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Abstract

Degradation of the quality of speech caused by the background noise is common
in most real situations. How to suppress and remove the noise content in a noisy
speech is speech enhancement technique. In traditional signal-channel speech
enhancement methods, Wiener filter and spectral subtraction are general methods. But
these methods process in frequency domain, the distortion of signal often happen.

A new signal analyzing method, Hilbert-Huang Transform (HHT), was proposed
by Norden E. Huang et al. in 1998. With EMD, signal can be decomposed into a finite
number of intrinsic mode functions (IMFs) based on the local characteristic time scale
of the signal. These IMFs with Hilbert transform obtain meaningful instantaneous
frequencies. In recent years, EMD was used on speech enhancement. After EMD of
white noise, noise component of each IMF can be estimated then remove it.

In this thesis, we research on speech enhancement with EMD. After adding an
artificial signal to noisy signal, most noise component can concentrate on some IMFs.
We can remove most noise by throwing away the IMFs. Adaptive center weighted
average filter (ACWA filter) is used to whiten the residual noise in speech. These
results of experiment show that the method has good performance of de-noising in
low SNR situation and reserve the quality of original speech.

Keywords: Empirical Mode Decomposition, De-noising, HHT
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Chapter 1  Introduction

1.1 Motivation

In the real world, degradation of the quality of speech caused by the background
noise is common. If speech signal need to record in noisy environment, the recorded
voice will contain more background noise. For example, the reporter need to
interview in a factory, understanding of black box in an aircraft accident, application
on the hearing aid, and pre-processing for speech recognition or speaker identification.
In these situations, the quality and intelligibility of signals play an important role. How

to improve these problems is the speech enhancement technique.

1.2 Background

Speech enhancement techniques can be classified as single-channel,
dual-channel or multi-channel enhancement by the number of microphone. In
traditional methods, the single-channel speech enhancement is used commonly such
as Wiener filter and spectral subtraction. But these methods process in frequency

domain, the distortion of signal often happen. And these methods can’t have good



performance in low SNR situation. The dual-channel speech enhancement is used
commonly such as adaptive noise cancelling. The method has two microphones as a
primary and second channel. The primary channel contains speech with additive noise
and a reference noise signal correlated to the noise is available in the secondary
channel. In the multi-channel techniques, microphones arrays are used to reject the

undesired noise signal.

1.3 Problem Foundation

In most real situations, it is not allowed to pick up the second sensor signal. The
single-channel speech enhancement is common for dealing with kinds of situation.
The traditional method of single-channel speech enhancement, such as Wiener filter
and spectral subtraction, has two main problems (1) The aliasing of signal (2) In low
situation; the performance of de-noising is bad. According to these problems, we

proposed a de-noising method base on empirical mode decomposition to solve.

1.4  Thesis Organization

In Chapter 2, we will introduce Hilbert-Huang Transform (HHT), conventional



speech enhancement techniques and speech enhancement techniques base on

empirical mode decomposition. Chapter 3 describes the proposed structure of speech

enhancement system, including Dynamic Filter and Adaptive Center Weighted

Average Filter. In Chapter 4, the experiment results of the proposed speech

enhancement system are shown. Finally, conclusions are given in Chapter 5.



Chapter 2 Preliminaries

Speech enhancement is a popular problem. Many new methods are proposed in
recent year. Section 2.1 introduces history and application of empirical mode
decomposition. Section 2.2 introduces conventional speech enhancement methods.
Section 2.3 introduces new speech enhancement method with empirical mode

decomposition.

2.1 Empirical Mode Decomposition

Hilbert-Huang Transform (HHT) was proposed by Norden E. Huang et al. in
1998 [5]. It provides a novel time-frequency distribution for analyzing physical
measurements. One of the main tools used in time-frequency signal processing is
short time Fourier transform (STFT). STFT is the most basic method to represent the

non-stationary property of the signal. It can be written as

0

X (m,w) = > x(nw(n—m)e " (2.1)

n=—cw

By sliding the window along time axis, we can get a time-frequency distribution.

The STFT starts with a prior-defined basis and convolves the signal with the basis to

4



get amplitude and frequency. Such an approach has a great advantage of having a

solid mathematical foundation. Unfortunately, within the solid mathematical

foundation, the method can not be adaptive. It is restricted by linear and stationary

assumptions. Natural phenomena measurements are essentially nonlinear and

non-stationary.

HHT is a different kind of time-frequency distribution. It consists of two parts: (1)

Empirical Mode Decomposition (EMD), and (2) Hilbert Transform. With EMD, any

complicated data set can be decomposed into a finite number of intrinsic mode

functions (IMFs). An IMF admits well-behaved Hilbert transforms. Since the

decomposition is based on the local characteristic time scale of the data, it is suitable

to analyze the nonlinear and non-stationary signals. With Hilbert transform, the IMFs

yield instantaneous frequencies as functions of time that gives sharp identification of

imbedded structures. The Hilbert-Huang transform process can be shown in Figure

2.1.



Empirical Mode Decomposition

trend
or
a constant

Intrinsic Mode
Function

Input I

Signal

-
Hilbert Spectrum Hilbert Transform

Figure 2.1 The flowchart of Hilbert-Huang transform [14]

2.1.1 Instantaneous Frequency

In 1930 Denis Gabor defined a generalization of the Euler’s formula in the form

of a complex analytic function. Given a real signal u(t), the analytic function ¢(t)

can be defined as:
p(t) =u(t) + jo(t) (2.2)

In which the imaginary part, o(t), is the Hilbert transform of u(t), given by

1 %u
o) =Hu®I== [, 23)
T s t-71
The above definition of the Hilbert transform can be written in convolution notation

as:



o (t) = ut) *% (2.4)

Gabor used the analytic signal to introduce the Hilbert transform to signal
processing for one-dimensional time seriesu(t). When the Hilbert transform is

applied to a general time seriesu(t) , we obtain another function of time o(t).

The complex conjugate pair of functions {u(t),u(t)}then comprised the above

analytic function ¢(t) that can also be expressed as:

o(t) = a(t)e’® (2.5)

In which

2 2 1/2 t
alt) =)+ 01", 00 =arctan( ) 26)

Here a(t) is the instantaneous amplitude, and @(t) is the phase function.
Since Hilbert transform o(t) is defined as the convolution of u(t) and 1/xt, it
emphasizes the local properties of u(t) even though the transform is global. In

equation (2.5), the polar coordinate expression further clarifies the local nature of this

representation. With equation (2.5), the instantaneous frequency of u(t) is defined as



o)

MO T4

2.7)

The definition of instantaneous frequency appears to be local for it is defined
through differentiation rather than integration. The resulting instantaneous frequency
may be able to describe nonlinear and non-stationary signals. There is still
considerable controversy in defining the instantaneous frequency. Although Hilbert
transform is valid under a very general condition, for the instantaneous frequency
derived from an arbitrary time series to make physical sense, the function has to be

‘mono- component’ as discussed by Cohen [10].

In principle, some limitations on the data are necessary. In order to obtain
meaningful instantaneous frequencies, restrictive conditions have to be imposed on
the data: for any function to have a meaningful instantaneous frequency, the real part
of its Fourier transform has to have only positive frequency. Here, some examples
will be considered to illustrate the necessary limitations to obtain the meaningful

instantaneous frequency. For a simple function as

X(t) =sint (2.8)

Its Hilbert transform iscos(t) . The polar coordinate representation of the analytic data,



the instantaneous frequency, and instantaneous amplitude of x(t) can be obtained by
equation (2.5)-(2.7). Then, the phase plot of x—y is a circle of unit radius as in
figure 2.2. The phase function is a straight line as shown in figure 2.3 (a) and the

instantaneous frequency, shown in figure 2.3 (b), is a constant. If we add an arbitrary

constant « to x(t) asbelow

X(t) = a +sint (2.9)

The phase plot of x—vy isstill a circle of unit radius, but the centre of the circle will
be shifted by the amount of « as illustrated in figure 2.2. If « <1, the centre is still
within the circle. Under the condition, the phase function and the instantaneous
frequency will be very different as shown in figure 2.3 (a) and (b). If a>1, the
centre is outside the circle. The phase function and the instantaneous frequency
assume negative values as shown in figure 2.3 (a) and (b), which are meaningless.
These examples illustrate that, for a simple signal such a sine function, the
instantaneous frequency can be defined only if we restrict the function to be

symmetric locally with respect to the zero mean level.



Phase angle (rad)

Figure 2.2 The phase plane for the analytic data of

X(t)=a+sin(t) . (a) a=

frequency (rad s-7)

0 100 200 300

Time

Figure 2.3 (a) The unwrapped

of x(t) =a +sin(t). (b) The instantaneous frequency evaluated by

0;(M) a<l;() a>1 [5]

0 100 200 300
Time

of phase function for the analytic data

equation 2.7.[5]
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2.1.2 Intrinsic Mode Function

The simple examples given above provide more physical interpretation of the
restrictive conditions; they also suggest a practical way to decompose the data so that
the components all satisfy the conditions. The necessary conditions to define a
meaningful instantaneous frequency are that the functions are locally symmetric and
have the same numbers of zero crossings and extremes. Therefore, a class of functions
designated as intrinsic mode function (IMF) is presented with the following formal

definition.

An IMF is defined as a function satisfying the following limitations: (1) Original
data series must have the equal number of extremes and zero crossings or the
difference of them must not be larger than one; and (2) At any point, the mean value of
the envelope defined by the local maxima and the envelope defined by the local minima

is zero.

The first condition is similar to the traditional narrow band requirements for a
stationary Gaussian process. The second condition is a new idea. It modifies the
global requirement to a local one. As a result, the instantaneous frequency will not

have the undesired fluctuations induced by asymmetric waveforms. For a

11



non-stationary data, the ‘local mean’ involves a ‘local time scale’ to compute the

mean, which is impossible to define. Thus, Huang uses the local mean of envelopes

defines by the local maxima and the local minima to force the local symmetry instead.

This is an approximation to avoid the definition of a local average time scale.

The name ‘intrinsic mode function” is adopted because it represents the

oscillation mode imbedded in the data. With the definition, the IMF in each cycle,

defined by the zero crossings, involved only one mode of oscillation, no complex

riding waves are allowed. With the definition, an IMF is not restricted to a narrow

band signal, and it can be both amplitude and frequency modulated. In fact, it can be

non-stationary. A typical IMF is shown in figure 2.3.

For a complicated data, we can obtain more than one instantaneous frequency at

a time locally. We will introduce the empirical mode decomposition method to reduce

the data into IMFs.

12



01 T T T T T T T T T

Wind speed (m s-1)
=
{f—%
=

4.2 4.4 46 4.8 5 5.2

Time (s)

Figure 2.4 Atypical IMF which satisfies limitations: (1) the same

numbers of zero crossings and extremes (2) local zero mean.[5]

2.1.3 Empirical Mode Decompaosition Method

To apply the concept of the instantaneous frequency to real physical signals, it is
necessary preprocessing to decompose the signal into mono component contributions.
These components called intrinsic mode function (IMF) admit well-behaved Hilbert
transform and allow the calculation of a meaningful instantaneous frequency. In
contrast to all of the previous methods, this new method is intuitive, direct, and

adaptive, with a posteriori-defined basis derived from the data.

The decomposition is based on assumptions: (1) the signal has at least two
extremes — one maximum and one minimum; (2) the characteristic time scale is

defined by the time lapse between the extremes; and (3) if the data were totally devoid

13



of extremes but contained only inflection points, then

more times to reveal the extremes.

it can be differentiated once or

|
il /\ |II A |F' || ||| (||| ]
| l{ i " / \ |
2t | ( ll (llv-\'ll l |'ﬂ|| f
SN A o/
J VA TR /
=l q |} / ,\ |\ || ||' W~V
VAN Y
[ [ YA
=l W l'ul \J i

Figure 2.5 ' The original data. [11]

An IMF represents a simple oscillatory mode as a counterpart to the simple

harmonic function, but it is much more general: instead of constant amplitude and

frequency, the IMF can have a variable amplitude and frequency as functions of time.

We can decompose any function as follows: take the test data as given in Figure 2.4;

locate all the local extremes, then connect all the local maxima by a cubic spline

function as shown in the upper envelope. Repeat the procedure for the local minima to

form a lower envelope. The mean value of upper and lower envelopes is designated as

14



m,, shown in Figure 2.5, and the difference between the data and m, is the first

component h, shown in Figure 2.6; i.e.,

h =x(t)-m (2.10)

Envelopes and the Mean : data
1': T T T T T

R |

10 1 i 1 1 1 1 1
200

Figure 2.6 The upper and lower envelopes (thin line) defined
by the local maxima and minima and the mean value (think

line) of the upper and lower envelopes. [11]

15
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Figure 2.7 The original data (think line) and h, (thin line).[11]

Ideally, h should satisfy the definition of an IMF by construction of h
described above. In changing the local zero from a rectangular to a curvilinear
coordinate system some inflection points could become additional extremes. New
extremes generated this way actually reveal the hidden modes missed in the initial
treatment. The sifting process can recover signals representing low amplitude riding

waves with repeated siftings.

The sifting process serves two purposes: to eliminate riding waves and to make

the wave profiles more symmetric. While the first condition is absolute necessary for

16



Hilbert transform to give a meaningful instantaneous frequency, the second condition
is also necessary in case the neighboring wave amplitudes having too large a disparity.
As a result, the sifting process has to be repeated many times to reduce the extracted

signal an IMF. In the subsequent sifting process, h, is treated as the data for the next

round of sifting; therefore,

h,=h-my, (2.11)

We can repeat the sifting procedure k times, until h, isan IMF; that is

hy = Py =My (2.12)

Then, it is designated as

c, =My (2.13)

The first IMF component from the data is shown in Figure 2.7.

17
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Figure 2.8 The first IMF after 12 sifting steps. [11]

To guarantee that the IMF retains physical sense of both amplitude and

frequency modulations, a critical decision has to be made: when to stop. The

threshold can be assigned for the variance between two consecutive results:

T \(mkl)(o)—m(t)f]

SD=>]

2. ) (2.14)

Atypical value of SD can be set between 0.2 and 0.3.
Overall, ¢, should contain the finest scale or the shortest period component of

the signal. It follows that ¢, can be separated from the rest of the data by

n=x(t)-c, (2.15)

18



Since the residue, r;, contains all longer period variations in the data, it is treated as

the new data and subjected to the same sifting process as described above. This

procedure can be repeated to all the subsequentr; ’s, and the result is

(2.16)

The sifting process should stop when the residue, r,, becomes a constant, a
monotonic function, or a function contains only a single extreme, from which no more

IMF can be extracted. By summing up Equations (2.15) and (2.16), we finally obtain
X(t) =D ¢, +r, (2.17)
j=1

Thus, sifting process produces a decomposition of the data into n-intrinsic
modes, and a residue, r,. When apply the EMD method, a mean or zero reference is
not required; EMD needs only the locations of the local extreme. The sifting process
generates the zero reference for each component. Without the need of the zero
reference, EMD avoids the troublesome step of removing the mean values for the

Iarge non-zero mean.

19



2.1.4 Hilbert Huang Spectrum

Once the intrinsic mode function components have been determined, one will
have no difficulty in applying the Hilbert transform to each IMF component. After
performing the Hilbert transform on each IMF component, the original signal can be

reconstructed as

X(t) = iak (el (2.18)

where n is the number of decomposed IMFs,a, (t), w,(t) are the instantaneous
amplitude and frequency of each component, respectively, and the residue, r (t), is
omitted. Equation 2.18 allows the instantaneous amplitude and frequency to be

represented as functions of time in a three-dimensional plot. This frequency-time

distribution of the amplitude is known as the Hilbert spectrum, H(w,t).

It should be emphasized that the Hilbert spectrum allows for time-varying
amplitudes and frequencies, and the expansion is adaptive. The basic functions are
directly extracted from data, and it is suitable for analyzing nonlinear and
non-stationary signals. Moreover, we will extract features from the results of the

Hilbert spectrum.

20



2.1.5 Application of EMD

The components of the EMD are usually physically meaningful, for the
characteristic scales are defined by the physical data. Huang collected length-of—day
data and analyzed the data. The length-of—day data can be shown in Figure 2.8, which
measure the deviation from the fixed cycle of 24 hours. The mean and the standard
deviation of the IMFs, given in Figure 2.9, were obtained after EMD method. Thus,
these IMF results are physically meaningful. The first component c, represents the
very short period of perturbation caused by large-scale storms to the earth’s rotational
speed. The second component c, represents the half-monthly tides; the eighth

componentc,, the annual tidal variations. We believe the components of the EMD

which are also physically meaningful in speech processing.

Data Length—-of-Day
45 T T

35

2.5

Length-of -Day deviation © maec

(] o

oS 1 L 1 1 L 1 L
1860 1865 1870 1975 1980 1885 1980 1885 2000 2005
Tirne @ year

Figure 2.9 The length-of-day data. [11]
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Figure 2.10 (a) The mean IMFs after EMD process (b) The standard

deviation of the IMFs after EMD process. [11]
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2.2 Study of Speech Enhancement Methods

2.2.1  Spectral Subtraction

Spectral Subtraction has two basic assumptions: (1) The noise is uncorrelated
with the speech signal. (2)The noise is short-term stationary, so we can estimate the

noise during silent frame. The noise spectrum is subtracted from the transformed

noisy speech.

— m) a_ | & a
§ (orm) = LIS, (@M KIS, (@M ] &t 3, (01m) P> S, (0m)|

(2.19)
0 otherwose

where §S(w; m) is the short-term spectrum of enhanced speech, S (w;m) is the

short-term spectrum of noisy speech, §d(w;m) is the short-term spectrum of

estimated noise, ¢, (»;m) is the phase of noisy speech.k, a is the vary parameters.

Speech/Noise R Noise
Detection | Estimation

Y

T

Noisy P %
Speech Windowing Magnitude - | ;
FFT

Phase

h

Enhanced
Speech

IFFT
Overlap
Add

F 3

A

Figure 2.11 The flowchart of spectral subtraction. [13]
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Above-mentioned two methods are useful in high SNR situation. But SNR is low;
the error of voice activity detection often leads to incorrect result. The performance of
de-noising is bad. Moreover, signal aliasing is a problem for transforming from

frequency to time domain.

2.2.2  Wiener Filtering

Wiener filter has the same two assumptions with spectral subtraction. In Figure
2.12,H" (w;m,K) is a gain function, the function is a number between 0 and 1. The
main idea is: When noisy speech pass through the filter, the noise component of noisy

speech is filtered.

H(w;m,r) == Fs(a);rp,r)
I (o;mr)+T,(cw;m,r)

(2.20)
where fd (w; m, r)is the power density spectrum of estimated noise, f“s (w;m,r) isthe

power density spectrum of estimated speech, Kk is the number of iteration. For getting

f“s (w;m, r), the method of all-pole model is used.

2

9,
M P
‘1— D 4(i;mye
i=1

fs (o;m,r) =

(2.21)

where &(i;m) is the linear prediction coefficient of speech, i is thei" order coefficient,

m is them"frame, g, can be get from Parseval’s method. If k is too big, signal
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aliasing will happen. In general, r is set to four.

Windowing
» +
Noisy FFT
Speech > H_(&JLIH)
- Noise
F*  Estumation Tteration
Phase
Enhanced
Speech IFFT
< Overlap
Add <

Figure 2.12 The flowchart of Iterative Wiener filter. [13]

2.2.3  Adaptive Noise Canceling

As the name implies, adaptive noise canceling relies on the use of noise
canceling by subtracting noise from a received signal, an operation controlled in an
adaptive manner for the purpose of improved signal-to-noise ratio. Basically, an
adaptive noise canceller is dual-input, closed-loop adaptive control system as
illustrated in Figure 2.12. The two inputs of the system are derived from a pair of

sensors: a primary sensor and a reference sensor. Specifically, we have the following:

The primary sensor receives an information-bearing signal x(n) corrupted by
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additive noise n,(n), as shown by

d(n) = x(n) + ny(n) (2.22)

The signal x(n) and the noise n,(n) are uncorrelated with each other; that Is,

E[x(n)n,(n-k)] = 0, forallk (2.23)

Where x(n) and n,(n) are assumed to be real valued.

The reference sensor receives a noise n,(n) that is uncorrelated with the signal

x(n) bur correlated with the noise n,(n) in the primary sensor output in an unknown

way; that is,

E[x(n)n,(n-k)] = 0, forallk (2.24)
and
E[n,(Mn,(n-k)] = p(n) (2.25)

Where, as before, the signals are real valued and p(n) is an unknown

cross-correlation for lag k.
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Figure 2.13  Adaptive noise cancellations [8].

The reference signal x(n) is processed by an adaptive filter to produce the output

signal:
y(O) = 3, (), (n-K) (2.26)

where the w,(n) are the adjustable tap weights of adaptive filter. The filter
output y(n) is subtracted from the primary signal d(n), serving as the “desired”

response for the adaptive filter. The error signal is defined by
e(n) = d(n) - y(n) (2.27)
Thus, substituting Equation (2.22) in (2.27), we get
e(n) = s(n) + ny(n) - y(n) (2.28)

The error signal is in turn used to adjust the tap weights of the adaptive filter, and
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the control loop around the operations of filtering and subtraction is thereby closed.
Note that the information-bearing signal x(n) is indeed part of the error signal e(n), as

indicated in Equation (2.28).

The error signal e(n) constitutes the overall system output. From Equation (2.28)
we see that the noise component in the system output is n,(n)-y(n). Now, the
adaptive filter attempts to minimize the mean-square value of the error signal e(n).
The information-bearing signal x(n) is essentially unaffected by the adaptive noise
canceller. Hence, minimizing the mean-square value of the error signal e(n) is
equivalent to minimizing the mean-square are value of the output noise n,(n)-y(n).
With the signal x(n) remaining essentially constant, it follows that the minimization of
the mean-square value of the error signal is indeed the same as the maximization of

the output signal-to-noise ratio of the system.

2.3 Speech Enhancement Methods by Empirical

Mode Decomposition

Traditional speech enhancement schemes are based on linear methods.

Furthermore, real signals are often nonlinear and non-stationary. Performances of
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de-noising are limited. Recently, the EMD has been introduced for analyzing data
from nonlinear and non-stationary processes like speech. The major advantage is that
the basis functions are derived from the signal itself. The EMD is based on the
sequential extraction of energy associated with various intrinsic time scales of the
signal, call intrinsic mode function, starting from high-frequency IMFs to
low-frequency IMFs. Base on the characteristic of EMD, most speech signal are often
concentrated on lower-frequency components, and decrease toward high-frequency
modes. We can reconstruct the signal with only few IMFs that speech dominated
using an energy criterion. Further, in recent research of EMD, two main approaches

for speech enhancement are proposed: filtering and thresholding.

2.3.1 Speech Enhancement Method with Filtering

Khaldi K. et al proposed an adaptive speech de-noising scheme combine EMD
and adaptive center weighted average (ACWA\) filter [2]. The ACWA filter is basically
used in the image enhancement domain. Main idea is the IMFs are less noisy than the
noisy speech for speech enhancement. By combination of two methods, we can have

better performance than only use ACWA filter.
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Figure 2.14 De-noising base on EMD-ACWA scheme [1].

In figure 2.14, the noisy signal y(t) described by an additive model speech signal

X(t) and noise speech b(t) is given by :

y(t) = x(t) +b(t) (2.29)

The noisy signal is decomposed into a sum of IMFs as follows:

YO = X IMF, @ +1,() 230

The extracted IMFs include the noise since each IMF, indexed by j, can be

approximated as follows:
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IMF, (t) = f,(t)+b, (t) (2.31)

Finally, the estimated signal, X(t), is given by :

X0 =3 F,0+1.0 (232)

where f,(t) is a temporal processing using ACWA filter . The de-noising of the IMF

by the ACWA filter is given as follows [1]:

i 2
f @ :{ Frean + W (IMF, (t) = F .00 s if Fyp, > 0

2.33
,otherwise ( )

mean

where F,.,and F denote respectively the average and the variance of the IMF
computed over a sliding window of length L, and ajz designates the variance of noise

contained in the IMF indexed by j.

The noise level 71 is estimated as in [3].[4] as following:

o, =1.4826* Median{|IMF, (n) — Median{IMF, (n) }{} (2.34)

In this thesis, we use the method to decrease the residual white noise.

31



2.3.2 Speech Enhancement Method with Thresholding

Yannis K. et al proposed an alternative de-noising procedure inspired by wavelet
thresholding [6]. Main idea is the white noise contained in each IMF having linear
distribution of energy in each mode.

The noisy signal is decomposed into a sum of IMFs as follows:

C
y(t) =D IMF; (1) +r.(t) (2.35)
j=1
The noise-only IMF energies can be approximated according to

"
2 58

E, pep k 22 3450 (2.36)

where E/is the energy of the first IMF and, B, pare parameters .In figure 2.15
noise-only model and actual IMF energy are display.Multiples of the IMF-dependent

universal thresholds is setting base on the energy of IMFs.

T, =C\E.2InN (2.37)

where C is constant, N is length of data
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sgn(IMF; (0)(IMF; ()] -T,), |IMF; @©)[>T,

fj (t) = (2.38)
. |IMF ()| <T,
where f,(t) isatemporal processing using soft threshold.
The estimated signal, X(t), is given by :
M, C
)= f;+ > f,0 (2.39)
=M, j=M,+1

where the introduction of M, , M, parameters and gives us flexibility on the exclusion
of the noisy low-order IMFs and on the optional threshold of the high-order ones,

which in white Gaussian noise conditions contain little noise energy.

10
.-"-":-"
,,—_35%"'“ . . . e
E - e I
g | --©- Noise-only | =~ "=
= gt model e
% Actual IMF R
5| energjeg : ) ) | L : "f i 1}
1 2 3 4 5 6 1 8 9 10 1

IMF #
Figure 2.15 Theoretical noise-only model and actual

IMF energies with respect to IMF number. [8].
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Chapter 3 Speech Enhancement with
Additive Signal Base on Empirical Mode
Decomposition

In the chapter, a novel speech enhancement method is proposed. By adding an
artificial signal to empirical mode decomposition of noisy speech, the background
noise can be separated from the noisy speech. Then adaptive center weighted average
filter (ACWA filter) is used to whiten the residual noise. These procedures will be

introduced in follow sections.

3.1 Problem Foundation

In recent study of speech enhancement base on EMD, most background noise is
white noise. The performance of result is well just for the case of white noise. In fact,
the white noise doesn’t exist in real situation. A real noise like a rotation of motor has
often dominant frequency signal and white noise arising from oscillation of air.
Therefore we use signals from kinds of real situation as background noises to test
performance of de-noising in this thesis. The code of EMD comes from matlab central

[18].
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3.2 Analysis of Signal with Empirical Mode

Decomposition

3.2.1  White Noise

For understanding EMD of characteristics, we use the algorithm on some
artificial signals to understand the action of each IMFs. White noise is a random

signal with a flat power spectral density. Figure 3.1 and 3.2 shows the white noise and

the FFT spectrum.

0.z
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a1

0.05

o
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015
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0 05 1 15 2 25 3

Tirme(s)

Figure 3.1 The waveform of the white noise.

35



i
=

A s o st st e o e s o B e s B sl e v B o 4
] s e e N e A R R P e e b S e e R 4
B | R R O R B B B O R R B B 4
| O NPT SR . VAN, . R | SR | SO 4

i)

oy

=

T o LN P T Tu DNIU YTy SPTIN oy WG] ) o 4

f=2]

=
20

| | |
0 500 1000 1500 2000 2500 3000 3500 4000
FrequencyiHz)

Figure 3.2 The FFT spectrum of the white noise

In other words, the signal contains equal power within a fixed bandwidth at any
center frequency. After EMD of white noise, Figure3.3 and Figure3.4 shows

IMF1~IMF6 and the FFT spectrums.
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Figure 3.3 The waveform of IMF, ~ IMF; for the white noise.
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Figure 3.4 The FFT spectrums of IMF, ~IMF, for the white noise
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From observation of Figure3.3 and Figure3.4, the characteristics of EMD have
two points[11],[12]: (1) Amplitude of each IMFs decrease with the decomposition, the
amplitude of IMF, approximates zeros and hears nothing.(2) More specifically, for

the IMF,, shows a temporal behavior in which the frequency of the mode main

oscillates around 2000-4000 Hz with varying amplitude and frequency. The analysis

of IMF, and IMF, shows the frequency of the mode oscillates around 1000-2000

Hz and 500-1000 Hz, respectively. EMD can be interpreted as a filter bank of

overlapping band-pass filters for IMF, to IMF,. The IMF, correspond essentially

to a half-band high-pass filter [7].

3.2.2 Sinusoidal Signal

In 3.2.1, we find out the EMD like a filter bank. Then, some questions of interest

need to confirm about performance of EMD. The sinusoidal model is given below:

X(t)=a*sin2z ft+b*sin 27 f,t (3.1)

In Figure3.5, the combination pure tone signals are decomposed into two

individual tones [9]. When does the EMD retrieve the two individual tones?
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We can observe FFT spectrum in Figure3.6.
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After setting a=b=0.1, f1=100Hz, f2=10~100Hz, we compute the ratio of magnitude

on f2 between original signal and IMF, .

M f
Ratio of magnitude:L(z) (3.2)
Morigin(fz)
1 T T T T
09r .
0ar .
07r .
=
2 0BF .
T
E 05 .
k=
= 04l -
Wl
03r .
02r .
0O1p .
|:| L L | 1 1 | |
10 20 30 40 a0 B0 70 a0 a0 100
Frequency(Hz)
Figure 3.7 ..ccocoveveennne. The plot of ratio of magnitude as a function of f,

In Figure3.7, when f, isequal to 50 Hz, the component of sin2zf,t is almost
disappear. After changing the proportion between f,and f,, the situation still exist.

so if % > 2, the sinusoidal model can be separated by EMD.
2
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3.2.3 Summary

From two kinds of signal with EMD, we find out characteristics of EMD:

(1) The IMFs show an action of band-pass filter from high to low frequency.(2)The
frequency range of each IMF is according half frequency of prior IMF. By two

characteristics, we can separate into the frequency range we wanted with EMD.

3.3 Proposed Speech Enhancement Method with

Empirical Mode Decomposition

3.3.1 Architecture

From 3.2, we properly know the characteristics of EMD. By these characteristics,
a method of speech enhancement with an additive signal base on empirical mode
decomposition is proposed. Basic architecture is given in Figure 3.8. The flowchart of
speech enhancement is separated into two parts: (1) The dynamic filter is used to
remove dominant noise component. (2) The ACWA filter is used to smooth the
residual noise component. In the following sections, the functions of each unit will be

introduced.
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Dynamic| __, | ACWA | _ | Enhanced

Noisy speech —» .
Filter Filter Speech

Figure 3.8 Block diagram of proposal method

3.3.2 Dynamic Filter

In the section of dynamic filter, the dominant frequency of noise will be removed.

The flowchart of dynamic filter is given in Figure 3.9.

FFT spectrum of
analysis

Add an artificial
sinusoidal signal

y

EMD

v

Throw away noise
component

v

Reconstruction of signal

Figure 3.9 The flowchart of dynamic filter
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The noisy speech y(t) is combination between speechs(t) and noise n(t)

y(t) =s(t)+a*n(t) (3.3)

where @ is constant for change amplitude of noise .

The FFT of y(t) isgiven in Figure 3.10. After these magnitudes arranging from
big to small, we set a threshold maximum of magnitude dividing ten. Finding out
maximum of these frequencies was corresponded to these magnitudes. The double of

maximum frequency is set as 964 Hz.
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Frequency(Hz)

Figure 3.10 The FFT of spectrum for noisy speech
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After EMD of y(t) originally, the IMF, contains most noise on low frequency

in Figure 3.10 because the energy on low frequency is more than the energy on high

frequency.
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Figure 3.11 .......ccocoveniie The waveform of IMF, ~IMF, for noisy speech

Set an artificial signal x(t) in 3.4

X(t)=g*(sin2z ft+sin 27z f,t) (3.4)

y,(t) is the signal adding an artificial signal x(t)to y(t)

Y, (1) = y(t) +x(t) (3.5)

where g is the maximum amplitude of speech signal y(t).
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In this case, the f, is set on 2000 Hz (half of maximum frequency) f, isseton
964 Hz by prior estimation, we can set the lowest frequency of IMF, IMF, on %
and % . As expected the signal x(t) will was decomposed into IMF, IMF, . We
add IMF, and IMF, up then subtract the additive signal x(t) then get a new

signal K(t) in (3.6).

K(t) = IMF, + IMF, — g *(sin 2z f,t +sin 27 f,t) (3.6)

The EMD of noisy speech with an additive signal is given in Figure 3.12.
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Figure 3.12........ The waveform of IMF, ~IMF, for noisy speech with an

additive signal
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Then find out the energy of each IMFs, and throw away the IMF that energy

bigger than energy of K (t).

Energy, = i IMF?(t) (3.7)

i=3

In this case, we throw away the IMF,;. Finally, the sum of these residual IMFs is

the reconstruction of signal vy, (t) in Figure 3.13.
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Figure 3.13 (a)The waveform of the noisy speech (b)The waveform of

noisy speech after dynamic filter

46



In fact, the dynamic filter is like a high-pass filter. We design a high-pass filter
with a cutoff frequency of 482 Hz and use the filter to the noisy speech. The result is
shown in Figure 3.14. After comparing to two results, the dynamic filter can reserve
for more the quality of speech on each frequency bank than high-pass filter because of
characteristics of EMD. In other words, the distortion of signal is less with dynamic

filter than high-pass filter.

Moisy speech
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Figure 3.14 (a)The waveform of the noisy speech (b)The waveform of

noisy speech after high-pass filter
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3.3.3 Adaptive Center Weighted Average Filter

After the noisy speech pass through dynamic filter, little white noise still exist.

Using of adaptive center weighted average filter (ACWA filter) can get better

performance of de-noising.

The flowchart of ACWA filter is given in Figure 3.15.

EMD

A 4

Frame blocking

h 4
Estimating the signal to

noise ratio and weighting

A 4

Reconstruction of signal

Figure 3.15 The flowchart of ACWA filter

After EMD of vy, (t),y,(t)can be described as:

V.0 = X IMF )+, 39)
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Frame blocking to each IMFs in Figure 3.16
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where f,is the j" frameof thei” IMF

The noise level o, is estimated as following:

o, =1.4826* Median{|IMF, (n) — Median{IMF, (n) }{} (3.9)

The de-noising of the IMF by the ACWA filter is given as follows:

2
O

var(f; j)

W, = (-—2) (310)
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£ - {mean (fi;)+W,;(f,; —mean (£, ,)),if var(f ;) >0 (3.11)

mean (f; ;) , otherwise
where mean (f, ;) andvar(f,;) denote respectively the average and the variance

of frames ajz designates the variance of noise contained in the IMF indexed by j.

New IMF is as following equation 3.12

IMEY =[] (3.12)

Finally, the enhanced speech is in Figure 3.17

I = X IMF )+, (313
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Figure 3.17 (a)The waveform of noisy speech after dynamic filter (b)

The waveform of the noisy speech after dynamic filter and ACWA filter
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Chapter 4 Experiment Results

In order to confirm the performance of this method, the simulation of proposed
method was carried out in this chapter. We will introduce the test environment, the
noisy speech database, and speech quality assessment. Finally, we evaluate the

performance of proposed method in two experiments with various values of the SNR.

4.1 Test Environment and Noisy Speech Database

The clean speech signals are twao differences of voices spoken by a male and a
female. Propeller voice and military vehicle vaice are choice as additive background
noises. The propeller noises are from the testing case provided by the Aviation Safety
Council. The military vehicle noises are from Noisex-92 database [17]. The content of
speech is a Mandarin speech sentence with length of 3.3 seconds. In the experiment,
clean speech signals and noise signals were sampled at 8 kHz with 16-bits quantization.
The matlab code of EMD, spectral subtraction and wiener filter come from matlab

central [18].
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4.2  Speech Quality Assessment

The performance of speech enhancement in variable noise level condition is

measured by objective evaluation:

N

D sA(t)

SNR, = 10log| - (4.1)

N

an(t)

t=

where the “SNR;,” is the SNR value of the input noisy speech signal standing for
the amount of the additive noise, N is the length, x(t) is clean speech

signal, n(t) is the additive noise signal.

()

SNR,, = 10log| —"-L 4.2)

N

> [s@)- 5]

n=1

where the “SNRg” is the SNR value of the output enhanced speech signal
standing for the efficiency of the proposed method, N is the length, x(t) is clean

speech signal, y(t) is the enhanced speech signal.
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4.3 Experimental Results

Before we evaluate the performance of proposed method, we produce a noisy

speech to be a test case.

y(t) =s(t)+a*n(t) (4.1)

where s (t) is the clean speech signal, n(t) is the additive noise and y(t) is the noisy

speech signal. We can adjust the constant a to get desired SNR value.

Experimental results I:

We choose the noisy speech with SNR = -5 dB to be the first experimental test

case. Figure 4.1 shows the time waveforms of a female speech, military vehicle noise,

and noisy speech, respectively.
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Figure 4.1 The waveforms of noisy speech producing result
(a) Clean speech (b) Military vehicle noise (c) Noisy speech (-5dB).

The parameters used in the experiment | are shown in Table 4.1 and Table 4.2.

Table 4.1 Parameters used in the speech+ military vehicle noise situation

f, f, 2000Hz,590Hz

Dynamic filter
Throw away component | IMF;, IMF,

ACWA filter Frame 265 points
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Table 4.2 Parameters used in the speech+ propeller noise situation

f, f, 2000Hz,964Hz

Dynamic filter
Throw away component | IMF,

ACWA filter Frame 265 points

The results of passing through two filter based on the proposed method are

shown in Figure 4.2.

Moisy speech
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_DE | | | | | |

Figure 4.2 The waveforms of passing through two filter result(a)

Noisy speech (-5dB) (b) Dynamic filter output(c) ACWA filter output.
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Table 4.3 The performance of speech enhancement based on proposed method

for experiment |

Male speech+
military vehicle

noise

Male speech+

propeller noise

Female speech+
military vehicle

noise

Female speech+

propeller noise

SNR;, [dB]

-5

SN Rout[d B]

2.98

4.1

3.33

2.21

From Table 4.3, the performance of speech enhancement based on proposed

method is good. The SNR has more improvement for four situations. In the other

word, the background noise was suppressed and removed well. After hearing these

enhanced speeches actually, these speeches almost the same with their original speech.

The quality of clear speech can be heard in these enhanced speeches.

Experimental results 11:

We choose the noisy speech with SNR = -10 dB to be the second experimental

test case. Figure 4.3 shows the time waveforms of clear speech, military vehicle noise,

and noisy speech, respectively.
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Figure 4.3 The waveforms of noisy speech producing result

(a) Clean speech (b) Military vehicle noise (c) Noisy speech(-10dB).

The parameters used in the experiment Il are shown in Table 4.3 and Table 4.4.

Table 4.4 Parameters used in the speech+ military vehicle noise situation

f, f, 2000Hz,590Hz

Dynamic filter
Throw away component | IMF;, IMF,

ACWA filter Frame 265 points

57



Table 4.5 Parameters used in the speech+ propeller noise situation

f,, f, 2000Hz,964Hz

Dynamic filter
Throw away component | IMF,

ACWA filter Frame 265 points

The results of passing through two filter based on the proposed method are

shown in Figure 4.4.

Moisy speech

o U2 .
=
=
= 0
£
< 02 ' '
a 0.4a 1 1.5 2 248 3
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=
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Time(s)
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=
D %

_DE | | | | | |

Figure 4.4 The waveforms of passing through two filter result(a)

Noisy speech (-10dB)(b) Dynamic filter output(c) ACWA filter output.
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Table 4.6 The performance of speech enhancement based on proposed method

for experiment 11

Male speech+

military vehicle

Male speech+

propeller noise

Female speech+

military vehicle

Female speech+

propeller noise

noise noise
SNR;, [dB] -10 -10 -10 -10
SNRoy [dB] 1.06 3.35 1.78 2.64
Although background noise has larger volume than experiment I, the

performance of speech enhancement based on proposed method is still good from
Table 4.6.The background noise was suppressed and removed well. After hearing
these enhanced speeches actually, these speeches almost the same with their original
speech. The quality of clear speech still retains these enhanced speeches. For
comparing performance of speech enhancement, we use spectral subtraction and
wiener filter methods to the noisy speech. These results are shown in Figure.4.5 and

Figure.4.6.
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Figure 4.5 The waveforms using spectral spectrum method(a) Clear speech (b)

Speech +propeller noise (-10dB)(c) Result base on spectral subtraction method.
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Figure 4.6 The waveforms using wiener filter method(a) Clear speech (b)

Speech +propeller noise (-10dB)(c) Result base on wiener filter method.
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The improvement of SNR basing on three methods is shown in Table 4.7.The
performance of proposed method is better than the spectral spectrum method but
worse than the wiener filter method in low SNR situation. After hearing these
enhanced speeches actually, the quality of enhanced speech using spectral spectrum
method is worst. The quality of enhanced speech is the same with proposed method

and wiener filter method.

Table 4.7 The performance of speech enhancement for male speech

base on three methods

Male speech+ Male speech+ Male speech+ Male speech+

propeller military vehicle - |propeller military vehicle

noise(-5dB) noise(-5dB) noise (-10dB) noise(-10dB)
Spectral Subtraction 2.17dB 1.82dB -0.98dB -1.27dB
\Wiener Filter 4.660B 3.52dB 3.1dB 2.06dB
Proposed method 2.98dB 4.1dB 3.35dB 1.06dB
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Table 4.8 The performance of speech enhancement for female speech

base on three methods

Female speech+ |Female speech+ |Female speech+ [Female speech+
propeller military vehicle |propeller military vehicle

noise(-5dB) noise(-5dB) noise (-10dB) noise(-10dB)

Spectral Subtraction 2.12dB 1.93dB -0.82dB -1.83dB
\Wiener Filter 5.02dB 3.56dB 3.34dB 2.61dB
Proposed method 2.21dB 3.33dB 2.64dB 1.78dB

62



Chapter 5 Conclusions

In this thesis, a novel idea for signal channel speech enhancement method based
on dynamic filter and ACWA filter is proposed. In present method two problems are
shown: (1) The aliasing of signal (2) In low SNR situation, the performance of
de-noising is bad. Therefore, we proposed the novel de-noising method basing on
empirical mode decomposition with an additive artificial signal. Because of the
characteristic of EMD, the additive artificial signal can be separated into first two
IMFs. The setting of f, make noise component into later IMF. In dynamic filter, the
dominant noise component is removed then suppresses residual noise in ACWA filter.
From the two experimental results, the improvement of SNR in the enhanced speech
signal is observed. Hence, the effectiveness of the method is confirmed. Comparing to
the present methods, the performance of proposed method is better than spectral
spectrum method. In common with wiener filter, the speech quality was most reserved
without distortion of signal. By the proposed method, we can understand the speech

content clearly.
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