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中文摘要 
 

 說話內容常會因背景聲音太大而聽不清楚 ,如何去將語音訊號中所含的噪

音清除或抑制,就是所謂的語音增強技術。傳統在單通道語音增強技術中最常採

用溫尼濾波器(Wiener filtering)或是頻譜相減法等方法,但大部分均是在頻域

上做處理,經過時頻上的轉換,常有語音失真的情形。 

     黃鍔博士在 1998 年提出了一種新的訊號分析法希爾伯特-黃轉換(Hilbert 

Huang Transform, HHT),其方法是將訊號經由經驗模態分解法(Empirical Mode 

Decomposition, EMD),將資料變化的內部時間尺度作為特徵而分解成多個內建

模態函數(Intrinsic Mode Functions, IMF)分量,這些分量經由希爾伯特轉換

(Hilbert Huang Transform) 可得到有物理意義的瞬時頻率。近年來經驗模態分

解法被應用在語音增強上,針對白噪音分解後的特性,可對各個 IMF 分量中所含

的噪音量做估測並消除。 

在本論文我們針對基於經驗模態分解法的語音增強方法作研究。藉由在含噪

訊號中加入人工訊號,噪音主要成分在分解過程中將集中在部份分量,移除這些分

量以去除大部分噪音,在配合適應性中間值權重濾波器(Adaptive Center Weighted 

Average filter, ACWA filter)將語音中殘存的噪音消除。實驗顯示,此方法在低訊噪

比下有很好的消噪效果,並且可以保留原先的語音特性。 

 

 

關鍵字： 經驗模態分解法、消噪、希爾伯特轉換 
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Abstract 
Degradation of the quality of speech caused by the background noise is common 

in most real situations. How to suppress and remove the noise content in a noisy 

speech is speech enhancement technique. In traditional signal-channel speech 

enhancement methods, Wiener filter and spectral subtraction are general methods. But 

these methods process in frequency domain, the distortion of signal often happen.  

A new signal analyzing method, Hilbert-Huang Transform (HHT), was proposed 

by Norden E. Huang et al. in 1998. With EMD, signal can be decomposed into a finite 

number of intrinsic mode functions (IMFs) based on the local characteristic time scale 

of the signal. These IMFs with Hilbert transform obtain meaningful instantaneous 

frequencies. In recent years, EMD was used on speech enhancement. After EMD of 

white noise, noise component of each IMF can be estimated then remove it.   

In this thesis, we research on speech enhancement with EMD. After adding an 

artificial signal to noisy signal, most noise component can concentrate on some IMFs. 

We can remove most noise by throwing away the IMFs. Adaptive center weighted 

average filter (ACWA filter) is used to whiten the residual noise in speech. These 

results of experiment show that the method has good performance of de-noising in 

low SNR situation and reserve the quality of original speech. 

Keywords: Empirical Mode Decomposition, De-noising, HHT 
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Chapter 1  Introduction 
 

1.1 Motivation 

 

In the real world, degradation of the quality of speech caused by the background 

noise is common. If speech signal need to record in noisy environment, the recorded 

voice will contain more background noise. For example, the reporter need to 

interview in a factory, understanding of black box in an aircraft accident, application 

on the hearing aid, and pre-processing for speech recognition or speaker identification. 

In these situations, the quality and intelligibility of signals play an important role. How 

to improve these problems is the speech enhancement technique.  

 

1.2 Background 

 

Speech enhancement techniques can be classified as single-channel, 

dual-channel or multi-channel enhancement by the number of microphone. In 

traditional methods, the single-channel speech enhancement is used commonly such 

as Wiener filter and spectral subtraction. But these methods process in frequency 

domain, the distortion of signal often happen. And these methods can’t have good 
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performance in low SNR situation. The dual-channel speech enhancement is used 

commonly such as adaptive noise cancelling. The method has two microphones as a 

primary and second channel. The primary channel contains speech with additive noise 

and a reference noise signal correlated to the noise is available in the secondary 

channel. In the multi-channel techniques, microphones arrays are used to reject the 

undesired noise signal. 

  

1.3 Problem Foundation 

 

In most real situations, it is not allowed to pick up the second sensor signal. The 

single-channel speech enhancement is common for dealing with kinds of situation. 

The traditional method of single-channel speech enhancement, such as Wiener filter 

and spectral subtraction, has two main problems (1) The aliasing of signal (2) In low 

situation; the performance of de-noising is bad. According to these problems, we 

proposed a de-noising method base on empirical mode decomposition to solve. 

 

1.4 Thesis Organization 

 

In Chapter 2, we will introduce Hilbert-Huang Transform (HHT), conventional 
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speech enhancement techniques and speech enhancement techniques base on 

empirical mode decomposition. Chapter 3 describes the proposed structure of speech 

enhancement system, including Dynamic Filter and Adaptive Center Weighted 

Average Filter. In Chapter 4, the experiment results of the proposed speech 

enhancement system are shown. Finally, conclusions are given in Chapter 5. 
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Chapter 2  Preliminaries 
 

Speech enhancement is a popular problem. Many new methods are proposed in 

recent year. Section 2.1 introduces history and application of empirical mode 

decomposition. Section 2.2 introduces conventional speech enhancement methods. 

Section 2.3 introduces new speech enhancement method with empirical mode 

decomposition.  

 
2.1 Empirical Mode Decomposition 

 

 Hilbert-Huang Transform (HHT) was proposed by Norden E. Huang et al. in 

1998 [5]. It provides a novel time-frequency distribution for analyzing physical 

measurements. One of the main tools used in time-frequency signal processing is 

short time Fourier transform (STFT). STFT is the most basic method to represent the 

non-stationary property of the signal. It can be written as  

 

 

By sliding the window along time axis, we can get a time-frequency distribution. 

The STFT starts with a prior-defined basis and convolves the signal with the basis to 

( , ) ( ) ( ) jwn

n
X m w x n w n m e

∞
−

=−∞

= −∑  (2.1)
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get amplitude and frequency. Such an approach has a great advantage of having a 

solid mathematical foundation. Unfortunately, within the solid mathematical 

foundation, the method can not be adaptive. It is restricted by linear and stationary 

assumptions. Natural phenomena measurements are essentially nonlinear and 

non-stationary. 

 

 HHT is a different kind of time-frequency distribution. It consists of two parts: (1) 

Empirical Mode Decomposition (EMD), and (2) Hilbert Transform. With EMD, any 

complicated data set can be decomposed into a finite number of intrinsic mode 

functions (IMFs). An IMF admits well-behaved Hilbert transforms. Since the 

decomposition is based on the local characteristic time scale of the data, it is suitable 

to analyze the nonlinear and non-stationary signals. With Hilbert transform, the IMFs 

yield instantaneous frequencies as functions of time that gives sharp identification of 

imbedded structures. The Hilbert-Huang transform process can be shown in Figure 

2.1. 
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Figure 2.1  The flowchart of Hilbert-Huang transform [14] 

 

2.1.1  Instantaneous Frequency 

 

In 1930 Denis Gabor defined a generalization of the Euler’s formula in the form 

of a complex analytic function. Given a real signal ( )u t , the analytic function ( )tϕ  

can be defined as: 

 

 

In which the imaginary part, ( )tυ , is the Hilbert transform of ( )u t , given by 

 

The above definition of the Hilbert transform can be written in convolution notation 

as: 

( ) ( ) ( )t u t j tϕ υ= +  (2.2)

1 ( )( ) [ ( )]  ut H u t d
t

τυ τ
π τ

∞

−∞

= =
−∫  (2.3)
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Gabor used the analytic signal to introduce the Hilbert transform to signal 

processing for one-dimensional time series ( )u t . When the Hilbert transform is 

applied to a general time series ( )u t , we obtain another function of time ( )tυ . 

 

The complex conjugate pair of functions { }( ) , ( )u t tυ then comprised the above 

analytic function ( )tϕ  that can also be expressed as: 

 

In which 

 

 

 Here ( )a t  is the instantaneous amplitude, and ( )tθ  is the phase function. 

Since Hilbert transform ( )tυ  is defined as the convolution of ( )u t  and 1/ tπ , it 

emphasizes the local properties of ( )u t  even though the transform is global. In 

equation (2.5), the polar coordinate expression further clarifies the local nature of this 

representation. With equation (2.5), the instantaneous frequency of ( )u t  is defined as 

 

1( ) ( )t u t
t

υ
π

= ∗  (2.4)

( )( ) ( ) j tt a t e θϕ =  (2.5)

2 2 1/ 2( ) [ ( ) ( )]a t u t tυ= + , ( )( ) arctan( )
( )
tt

u t
υθ =  (2.6)
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 The definition of instantaneous frequency appears to be local for it is defined 

through differentiation rather than integration. The resulting instantaneous frequency 

may be able to describe nonlinear and non-stationary signals. There is still 

considerable controversy in defining the instantaneous frequency. Although Hilbert 

transform is valid under a very general condition, for the instantaneous frequency 

derived from an arbitrary time series to make physical sense, the function has to be 

‘mono- component’ as discussed by Cohen [10].  

 

In principle, some limitations on the data are necessary. In order to obtain 

meaningful instantaneous frequencies, restrictive conditions have to be imposed on 

the data: for any function to have a meaningful instantaneous frequency, the real part 

of its Fourier transform has to have only positive frequency. Here, some examples 

will be considered to illustrate the necessary limitations to obtain the meaningful 

instantaneous frequency. For a simple function as   

 

 

Its Hilbert transform is cos( )t . The polar coordinate representation of the analytic data, 

( )( ) d tw t
dt
θ

=  (2.7)

( ) sinx t t=  (2.8)
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the instantaneous frequency, and instantaneous amplitude of ( )x t  can be obtained by 

equation (2.5)-(2.7). Then, the phase plot of x y−  is a circle of unit radius as in 

figure 2.2. The phase function is a straight line as shown in figure 2.3 (a) and the 

instantaneous frequency, shown in figure 2.3 (b), is a constant. If we add an arbitrary 

constant α  to ( )x t  as below 

 

 

The phase plot of x y−  is still a circle of unit radius, but the centre of the circle will 

be shifted by the amount of α  as illustrated in figure 2.2. If 1α < , the centre is still 

within the circle. Under the condition, the phase function and the instantaneous 

frequency will be very different as shown in figure 2.3 (a) and (b). If 1α > , the 

centre is outside the circle. The phase function and the instantaneous frequency 

assume negative values as shown in figure 2.3 (a) and (b), which are meaningless. 

These examples illustrate that, for a simple signal such a sine function, the 

instantaneous frequency can be defined only if we restrict the function to be 

symmetric locally with respect to the zero mean level. 

 

 

 

 

( ) sinx t tα= +  (2.9)
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Figure 2.2  The phase plane for the analytic data of 

( ) sin( )x t tα= + . (a) 0α = ; (b) 1α < ; (c) 1α >  [5] 

Figure 2.3  (a) The unwrapped of phase function for the analytic data 

of ( ) sin( )x t tα= + . (b) The instantaneous frequency evaluated by 

equation 2.7.[5] 
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2.1.2 Intrinsic Mode Function 

 

The simple examples given above provide more physical interpretation of the 

restrictive conditions; they also suggest a practical way to decompose the data so that 

the components all satisfy the conditions. The necessary conditions to define a 

meaningful instantaneous frequency are that the functions are locally symmetric and 

have the same numbers of zero crossings and extremes. Therefore, a class of functions 

designated as intrinsic mode function (IMF) is presented with the following formal 

definition. 

 

An IMF is defined as a function satisfying the following limitations: (1) Original 

data series must have the equal number of extremes and zero crossings or the 

difference of them must not be larger than one; and (2) At any point, the mean value of 

the envelope defined by the local maxima and the envelope defined by the local minima 

is zero. 

 

 The first condition is similar to the traditional narrow band requirements for a 

stationary Gaussian process. The second condition is a new idea. It modifies the 

global requirement to a local one. As a result, the instantaneous frequency will not 

have the undesired fluctuations induced by asymmetric waveforms. For a 
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non-stationary data, the ‘local mean’ involves a ‘local time scale’ to compute the 

mean, which is impossible to define. Thus, Huang uses the local mean of envelopes 

defines by the local maxima and the local minima to force the local symmetry instead. 

This is an approximation to avoid the definition of a local average time scale.  

 

 The name ‘intrinsic mode function’ is adopted because it represents the 

oscillation mode imbedded in the data. With the definition, the IMF in each cycle, 

defined by the zero crossings, involved only one mode of oscillation, no complex 

riding waves are allowed. With the definition, an IMF is not restricted to a narrow 

band signal, and it can be both amplitude and frequency modulated. In fact, it can be 

non-stationary. A typical IMF is shown in figure 2.3. 

 

 For a complicated data, we can obtain more than one instantaneous frequency at 

a time locally. We will introduce the empirical mode decomposition method to reduce 

the data into IMFs. 
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Figure 2.4  A typical IMF which satisfies limitations: (1) the same 

numbers of zero crossings and extremes (2) local zero mean.[5] 

 

2.1.3 Empirical Mode Decomposition Method 

 

 To apply the concept of the instantaneous frequency to real physical signals, it is 

necessary preprocessing to decompose the signal into mono component contributions. 

These components called intrinsic mode function (IMF) admit well-behaved Hilbert 

transform and allow the calculation of a meaningful instantaneous frequency. In 

contrast to all of the previous methods, this new method is intuitive, direct, and 

adaptive, with a posteriori-defined basis derived from the data.  

 

The decomposition is based on assumptions: (1) the signal has at least two 

extremes – one maximum and one minimum; (2) the characteristic time scale is 

defined by the time lapse between the extremes; and (3) if the data were totally devoid 
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of extremes but contained only inflection points, then it can be differentiated once or 

more times to reveal the extremes.  

 

Figure 2.5  The original data. [11] 

 

An IMF represents a simple oscillatory mode as a counterpart to the simple 

harmonic function, but it is much more general: instead of constant amplitude and 

frequency, the IMF can have a variable amplitude and frequency as functions of time. 

We can decompose any function as follows: take the test data as given in Figure 2.4; 

locate all the local extremes, then connect all the local maxima by a cubic spline 

function as shown in the upper envelope. Repeat the procedure for the local minima to 

form a lower envelope. The mean value of upper and lower envelopes is designated as 
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1m , shown in Figure 2.5, and the difference between the data and 1m  is the first 

component 1h  shown in Figure 2.6; i.e., 

 

 

 

Figure 2.6  The upper and lower envelopes (thin line) defined 

by the local maxima and minima and the mean value (think 

line) of the upper and lower envelopes. [11] 

 

 

1 1( )h x t m= −  (2.10)
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Figure 2.7  The original data (think line) and 1h  (thin line).[11] 

 

Ideally, 1h  should satisfy the definition of an IMF by construction of 1h  

described above. In changing the local zero from a rectangular to a curvilinear 

coordinate system some inflection points could become additional extremes. New 

extremes generated this way actually reveal the hidden modes missed in the initial 

treatment. The sifting process can recover signals representing low amplitude riding 

waves with repeated siftings.  

 

The sifting process serves two purposes: to eliminate riding waves and to make 

the wave profiles more symmetric. While the first condition is absolute necessary for 
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Hilbert transform to give a meaningful instantaneous frequency, the second condition 

is also necessary in case the neighboring wave amplitudes having too large a disparity. 

As a result, the sifting process has to be repeated many times to reduce the extracted 

signal an IMF. In the subsequent sifting process, 1h  is treated as the data for the next 

round of sifting; therefore, 

 

 

We can repeat the sifting procedure k  times, until 1kh  is an IMF; that is 

 

 

Then, it is designated as 

 

 

The first IMF component from the data is shown in Figure 2.7.  

11 1 11h h m= −  (2.11)

1 1( 1) 1k k kh h m−= −  (2.12)

1 1kc h=  (2.13)
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Figure 2.8  The first IMF after 12 sifting steps. [11] 

To guarantee that the IMF retains physical sense of both amplitude and 

frequency modulations, a critical decision has to be made: when to stop. The 

threshold can be assigned for the variance between two consecutive results: 

 

A typical value of SD can be set between 0.2 and 0.3.  

Overall, 1c  should contain the finest scale or the shortest period component of 

the signal. It follows that 1c  can be separated from the rest of the data by 

 

2

1( 1) 1
2

0 1( 1)

( ( )) ( )
[ ]

( )

T
k k

t k

h t h t
SD

h t
−

= −

−
= ∑  (2.14)

1 1( )r x t c= −  (2.15)
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Since the residue, 1r , contains all longer period variations in the data, it is treated as 

the new data and subjected to the same sifting process as described above. This 

procedure can be repeated to all the subsequent jr ’s, and the result is 

 

 

The sifting process should stop when the residue, nr , becomes a constant, a 

monotonic function, or a function contains only a single extreme, from which no more 

IMF can be extracted. By summing up Equations (2.15) and (2.16), we finally obtain 

 

 

Thus, sifting process produces a decomposition of the data into n -intrinsic 

modes, and a residue, nr . When apply the EMD method, a mean or zero reference is 

not required; EMD needs only the locations of the local extreme. The sifting process 

generates the zero reference for each component. Without the need of the zero 

reference, EMD avoids the troublesome step of removing the mean values for the 

large non-zero mean. 

2 1 2r r c= −  

… 

1n n nr r c−= −  

(2.16)

1

( )
n

j n
j

x t c r
=

= +∑  (2.17)
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2.1.4 Hilbert Huang Spectrum 

 

Once the intrinsic mode function components have been determined, one will 

have no difficulty in applying the Hilbert transform to each IMF component. After 

performing the Hilbert transform on each IMF component, the original signal can be 

reconstructed as  

 

where n  is the number of decomposed IMFs, ( )ka t , ( )kw t  are the instantaneous 

amplitude and frequency of each component, respectively, and the residue, ( )nr t , is 

omitted. Equation 2.18 allows the instantaneous amplitude and frequency to be 

represented as functions of time in a three-dimensional plot. This frequency-time 

distribution of the amplitude is known as the Hilbert spectrum, ( , )H w t .  

 

It should be emphasized that the Hilbert spectrum allows for time-varying 

amplitudes and frequencies, and the expansion is adaptive. The basic functions are 

directly extracted from data, and it is suitable for analyzing nonlinear and 

non-stationary signals. Moreover, we will extract features from the results of the 

Hilbert spectrum. 

 

( )

1
( ) ( ) k

n j w t dt
k

k
x t a t e

=

∫= ∑  (2.18)
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2.1.5 Application of EMD 

 

The components of the EMD are usually physically meaningful, for the 

characteristic scales are defined by the physical data. Huang collected length-of–day 

data and analyzed the data. The length-of–day data can be shown in Figure 2.8, which 

measure the deviation from the fixed cycle of 24 hours. The mean and the standard 

deviation of the IMFs, given in Figure 2.9, were obtained after EMD method. Thus, 

these IMF results are physically meaningful. The first component 1c  represents the 

very short period of perturbation caused by large-scale storms to the earth’s rotational 

speed. The second component 2c  represents the half-monthly tides; the eighth 

component 8c , the annual tidal variations. We believe the components of the EMD 

which are also physically meaningful in speech processing.   

 

Figure 2.9  The length-of-day data. [11] 
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Figure 2.10  (a) The mean IMFs after EMD process (b) The standard 

deviation of the IMFs after EMD process. [11] 
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2.2 Study of Speech Enhancement Methods 

 

2.2.1 Spectral Subtraction  

 

Spectral Subtraction has two basic assumptions: (1) The noise is uncorrelated 

with the speech signal. (2)The noise is short-term stationary, so we can estimate the 

noise during silent frame. The noise spectrum is subtracted from the transformed 

noisy speech. 

where ˆ ( ; )sS mω  is the short-term spectrum of enhanced speech, ( ; )yS mω  is the 

short-term spectrum of noisy speech, ˆ ( ; )dS mω  is the short-term spectrum of 

estimated noise, ( ; )y mϕ ω is the phase of noisy speech. ,k a is the vary parameters. 

 

Figure 2.11  The flowchart of spectral subtraction. [13] 

1
( ; )ˆ ˆ| ( ; ) | | ( ; ) | | ( ; ) | | ( ; ) |ˆ ( ; )

0

yj ma a a aa
y d y d

s
S m k S m e if S m S mS m

otherwose

ϕ ωω ω ω ωω
⎧

⎡ ⎤⎪ −    >= ⎣ ⎦⎨
⎪                                ⎩

 (2.19)
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Above-mentioned two methods are useful in high SNR situation. But SNR is low; 

the error of voice activity detection often leads to incorrect result. The performance of 

de-noising is bad. Moreover, signal aliasing is a problem for transforming from 

frequency to time domain. 

 

2.2.2 Wiener Filtering  

 

Wiener filter has the same two assumptions with spectral subtraction. In Figure 

2.12, ( ; , )H m kω+ is a gain function, the function is a number between 0 and 1. The 

main idea is: When noisy speech pass through the filter, the noise component of noisy 

speech is filtered. 

where ˆ ( ; , )d m rωΓ is the power density spectrum of estimated noise, ˆ ( ; , )s m rωΓ  is the 

power density spectrum of estimated speech, k is the number of iteration. For getting  

ˆ ( ; , )s m rωΓ , the method of all-pole model is used. 

 

where ˆ( ; )a i m  is the linear prediction coefficient of speech, i is the thi order coefficient, 

m is the thm frame, rg  can be get from Parseval’s method. If k is too big, signal 

ˆ ( ; , )( ; , ) ˆ ˆ( ; , ) ( ; , )
s

s d

m rH m r
m r m r

ωω
ω ω

+ Γ
=

Γ + Γ
 (2.20)

2

1

ˆ ( ; , )
ˆ1 ( ; )

r
s M

j i

i

gm r
a i m e ω

ω
−

=

Γ =
− ∑

 
(2.21)
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aliasing will happen. In general, r is set to four.  

 

  

Figure 2.12  The flowchart of Iterative Wiener filter. [13] 

 

2.2.3 Adaptive Noise Canceling 

 

 As the name implies, adaptive noise canceling relies on the use of noise 

canceling by subtracting noise from a received signal, an operation controlled in an 

adaptive manner for the purpose of improved signal-to-noise ratio. Basically, an 

adaptive noise canceller is dual-input, closed-loop adaptive control system as 

illustrated in Figure 2.12. The two inputs of the system are derived from a pair of 

sensors: a primary sensor and a reference sensor. Specifically, we have the following: 

 

 The primary sensor receives an information-bearing signal x(n) corrupted by 
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additive noise 0 ( )n n , as shown by 

 

   

The signal x(n) and the noise 0 ( ) n n are uncorrelated with each other; that    is,  

 

 

Where x(n) and 0 ( ) n n are assumed to be real valued. 

The reference sensor receives a noise 1( ) n n that is uncorrelated with the signal 

x(n) bur correlated with the noise 0 ( ) n n in the primary sensor output in an unknown 

way; that is, 

 

 

         and 

 

 

Where, as before, the signals are real valued and p(n) is an unknown 

cross-correlation for lag k.  

 

0( )  ( )  ( )d n x n n n= +  (2.22)

0[ ( ) ( - )]  0,      for all E x n n n k k=  (2.23)

1[ ( ) ( - )]  0,      for all E x n n n k k=  (2.24)

0 1[ ( ) ( - )]  ( )E n n n n k p n=  (2.25)
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Figure 2.13   Adaptive noise cancellations [8]. 

 

The reference signal x(n) is processed by an adaptive filter to produce the output 

signal:  

 

 

where the ˆ ( ) kw n are the adjustable tap weights of adaptive filter. The filter 

output y(n) is subtracted from the primary signal d(n), serving as the “desired” 

response for the adaptive filter. The error signal is defined by 

 

 

Thus, substituting Equation (2.22) in (2.27), we get 

 

 

The error signal is in turn used to adjust the tap weights of the adaptive filter, and 

-1

1
0

ˆ( )  ( ) ( - )
M

k
k

y n w n n n k
=

= ∑  (2.26)

( )  ( ) -  ( )e n d n y n=  (2.27)

0( )  ( )  ( ) -  ( )e n s n n n y n= +  (2.28)
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the control loop around the operations of filtering and subtraction is thereby closed. 

Note that the information-bearing signal x(n) is indeed part of the error signal e(n), as 

indicated in Equation (2.28). 

 

The error signal e(n) constitutes the overall system output. From Equation (2.28) 

we see that the noise component in the system output is 0 ( ) - ( )n n y n . Now, the 

adaptive filter attempts to minimize the mean-square value of the error signal e(n). 

The information-bearing signal x(n) is essentially unaffected by the adaptive noise 

canceller. Hence, minimizing the mean-square value of the error signal e(n) is 

equivalent to minimizing the mean-square are value of the output noise 0 ( ) - ( )n n y n . 

With the signal x(n) remaining essentially constant, it follows that the minimization of 

the mean-square value of the error signal is indeed the same as the maximization of 

the output signal-to-noise ratio of the system. 

 

2.3 Speech Enhancement Methods by Empirical 

Mode Decomposition 

  

Traditional speech enhancement schemes are based on linear methods.  

Furthermore, real signals are often nonlinear and non-stationary. Performances of 
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de-noising are limited. Recently, the EMD has been introduced for analyzing data 

from nonlinear and non-stationary processes like speech. The major advantage is that 

the basis functions are derived from the signal itself. The EMD is based on the 

sequential extraction of energy associated with various intrinsic time scales of the 

signal, call intrinsic mode function, starting from high-frequency IMFs to 

low-frequency IMFs. Base on the characteristic of EMD, most speech signal are often 

concentrated on lower-frequency components, and decrease toward high-frequency 

modes. We can reconstruct the signal with only few IMFs that speech dominated 

using an energy criterion. Further, in recent research of EMD, two main approaches 

for speech enhancement are proposed: filtering and thresholding. 

 

2.3.1 Speech Enhancement Method with Filtering  

 

Khaldi K. et al proposed an adaptive speech de-noising scheme combine EMD 

and adaptive center weighted average (ACWA) filter [2]. The ACWA filter is basically 

used in the image enhancement domain. Main idea is the IMFs are less noisy than the 

noisy speech for speech enhancement. By combination of two methods, we can have 

better performance than only use ACWA filter. 
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Figure 2.14  De-noising base on EMD-ACWA scheme [1]. 

 

In figure 2.14, the noisy signal y(t) described by an additive model speech signal 

x(t) and noise speech b(t) is given by : 

 

 

The noisy signal is decomposed into a sum of IMFs as follows: 

 

 

The extracted IMFs include the noise since each IMF, indexed by j, can be 

approximated as follows: 

( ) ( ) ( )y t x t b t= +  (2.29)

1

( ) ( ) ( )
C

j c
j

y t IMF t r t
=

= +∑  (2.30)
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Finally, the estimated signal, ( )x t% , is given by :  

 

 

where ( )jf t% is a temporal processing using ACWA filter . The de-noising of the IMF 

by the ACWA filter is given as follows [1]: 

 

 

where meanF and varF denote respectively the average and the variance of the IMF 

computed over a sliding window of length L, and 2
jσ designates the variance of noise 

contained in the IMF indexed by j. 

The noise level jσ is estimated as in [3],[4] as following: 

 

 

In this thesis, we use the method to decrease the residual white noise.  

 

( ) ( ) ( )j j jIMF t f t b t= +  (2.31)

1

( ) ( ) ( )
c

j c
j

x t f t r t
=

= +∑ %%  (2.32)

2
var( ( ) ) ,

( )
,

mean j j mean j
j

mean

F W IMF t F if F
f t

F otherwise
σ⎧ + −    ≥

=  ⎨
                                      ⎩

 (2.33)

1.4826* { ( ) { ( )}}i i iMedian IMF n Median IMF nσ = −  (2.34)
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2.3.2 Speech Enhancement Method with Thresholding 

 

Yannis K. et al proposed an alternative de-noising procedure inspired by wavelet 

thresholding [6]. Main idea is the white noise contained in each IMF having linear 

distribution of energy in each mode.  

The noisy signal is decomposed into a sum of IMFs as follows: 

 

 

The noise-only IMF energies can be approximated according to 

 

where 2
1E is the energy of the first IMF and, β , ρ are parameters .In figure 2.15 

noise-only model and actual IMF energy are display.Multiples of the IMF-dependent 

universal thresholds is setting base on the energy of IMFs. 

 

 

where C is constant, N is length of data 

 

1

( ) ( ) ( )
C

j c
j

y t IMF t r t
=

= +∑  (2.35)

2
1ˆ , 2,3, 4...k

k
EE kρ
β

−=   =  (2.36)

2 lnk kT C E N=  (2.37)
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where ( )jf t  is a temporal processing using soft threshold.  

The estimated signal, ( )x t% , is given by : 

 

 

where the introduction of 1M , 2M parameters and gives us flexibility on the exclusion 

of the noisy low-order IMFs and on the optional threshold of the high-order ones, 

which in white Gaussian noise conditions contain little noise energy. 

 

 

Figure 2.15  Theoretical noise-only model and actual 

IMF energies with respect to IMF number. [8]. 

 

sgn( ( ))( ( ) ), ( )
( )

0 ( )

j j i j j

j

j j

IMF t IMF t T IMF t T
f t

IMF t T

⎧ −   >⎪= ⎨
                                      ,    ≤         ⎪⎩

 (2.38)

2

1 2 1

( ) ( ) ( )
M C

j j
j M j M

x t f t f t
= = +

= +∑ ∑%%  (2.39)
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Chapter 3  Speech Enhancement with 
Additive Signal Base on Empirical Mode 
Decomposition 
 

In the chapter, a novel speech enhancement method is proposed. By adding an 

artificial signal to empirical mode decomposition of noisy speech, the background 

noise can be separated from the noisy speech. Then adaptive center weighted average 

filter (ACWA filter) is used to whiten the residual noise. These procedures will be 

introduced in follow sections.  

 

3.1 Problem Foundation   

 
In recent study of speech enhancement base on EMD, most background noise is 

white noise. The performance of result is well just for the case of white noise. In fact, 

the white noise doesn’t exist in real situation. A real noise like a rotation of motor has 

often dominant frequency signal and white noise arising from oscillation of air. 

Therefore we use signals from kinds of real situation as background noises to test 

performance of de-noising in this thesis. The code of EMD comes from matlab central 

[18].  



 

 35

 

3.2 Analysis of Signal with Empirical Mode 

Decomposition 

 

3.2.1 White Noise 

 

For understanding EMD of characteristics, we use the algorithm on some 

artificial signals to understand the action of each IMFs. White noise is a random 

signal with a flat power spectral density. Figure 3.1 and 3.2 shows the white noise and 

the FFT spectrum.  

 

 

Figure 3.1  The waveform of the white noise. 
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Figure 3.2  The FFT spectrum of the white noise 

 

In other words, the signal contains equal power within a fixed bandwidth at any 

center frequency. After EMD of white noise, Figure3.3 and Figure3.4 shows 

IMF1~IMF6 and the FFT spectrums. 
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Figure 3.3  The waveform of 1IMF ~ 6IMF for the white noise. 

Figure 3.4  The FFT spectrums of 1IMF ~ 6IMF  for the white noise 
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From observation of Figure3.3 and Figure3.4, the characteristics of EMD have 

two points[11],[12]: (1) Amplitude of each IMFs decrease with the decomposition, the 

amplitude of 6IMF  approximates zeros and hears nothing.(2) More specifically, for 

the 1IMF , shows a temporal behavior in which the frequency of the mode main 

oscillates around 2000-4000 Hz with varying amplitude and frequency. The analysis 

of 2IMF  and 3IMF  shows the frequency of the mode oscillates around 1000-2000 

Hz and 500-1000 Hz, respectively. EMD can be interpreted as a filter bank of 

overlapping band-pass filters for 2IMF  to 6IMF . The 1IMF  correspond essentially 

to a half-band high-pass filter [7].  

   

3.2.2  Sinusoidal Signal 

 

In 3.2.1, we find out the EMD like a filter bank. Then, some questions of interest 

need to confirm about performance of EMD. The sinusoidal model is given below: 

 

 

In Figure3.5, the combination pure tone signals are decomposed into two 

individual tones [9]. When does the EMD retrieve the two individual tones? 

1 2( ) *sin 2 *sin 2x t a f t b f tπ π= +  (3.1)
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Figure 3.5  (a)The waveform of sinusoidal model , (b)The 

waveform of 1IMF  (c)The waveform of 2IMF  

We can observe FFT spectrum in Figure3.6. 

 
Figure 3.6 ..........(a)The FFT spectrums of sinusoidal model (b) The FFT 

spectrums of 1IMF  (c) The FFT spectrums of 2IMF  
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After setting a=b=0.1, f1=100Hz, f2=10~100Hz, we compute the ratio of magnitude 

on f2 between original signal and 1IMF . 

 

 

Figure 3.7 .....................The plot of ratio of magnitude as a function of 2f

 

In Figure3.7, when 2f  is equal to 50 Hz, the component of 2sin 2 f tπ  is almost 

disappear. After changing the proportion between 1f and 2f , the situation still exist.  

so if 1

2

2f
f

> , the sinusoidal model can be separated by EMD. 

1 2

2

( )
:

( )
IMF

origin

M f
Ratio of magnitude

M f
 

   
 

 (3.2)
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3.2.3 Summary 

 

From two kinds of signal with EMD, we find out characteristics of EMD:  

(1) The IMFs show an action of band-pass filter from high to low frequency.(2)The 

frequency range of each IMF is according half frequency of prior IMF. By two 

characteristics, we can separate into the frequency range we wanted with EMD. 

 

3.3  Proposed Speech Enhancement Method with 

Empirical Mode Decomposition 

 
3.3.1 Architecture 

 

From 3.2, we properly know the characteristics of EMD. By these characteristics, 

a method of speech enhancement with an additive signal base on empirical mode 

decomposition is proposed. Basic architecture is given in Figure 3.8. The flowchart of 

speech enhancement is separated into two parts: (1) The dynamic filter is used to 

remove dominant noise component. (2) The ACWA filter is used to smooth the 

residual noise component. In the following sections, the functions of each unit will be 

introduced. 
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Figure 3.8  Block diagram of proposal method  

 

3.3.2 Dynamic Filter 

 

In the section of dynamic filter, the dominant frequency of noise will be removed. 

The flowchart of dynamic filter is given in Figure 3.9.  

 

 

Figure 3.9  The flowchart of dynamic filter 
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component 
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The noisy speech ( )y t is combination between speech ( )s t  and noise ( )n t  

 

 

where a  is constant for change amplitude of noise . 

 

The FFT of ( )y t  is given in Figure 3.10. After these magnitudes arranging from 

big to small, we set a threshold maximum of magnitude dividing ten. Finding out 

maximum of these frequencies was corresponded to these magnitudes. The double of 

maximum frequency is set as 964 Hz. 

 

 
Figure 3.10  The FFT of spectrum for noisy speech 

( ) ( ) * ( )y t s t a n t= +  (3.3)
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After EMD of ( )y t  originally, the 1IMF  contains most noise on low frequency 

in Figure 3.10 because the energy on low frequency is more than the energy on high 

frequency. 

 

Figure 3.11 ..................... The waveform of 1IMF ~ 7IMF  for noisy speech

Set an artificial signal ( )x t  in 3.4 

 

 

1( )y t  is the signal adding an artificial signal ( )x t to ( )y t  

 

 

where g  is the maximum amplitude of speech signal ( )y t . 

1 2( ) *(sin 2 sin 2 )x t g f t f tπ π= +  (3.4)

1( ) ( ) ( )y t y t x t= +  (3.5)
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In this case, the 1f  is set on 2000 Hz (half of maximum frequency) 2f  is set on 

964 Hz by prior estimation, we can set the lowest frequency of 1IMF , 2IMF  on 1

2
f  

and 2

2
f

 . As expected the signal ( )x t will was decomposed into 1IMF , 2IMF  . We 

add 1IMF  and 2IMF  up then subtract the additive signal ( )x t  then get a new 

signal ( )K t in (3.6). 

 

 

The EMD of noisy speech with an additive signal is given in Figure 3.12. 

Figure 3.12 ....... The waveform of 1IMF ~ 7IMF  for noisy speech with an 

additive signal 

1 1 1 2( ) *(sin 2 sin 2 )K t IMF IMF g f t f tπ π= + − +  (3.6)
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Then find out the energy of each IMFs, and throw away the IMF that energy 

bigger than energy of K (t). 

 

 

In this case, we throw away the 3IMF . Finally, the sum of these residual IMFs is 

the reconstruction of signal 2 ( )y t in Figure 3.13.  

   

Figure 3.13  (a)The waveform of the noisy speech (b)The waveform of 

noisy speech after dynamic filter 

 

2

3
( )

C

i i
i

Energy IMF t
=

= ∑  (3.7)
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In fact, the dynamic filter is like a high-pass filter. We design a high-pass filter 

with a cutoff frequency of 482 Hz and use the filter to the noisy speech. The result is 

shown in Figure 3.14. After comparing to two results, the dynamic filter can reserve 

for more the quality of speech on each frequency bank than high-pass filter because of 

characteristics of EMD. In other words, the distortion of signal is less with dynamic 

filter than high-pass filter. 

 

 

Figure 3.14  (a)The waveform of the noisy speech (b)The waveform of 

noisy speech after high-pass filter 
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3.3.3  Adaptive Center Weighted Average Filter 

 

After the noisy speech pass through dynamic filter, little white noise still exist. 

Using of adaptive center weighted average filter (ACWA filter) can get better 

performance of de-noising.  

The flowchart of ACWA filter is given in Figure 3.15.  

 

 

Figure 3.15  The flowchart of ACWA filter 

 

After EMD of 2 ( )y t , 2 ( )y t can be described as: 

 

 

 

2
1

( ) ( )
C

i c
i

y t IMF t r
=

= +∑  (3.8)
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Frame blocking to each IMFs in Figure 3.16 

 

Figure 3.16 ....................................................Frame blocking to each

where ,i jf is th ththe j frame of the i IMF       . 

The noise level jσ is estimated as following: 

 

 

The de-noising of the IMF by the ACWA filter is given as follows: 

 

1.4826* { ( ) { ( )}}i i iMedian IMF n Median IMF nσ = −  (3.9) 

2

,
,

(1 )
var( )

i
i j

i j

W
f

σ
= −  (3.10)
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where ,( )i jmean f and ,var( )i jf  denote respectively the average and the variance 

of frames 2
jσ designates the variance of noise contained in the IMF indexed by j. 

New IMF is as following equation 3.12 

Finally, the enhanced speech is in Figure 3.17 

 

Figure 3.17  (a)The waveform of noisy speech after dynamic filter (b) 

The waveform of the noisy speech after dynamic filter and ACWA filter

 

2
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 (3.11)

,1 ,2 ,' [ ' , ' ... ' ]i i i i endIMF f f f=  (3.12)
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Chapter 4  Experiment Results 
 

In order to confirm the performance of this method, the simulation of proposed 

method was carried out in this chapter. We will introduce the test environment, the 

noisy speech database, and speech quality assessment. Finally, we evaluate the 

performance of proposed method in two experiments with various values of the SNR.  

 

4.1 Test Environment and Noisy Speech Database 

 

The clean speech signals are two differences of voices spoken by a male and a 

female. Propeller voice and military vehicle voice are choice as additive background 

noises. The propeller noises are from the testing case provided by the Aviation Safety 

Council. The military vehicle noises are from Noisex-92 database [17]. The content of 

speech is a Mandarin speech sentence with length of 3.3 seconds. In the experiment, 

clean speech signals and noise signals were sampled at 8 kHz with 16-bits quantization. 

The matlab code of EMD, spectral subtraction and wiener filter come from matlab 

central [18].   
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4.2  Speech Quality Assessment 

 

The performance of speech enhancement in variable noise level condition is 

measured by objective evaluation: 

 

 

where the “SNRin” is the SNR value of the input noisy speech signal standing for 

the amount of the additive noise,  N is the length, ( ) x t is clean speech 

signal,  ( ) n t is the additive noise signal. 

 

 

where the “SNRout” is the SNR value of the output enhanced speech signal 

standing for the efficiency of the proposed method, N is the length,  ( ) x t is clean 

speech signal, ˆ ( ) y t is the enhanced speech signal. 
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4.3  Experimental Results 

 

 Before we evaluate the performance of proposed method, we produce a noisy 

speech to be a test case. 

                   ( ) ( ) * ( )y t s t a n t= +                          (4.1) 

 

where s (t) is the clean speech signal, ( ) n t is the additive noise and y(t) is the noisy 

speech signal. We can adjust the constant a  to get desired SNR value. 

 

Experimental results I: 

 

We choose the noisy speech with SNR = -5 dB to be the first experimental test 

case. Figure 4.1 shows the time waveforms of a female speech, military vehicle noise, 

and noisy speech, respectively.  
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Figure 4.1  The waveforms of noisy speech producing result 
(a) Clean speech (b) Military vehicle noise (c) Noisy speech (-5dB). 

 

The parameters used in the experiment I are shown in Table 4.1 and Table 4.2. 

 

Table 4.1  Parameters used in the speech+ military vehicle noise situation 

 

1 2,f f  2000Hz,590Hz 
Dynamic filter 

Throw away component 3IMF , 4IMF  

ACWA filter Frame 265 points 
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Table 4.2  Parameters used in the speech+ propeller noise situation 

 

1 2,f f  2000Hz,964Hz 
Dynamic filter 

Throw away component 3IMF  

ACWA filter Frame 265 points 

 

The results of passing through two filter based on the proposed method are 

shown in Figure 4.2.  

 

Figure 4.2  The waveforms of passing through two filter result(a) 

Noisy speech (-5dB) (b) Dynamic filter output(c) ACWA filter output. 
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Table 4.3  The performance of speech enhancement based on proposed method 

for experiment I 

 

 Male speech+ 

military vehicle 

noise 

Male speech+ 

propeller noise

Female speech+ 

military vehicle 

noise 

Female speech+ 

propeller noise 

SNRin [dB] -5 -5 -5 -5 

SNRout[dB] 2.98 4.1 3.33 2.21 

 

 

From Table 4.3, the performance of speech enhancement based on proposed 

method is good. The SNR has more improvement for four situations. In the other 

word, the background noise was suppressed and removed well. After hearing these 

enhanced speeches actually, these speeches almost the same with their original speech. 

The quality of clear speech can be heard in these enhanced speeches.  

 

Experimental results II: 

 

We choose the noisy speech with SNR = -10 dB to be the second experimental 

test case. Figure 4.3 shows the time waveforms of clear speech, military vehicle noise, 

and noisy speech, respectively.  
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Figure 4.3  The waveforms of noisy speech producing result 

(a) Clean speech (b) Military vehicle noise (c) Noisy speech(-10dB). 

   

The parameters used in the experiment II are shown in Table 4.3 and Table 4.4.  

 

Table 4.4  Parameters used in the speech+ military vehicle noise situation 

 

1 2,f f  2000Hz,590Hz 
Dynamic filter 

Throw away component 3IMF , 4IMF  

ACWA filter Frame 265 points 

 

 

 



 

 58

Table 4.5  Parameters used in the speech+ propeller noise situation 

 

1 2,f f  2000Hz,964Hz 
Dynamic filter 

Throw away component 3IMF  

ACWA filter Frame  265 points 

     

The results of passing through two filter based on the proposed method are 

shown in Figure 4.4.  

 

Figure 4.4  The waveforms of passing through two filter result(a) 

Noisy speech (-10dB)(b) Dynamic filter output(c) ACWA filter output. 
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Table 4.6  The performance of speech enhancement based on proposed method 

for experiment II 

 

 Male speech+ 

military vehicle 

noise 

Male speech+ 

propeller noise 

Female speech+ 

military vehicle 

noise 

Female speech+ 

propeller noise 

SNRin [dB] -10 -10 -10 -10 

SNRout [dB] 1.06 3.35 1.78 2.64 

 

      

Although background noise has larger volume than experiment I, the 

performance of speech enhancement based on proposed method is still good from 

Table 4.6.The background noise was suppressed and removed well. After hearing 

these enhanced speeches actually, these speeches almost the same with their original 

speech. The quality of clear speech still retains these enhanced speeches. For 

comparing performance of speech enhancement, we use spectral subtraction and 

wiener filter methods to the noisy speech. These results are shown in Figure.4.5 and 

Figure.4.6. 
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Figure 4.5  The waveforms using spectral spectrum method(a) Clear speech (b) 

Speech +propeller noise (-10dB)(c) Result base on spectral subtraction method. 

 

Figure 4.6  The waveforms using wiener filter method(a) Clear speech (b) 

Speech +propeller noise (-10dB)(c) Result base on wiener filter method. 
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The improvement of SNR basing on three methods is shown in Table 4.7.The 

performance of proposed method is better than the spectral spectrum method but 

worse than the wiener filter method in low SNR situation. After hearing these 

enhanced speeches actually, the quality of enhanced speech using spectral spectrum 

method is worst. The quality of enhanced speech is the same with proposed method 

and wiener filter method. 

 

Table 4.7  The performance of speech enhancement for male speech  

base on three methods  

 

 

 Male speech+ 

propeller 

noise(-5dB) 

Male speech+ 

military vehicle 

noise(-5dB) 

Male speech+ 

propeller  

noise (-10dB) 

Male speech+ 

military vehicle  

noise(-10dB) 

Spectral Subtraction 2.17dB 1.82dB -0.98dB -1.27dB 

Wiener Filter 4.66dB 3.52dB 3.1dB 2.06dB 

Proposed method 2.98dB 4.1dB 3.35dB 1.06dB 
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Table 4.8  The performance of speech enhancement for female speech  

base on three methods  

 

  Female speech+

propeller 

noise(-5dB) 

Female speech+

military vehicle 

noise(-5dB) 

Female speech+ 

propeller  

noise (-10dB) 

Female speech+ 

military vehicle  

noise(-10dB) 

Spectral Subtraction 2.12dB 1.93dB -0.82dB -1.83dB 

Wiener Filter 5.02dB 3.56dB 3.34dB 2.61dB 

Proposed method 2.21dB 3.33dB 2.64dB 1.78dB 
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Chapter 5  Conclusions 
 

In this thesis, a novel idea for signal channel speech enhancement method based 

on dynamic filter and ACWA filter is proposed. In present method two problems are 

shown: (1) The aliasing of signal (2) In low SNR situation, the performance of 

de-noising is bad. Therefore, we proposed the novel de-noising method basing on 

empirical mode decomposition with an additive artificial signal. Because of the 

characteristic of EMD, the additive artificial signal can be separated into first two 

IMFs. The setting of 2f make noise component into later IMF. In dynamic filter, the 

dominant noise component is removed then suppresses residual noise in ACWA filter. 

From the two experimental results, the improvement of SNR in the enhanced speech 

signal is observed. Hence, the effectiveness of the method is confirmed. Comparing to 

the present methods, the performance of proposed method is better than spectral 

spectrum method. In common with wiener filter, the speech quality was most reserved 

without distortion of signal. By the proposed method, we can understand the speech 

content clearly. 
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