{];
i
c"=pK[d Fl-k-1]"B[d_FI][k+1];

return c;
get FIK: compute F; for Koblitz curves
Poly2 get FIK(int L, GF2m b1, GF2m b2) {
int 1,j,k;
int noe,noel,noe2;

bool Fl_test= false;

Poly2 Q;
d Fl=(L-1)/2; /I degree of F1
num_pi= (d_FI-3)/3 +1; /' number of unknowns have to be added

if (d_F1%3 == 0) num_pi--;

noel=(d_FI-1)/2-num_pi+l;
noe2=d Fl/2-num_pi;

noe= noel+noe2;

pK[d_FI]= true; /I pl0], p[d], p[d-1], p[d-2]
pK[0]= true;

if (d_FI>1) pK[d_FI-1]= false;

if (d_FI>2) {

50

if (d F1%2==1) pK[d FI-2]= true;
else pK[d FI-2]= false;

if (d_FI<5) { /I if deg(F1)< 5 we are done
for(k=0; k< d_FI+1; k++) Q.addterm((GF2m)pK[d_FI-k],k);

return Q;

for (i=0; i< num_pi; i++) pi[i]= false; /" degree 0
get_pkK();

for (j=0; j< noel; j++) BC[j][0]= get_cfl(num_pitj);

for (j=0; j< noe2; j++) BC[noel+j][0]= get cf2(num_pitj);

for (i=0; i< num_pi; i++) { /I degree 1 for Koblitz
for (j=0; j< num_pi; j++) pi[j]= false;
pi[i]= true;
get_pkK();
for (j=0; j< noel; j++) BC[j][i+1]= get_cfl(num_pi+j)"BCJ[j][0];
for (j=0; j< noe2; j++) {
BCl[noel+j][i+1]= get cf2(num_pi+j)*"BC[noel+j][0];

int r=0;

solve piK(noe,num_pi,r);

int vio[20];
1=0;
for (j=0; j< num_pi; j++) {
if (\BC[j][num_pi-j]) {
for (k= num_pi-1; k>j; k--) row_exch(BC[k],BC[k-1],num_pi);

vio[i++]= num_pi-j-1;

int upperbound= 1 << (num_pi-r);

51

1=0;
while (F1_test) {
for(j=0; j< num_pi-r; j++) pi[vio[j]]= (i & (1 <<))) && 1;
i+
bool vio_test;
for (j=0; j< num_pi; j++) {
vio_test= false;
for (k=0; k< num_pi-r; k++) if (j==vio[k]) vio_test= true;
if (Ivio_test) {
pi[j]= false;
for (k=0; k< j; k++) if (BC[num_pi-1-j][k+1]) pi[j]"= pi[k];
pilj]*= BC[num_pi-1-1[0];

H
get_pkK();
Q.clear();
for(k=0; k< d_FI+1; k++) if (pK[d_FI-k]) Q.addterm(1,k);
if (i< upperbound+1) F1 test= DP_test(Q,bl,L);
else F1_test= true;
if (i==upperbound) break;
H

return Q;

DP test: division polynomial test.

bool DP_test(Poly2 Q,GF2m bl, int L) {

Poly2 Pf[5], G;

Poly2Mod P[600];

P[0]=0; P[1]=1; Pf[2]=0; Pf[3]=0; Pf[4]=0;

Pf[2].addterm(1,1);

Pf[3].addterm(b1,0);

Pf[3].addterm(1,3);
Pf[3].addterm(1,4);
Pf[4].addterm(b1,2);
Pf[4].addterm(1,6);
setmod(Q);

52

int m;

for (m=0; m< 5; m++) P[m]= (Poly2Mod) P{f[m];

m=3;
while (2*m < L+3) {
P[2*m-1]= P[m+1]*P[m-1]*P[m-1]*P[m-1]+ P[m-2]*P[m]*P[m]*P[m];
P[2*m]= (P[m+2]*P[m-1]*P[m-1]+
P[m-2]*P[m+1]*P[m+1])*P[m]*inverse(P[2]);
m++;
H
G= ged(P[L]);
if (G==Q) return true;

else return false;

solve piK: solve pi function in Koblitz case

void solve piK (int noe, int K, int& r) {

int i,j;

r=0; // rank

for (i=K; 1> 0; i--) {
=
while (('BC[j][i]) && (j<noe-1)) j++;
row_exch(BC[r],BC[j],K);
if (!BC[r][i]) continue;
for (j=r+1; j< noe; j++) if (BC[j][i]) row_op(BC[r],BC[j],i);
r++;

>

return;

53

B Implementation Data

compiler option: -O2
Thread model: posix
gcc version 4.3.2 (Debian 4.3.2-1)

B.1 NIST Binary Curves

(1) Computing Isogenies

B-163

b93030@linux7:~/Work/Schoof/miracl$ time ./f1 16376 3 1
2982236234343851336267446656627785008148015875581

M= 163, b1=2982236234343851336267446656627785008148015875581
d=796131459065721

L= 3, degree(G) =0, atkin!!
= 5, degree(G)=0, atkin!!
= 7, degree(G)=0, atkin!!

L= 11, degree(G) = 2, elkies!!
= 13, degree(G) =0, atkin!!

L= 17, degree(G) =0, atkin!!

L= 19, degree(G) = 2, elkies!!
= 23, degree(G) =0, atkin!!

L= 29, degree(G) =0, atkin!!

L= 31, degree(G) = 2, elkies!!
= 37, degree(G) = 2, elkies!!

L= 41, degree(G) =0, atkin!!

L= 43, degree(G) =0, atkin!!
= 47, degree(G) = 2, elkies!!

L= 53, degree(G) =0, atkin!!

L= 59, degree(G) =0, atkin!!

= 61, degree(G) = 2, elkies!!
= 67, degree(G) = 2, elkies!!

L= 71, degree(G) =0, atkin!!
= 73, degree(G) = 2, elkies!!
= 79, degree(G) =0, atkin!!
L= 83, degree(G) =0, atkin!!
= 89, degree(G) = 2, elkies!!
= 97, degree(G) =0, atkin!!

L= 101, degree(G) = 2, elkies!!

real 0m?2.328s
user 0m?2.224s
sys 0mO0.104s

B-233

b93030@linux7:~/Work/Schoof/miracl$ time ./f1 233 74 1
276049798002920418707884550237789852030770725625900396439857014712337
3

M=233, bl=
276049798002920418707884550237789852030770725625900396439857014712337
3

54

d=27354868640032294882193329

= 3, degree(G)=0, atkin!!

= 5, degree(G) = 2, elkies!!

= 7, degree(G) = 1, elkies!!

= 11, degree(G) =0, atkin!!
L= 13, degree(G) =0, atkin!!
L= 17, degree(G) = 2, elkies!!

= 19, degree(G) = 2, elkies!!

L= 23, degree(G) =0, atkin!!

L= 29, degree(G) =0, atkin!!
= 31, degree(G) = 2, elkies!!

L= 37, degree(G) =0, atkin!!

L= 41, degree(G) =0, atkin!!
= 43, degree(G) = 2, elkies!!

L= 47, degree(G) =0, atkin!!

L= 53, degree(G) =0, atkin!!
= 59, degree(G) = 2, elkies!!

L= 61, degree(G) =0, atkin!!

L= 67, degree(G) =2, elkies!!

= 71, degree(G) = 2, elkies!!
L= 73, degree(G) =2, elkies!!
L= 79, degree(G) =2, elkies!!

= 83, degree(G) =0, atkin!!
L= 89, degree(G) =0, atkin!!
L= 97, degree(G) =2, elkies!!
L=101, degree(G) =0, atkin!!

L=103, degree(G) = 2, elkies!!
L=107, degree(G) = 2, elkies!!
L=1009, degree(G) = 2, elkies!!
L= 113, degree(G) =0, atkin!!
L=127, degree(G) = 2, elkies!!

real 0m6.408s

user 0m5.828s
Sys 0m0.576s
B-283

b93030@]linux7:~/Work/Schoof/miracl$ time ./f1 283 127 5 1
482181357605607237400699778039908118031227003030060127012045034120

5914644378616963829
M= 283, bl=
482181357605607237400699778039908118031227003030060127012045034120
5914644378616963829
d=57367317478181007276781504744917
L= 3, degree(G) =0, atkin!!
= 5, degree(G) =0, atkin!!
= 7, degree(G) =2, elkies!!
= 11, degree(G) =0, atkin!!
L= 13, degree(G) =0, atkin!!
L= 17, degree(G) =0, atkin!!

= 19, degree(G) = 2, elkies!!
L= 23, degree(G) = 2, elkies!!
L= 29, degree(G) = 2, elkies!!

= 31, degree(G) =0, atkin!!
L= 37, degree(G) = 2, elkies!!

55

L= 41, degree(G) =0, atkin!!

= 43, degree(G) =0, atkin!!
L= 47, degree(G) =2, elkies!!
L= 53, degree(G) =0, atkin!!
= 59, degree(G) =0, atkin!!

L= 61, degree(G) = 2, elkies!!
L= 67, degree(G) = 2, elkies!!

= 71, degree(G) =0, atkin!!
L= 73, degree(G) =0, atkin!!
L= 79, degree(G) =2, elkies!!

= 83, degree(G) = 2, elkies!!

L= 89, degree(G) =0, atkin!!
L= 97, degree(G) =2, elkies!!
L=101, degree(G) =0, atkin!!

L=103, degree(G) = 2, elkies!!
L=107, degree(G) = 2, elkies!!
L= 1009, degree(G) = 2, elkies!!

L= 113, degree(G) =0, atkin!!
L=127, degree(G) = 2, elkies!!
L= 131, degree(G) =0, atkin!!
L=137, degree(G) = 2, elkies!!
L= 139, degree(G) =0, atkin!!
L= 149, degree(G) = 2, elkies!!
L= 151, degree(G) =0, atkin!!
L=157, degree(G) =0, atkin!!
L=163, degree(G) =0, atkin!!

L=167, degree(G) = 2, elkies!!

real 0m20.771s
user 0m20.229s
Sys 0m0.536s

B-409

b93030@]linux7:~/Work/Schoof/miracl$ time ./f1 409 87 1
868862616340907076728177706403844252645058294790436418244386586141
11870471004564988634410809058207142318571212147935892575

M=409, bl=
868862616340907076728177706403844252645058294790436418244386586141
11870471004564988634410809058207142318571212147935892575
d=529120111857624937813183735811535109761073714132242

L= 3, degree(G) =0, atkin!!
= 5, degree(G) =0, atkin!!
= 7, degree(G) =0, atkin!!

L= 11, degree(G) = 2, elkies!!
= 13, degree(G) = 2, elkies!!
L= 17, degree(G) = 2, elkies!!
L= 19, degree(G) = 2, elkies!!
= 23, degree(G) = 2, elkies!!
L= 29, degree(G) =0, atkin!!
L= 31, degree(G) =0, atkin!!
= 37, degree(G) = 2, elkies!!
L= 41, degree(G) = 2, elkies!!
L= 43, degree(G) = 2, elkies!!
= 47, degree(G) =0, atkin!!
L= 53, degree(G) =0, atkin!!

56

L= 59, degree(G) =2, elkies!!
= 61, degree(G) =0,
L= 67, degree(G) =0,
L= 71, degree(G) =2, elkies!!
= 73, degree(G) =0,
L= 79, degree(G) =0,
L= 83, degree(G) = 2, elkies!!
= 89, degree(G) = 2, elkies!!
L= 97, degree(G) =2, elkies!!
L=101, degree(G) = 2, elkies!!
=103, degree(G) =0,
=107, degree(G) = 2, elkies!!
L=109, degree(G) =0,
L= 113, degree(G) =0,
L=127, degree(G) =0,
L= 131, degree(G) = 2, elkies!!
L=137, degree(G) = 2, elkies!!
L= 139, degree(G) =0,
L= 149, degree(G) =0,
L= 151, degree(G) = 2, elkies!!
L=157, degree(G) = 2, elkies!!
L=163, degree(G) =0,
L=167, degree(G) = 2, elkies!!
L=173, degree(G) =0,
L=179, degree(G) = 2, elkies!!
L= 181, degree(G) = 2, elkies!!
L= 191, degree(G) = 2, elkies!!
L=193, degree(G) = 2, elkies!!
L=197, degree(G) = 2, elkies!!
L=199, degree(G) =0,
L=211, degree(QG) = 2, elkies!!
L=223, degree(G) = 2, elkies!!

real 1m31.203s

user 1m30.522s
Sys 0m0.564s

B-571

atkin!!
atkin!!

atkin!!
atkin!!

atkin!!
atkin!!

atkin!!
atkin!!

atkin!!
atkin!!

atkin!!

atkin!!

atkin!!

b93030@linux7:~/Work/Schoof/miracl$ time ./f1 571 1052 1
285332924526134353556008696418155129688929877610683298089156085094
418001170112330790532601964265265353300348275302366901684288410817
2514870944140611113679225347419720217210

M= 571, bl=

285332924526134353556008696418155129688929877610683298089156085094
418001170112330790532601964265265353300348275302366901684288410817
2514870944140611113679225347419720217210

d=

127933392980412699402423752410905669230480363236317557909096646251

1824293476

L= 3, degree(G) =0,

L= 5, degree(G) =0,

L= 7, degree(G) = 2, elkies!!
L= 11, degree(G) = 2, elkies!!
L= 13, degree(G) = 2, elkies!!
L= 17, degree(G) =0,

atkin!!
atkin!!

atkin!!

57

L= 19, degree(G) = 2, elkies!!
= 23, degree(G) = 2, elkies!!
L= 29, degree(G) =0,
L= 31, degree(G) =0,
= 37, degree(G) =0,
L= 41, degree(G) = 2, elkies!!
L= 43, degree(G) = 2, elkies!!
= 47, degree(G) =0,
L= 53, degree(G) = 2, elkies!!
L= 59, degree(G) =0,
= 61, degree(G) =0,
L= 67, degree(G) =0,
L= 71, degree(G) =0,
= 73, degree(G) =0,
L= 79, degree(G) =2, elkies!!
L= 83, degree(G) =0,
= 89, degree(G) = 2, elkies!!
= 97, degree(G) =0,
L=101, degree(G) =0,
L=103, degree(G) =0,
L=107, degree(G) =0,
L=109, degree(G) =0,
L= 113, degree(G) =0,
L=127, degree(G) = 2, elkies!!
L=131, degree(G) =0,
L=137, degree(G) = 1, elkies!!
L= 139, degree(G) = 2, elkies!!
L= 149, degree(G) = 2, elkies!!
L= 151, degree(G) =0,
L=157, degree(G) = 2, elkies!!
L=163, degree(G) =0,
L=167, degree(G) = 2, elkies!!
L=173, degree(G) = 2, elkies!!
L= 179, degree(G) = 2, elkies!!
L= 181, degree(G) =0,
L= 191, degree(G) = 2, elkies!!
L= 193, degree(G) = 2, elkies!!
L=197, degree(G) = 2, elkies!!
L= 199, degree(G) = 2, elkies!!
L= 211, degree(G) =0,
L= 223, degree(G) =0,
L=227, degree(G) =0,
L= 229, degree(G) =0,
L= 233, degree(G) =0,
L= 239, degree(G) =2, elkies!!
L= 241, degree(G) =2, elkies!!
L=251, degree(G) =0,
L= 257, degree(G) = 2, elkies!!
L= 263, degree(G) =2, elkies!!
L= 269, degree(G) = 2, elkies!!
L=271, degree(G) =0,
L= 277, degree(G) = 2, elkies!!
L= 281, degree(G) = 2, elkies!!
L= 283, degree(G) =0,
L= 293, degree(G) =0,
L=307, degree(G) =0,
L= 311, degree(G) = 2, elkies!!

atkin!!
atkin!!
atkin!!

atkin!!

atkin!!
atkin!!
atkin!!
atkin!!
atkin!!

atkin!!

atkin!!
atkin!!
atkin!!
atkin!!
atkin!!
atkin!!

atkin!!

atkin!!

atkin!!

atkin!!

atkin!!
atkin!!
atkin!!
atkin!!
atkin!!

atkin!!

atkin!!

atkin!!
atkin!!
atkin!!

58

L=313, degree(G) = 2, elkies!!
L=317, degree(G) = 2, elkies!!
L=331, degree(G) = 2, elkies!!

L=337, degree(G) =0, atkin!!
L=347, degree(G) = 2, elkies!!

L= 349, degree(G) =0, atkin!!
L=353, degree(G) =0, atkin!!
L=359, degree(G) =0, atkin!!
L=367, degree(G) =0, atkin!!
L=373, degree(G) =0, atkin!!
L=379, degree(G) = 2, elkies!!

L= 383, degree(G) =0, atkin!!
L= 389, degree(G) =0, atkin!!

L=397, degree(G) = 2, elkies!!

real 34m57.203s
user 33m43.374s
sys Om1.172s

(2) SEA Algorithm Part

B-163

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2
EP[0]=2

t[0]=1

NP mod 11 = 3

NPmod 19= 13

NPmod31= 18

NPmod37= 18

NPmod47= 18

NPmod 61 = 37

NP mod 67= 36

NPmod73= 31

NPmod 89= 81

NPmod 101 = 80
p=11692013098647223345629478661730264157247460343808
order = 11026744243059526

ordermod = 60433317538894718

TR=1

Releasing 5 Tame and 5 Wild Kangaroos

NP is 2*Prime!
NP=2%5846006549323611672814742442876390689256843201587

real 0m3.924s
user 0Om1.988s
Sys 0m0.004s

B-233

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2
EP[0]=2
t[0]=1

59

NP mod 5 = 1

NP mod 7 = 2

NP mod 17 = 5
NP mod 19 = 6
NPmod3l1= 25
NPmod43= 10
NP mod 59 = 9

NPmod 67= 40
NPmod71= 70
NPmod73= 23

NP mod 79 = 1
NP mod 97 = 3
NP mod 103= 56
NP mod 107 = 9

NPmod 109= 36
NP mod 127= 45

p =
1380349269358112757486951172455405090490221794434077311032504844759859
2

order = 10266661174316706296053786

ordermod = 721919514870007022097525430

TR=1

Releasing 5 Tame and 5 Wild Kangaroos

T S I

NP=
2*%69017463467905637874347558622770255558398127373450135553793836344854
63

real 0m7.999s
user 0Om5.188s
Sys 0m0.012s

B-283
b93030@linux7:~/Work/Schoof/miracl/sea2lab$./sea2
EP[0]=2

t[0]=1

NP mod 7= 6

NP mod 19 = 8

NPmod23= 12
NPmod29= 11
NPmod37= 33
NPmod47= 32
NPmod 61 = 51
NPmod 67= 15
NPmod79= 12
NPmod 83 = 68
NPmod97= 75
NP mod 103= 52
NP mod 107= 26
NP mod 109 = 3
NPmod 127= 91
NP mod 137= 28
NP mod 149= 120
NPmod 167= 73

60

p =
155413511378058325673556952545881512531392547124171161700144992779
11234281641667985408

order = 356009306024364040769107395835602

ordermod = 417122038447871102863749694823942

TR=1

Releasing 5 Tame and 5 Wild Kangaroos

T

NP=
2*7770675568902916283677847627294075626569625924376904889109196526
770044277787378692871

real 0m24.733s
user 0m24.258s
Sys 0m0.044s

B-409

b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2
EP[0]=2
t[0]=1

NP mod 11
NP mod 13
NP mod 17
NP mod 19
NP mod 23 =
NPmod 37= 26
NPmod4l= 17
NPmod43= 18
NPmod 59= 24
NP mod 71 = 7
NPmod 83 = 26
NP mod 89 = 18
NP mod 97= 68
NP mod 101 = 78
NP mod 107= 87
NP mod 131= 119
NP mod 137= 113
NP mod 151 = 93
NP mod 157 = 7
NP mod 167= 77
NPmod 179= 74
NP mod 181 = 1
NP mod 191 = 89
NP mod 193 = 120
NP mod 197= 98
NP mod 211 = 29
NP mod 223 = 68

1
6
5
2
13

p =
132211193758049719790383061606554207965680936592856243856929759054
8811582472622691650378420879430569695182424050046716608512

order = 3127943980040448794073703873444583696589521497167758
ordermod = 3536441946874615910527089127673983525178438684984198
TR=1

Releasing 5 Tame and 5 Wild Kangaroos

61

NP is 2*Prime!

NP=
2*6610559687902485989519153080327710398284046829642812192846487983
04157774827374805208143723762179110965979867288366567526771

real 1m17.834s
user Im11.440s
Sys 0mO0.136s

B-571
b93030@linux7:~/Work/Schoof/miracl/sea2lab$ time ./sea2
EP[0]=2

t[0]=1

NP mod 7 = 6
NP mod 11 = 3
NP mod 13 = 1
NP mod 19 = 6
NPmod23= 21
NPmod4l= 13
NP mod 43 = 3

NPmod 53= 21

NPmod79= 48

NP mod 89 = 45

NP mod 127= 32
NP mod 137= 107
NP mod 139= 71
NP mod 149= 57
NP mod 157= 97
NP mod 167 = 123
NPmod 173 = 69
NPmod 179= 10
NP mod 191 = 176
NP mod 193 = 140
NP mod 197= 23
NP mod 199= 50
NP mod 239= 89
NP mod 241 = 218
NP mod 257 = 238
NP mod 263 = 88
NP mod 269 = 162
NP mod 277 = 180
NP mod 281 = 134
NP mod 311 = 227
NP mod 313 = 160
NP mod 317= 219
NP mod 331 = 130
NP mod 347 = 152
NP mod379= 16
NP mod 397= 95

p =
772907504603451668939070378186397468859785465941286999731447050290
303828457912084907238753316384515592492723206300435435473015732208
5975311485817346934161497393961629646848

order =
970034550053118781795951067441961126647316372165136120077405153276

62

1794863602

ordermod =
105641544396289499044637429723725678203472534631045243223462822269
12750332226

TR=1

Releasing 5 Tame and 5 Wild Kangaroos

NP is 2*Prime!

NP=
2*3864537523017258344695351890931987344298927329706434998657235251
451519142289560424536143999389415773083133881121926944486246872462
816813070234528288303332411393191105285703

real Tm16.755s

user 7ml12.763s
Sys 0m0.656s

63

B.2 NIST Koblitz Curves

b93030@bsd2:~/Work/Schoof/miracl$./DtoH
5846006549323611672814741753598448348329118574063

dec: 5846006549323611672814741753598448348329118574063

hex: 00000004 00000000 00000000 00020108 A2E0CCOD 99F8ASEF

b93030@bsd2:~/Work/Schoof/miracl$./DtoH
3450873173395281893717377931138512760570940988862252126328087024741343
dec:
3450873173395281893717377931138512760570940988862252126328087024741343
hex: 00000080 00000000 00000000 00000000 00069D5B B915BCD4
6EFB1ADS F173ABDF

b93030@bsd2:~/Work/Schoof/miracl$./DtoH
388533778445145814183892381364703781328481173379306132429587499752
9815829704422603873

dec:
388533778445145814183892381364703781328481173379306132429587499752
9815829704422603873

hex: O1FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577
265DFF7F 94451E06 1E163C61

b93030@bsd2:~/Work/Schoof/miracl$./DtoH
330527984395124299475957654016385519914202341482140609642324395022
880711289249191050673258457777458014096366590617731358671

dec:
330527984395124299475957654016385519914202341482140609642324395022
880711289249191050673258457777458014096366590617731358671

hex: 007FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFESF 83B2D4EA 20400EC4 557D5ED3 E3E7CASB 4B5C83BS8
EOIESFCF

b93030@bsd2:~/Work/Schoof/miracl$./DtoH
193226876150862917234767594546599367214946366485321749932861762572
575957114478021226813397852270671183470671280082535146127367497406
66173119296824216\

17092503555733685276673

dec:
193226876150862917234767594546599367214946366485321749932861762572
575957114478021226813397852270671183470671280082535146127367497406
6617311929682421617092503555733685276673

hex: 02000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138
B630D84B E5D63938 1E91DEB4 5CFE778F 637C1001

K-163: a=1, b=1, h=2, f(x) = x*163 + x*7 + x"6 +x*3 +1
n = 0x 00000004 00000000 00000000 00020108 A2E0CCOD 99F8ASEF

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./fl 163 76 3 1 1
M=163,B=1

L= 3, atkin!!
L= 5 atkin!!
L= 7, elkies!!
L= 11, elkies!!

64

L= 13, atkin!!

= 17, atkin!!
L= 19, atkin!!
L= 23, elkies!!
= 29, elkies!!
L= 3lI, atkin!!
L= 37, elkies!!
= 41, atkin!!
L= 43, elkies!!
L= 47, atkin!!
= 53, elkies!!
L= 59, atkin!!
L= 61, atkin!!
= 67, elkies!!
L= 71, elkies!!
L= 73, atkin!!
= 79, elkies!!

real 0m0.663s
user 0m0.460s
sys 0mO0.160s

b93030@linux7:~/Work/Schoof/miracl/sea2lab2§ time ./sea2
EP[0]=2

t[0]=1

NP mod 7= 2

NP mod 11 = 3

NPmod23= 12

NPmod29= 17

NPmod37= 19

NPmod 43 = 41

NPmod 53= 36

NP mod 67= 62

NPmod 71 = 44

NPmod 79= 63
p=11692013098647223345629478661730264157247460343808
order = 3029291667134560

ordermod = 3255013894150942

TR=1

Releasing 5 Tame and 5 Wild Kangaroos

NP is 2*Prime!
NP=2*5846006549323611672814741753598448348329118574063

real 0m2.174s
user 0m2.056s
Sys 0m0.004s

K-233: a=0, b=1, h=4, f(x) = x"233 +x"74 + 1
n = 0x 00000080 00000000 00000000 00000000 00069DSB B915BCD4
6EFB1ADS

F173ABDF

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./f1 233 74 0 1
M=233,B=1
L= 3, atkin!!

65

= 5 atkin!!

= 7, elkies!!

L= 11, elkies!!

L= 13, atkin!!
= 17, atkin!!
= 19, atkin!!
= 23, elkies!!
= 29, elkies!!
= 31, atkin!!
= 37, elkies!!
= 41, atkin!!
= 43, elkies!!
= 47, atkin!!
= 53, elkies!!
= 59, atkin!!

L= 61, atkin!!

L= 67, elkies!!

L= 71, elkies!!

L= 73, atkin!!

L= 79, elkies!!

L= &3, atkin!!

L= &9, atkin!!

L= 97, atkin!!

L=101, atkin!!

L=103 atkin!!

L=107, elkies!!
L=1009, elkies!!
L= 113, elkies!!
L=127, elkies!!
L=131, atkin!!
L=137, elkies!!

real 0m2.133s
user 0m1.940s
Sys 0m0.184s

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2

EP[0]=2
{[0]=1

NPmod7= 2
NPmod1l1= 4
NPmod23= 8

NPmod29= 15
NPmod37= 29
NP mod 43 = 3
NPmod53= 39
NP mod 67= 41
NPmod71= 16
NP mod 79 = 2
NP mod 107= 73
NP mod 109= 63
NPmod 113= 56
NP mod 127= 119
NP mod 137= 77

p =
138034926935811275748695117245540509049022179443407731103250484475985
92
order = 33281498335308066775517546
ordermod = 74639007176103601221415502

66

TR=0

Releasing 5 Tame and 5 Wild Kangaroos

N T e

NP=
4*34508731733952818937173779311385127605709409888622521263280870247413
43

real 0m4.715s
user 0m4.236s
Sys 0mo0.012s

K-283: a=0, b=1, h=4, f(x) = x"283 + x*"12 +x*7 +x"5+ 1
n = 0x 01FFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFE9AE 2ED07577
265DFF7F

265DFF7F 94451E06 1E163C61

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./f1283 12750 1
M=283,B=1

= 3, atkin!!
= 5 atkin!!
= 7, elkies!!
L= 11, elkies!!
L= 13, atkin!!
= 17, atkin!!
L= 19, atkin!!
L= 23, elkies!!
= 29, elkies!!
L= 31, atkin!!
L= 37, elkies!!
= 41, atkin!!
L= 43, elkies!!
L= 47, atkin!!
= 53, elkies!!
L= 59, atkin!!
L= o1, atkin!!
= 67, elkies!!
L= 71, elkies!!
L= 73, atkin!!
= 79, elkies!!
L= &3, atkin!!
L= &9, atkin!!
= 97, atkin!!
L=101, atkin!!
L=103, atkin!!

L=107, elkies!!
L= 109, elkies!!
L= 113, elkies!!
L=127, elkies!!

L=131, atkin!!
L=137, elkies!!
L=139, atkin!!

L= 149, elkies!!
L=151, elkies!!
L=157, atkin!!
L=163, elkies!!

67

real 0m4.138s
user 0m3.232s
sys 0mO0.136s

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2

EP[0]=2

t[0]=1

NP mod 7 = 4
NP mod 11 = 4
NPmod23= 12
NP mod 29 = 4
NP mod 37 = 6

NPmod43= 29
NP mod 53= 31
NP mod 67= 21
NP mod 71 = 4
NPmod79= 55
NP mod 107= 13
NP mod 109 = 43
NPmod 113= 14
NP mod 127= 38
NP mod 137= 61
NP mod 149= 61
NP mod 151 = 127
NP mod 163 = 45

p =
155413511378058325673556952545881512531392547124171161700144992779
11234281641667985408

order = 97622156270795148568575272626280

ordermod = 273726392660190252592542262858174

TR=0

Releasing 5 Tame and 5 Wild Kangaroos

S

NP=
4*3885337784451458141838923813647037813284811733793061324295874997
529815829704422603873

real 0m17.758s
user 0m16.393s
Sys 0m0.012s

K-409: a=0, b=1, h=4, f(x) = x"409 + x"87 + 1
n = 0x 007FFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF
FFFFFESF

83B2D4EA 20400EC4 557DSED3 E3E7CASB 4B5C83B8 EO01ESFCF

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./f1 409 87 0 1
M= 409, B=1

L= 3, atkin!!
L= 5, atkin!!
L= 7, elkies!!
L= 11, elkies!!
L= 13, atkin!!
L= 17, atkin!!

68

L= 19, atkin!!

= 23, elkies!!
L= 29, elkies!!
L= 3lI, atkin!!
= 37, elkies!!
L= 41, atkin!!
L= 43, elkies!!
= 47, atkin!!
L= 53, elkies!!
L= 59, atkin!!
= 6l, atkin!!

L= 67, elkies!!
L= 71, elkies!!

= 73, atkin!!
L= 79, elkies!!
L= &3, atkin!!
= &9, atkin!!
L= 97, atkin!!
L=101, atkin!!
L=103, atkin!!

L=107, elkies!!
L=1009, elkies!!
L= 113, elkies!!
L=127, elkies!!

L=131, atkin!!
L=137, elkies!!
L=139, atkin!!

L= 149, elkies!!
L=151, elkies!!

L=157, atkin!!
L=163, elkies!!
L=167, atkin!!
L=173, atkin!!
L=179, elkies!!
L=181, atkin!!

L=191, elkies!!
L=193, elkies!!
L=197, elkies!!

L=199, atkin!!
L=211, elkies!!

L=223, atkin!!
L=227, atkin!!
L=229, atkin!!

L=233, elkies!!
L= 239, elkies!!

L=241, atkin!!
L=251, atkin!!
L=257, atkin!!

L=263, elkies!!

real 0m23.650s
user 0m19.669s
Sys 0m0.184s

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2
EP[0]=2
t[0]=1

69

NP mod 7= 4

NP mod 11 = 2
NP mod 23 = 8
NP mod 29 = 8

NPmod37= 20

NPmod43= 29

NPmod53= 39

NP mod 67= 39

NPmod71= 40

NPmod79= 38

NP mod 107= 61
NP mod 109= 68
NPmod 113= 94
NP mod 127= 38
NP mod 137 = 4
NP mod 149= &9
NP mod 151 = 92
NP mod 163 = 158
NP mod 179= 160
NP mod 191 = 83
NP mod 193 = 4
NP mod 197 = 164
NP mod 211 = 102
NPmod233= 14
NP mod239= 67
NP mod 263 = 236

p =
132211193758049719790383061606554207965680936592856243856929759054
8811582472622691650378420879430569695182424050046716608512

order =451261253628769951457701156953998866108601372250384

ordermod = 1099559241939080626606171699183602379531595423882746
TR=0

Releasing 5 Tame and 5 Wild Kangaroos

NP is 4*Prime!

NP=
4*3305279843951242994759576540163855199142023414821406096423243950
22880711289249191050673258457777458014096366590617731358671

real 0m18.069s
user 0Om17.333s
Sys 0m0.020s

K-571: a=0, b=1, h=4, f(x) = x*571 + x*10 + x5+ x"2 + 1

n = 0x 02000000 00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 131850E1 F19A63E4 B391A8DB 917F4138 B630D84B
ESD63938 1IE91DEB4 SCFE778F 637C1001

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./f1 571 10520 1
M=571,B=1

= 3, atkin!!

= 5, atkin!!
L= 7, elkies!!
L= 11, elkies!!

= 13, atkin!!
L= 17, atkin!!
L= 19, atkin!!

70

L= 23, elkies!!
L= 29, elkies!!

L= 31,
L= 37, elkies!!
L= 41,
L= 43, elkies!!
L= 47,
L= 53, elkies!!
L= 59,
L= 61,

L= 67, elkies!!
L= 71, elkies!!

L= 73,
L= 79, elkies!!
L= 83,
L= 89,

= 97,
L=101,
L=103,

L=107, elkies!!
L=1009, elkies!!
L= 113, elkies!!
L=127, elkies!!
L=131,
L=137, elkies!!
L=139,
L= 149, elkies!!
L= 151, elkies!!
L=157,
L= 163, elkies!!
L=167,
L=173,
L= 179, elkies!!
L=181,
L= 191, elkies!!
L=193, elkies!!
L=197, elkies!!
L=199,
L=211, elkies!!
L= 223,
L=227,
L= 229,
L=233, elkies!!
L= 239, elkies!!
L=241,
L=251,
L=257,
L=1263, elkies!!
L= 269,
L=271,
L=277, elkies!!
L= 281, elkies!!
L= 283,
L= 293,
L=307,
L=311,
L=313,
L=317, elkies!!

atkin!!
atkin!!
atkin!!
atkin!!
atkin!!
atkin!!
atkin!!
atkin!!
atkin!!

atkin!!
atkin!!

atkin!!

atkin!!

atkin!!

atkin!!
atkin!!

atkin!!

atkin!!

atkin!!
atkin!!
atkin!!

atkin!!
atkin!!
atkin!!

atkin!!
atkin!!

atkin!!
atkin!!
atkin!!
atkin!!
atkin!!

71

L=331, elkies!!
L= 337, elkies!!
L= 347, elkies!!

L= 1349, atkin!!
L=1353, atkin!!
L= 359, elkies!!

L=1367, atkin!!

L=373, elkies!!
L=379, elkies!!
L= 383, atkin!!
L= 389, elkies!!

real 1m9.348s
user Im8&.760s
Sys 0m0.588s

b93030@linux7:~/Work/Schoof/miracl/sea2lab2$ time ./sea2

EP[0]=2

t[0]=1

NP mod 7 = 4
NP mod 11 = 4
NP mod 23 = 2
NPmod29= 28
NP mod 37 = 6
NPmod43= 10
NP mod 53 = 2

NP mod 67= 34

NPmod71= 57

NPmod79= 39

NP mod 107= 98
NP mod 109 = 3
NPmod 113= 82
NP mod 127= 16
NP mod 137= 82
NP mod 149 = 9
NP mod 151= 19
NP mod 163 = 158
NPmod 179= 18
NP mod 191 = 4
NP mod 193 = 122
NP mod 197 = 123
NP mod 211 = 27
NP mod 233 = 163
NP mod 239 = 161
NP mod 263 = 35
NP mod 277 = 239
NP mod 281 = 149
NP mod317= 135
NPmod331= 74
NP mod 337= 317
NP mod 347= 77
NP mod 359 = 218
NP mod 373 = 324
NP mod 379 = 150
NP mod 389 = 5

p =
772907504603451668939070378186397468859785465941286999731447050290
72

303828457912084907238753316384515592492723206300435435473015732208
5975311485817346934161497393961629646848

order =
996400197857582456187342835750237922856646781353582747097669177619
7661738262

ordermod =
207321071864533349878302816672499785552563184397961155174122021914
84681515202

TR=0

Releasing 5 Tame and 5 Wild Kangaroos

NP is 4*Prime!

NP=
4*1932268761508629172347675945465993672149463664853217499328617625
725759571144780212268133978522706711834706712800825351461273674974
066617311929682421617092503555733685276673

real 0m51.395s

user 0m46.179s
sys 0mO0.132s

73

