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Abstract

It has been reported that the performance of species distribution models are related with

properties of data and species traits. The dominance of a species in a habitat represents

the successfulness of regeneration of a population there and thereby may be associated

with the probability of species occurrence. Habitats with low dominance of a species may

be a noise for modelling, which might reduce the accuracy of SDMs. Here we would like

propose two questions: Does removal of low dominance data increase the accuracy of

SDMs? Is species dominance an influential factor for SDMs?

Tsuga chinensis var. formosensis, a native conifer species which is widely distributed

in habitats ranging from 2000 m to 3100 m above sea level in Taiwan, was selected for

modelling. Two scenarios were evaluated for testing the dominance effects in sampling

data. The first scenario used IVI to select presence data according to the dominance and

the sampling plots were divided into ascendant and descendant accumulative datasets.

The second scenario used logarithm basal area to select presence data and the sampling

plots were also divided into ascendant and descendant accumulative datasets. GAM and

MAXENT were both used for building the models.

In the first scenario, AUC values of the two models decrease while gradually removing

higher dominance datasets in the descendant accumulative datasets. In contrary, removal

of low dominance data in ascendant accumulative datasets does not increase the accuracy

of the two models. Similarity, in the second scenario, there are no significant differences

amongst ascendant and descendant datasets of the two models. Regardless of various

dominance levels of data, the accuracy of prediction of MAXENT is slightly higher than

that of GAMs. Our result shows dominance in sampling data would affect the perfor-

mance of species distribution modelling.

Keywords: Dominance, Tsuga chinensis var. formosensis, GAM, MAXENT, species

distribution models (SDM).
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Chapter 1

Introduction

1.1 Background

The distribution patterns of organisms and the relationship between environmental factors

and species is a hot spot in the field of ecology. Hence, prediction of species’ distribution

plays an important role in ecology and is central to conservation biology (Austin, 2007;

Elith et al., 2006). In addition, predictive species distribution modellings (SDM) have

becoming an important tools in the past two decades (Guisan and Zimmermann, 2000).

A wide variety of research papers have been applied for conservation biology, biogeog-

raphy and climate change research (Galparsoro et al., 2009; Pearson et al., 2007; Tanaka

et al., 2006; Wilson et al., 2005; Matsui et al., 2004). Yet the various impact and threats

to natural have also upraised the study of SDM for prediction of potential distribution

in conservation management. Through the prediction of threaten species, the ecologist

and conservationist could use this tool to build protection project against environmental

changes and preserve the biodiversity.

Species distribution modelling is based on the species-environment relationship which

1



1. Introduction

proposes the environmental variables associated with the distribution of a given species.

The SDM based on the species-environment relationship is used to predict the potential

distribution of a given species without obtaining the complete field data. Therefore, the

SDM has the ability to predict the potential distribution of a given species with partial

field data and can be used for conservation of rare species or the inaccessibility area.

A wide variety statistical-based and procedure-based techniques on species distribu-

tion modelling including generalized linear models, generalized additive models, boost-

ing regression trees, neural networks, maximum entropy principles, genetic algorithms for

rule-sets production, etc (Kriegler, 2007; Heglund, 2003; Hastie and Tibshirani, 1990).

1.2 Purpose of Research

Song et al. (2007) have compared three different models applied in Tsuga chinensis var.

formosensis with two datasets. The vegetation of first dataset is dominant by Tsuga chi-

nensis var. formosensis and the other is the habitat where Tsuga chinensis var. formosensis

is present. The overall AUC values are higher in first dataset than second dataset. Their

study implies that the SDM performance of higher dominance datasets would be better

than lower ones. Therefore, this study tries to build different possible scenarios to find if

the dominance would be an possible influential factors to species distribution models and

the higher dominance data would increase the SDM perfromnance.

Before trying to discuss the dominance effects, the concept of dominance in vegetation

ecology should be declared. Vegetation ecologists usually use phytosociological parame-

2



Purpose of Research

ters to indicate the quantitative object to find the correlation amongst the phytosociology

and environment. These phytosociological parameters which include density, frequency

and dominance play an role to represent the characters of phytosociology. General speak-

ing, “dominance” describes an abstract concept of habitat adaptability in phytosociology.

In other words, high dominance plants can control the most resources in the habitat and

have large coverage or quantity (Liu and Su, 1983). In order to quantify the abstract

concept, dominance could be calculated by biomass, volumes and other methods. In this

study, logarithm basal area and importance value index are both used in data partition for

evaluating the dominance effects in species distribution modelling. The main subject in

this study is trying to find if the dominance would be an influential factors of SDM and

if the dominance effect exists, does higher dominance in sites increase the SDM perfor-

mance.

This thesis is structured as follows: chapter 2 consists the overview of species distri-

bution models and the concept of dominance. Modelling techniques include maximum

entropy principles and generalized additive models. Partitioning datasets according to

different dominance measures and detailed evaluating procedures are in chapter 3 and

chapter 4 consists the boxplot results and significance tests of our testing procedures. In

chapter 5, we will discuss the dominance effects in sampling data on species distribution

models. We conclude the final remarks in chapter 6, and appendix chapter consists the

demonstration of computational code with supplemental explanation.

3



Chapter 2

Literature Review

This chapter has five parts: the first section will discuss dominance in ecological

meanings and its evaluation methods; the second section reviews two species distribu-

tion models; the third and fourth parts review the recent comparison of different species

distribution models and the possible influential factors to SDM; and the last section dis-

cuss the evaluation methods of model performance.

2.1 Dominance in Analytic Concepts

The object in phytosociology analysis can be divided into two methods according to sur-

vey: (1) analytic method, (2) synthetic method (Daubenmire, 1968; Cain and de Oliveira Cas-

tro, 1959). Analytic method is to choose a representative stand to set up relevé for inven-

tory. In other words, analytic method regards a plant community as a representative stand

(Liu and Su, 1983). In contrary, synthetic method is based on the analytic method and

extends a stand to different stands. Based on our study subject, only analytic method will

be introduced for explanation.

4



Dominance in Analytic Concepts

2.1.1 Analytic Method

The phytosociological analytic characters describing the plant community are major di-

vided into quantitative and qualitative characters (Braun-Blanquet, 1932). Qualitative

characters include stratification, vitality and periodicity and quantitative characters in-

clude abundance, density, dominance, gregariousness and frequency (Braun-Blanquet,

1932). The purpose of quantitative characters is to find the importance, number of indi-

viduals and the extent of dominant species for indicating the correlation amongst plant

communities and environmental factors (Liu and Su, 1983). Quantitative characters are

introduced for elucidating the importance value index (IVI):

Abundance and density

Abundance usually describes the quantity (number of individuals) of species in phytoso-

ciology. Braun-Blanquet (1932) defines the abundance as five classes: (1) very rare,

(2) rare, (3) infrequent, (4) abundant, (5) very abundant. Abundance is a very subjec-

tive and has arbitrary limitations due to its connotation to estimated number (Cain and

de Oliveira Castro, 1959). Hence, density is objectively to express the actual abundance

or the number of individuals of each species. Density is also intended to imply the dy-

namic trends of each species, for example, higher density of saplings usually indicates

that the species will gradually become the dominant in the future (Liu and Su, 1983).

However, it exists two limitations of density (Daubenmire, 1968):

1. Density can not be applied in plant communities contain vegetative reproduced

species, prostrate plants (grasses, shrub branches). For example, rhizomatous species

such as Yushania niitakayamensis (Poaceae). It can not count exactly number of in-

5



2. Literature Review

dividuals and is not satisfactory as a basis for comparing different species.

2. Maturity of one species may have different growing conditions. Therefore, it pro-

vides very little biologic information of two individuals of a given species per meter.

Another measure of density is relative density (RDe) which indicates the proportion of

species in a plant community and is intended to compare the proportion in different plant

community or stands (Liu and Su, 1983). RDe of a species (SP) is calculated as:

RDe =
Density of SP

Total density
(2.1)

Frequency

Frequency provides the uniformity and regularity of the distribution throughout a plant

community (Cain and de Oliveira Castro, 1959) without indicating how many or how

much (Daubenmire, 1968). Frequency is the problem of pattern which defined as the per-

centage of occurrence of a species amongst different relevé in a stand. It is intended to

express the evenness of plants species and indicate the homogeneity in a plant commu-

nity. Raunkiaer (1934) developed a method to calculate the frequencies of species in five

classes (Raunkiaer’s law of frequency) as follows:

Class A 0 to 20%

Class B 21 to 40%

Class C 41 to 60%

Class D 61 to 80%

Class E 81 to 100%

6



Dominance in Analytic Concepts

Raunkiaer’s law of frequency is affected by relevé size and debated by many phytosociol-

ogist (Liu and Su, 1983) but it is a simple method to express the homogeneity of a stand.

However, relative frequency (RF) of a species (SP) in a stand is as:

RF =
Frequency of SP × 100

Summation of total species frequency
(2.2)

Dominance

Dominance is in terms of the extent of a plant community control or occupancies in an

area (Liu and Su, 1983; Cain and de Oliveira Castro, 1959). The concept of dominance is

trying to indicate the prevalence or adaptability of an organism and the dominance can be

represented as area (coverage), volume or biomass. Because it is difficult to measure the

biomass or volume, coverage is used to represent the dominance. The coverage means

the projection of the canopy or leaves and branches which usually uses basal area for

indication. The coverage has different measurement systems such as Braun-Blanquet,

Hult-Sernander and Lagerberg-Raunkiaer system (Cain and de Oliveira Castro, 1959).

Braun-Blanquet (1932) system is commonly used in field survey of phytosociology and

with six classes as in table 2.1 (Cain and de Oliveira Castro, 1959; Braun-Blanquet, 1932)

In forestry, the basal area calculation is based on cross section area at breast height

(dba). The dominance has the following calculations (Liu and Su, 1983):

quadrat dominance (QDo):

7



2. Literature Review

Table 2.1: Braun-Blanquet coverage classes and values

class coverage percentage

x < 1
1 1− 5
2 6− 25
3 26− 50
4 51− 75
5 76− 100

QDo =

∑
dba in all quadrat

number of quadrat
(2.3)

relative dominance:

RDo =
dominance(coverage) of a species

dominance(coverage) of all species
(2.4)

2.1.2 Combination of Analytic Characters

In order to represent the quantity in plant communities, single analytic characters are com-

bined to express importance. For example, density-frequency-dominance index (DFD)

and importance value index (IVI) are both used for indicating the importance of species

in a plant community.

Importance value index

DFD is developed by Curtis (1947) and IVI (Curtis and McIntosh, 1951) is based on DFD

but uses relative value for indication. IVI is defined the summation of relative density, rel-

ative frequency and relative dominance. It is applied for evaluating the dominant species

8



Species Distribution Models

in a stand.

In this study, dominance is regarded as ecological dominance which indicates the

adaptability of species. Single measure (basal area) and weighted measure (IVI) are both

used to represent the dominance for evaluating the performance of species modelling dis-

tribution.

2.2 Species Distribution Models

There are many modelling techniques having applied in predicting potential species dis-

tribution. The modelling approaches can be generally classified as method-driven and

statistical-driven. The method-driven or mechanistic techniques try to make the potential

species distribution via the method itself, such as machine learning methods. Particu-

larly, machine learning techniques emphasize on the features of method, for example,

the genetic algorithms simulate the mutation of genes and employed in several modelling

techniques such as genetic algorithms for ruleset production (GARP). The recent mech-

anistic methods applied in prediction of species distribution are GARP, MAXENT and

neural networks (Phillips et al., 2006). In contrary, statistical methods focus on statistical

techniques to predict the potential distribution and most of the statistical approaches are

regression-based. Generalized linear models, generalized additive models, multivariate

adaptive regression splines (MARS) and boosted regression trees are most recent tech-

9



2. Literature Review

niques applied in species distribution modelling (Austin, 2007; Guisan et al., 2007b;

Leathwick et al., 2006). In this study, both statistical and mechanistic approaches were

used for evaluation of species distribution modelling.

2.2.1 Generalized Additive Models

The concept of generalized additive models (GAMs) are derived from generalized linear

models (GLMs) and GLMs are derived from linear models.

Essentially, generalized additive models (GAMs) (Hastie and Tibshirani, 1990) are

extensions of regression-based models and follows from additive models, as generalized

linear models (GLMs) follow from linear models (Wood, 2006). GAMs allow variables

which do not normally distribute and their linear predictor contains a sum of smoothing

functions of covariates which uses penalized regression methods to estimate penalized

regression splines (Tsao, 2007; Wood, 2006).

Generalized linear models

A GLM is combined systematic and random components with the response variables

other than normal distributions (Nelder and Wedderburn, 1972). The characters of GLMs

include:

1. Exponential family

A general function of exponential family in distribution of Y is as equation 2.5

(Faraway, 2006):

10



Species Distribution Models

f(y|θ, φ) = exp

[
yθ − b(θ)

a(θ)
+ c(y, φ)

]
(2.5)

where the θ is the canonical parameter which indicates the location and φ is the dis-

persion parameter. The response variable in GLMs is a member of the exponential

family distribution. In equation 2.5, a, b and c functions could be specified normal,

Poisson, Binomial, Gamma and inverse Gaussian distribution (Faraway, 2006).

2. Link function

A Link function describes the relationship between the expected value Y and the

linear predictors. The general form of a link function η is shown as equation 2.6.

η = g(µi) = g(E(Yi)) = β0 + β1x1 + · · ·+ βpxp = Xiβ (2.6)

where µi is expected value of Yi, and

Th functions and canonical links of some exponential family distributions in GLMs

are as table 2.2.

Generalized additive models

A GAM is a generalized linear model whilst the linear predictors contain non-parametric

function and comprise a sum of smooth functions of covariates (Wood, 2006). GAMs

use a series of smooth functions (e.g. cubic splines, P-splines, etc.) to avoid detailed

parametric relationships, hence the GAMs are more flexible and convenient than GLMs
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Table 2.2: Some exponential family distributions.

Family Function(f(y)) Link(θ) Variance(V(µ))

Normal 1
σ
√

2π
exp

(−(y−µ)2

2σ2

)
η = µ 1

Poisson µyexp(−µ)
y!

η = logµ µ

Binomial
(
n
y

)(
µ
n

)y(
1− µ

n

)n−y
η = log(µ/(1− µ)) µ(1− µ/n)

Gamma 1
Γν

(
ν
µ

)ν
yν−1exp

(
− νy

µ

)
η = µ−1 µ2

Inverse Gausian
√

γ
2πy3 exp

[−γ(yµ)2

2µ2y

]
η = µ−2 µ3

Note: The table is revised from Wood, 2006.

(Wood, 2006). A general GAM model is as following equation

2.7 (Wood, 2006) :

g(E(Yi)) = X∗
i θ + fi(Xi) = X∗

i θ + fi(x1i) + f2(x2i) + f3(x3i, x4i) + · · · (2.7)

where fi(Xi) contains a series of smooth functions.

Implementation of generalized additive models

There are some implementation of generalized additive models, such as mgcv, gam, gss,

gamlss and vgam packages in R. Following example shows the gam in mgcv package

in R:

> ptsuga <- gam(tsuga˜s(slope)+s(wetness)+s(wi),
family=binomial(link=log), data=tsuga_data)

> ptsuga

Family: binomial
Link function: log
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Formula:
tsuga ˜ s(slope) + s(wetness) + s(wi)

Estimated degrees of freedom:
1 1 2.292953 total = 5.292953

UBRE score: -0.6768139

where the original data is tsuga data with column tsuga (presence/absence), envi-

ronmental variables: slope, wetness and warmth index (wi). The distribution family is

binomial and link function is log. The total degree of freedom is 5.292953 and both slope

and wetness contribute 1 df , wi contributes 2.292953 df. UBRE score is -0.6768139.

Generalized regression analysis and spatial prediction

Lehmann et al. (2002) implemented generalized regression analysis and spatial prediction

(GRASP) using statistical models such as GLMs and GAMs. The GRASP function can

predict the species abundance/presence (response variables) with spatial coverages of en-

vironmental variables (predictors).

2.2.2 Maximum Entropy Principles

Maximum entropy (maxent) originally introduce by Jaynes (1957) in statistical mechan-

ics. Maxent is a general-purpose method for inferences from incomplete information in

the field of information theory and applied for astronomy, statistical physics, image re-

construction and signal processing (Phillips et al., 2006). In other words, maxent provides

13
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a constructive criterion for setting up probability distributions on the partial knowledge

(Jaynes, 1957). Phillips et al. (2006) introduced maximum entropy as a method for pres-

ence only modelling of species distribution. The concept of maxent is trying to estimate

an unknown target probability distribution through finding the best probability distribu-

tion of maximum entropy under a set of constraints (Phillips et al., 2006). For example, if

we want to know about the distribution of velocity in the gas at a given temperature, we

can find the maximum entropy distribution under the temperature constraint. The maxi-

mum entropy distribution formula is as equation 2.8

Maximum entropy distribution

Let f ∗(x) = fλ(x) = eλ0+
∑m

i=1 λiri(x), x ∈ S, where λ0, λ1, . . . , λm are chosen so that all

probability densities f ∗ satisfying the following

∫
S

f(x)ri(x) = αi for 1 ≤ i ≤ m (2.8)

Then f ∗ uniquely maximizes entropy h(f) over all f satisfying these constraints (Cover

and Thomas, 2006). When maxent applied in species distribution modelling, study area is

regarded as a set of pixels to make up the space on which the maximum entropy probabil-

ity distribution is defined. The pixels of species occurrence records constitute the sample

points and the features are environmental variables, such as climatic or topographical vari-

ables (Phillips et al., 2006). Figure 2.1 illustrates the concept of maximum entropy applied

in prediction in species distribution. Green area is the study area which would constitute

the maxent probability distribution. Each cell (grid) indicates the pixel which contains a

set of environmental variables and the red dots are the species occurrence records.
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Figure 2.1: Concept of maximum entropy applied in prediction of species distribution.

The implementation of principle of maximum entropy applied in species habitat mod-

elling is MAXENT software (Phillips et al., 2004). The MAXENT software also im-

plements six features: linear, quadratic, product, threshold, hinge and category indicator

(Phillips and Dudı́k, 2008; Phillips et al., 2006). Environmental variables (as known as

features) in MAXENT are continuous and categorical. In contrary to GAMs, MAXENT

can use presence only occurrence records rather than presence and absence records.
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2.3 Comparison of Different Models

Comparison of different model is a critical issue when new approaches introduced and

applied in prediction of species distribution modelling. No single method is applied for

universal prediction, but multiple comparisons amongst modelling techniques, species

characteristics and evaluation methods are necessary to find a best method in different

conditions.

Segurado and Araújo (Segurado and Araújo, 2004) assess nine modelling techniques

and sixteen environmental variables using 9939 occurrence records for 44 species of rep-

tiles and amphibians in Portugal. Their study represented species with low marginal-

ity and high ecological tolerance had lower overall performances (Segurado and Araújo,

2004). For the most part performances were better with non-parametric techniques and

neural networks using NNET library (NNETW) had the highest model performance whilst

DOMAIN and BIOMAP showed the lowest performance. Their study also mentioned

data quality was strongly influential to model performances and suggested two choices to

model the species distribution. The first one is to use expert systems such as GARP or the

second choice is to use a single robust technique like NNETW.

Elith et al. (2006) made a comprehensive comparisons amongst 16 modelling tech-

niques and 226 species. Boosted regression trees (BRT), generalized dissimilarity mod-

elling (GDM) and MAXENT have the best performance, followed by multivariate adap-

tive regression splines (MARS), GLM, GAM, openModeller GARP (OM-GARP) and the

poorest ones are desktopGARP, BIOCLIM and multivariate distance model (DOMAIN).
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The evaluation is based on three methods: the area under the Receiver Operating Charac-

teristic curve (AUC), correlation and Kappa statistic (Elith et al., 2006).

Meynard and Quinn (2007) use artificial species to make comparison of the most com-

mon statistical models. Eighteen artificial species are generated from three environmental

gradients for evaluating four models (GAM, GLM, classification trees and GARP). Their

results recommend to use GAM or GLM over classification trees or GARP because the

later two methods perform poorly and tend to over-predict the area of occupancy espe-

cially in low prevalence. The model varies in model performance for low prevalence

species and their results suggest the performance can be improved through targeted sam-

pling (Meynard and Quinn, 2007).

Guisan et al. (2007b) have also evaluated a comprehensive study discussing influen-

tial factors of species distribution followed up by Elith et al. (2006). They focus on 31

native tree species in Switzerland and compare 10 modelling techniques in terms of map

resolution, predictive power and sensitivity to location error and sample sizes, and try to

elucidate variation in model performance (Guisan et al., 2007b). The ranking of over-

all model performance based on AUC is: MAXENT, GAM, MARS, GDM single species

(GDMSS), BRUTO, GLM, OM-GARP, DOMAIN and BIOCLIM. The generalized linear

mixed models (GLMM) analyses results of modelling techniques can be divided into three

groups, BRT and MAXENT ranked first, regression-based techniques (GAM, MARS,

BRUTO and GLM) ranked second and profile-based techniques (BIOCLIM, DOMAIN)

ranked last.
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2.4 Influential Factors to SDM

There have been numerous studies in the literature dealing with the influential factors of

species distribution modelling. The influential factors can be the data characteristics or

the species traits.

2.4.1 Species Traits

Araújo and Williams (2000) extrapolate widespread species had higher sensitivity and

lower specificity. In contrary, restricted-range species had lower sensitivity and higher

specificity. Rare species usually ease to predict because they are sensitive to certain

environmental variables and widespread species are not easy to predict due to unclear

species-environment relationships.

2.4.2 Data Characteristics

Data characteristic would be also an important factor to prediction of species distribution

models.

Hernandez et al. (2006) proposed the effect of sample size and species characteristics

on species distribution modelling performances. Their study has compared six different

sample sizes and evaluated four model techniques whilst the model accuracy increased

with larger sample sizes for all modelling methods (Hernandez et al., 2006). However,

they confirm ecological low tolerance species are easier to model than widespread species.

The result also indicates multiple evaluation is necessary to examine the accuracy of mod-
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els with presence-only data.

Sample selection can be also an influential factor to SDM. Reddy and Davalos (2003)

assess the patterns of species richness and find the intensity of collecting have been heav-

ily influenced by human accessibility. If the sample plots is collected around cities, road

sides, rivers, etc., it may have significant sampling bias. In addition, most sampling data

in herbarium are collected from accessible area, especially aggregation on certain regions

or along the route and it may cause the intensity of sampling bias on species distribution

models.

2.5 Model Performance and Evaluation

The model accuracy in presence/absence prediction can be considered as four possible

conditions: true positive/negative and false positive/negative. True positive implies that

the species occurs and our prediction is true. False positive implies that the species does

not exist, but the models prediction is incorrect. In contrary, true negative means model

prediction is correct and the species does not exist. False negative means that model pre-

diction is wrong and the species does not exist. However, many model measurements

are derived from true positive/negative and false positive/negative such as sensitivity and

specificity (Fielding, 1999). An error matrix or confusion matrix as table 2.3 summarizes

the model accuracy and provides an effective way to represent the commission errors (the

errors of inclusion, i.e. false positive) and omission errors (the errors of exclusion, i.e.

false negative) in an overview (Congalton and Green, 1999). In addition, more measure-
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ments based on a 2× 2 confusion matrix are listed in table 2.4 (?Fielding, 1999).

Table 2.3: A 2× 2 confusion matrix

Observed
Presence Absence

Presence a b
Predicted

Absence c d

Note: a means true positive, b means false
positive c means false negative, d means
true negative. a and d are correct results;
c and d are incorrect prediction (revised
from Fielding, 1999).

Table 2.4: Measurements derived from a 2× 2 confusion matrix

Measurement Index Calculation or Description

Sensitivity a/(a + c)
Specificity d/(b + d)
Positive predictive power a/(a + b)
Negative predictive power d/(c + d)
False positive rate b/(b + d)
Odds ratio ad/cb

Kappa statistic (a+d)−(((a+c)(a+b)+(b+d)(c+d))/(a+b+c+d)
(a+b+c+d)−(((a+c)(a+b)+(b+d)(c+d)/(a+b+c+d))

Receiver operating characteristics (ROC) In a ROC curve, the vertical axis indicates
the sensitivity and indicates the 1-specificity.

Area under ROC curve The area under the ROC curve is AUC.

Note: revised from Fielding, 1999.

Sensitivity is true positive over the actual presence which indicates the true positive

rates. Specificity indicates the true negative rates. Odds ratio means the ratio amongst

correct prediction and incorrect prediction. Receiver operating characteristic (ROC) curve

and area under ROC (AUC) is widely used for recent species distribution model perfor-

mance assessment (Elith et al., 2006; Hernandez et al., 2006; Guisan et al., 2007b,a). The

value of AUC is between 0.5 to 1, In Swet’s (1988) research, if the AUC values is be-
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tween 0.5 to 0.7, the discrimination of models is regarded as low. If the values of AUC

fall between 0.7 to 0.9, it implies the prediction performance is good. When the AUC

values larger than 0.9, the performance result is excellent whilst a score of AUC is 0.5 im-

plies random predictive discrimination. Figure 2.2 shows typical ROC curves, Predicted1

indicates the model is exactly as the reality (AUC=1); Predicted2 has very good model

performance and the performance of Predicted3 is good.
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Figure 2.2: Sample ROC curves from R SIM3DATA

A Kappa statistic is often used to assess improvement over chance (Fielding, 1999).
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The Kappa statistic value smaller than 0.4 indicates the poor agreement; a Kappa value

between 0.4 and 0.75 is good (Landis and Koch, 1977).

Although sensitivity and specificity are good error indicators to model performance,

they are not robust and reliable to evaluate the species distribution models. Prevalence

(occurrence records over total sample plots in all relevé) is an influential factor to both

sensitivity and specificity in which Manel et al. (2001) reported higher prevalence will

increase the value of sensitivity and decrease the specificity. In other words, if we try to

predict a rare species in a wide area (low prevalence), the sensitivity would be low and

specificity would be relatively high. However, both sensitivity and specificity could be

used for evaluating if the model is over-prediction or under-prediction. Over-prediction

means that the model prediction shows the species exist but the species does not exist in

observed data. In contrary, under-prediction indicates the species does not exist in model

prediction but exists in real world.

The predictive power of Kappa is better than sensitivity and specificity due to the low

affected by prevalence (Manel et al., 2001). Moreover, ROC analysis and AUC value are

also more better than sensitivity and specificity.
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Chapter 3

Material and Methods

3.1 Data Preprocess and Preparation

3.1.1 Target Species

The raw data was obtained from The Third Forest Resource and Land-Use Inventory (3rd

FRLI) (Guan and Chen, 1995), the main purpose of 3rd FRLI was to investigate the lan-

duse type and stand volumes. The species identification is focused on the artificial trees,

industrial trees such as red cypress (Chamaecyparis formosensis and Chamaecyparis ob-

tusa var. formosana (Cupressaceae)).

There are two major backwards in 3rd FRLI data:

1. Species identification:

As mentioned above, the main purpose of 3rd FRLI is focused on use of woods. The

trees without industrial use would be neglected or combined as a set, for example:

• The species other than Machilus thunbergii (Lauraceae), Machilus zuihoen-

sis (Lauraceae) and Machilus japonica var. kusanoi (Lauraceae) would be
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regarded as Machilus.

• Most species in Fagaceae would be regarded as Castanopsis or Pasania.

• Some species like Euonymus laxiflorus (Celastraceae), Bridelia balansae (Eu-

phorbiaceae) and Prunus phaeostica (Rosaceae) would be regarded as “other

woody species” because they do not have any economical benefits.

2. Insufficient of relevé:

The usable occurrence data does not sufficient. For example, there is only 45

records of Abies kawakamii (Pinaceae), 62 records of Picea morrisonicola (Pinaceae).

However, the target species selection should be considered to meet the following pre-

requisites:

1. Sufficient occurrence data for data partition:

The datasets are partitioned by different relative dominance criteria so the occur-

rence records should as more as possible. We assume occurrence records of each

dataset are about 40 plots and the total number of records is more than 200 plots.

2. Less disturbance from human beings:

It is reported occurrence records are often biased toward human population centres

and roads (Reddy and Davalos, 2003). Therefore, sample selection should avoid

the human impaction areas especially the side of roads.

Although there are 235 occurrence records of Chamaecyparis formosensis, it has

been severe exploitation in cutting Chamaecyparis formosensis and Chamaecyparis

obtusa var. formosana during the past 50 years.
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Thus, removal of the reasons of insufficient occurrence records and human distur-

bance, Tsuga chinensis var. formosensis is selected for target species for the modelling

framework.

Tsuga chinensis var. formosensis is the dominant species in the Tsuga belt (Su, 1984)

or Tsuga-Abies belt and Tsuga-Chamaecyparis belt (Lin, 2009) which distributed from

1400m to 3400m in altitude (Chiou et al., 2006; Chen, 2004), such as Central Moun-

tain Range, HsuehHsan Range, Yushan Range and DaWu Mountain, etc. The optimal

range is 2800m to 3000m in altitude. Tsuga chinensis var. formosensis is often mixed

with Chamaecyparis obtusa var. formosana (Cupressaceae), Chamaecyparis formosen-

sis (Cupressaceae), Trochodendron aralioides (Trochodendraceae), Pinus armandii var.

masteriana (Pinaceae) and Pinus taiwanensis (Pinaceae) in lower altitude. In higher al-

titude, Tsuga chinensis var. formosensis often becomes pure stands or mixed with Picea

morrisonicola (Pinaceae) and Abies kawakamii (Pinaceae). It is reported Tsuga chinensis

var. formosensis prefers the south-facing slopes (sun-facing side in north hemisphere),

dry lands, cliffs or mountain ridges (Chen, 2004; ?).

3.1.2 Occurrence Data

The original data used 2-degree transverse Mercator projection grid and the local da-

tum is the TWD67 projection. Raw data was obtained from 3rd FRLI administered by

the Foresty Bureau, Council of Agriculture. Investigation of 3rd FRLI was systematic

sampling by 3 km and the starting point coordinate is 302000, 277000. The total num-
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berof relevé is 3996. There were three types of datasets in the database. The first dataset

(DATASET1) contained the species data and related elevation, coverage, density, etc;

the dataset 2 (DATASET2) was relevé data which included map number, relevé plot id,

abscissa, ordinate and environmental variables. And the last dataset (DATASET3) was or-

thophotos that recorded the species occurrence data based on the aerial photographs. For

the prerequisite of the modelling techniques, in addition to species presence data, absence

data were required. However, due to the aims of forestry management, all of the datasets

only comprised the species presence data. Instead of real absence data, modellings can

still be conducted with pseudo-absence data (Phillips et al., 2009; Araújo and Guisan,

2006; Elith et al., 2006).

3.1.3 Environmental Variables

The implicit theory assumes potential species distribution is determined by physical envi-

ronments (such as temperature, precipitation, altitude, etc.) (Austin, 2007) or biotic fac-

tors (competition and other biotic interactions). We compiled topographic and climatic

layers of the Taiwan island. Climatic environmental predictors were included warmth in-

dex (WI) (Chiou et al., 2004), wetness index (WET), and solar radiation in each month

(RD01 12). Topographic environmental predictors were aspect (ASP), altitude (ALT),

sediment transport capacity index (STCI), openness of the forest stands (OPEN), plan

curvature (PLAN), profile curvature (PROF), relative stream power (RSP), slope (SLP),

tangential curvature (TANG) and sky view factor (SVF). The original environmental vari-

ables were 40 meters in resolution and obtained from the Laboratory of Resource Inves-
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tigation and Analysis, School of Forestry and Resource Conservation, National Taiwan

University. Jackknife analysis was used to select the most influential variables from en-

vironmental variables mentioned above. Detailed information and abbreviations of these

environmental variables were shown in Table 3.1.

Table 3.1: Environmental variables used for modelling of species distribution

Code Description Variable Unit Processing Software
type

ASP Aspect D Degree ArcGIS
ALT Altitude C Meter ArcGIS
WI Warmth index C Celcius ArcGIS
STCI Sediment transport capacity index C Unitless TAS
OPEN Openness C Degree SkyRatio
PLAN Plan curvature C deg/m TAS
PROF Profile curvature C deg/m TAS
RD01 Solar radiation of January C MJ/m2/day CLIRAD-SW
RD02 Solar radiation of February C MJ/m2/day CLIRAD-SW
RD03 Solar radiation of March C MJ/m2/day CLIRAD-SW
RD04 Solar radiation of April C MJ/m2/day CLIRAD-SW
RD05 Solar radiation of May C MJ/m2/day CLIRAD-SW
RD06 Solar radiation of June C MJ/m2/day CLIRAD-SW
RD07 Solar radiation of July C MJ/m2/day CLIRAD-SW
RD08 Solar radiation of August C MJ/m2/day CLIRAD-SW
RD11 Solar radiation of September C MJ/m2/day CLIRAD-SW
RD10 Solar radiation of October C MJ/m2/day CLIRAD-SW
RD11 Solar radiation of November C MJ/m2/day CLIRAD-SW
RD12 Solar radiation of December C MJ/m2/day CLIRAD-SW
RSP Relative stream power C Unitless TAS
SLP Slope D Degree ArcGIS
SVF Sky view factor. From 0 to 1 C unitless
TANG Tangential curvature C deg/m TAS
WET Wetness index C Unitless TAS

Note: Variable type C means continuous and D means discrete.
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3.1.4 Datasets Preparation

Data cleaning

In the field of knowledge discovery, or data mining, the process consists an iterative se-

quence to extract the knowledge from raw data (Han and Kamber, 2006). Preprocess of

data is important because the raw data may contain incomplete, noisy and inconsistent

data. The noise, incompletion, and inconsistency in raw data may lead to misunderstand-

ings to the real pattern and character during data analysis. Meanwhile, occurrence data

of the 3rd FRLI contains a wide variety of landuse types, and some of them were farm

land, bamboo forests, artificial forests and disturbed by human activities. Since the stands

of these human disturbed landuse type may plant the trees which are not natural to the

habitat, the results of modelling would be over or under prediction. Furthermore, if the

prevalence of a species in a study area is too high or too low, the performance of sensitiv-

ity or specificity would approximate the ideal value. Therefore the data containing such

landuse types have to be removed to avoid such data noise.

Data selection and partitioning

In order to comprehend how dominance may affect the performance of the species dis-

tribution models, raw occurrence data were divided into different datasets according the

relative dominance of the focal species in the local communities to meet our aims. There-

fore, the concept of dominance could be evaluated via two scenarios: scenario 1: im-

portant value index (IVI) (Curtis and McIntosh, 1951) and scenario 2: basal area (BA).

The IVI has been originally calculated by relative density, relative frequency and relative
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dominance (coverage), but due to the limitation of raw data we only used relative density

and relative dominance. The datasets of IVI have been divided into nine sub datasets ac-

cording to Gauch (1982)’s octave scale method. Table 3.2 shows the datasets and detailed

sample plots of octave scale IVI datasets.

Table 3.2: Scenario 1: octave scale IVI
datasets.

Datasets IVI value Number of plots

RDo9 [ 64, 100) 36
RDo8 [ 32, 64) 57
RDo7 [ 16, 32) 59
RDo6 [ 8, 16) 28
RDo5 [ 4, 8) 19
RDo4 [ 2, 4) 6
RDo3 [ 1, 2) 7
RDo2 ( 0.5, 1) 0
RDo1 ( 0, 0.5) 0
RDo0 0 0

Note: (x, y) indicates x < IVI < y and
[m, n) indicates m ≤ IVI < n.

To make sure the number of sample plots is enough for model evaluation, datasets

were combined with following criteria: ascendant accumulative relative dominance datasets

(ascRDo) and descendant accumulative dominance datasets (descRDo). In the ascRDo

datasets, sample plots with low dominance were gradually removed. For example, dataset

RDo3-8 contained RDo3, RDo4, RDo5, RDo6 , RDo7 and RDo8; dataset RDo5-8 con-

tained RDo5, RDo6, RDo7 and RDo8. In the descRDo datasets, sample plots with high

dominance were gradually removed. For instance, dataset RDo7-3 contained RDo3,

RDo4, RDo5, RDo6 and RDo7; dataset RDo6-3 contained RDo3, RDo4, RDo5 and
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RDo6. Table 3.3 shows the datasets and number of sampling plots.

Scenario 2 calculated the basal area from diameter at breast height (DBH) and took

logarithm to the base ten. Processed data were also divided into ascendant and descendant

accumulative relative dominance datasets. Considering the number of sampling plots in

each dataset, datasets were divided into different criteria based on logarithm of basal area.

Table 3.4 shows the overall datasets and cut points.

Table 3.3: Scenario 1: ascendant and descendant accumulative datasets

Datasets ascRDo Datasets descRDo

Dataset Number of Dataset Number of
sampling plots sampling plots

RDo3-8 176 RDo8-3 176
RDo4-8 169 RDo7-3 119
RDo5-8 163 RDo6-3 60
RDo6-8 144 RDo5-3 32
RDo7-8 116 RDo4-3 13
RDo8 57

Table 3.4: Scenario 2: dataset cut points and sampling plots quantity

Datasets ascRDo Datasets descRDo

Dataset Cut points Number of Dataset Cut points Number of
(log(BA)) sampling plots (log(BA)) sampling plots

ascD1 > 3.50 65 descD1 < 3.86 80
ascD2 > 3.59 53 descD2 < 3.77 73
ascD3 > 3.68 47 descD3 < 3.68 63
ascD4 > 3.77 37 descD4 < 3.59 57
ascD5 > 3.86 30 descD5 < 3.50 45
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3.2 Model Building

Generalized linear models (GAMs) were performed with a package of R software, mgcv

(Wood, 2006), and GRASP (generalized regression analysis and spatial prediction) com-

bined spatial prediction and GAM analysis (Lehmann et al., 2002). GRASPER (GRASP in

R) were used for model building and stepwise model selection family was quasibinomial;

degree of freedom was four and one hundred modelling steps; spatial resolution was 1 km.

Before execution of the model building, relevé data were divided into training and

evaluating datasets. In scenario 1, RDo9 dataset was used for evaluation dataset. Three

types of datasets were needed in GRASPER for model building: response variables (Y),

predictor variable (X) and data for prediction (Xpred). Response variables contained

species names and its presence (zero for absence, one for presence); predictor variables

included coordinates (abscissa and ordinate), environmental variables. In GAM, occur-

rence data should contain presence and absence data. Although we did not have “real

absence” data, data not used for presence regard as absence. Xpred included those in

predictor variable dataset but provided the data for prediction. Presence data was ran-

domly selected from each datasets as in ascRDo and descRDo datasets and picked the

same amount with presence data from absence database which was natural forest layers

(NFL) in Taiwan island. In scenario 2, NFL was random separated into two parts: one

for absence in training and the other for evaluation. In contrary to scenario 1, selection of

presence data in scenario 2 would not delete the plots but regarded the plots as absence.

Total plots in training datasets were fixed at 718. The training and evaluation datasets used
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for MAXENT model building were the same with those in GRASPER. The input datasets

also contained species, coordinates, correspond environmental variables (in MAXENT

program, it is named sample with data (SWD) format). All of the environmental predic-

tors were converted into ascii format for model building in MAXENT program.

Prepared data would convert to the GRASP file input format and predicted the poten-

tial distribution maps. We tried to repeat one hundred times for each model building in

both scenarios.

3.3 Model Evaluation

After finished the building process, results would be imported into GRASS GIS for pre-

process of the model evaluation. Nearest neighbour method were used sampling the raster

point value, and evaluation points were also imported using for extracting the raster val-

ues from generated results in model building part. Model performance could be evaluated

with many criteria, such as alkaike information criteria (AIC), Bayesian information cri-

teria (BIC), area under ROC curve (AUC), Kappa, etc. We used AUC for evaluating the

model performances. AUC values were calculated by PresenceAbsence package in

R. Figure 3.1 shows the overall experiment flowchart.
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3.4 Implementation of Experiment

In this section, we would elucidate the detail information about the experiment implemen-

tation, such as how to set up the scenarios and step-by-step experiment flow. The design

of experimental program was trying to modulize all of the components and making it easy

to find possible experiment errors and any blind spot in our experiment. There were three

principles in the program:

1. Reliability: Store intermediate files during execution of the program.

No matter what the program robustness, they would be minor or trivial errors dur-

ing the execution. Hence, we tried to store everything after program started, each

randomly generated datasets were stored separately in each directory by attribute

like modelling methods and experiment repeat times. For example,

Scenario1/ascD1/ascD183

means that this is the Scenario 1, ascendant accumulative relative dominance dataset

1, the 83th repeat experiment. The relevant data will store following this method.

2. Flexibility: Portable and easy to modify.

Considering the convenience and portability, we used bash script program language

which is easy to write and can be executed under Unix-like operating systems such

as GNU/Linux, FreeBSD, MacOSX and this program can also work under windows

in Cygwin environment. Although the efficiency of scripting language is slower

than compiled C or C++ language, the code is easy for maintenance and editing.

This is important for such try-and-error experiment in which frequent modification
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is needed.

3. Modularity

There are numerous statistical and geographical information system (GIS) pro-

grams in the research field. Each program has its features and peculiar functions.

It is not necessary to reinvent the wheels but peculiar functions in other programs

are applied in the program on demands. R(R Development Core Team, 2008) pro-

gram is employed for running the statistical regression models and evaluating the

accuracy of modelling results; GRASS GIS (GRASS Development Team, 2006) as

used for spatial processing; PostgreSQL (PostgreSQL Global Development Group,

2008) database management system was used for the preprocessing of relevé and

datasets. Thus the program’s component could be separately executed and com-

bined by modulized functions and options. The strength of modularity is that if

you had a problem during a certain step, it was not necessary to re-run the whole

program but only re-run the component in specific step.

Following steps are the execution in detail:

1. Preliminary: Set up scenes and local variables

Before running the program, some dependancy programs and configuration should

be set up properly. GRASS GIS, java runtime environment, PostgreSQL database,

R and required packages for R such as PresenceAbsence, GRASPER should

be installed first. Raw occurrence data should be imported to PostgreSQL database
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and environmental layers should be converted into ascii format. In our program

(see Appendix I), line 32 to 39 indicates the local variables. DB means the database

name; BASE means the base directory we would run the program and experiment;

PGSQL indicates the binary name of PostgreSQL database; JAVA indicates the bi-

nary name of java program; MAXENT JARFILE indicates the path of MAXENT

jar file; MAXIMUM MEMORY shows the maximum memory usage in MAXENT pro-

gram; and ENVLAYERS DIR indicates the directory where put the environmental

layers.

2. Declare the functions

There are five functions in our program, PGSQL QUERY(), SWD PREPROCESS(),

MAXENT MODELLING() and GRASS SAMPLE().

• PGSQL QUERY()

The function PGSQL QUERY() executes the database query to prepare the

required datasets for model testing. The first part of PGSQL QUERY() was

to create datasets for model training and cross-evaluation. Datasets from table

natural forest relevé (nf releve) are selected randomly and separated in

half. Half is for training and the other half is for cross-validation. Occurrence

data in sample plots with human disturbed is removed to reduce the noise.

Since presence/absence data are necessary for GAM modelling, presence and

absence data had been selected according to the dominance dataset cut point,

in this case, we used SQL condition WHERE to choose the occurrence data.
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The statement is as below:

SELECT * FROM $TABLE WHERE ba ${CR} ${CUTPOINTS};

where ${CR} means greater or smaller; ${CUTPOINTS} indicates the cut

points; and ba means basal area which logarithm is taken. For example, the

SQL statement describing ba > 3.58 is written as:

SELECT * FROM $TRAINING_TABLE WHERE ba > 3.58;

After selecting presence data, the occurrence points which does not match

the selecting criteria is regarded as absence. They will be also merged with

absence data which is selected in nf releve table as final absence data.

For example, choosing ba > 3.58 would select only logarithm basal area

greater than 3.58, and others would not be selected. SQL statement UNION is

used to merge absence data:

(SELECT * FROM $TRAINING_TABLE WHERE tsuga=0) UNION

(SELECT * FROM $DATA_DIDNOT_MATCH_CRITERIA

where $DATA_DIDNOT_MATCH_CRITERIA indicates the data which did

not match the criteria.
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• SWD PREPROCESS()

SWD PREPROCESS() uses regular expression to modify the sample file to

match the sample with data (SWD) format in MAXENT. (refer to Appendix

I. line 100-107)

• MAXENT MODELLING()

This function MAXENT MODELLING() iteratively executes the MAXENT

program. (refer to Appendix I. line 109-112).

• GRASS SAMPLE()

GRASS SAMPLE() function will extract raster values from given evaluation

points in GRASS GIS. There are four steps in this function:

(a) Using r.in.ascii to import ascii file into grass raster format.

(b) Using v.in.ascii to import evaluation xy coordinate calculated from

the preprocess step in PGSQL QUERY() function.

(c) Extracting raster value from given evaluation points using v.sample,

and the extraction method is nearest neighbour.

(d) Exporting the sample output to comma seperate values (CSV) file.

• EVALUATE()

EVALUATE() function calculates and output results with PresenceAbsence

package in R.

3. Main function
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-p — Preprocess option

This option enable the preprocess execution: data cleaning, data integration

and partition relative dominance datasets

-gam — GAM model building option

Execute the GAM model building.

-maxent — MAXENT option

Execute the MAXENT model building.

-vgam — Evaluate GAM option

Evaluate the GAM results.

-vmaxent — Evaluate MAXENT option

Evaluate the MAXENT results.

3.5 Analyses of Dominance Effects

To assess the effects of dominance, we tried to visualize the experimental results by box-

plots comparisons and used non-parametric multiple comparison with npmc package in

R.
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Figure 3.1: Overall experiment flowchart
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Chapter 4

Results

The result of Jackknife analysis is as Figure 4.1. The most influential top five environmen-

tal variables are warmth index (WI), altitude, slope, wetness index (WET) and sediment

transport capacity index (STCI). Considering the multi-collinearity presence, the top five

environmental variables have been made multi-collinearity test. The result is as table 4.1.

In table 4.1, warmth index has high correlation with altitude and the covariance is -0.9939;

sediment transport capacity index has also high correlations with slope and wetness index.

Therefore, considering the multivariate correlations, warmth index, slope and wetness in-

dex were used for the predictor variables.

Table 4.1: Multivariate correlation matrix

WET ALT SLP STCI WI

WET 1.0000 0.0700 -0.6570 -0.5621 -0.0588
ALT 0.0700 1.0000 0.0792 -0.2071 -0.9939
SLP -0.6570 0.0792 1.0000 0.7821 -0.1206
STCI -0.5621 -0.2071 0.7821 1.0000 0.1570
WI -0.0588 -0.9939 -0.1206 0.1570 1.0000
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Experimental Test

Figure 4.1: Jackknife analysis of training gains of Tsuga chinensis var. formosensis

4.1 Experimental Test

Figure 4.2 and 4.3 showed the scenario 1 results; figure 4.4 and 4.5 showed the results

of scenario 2. From the boxplot of ascendant accumulative RDo datasets comparions in

scenario 1 and the results of multiple Behren-Fisher-Test, we could find that there was

no significant difference between the datasets. In contrary, result of the descendant accu-
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mulative RDo datasets appeals to a slightly trend amongst the datasets. If we gradually

removed the higher dominance dataset, the AUC value decreased. Clearly, in the first

three datasets (RDo3-8, RDo3-7, RDo3-6) appealed very similar. Their maximum values,

minimum values, lower quartile, upper quartile and median were differ not too much. But

the AUC values amongst RDo3-6, RDo3-5 and RDo3-4 datasets showed significant dif-

ference from the figure 4.3, especially the lower and upper quartile, median and minimum

observation. The multiple Behren-Fisher-Test also carried out the similar results.

In scenario 2, both ascendant and descendant datasets show that there is no significant

trend amongst different relative dominance datasets. The average AUC locates around

0.90 and the interval between lower and upper quartile is smaller than scenario 1. There-

fore, gradually removing lower relative dominance datasets (ascRDo) does not affect the

AUC values of GAM and MAXENT. But gradually removing higher relative dominance

datasets in scenario 1 does affect the AUC values, especially in GAM modelling. In con-

trary to scenario 1, gradually removing higher relative dominance datasets in scenario 2

does not affect the AUC values of GAM and MAXENT.
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Figure 4.2: Scenario 1 - Ascendant accumulative relative dominance datasets. Vertical
axis shows the area under ROC curve (AUC) values and horizontal axis shows the exper-
imental datasets.

43



4. Results

Figure 4.3: Scenario 1 - Descendant accumulative relative dominance datasets. Verti-
cal axis shows the area under ROC curve (AUC) values and horizontal axis shows the
experimental datasets.
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Figure 4.4: Scenario 1 - Ascendant accumulative relative dominance datasets. Vertical
axis shows the area under ROC curve (AUC) values and horizontal axis shows the exper-
imental datasets.
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Figure 4.5: Scenario 2 - Descendant accumulative relative dominance datasets Vertical
axis shows the area under ROC curve (AUC) values and horizontal axis shows the exper-
imental datasets.

46



Chapter 5

Discussion

This chapter is constituted by five parts: the first section discuss the environmen-

tal variables; the second section discuss the model performance; the third part discuss

the dominance effect in sampling data; and the last two parts in this chapter discuss the

“dominance” in ecological theories and possible errors in experiment samplings.

There are five most influential environmental factors in jackknife analysis: (1) warmth

index (2) wetness index (3) sediment transport capacity index (4) slope (5) altitude. These

environmental variables also reflect the ecological meanings of Tsuga chinensis var. for-

mosensis distributions. As mentioned before, Tsuga chinensis var. formosensis prefer-

ably distributes the mountain ridges, cliffs and drier south-facing slopes in high altitude

of Taiwan. AlT reflects that higher altitude (2800-3000m of optimum) is more suitable

for Tsuga chinensis var. formosensis’s distribution. WI is highly correlated with ALT

because WI formula is generated from altitude. SLP and STCI reflect the preference of

steep or precipitous environment such as cliffs and mountain ridges. The natural habitat

of Tsuga chinensis var. formosensis is also more drier than other places, for example,
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it often has less humidity in the mountain ridges and cliffs which Tsuga chinensis var.

formosensis usually becomes pure stands and is dominant species. But due to the high

multi-collinearity revealed in table 4.1, SLP, WI and WET are considered for modelling.

5.1 Model Performance

Elith et al. (2006) compared 16 modelling techniques and tried to make comprehensive

research about the species distribution modelling. And Guisan et al. (2007b) extended

the topic and also compared the robustness of 10 species modelling techniques to various

data issues. From Elith et al. (2006)’s study, they found that there existed some trends for

more variation across modelling techniques for species which were harder to model (Elith

et al., 2006). The situation also existed in recent species distribution research articles

(Guisan et al., 2007b). However, Guisan et al. (2007b) suggested that variation in SDM

performance is greater amongst species than amongst modelling techniques and different

modelling techniques produced consistently distinctive model performance (Guisan et al.,

2007b). This study also confirmed that the species traits effects are greater than modelling

techniques because there is no distinctive differences amongst model techniques.

The recent comparative studies (Guisan et al., 2007b; Elith et al., 2006; Segurado and

Araújo, 2004; Thuiller et al., 2003) conclude that both MAXENT and GAM are good

models for predicting the species distribution. In addition, Meynard and Quinn (2007)

have approved the GAM and GLM are good trade-off models between model performance

and complexity. The results of this study also reveal that the average model performance

amongst MAXENT and GAM are very good.
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5.2 Dominance Effects in Sampling Data

In the descendant accumulative RDo datasets of scenario 1, the results reveal that removal

of higher dominance datasets would decrease the model accuracies. But in the accumula-

tive RDo datasets do not have the same trend. The possible reason which made the trend

would be the dominance effects. Removal of higher dominance datasets mean removal

of the optimum samples in the range of tolerance and which would decrease the overall

performance (figure 5.1). In contrary, removal of lower dominance datasets (i.e. ascen-

dant accumulative RDo datasets) only removes the non-optimum samples in the range of

tolerance (refer to figure 5.2). Therefore, the phenomenon in the descendant accumulative

RDo datasets of scenario 1 shows that it exists the dominance effect in sampling data and

affects the performance of species distribution models.
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Figure 5.1: Diagram of removal of higher dominance datasets in range of tolerance

Figure 5.2: Diagram of removal of lower dominance datasets in range of tolerance
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However, the results of scenario 2 do not reveal the dominance effects in sampling

data on species distribution models. The reasons may be the sample selection bias, sam-

ple sizes or other unknown factors. We would discuss the possible reasons in the follow-

ing sections and there are two subjects proposed to elucidate and discuss the dominance

effects in ecological theories and the distribution modelling evaluation errors.

5.3 Dominance in Ecological Theories

Datasets separation by dominance

Dominance is analytic artificial concept to describe the adaptability and control of

natural habitat. Dominance itself is also an abstractive concept to express the “real dom-

inance”. Few methods which is mentioned in section 2.1 have interpreted the concept of

dominance, such as coverage or basal area in Zürich-Montipeller school or IVI in Wiscon-

sin school. Both basal area and IVI are applied in this study for evaluating the dominance

effects of species distribution modelling. The scenario 2 (i.e. logarithm basal area) results

in that the overall AUC values have no significant difference. Considering the data distri-

bution of basal area in figure 5.3, the shape is inverse-J which indicates the data aggregate

on left hand side. The distribution is log-normal distribution and it is divided into five

parts for model training. Although I try to separate the numbers of datasets equally to

decrease the sample size effect, the separation may have two problems:

1. The separation method is based on the numbers of logarithm basal area but not

exactly match ecological meanings.
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2. In the sense of ecology, the dominance level of Tsuga chinensis var. formosensis

may be the same.

Figure 5.3: Histogram of basal area (scenario 2)
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However, the separation method based on IVI (scenario 1) provides a better way to

divide the different dominance datasets because the IVI uses relative dominance, relative

density and relative frequency to evaluate dominance comprehensively. But some of the

IVI datasets have small sample plots (it is only 13 sample plots in RDo4–3 and 32 in

RDo5–3) and the sample sizes are influential to species distribution models (Hernandez

et al., 2006).

Beyond dominance

Another point beyond dominance is that the Tsuga chinensis var. formosensis does

not have specific habitat, and the distribution of Tsuga chinensis var. formosensis could

be randomly distributed in the range of certain altitude. The phenomenon implies that

the dominance of the Tsuga chinensis var. formosensis is not clear and the selection of

different datasets may be random selections.

5.4 Model Evaluation Errors

Sample selection bias

Sample selection bias and implication of pseudo-absence data are another influential

issue to species distribution modelling (Phillips et al., 2009; VanDerWal et al., 2009).

Low prevalence of raw data also makes the prediction in high specificity. In scenario 1,

I equally selected presence and absence data in each training and evaluation datasets and

the sample plots did not match relative dominance selection criteria were deleted. The
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selection method applied in scenario 1 assured if the model running by chance would not

dramatically affect the accuracies, In other words, over-prediction and under-prediction

were avoided. For example, if I selected a large number of pseudo-absence plots in train-

ing datasets, no matter what the robustness of models, the model always resulted in high

specificity and leaded to over-prediction. Selecting a large number of presence plots also

resulted in high sensitivity. In contrary to scenario 1, scenario 2 try to model fixed train-

ing datasets. Those sample plots did not match relative dominance selection criteria were

regarded as absence.

The overall performance in scenario 1 - ascRDo datasets are much similar to sce-

nario 2 but the variation of scenario 1 is slightly higher than scenario 2. Consequently, it

shows that the variation in flexible sample sizes (scenario 1) is higher than fixed sample

sizes (scenario 2). The overall sensitivity of GAM in scenario 2 is approximately zero

and specificity is approximately 1 may due to the data selection problem, too many ab-

sence plots and few presence plots lead to under-prediction. The MAXENT sensitivity

in scenario 2 is relative higher than GAM but it is low (about 0.5) and may also lead to

under-prediction.

Sample sizes

Hernandez et al. (2006)’s study delivered that the smaller sample size in training

datasets would decrease the model accuracies. Both the results of descendant datasets

in scenario 1 and 2 show that smaller sample sizes performs poorly (refer to figure 4.3

and 4.5). RDo4-3 dataset in scenario 1 of GAM has the poorest performance, the max-

54



Model Evaluation Errors

imum and minimum AUC value exceed over 0.2. In general, the performance gradually

decreases whilst the sample size decreases especially the sample size smaller than 60.

The performances amongst different relative dominance datasets of MAXENT seem to

be insignificant different but appeal to a very slight trend (figure 4.3). If we select the

datasets in which sample sizes are larger than 40, the performances amongst different

relative dominance datasets seem to be no significant difference.

Comparing to descendant datasets, ascendant relative dominance datasets do not have

significant difference amongst different relative dominance datasets. The results may due

to the sample size effect because the smallest sample size in ascendant datasets is 40

and the sample sizes of last two datasets in descendant datasets are both smaller than 40.

However, the results of descendant datasets need further examinations to elucidate the

performance is impacted by sample sizes or by dominance effects.

Number of species

The mostly recent studies for evaluating species distribution modelling use more than

one species, for example, VanDerWal et al. (2009) used 12 vertebrate species in Australian

Wet Tropics; Guisan et al. (2007b) used 30 native tree species in Switzerland; Randin

et al. (2006) used 54 plant species in Austria and Swiss Alps; and Phillips et al. (2009)

even used 226 species from diverse regions of the world. Only one species was applied

in this study may be problematic and would be the Achilles heel. Elith et al. (2006)

mentioned that variation in species characteristics is greater than modelling techniques.

Therefore, the results of our study may only conclude relative dominance would not be a
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major influential factor to species distribution models. On the other hand, if I applied the

method to other species, the results may different.

Besides the species characteristics mentioned above, data quality and consistency

would be influential factors to the model accuracy. There are many field work data in

Taiwan but the resolution and data quality are not good for prediction in species dis-

tribution. Furthermore, the consistence of data are different amongst different projects,

for example, the 3rd FRLI is systematic sampling, but the National Vegetation Diversity

Inventory and Mapping Project is not systematic sampling.

However, Austin et al. (2006) used artificial species generated from real environmen-

tal gradient in a real landscape to evaluate species distribution models. Meynard and

Quinn (2007) also suggested that artificial species could be used for prediction of rare

species. The strength of artificial data is assured the niche-based theory in species dis-

tribution models and avoids uncertainty existed in real species. Since Austin (2007) has

argued that different statistical models are used in prediction of species distribution with-

out explicit ecological theory. This suggests the species occurrence data can be generated

from environmental gradients to make artificial relative dominance datasets for further

evaluating dominance effects.

ROC analysis and AUC issues

AUC has been widely used in many SDM research articles (Guisan et al., 2007b;

Meynard and Quinn, 2007; Elith et al., 2006; Hernandez et al., 2006; Randin et al., 2006)

due to its good performance and ease of computation (Lobo et al., 2008), and it is recom-
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mended to use of the AUC from a ROC plot because it is threshold independent (Fielding,

2002). Lobo et al. (2008) had different opinions against AUC in assessment of distribu-

tion models. They suggest uncertainty and spatial dimensions of distributions are specific

characteristics of species occurrence data to prevent the use of AUC in distribution mod-

elling (Lobo et al., 2008) and multiple accuracy measures should be used for evaluating

the model performance, such as combination of AUC, sensitivity and specificity. As the

AUC issues argued in above literature, only one accuracy measure (AUC) is used in this

study may result bias in each dataset. Even if the AUC value changes, the overall trends

of different datasets does not change in my modelling framework. However, it is worth to

use multiple accuracy measures to assess prediction of distribution models.
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Conclusion

From the Jackknife analysis, it could be concluded that warmth index is the most influ-

ential environmental factors for the distribution of the Tsuga chinensis var. formosensis.

Follow up is the altitude, slope, wetness index and sediment transport capacity index. Due

to the multicollinearity, the results show that warmth index, slope, wetness index are con-

sidered to be the predictive environmental variables for Tsuga chinensis var. formosensis.

In terms of AUC values, the overall performance of either GAM or MAXENT are

reasonably good. Ascendant accumulative relative dominance in scenario 1 appealed not

to be an influential factor to accuracy of SDM. In contrary, the descendant accumulative

relative dominance revealed a trend and the result showed that dominance effects. Re-

moval of lower dominance would affect the model performances but removal of higher

dominance datasets would affect the overall performances of the two models. However,

both ascendant and descendant accumulative datasets in scenario 2 revealed that there

were no significant differences amongst high and low relative dominance.

Sample selection bias, species traits and model criteria are a posteriori the possible

influential reasons to the overall performance of species distribution models. However,
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the concept of “dominance” remains the critical issue in this study. The “dominance”

separation in this case cannot exactly interpret the species supremacy in ecological habitat.

Although it seems a trend existence in descendant datasets of scenario 1, it may mix with

sample size effect and dominance effect.

Rethinking the sample selection criteria in this study, half presence/absence and ran-

domly selection may avoid bias. But it also needs more attention to set up the selection

criteria, I would suggest:

1. In presence-absence modelling techniques (regression-based statistical models), ab-

sence plots should be selected carefully. I suggest to use half presence and half

absence in both GAM and MAXENT modelling.

2. Selection should be avoided human disturbance areas.

3. Using multiple evaluation criteria detect the possible errors. Both sensitivity and

specificity can be used for error rate prediction and the AUC and Kappa statistic

can examine the model performances.

4. Using the data with better quality.

5. Using herbaceous (annual or perennial) plants for target species. The life cycle

of herbaceous plant is shorter than woody species and this could be avoided time

effects.

6. Multiple species should be used for evaluation. Since the sample sizes of raw data

are not sufficient, there are two cases are considered:
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(a) Artificial species is suggested for evaluation.

(b) Species of similar ecological habitat can be combined as pseudo-species for

evaluation and this method can increase sample sizes. For example, Machilus

zuihoensis (Lauraceae) and Machilus japonica (Lauraceae) and Machilus thun-

bergii (Lauraceae) can be grouped as one pseudo-species.

Despite the results rejected assumption, the methods in this study provide a theme

for such exploratory ecological experiment. The concept inherited from data mining also

dispense a possible framework in species distribution modelling.
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Appendix A

Demo program

There are two scenarios in our study, following demo program is Scenario2-BA which

executes the experiment.

Scenario2-BA

1 #!/usr/bin/env bash
2 # Copyright (c) 2008-2009 Lin, Cheng-Tao <r96625028@ntu.edu.tw>
3 # All rights reserved.
4 #
5 # Redistribution and use in source and binary forms, with or
6 # without modification, are permitted provided that the
7 # following conditions are met:
8 # 1 Redistributions of source code must retain the above
9 # copyright notice, this list of conditions and the

10 # following disclaimer.
11 # 2 Redistributions in binary form must reproduce the
12 # above copyright notice, this list of conditions
13 # and the following disclaimer in the documentation
14 # and/or other materials provided with the distribution.
15 #
16 # THIS SOFTWARE IS PROVIDED BY LIN, CHENG-TAO ’’AS IS’’ AND ANY
17 # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
18 # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
19 # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL LIN,
20 # CHENG-TAO BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
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21 # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 # NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
23 # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 # HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
26 # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
27 # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28
29
30
31 ## Local variables
32 DB=forestsurvey3rd
33 BASE=/home/db/pgsql/Tsuga/Scenario2
34 XXXpred=${BASE}/Xpred1k
35 PGSQL=psql
36 JAVA=java
37 MAXIMUM_MEMORY=1024
38 MAXENT_JARFILE=/home/db/pgsql/Tsuga/maxent.jar
39 ENVLAYERS_DIR=/home/db/pgsql/Tsuga/EnvLayers
40
41 #########################
42 ####### FUNCTIONS #######
43 #########################
44
45 PGSQL_QUERY(){
46 ##### pgsql SQL query #####
47
48 # 1. random selection -> 2. create training table -> 3. create

cross-validation table
49
50 ${PGSQL} -q -d ${DB} -c "
51 -- 1.1 create temp table rnd${rnd}, and order by random
52 CREATE TEMP TABLE rnd${rnd} AS (SELECT * FROM nf_releve ORDER

BY random());
53 -- 1.2 add rsn (type: serial) column to table rnd${rnd}
54 ALTER TABLE rnd${rnd} ADD COLUMN rsn serial;
55 -- 1.3 create training table
56 CREATE TEMP TABLE r${rnd}t AS (SELECT * from rnd${rnd} where

rsn <= 718);
57 -- 1.4 create cross-validation table
58 CREATE TEMP TABLE r${rnd}v AS (SELECT * from rnd${rnd} where

rsn > 718);
59
60 -- 2.1 select presence data, according to the ba cut point
61 CREATE TEMP TABLE r${rnd}ta${d}p
62 AS (SELECT * FROM r${rnd}t WHERE ba ${cr} ${cut_point});
63 -- 2.2 other presence data regard as absence
64 CREATE TEMP TABLE r${rnd}ta${d}a AS
65 (SELECT * FROM r${rnd}t WHERE ba ${icr} ${cut_point});
66 -- 2.3 union with other absence data
67 CREATE TEMP TABLE r${rnd}ta${d}au AS ((SELECT * FROM r${rnd}t

WHERE tsuga=0)
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68 UNION (SELECT * FROM r${rnd}ta${d}a));
69 -- 2.4 set all of the value in tsuga column to 0
70 UPDATE r${rnd}ta${d}au SET tsuga=0;
71 -- 2.5 combine presence and absence table and make a table
72 CREATE TEMP TABLE r${rnd}ta${d}f AS
73 ((SELECT * FROM r${rnd}ta${d}p) UNION (SELECT * FROM r${

rnd}ta${d}au));
74 -- 2.6 add index column (for grasper)
75 ALTER TABLE r${rnd}ta${d}f ADD COLUMN index serial;
76 -- 2.7 export all
77 COPY (SELECT index,mapno,x,y,landuse,slope,wetness,wi,tsuga,ba
78 FROM r${rnd}ta${d}f) TO
79 ’${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${rnd}/$

{SAMPLING_CODE}${d}${rnd}-raw.csv’ DELIMITER AS ’,’ CSV
HEADER;

80 -- 2.8 export YYY
81 COPY (SELECT index,tsuga FROM r${rnd}ta${d}f)
82 TO ’${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${rnd

}/YYY’
83 DELIMITER AS ’,’ CSV HEADER;
84 -- 2.9 export XXX
85 COPY (SELECT index,x,y,slope,wetness,wi FROM r${rnd}ta${d}f)
86 TO ’${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${rnd

}/XXX’
87 DELIMITER AS ’,’ CSV HEADER;
88 --2.10 export to sample.csv
89 COPY (SELECT tsuga,x,y,slope,wetness,wi FROM r${rnd}ta${d}f)
90 TO ’${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${rnd

}/sample.csv’
91 DELIMITER AS ’,’ CSV HEADER;
92 -- 3. create validation format
93 COPY (SELECT tsuga as presence,x,y FROM r${rnd}v)
94 TO ’${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${rnd

}/r${rnd}v.csv’
95 DELIMITER AS ’,’ CSV HEADER;
96 "
97 }
98
99

100 SWD_PREPROCESS(){
101 sed -e ’s/ˆ0/background/g’ ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/sample.csv |
102 sed -e ’s/ˆ1/Tsuga/g’ > sample.csv
103 if [ -d output ]; then
104 echo "output directory exists!"
105 else mkdir output
106 fi
107 }
108
109 MAXENT_MODELLING(){
110 ${JAVA} -mx${MAXIMUM_MEMORY}m -jar ${MAXENT_JARFILE} -o

output -a -e ${ENVLAYERS_DIR} \
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111 -s sample.csv redoifexists
112 }
113
114
115
116 GRASS_SAMPLE(){
117 #### 5. Extract value from points via GRASS GIS ####
118
119 if [ ‘pwd‘ = ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam ]; then
120 MODEL=gam
121 RASTER=pred_tsuga.asc
122 elif [ ‘pwd‘ = ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/maxent ]; then
123 MODEL=maxent
124 RASTER=output/Tsuga.asc
125 else
126 echo "Exception caught! (GRASS_SAMPLE)"
127 fi
128
129 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${

rnd}/${MODEL}
130 # 1 import asc into grass (RASTER)
131 r.in.arc input=${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/${MODEL}/${RASTER} \
132 output=${SAMPLING_CODE}${d}r${rnd} type=FCELL mult

=1.0 --o &&
133
134 # 2 import validation xy coordinate (VECTOR)
135 v.in.ascii input=${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/r${rnd}v.csv \
136 format=point fs="," output=${SAMPLING_CODE}${d}v${

rnd} \
137 skip=1 ’columns=presence int,x int,y int’ x=2 y=3

z=0 cat=0 --o &&
138
139 # 3 sample (nearest neighbor)
140 v.sample input=${SAMPLING_CODE}${d}v${rnd} column=

presence \
141 output=${SAMPLING_CODE}${d}s${rnd} rast=${

SAMPLING_CODE}${d}r${rnd} z=1.0 --o &&
142
143 # 4 export to csv
144 v.out.ogr input=${SAMPLING_CODE}${d}s${rnd} type=point

\
145 dsn=${SAMPLING_CODE}${d}s${rnd} olayer=${

SAMPLING_CODE}${d}s${rnd} \
146 layer=1 format=CSV --o
147 }
148
149 EVALUATE(){
150 # 5 modify csv file to meet the input format of
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PresenceAbsence
151 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${

rnd}/${MODEL}/${SAMPLING_CODE}${d}s${rnd}/ &&
152 cat ${SAMPLING_CODE}${d}s${rnd}.csv | sed -e ’s/cat/

PlotID/g’ |
153 sed -e ’s/pnt_val/Observed/g’ | sed -e ’s/rast_val/

Predicted/g’ |
154 awk -F’,’ ’{ print $1,$2,$3 }’ > ${SAMPLING_CODE}${d}

a${rnd}
155
156 cat > s${rnd}.R << _EOF
157
158 library(PresenceAbsence)
159 ${SAMPLING_CODE}${d}a${rnd} <- read.table("${SAMPLING_CODE}${d}a${

rnd}", header=T)
160 p.a.accuracy <- presence.absence.accuracy(${SAMPLING_CODE}${d}a${

rnd})
161 write.table(cbind(auc(${SAMPLING_CODE}${d}a${rnd})\$AUC, p.a.

accuracy\$Kappa),
162 file="${BASE}/results/${MODEL}-${SAMPLING_CODE}${d}r-${rnd}",

row.names=F, col.names=F)
163
164 _EOF
165 # execute calculation
166 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}${d}${

rnd}/${MODEL}/${SAMPLING_CODE}${d}s${rnd}
167 R CMD BATCH s${rnd}.R
168 }
169
170
171
172 #########################
173 ########## Main #########
174 #########################
175
176 case $1 in
177 -p|--preprocess)
178
179 # cut points
180 # [ >3.50(65) >3.59(53) >3.68(47) >3.77(37) >3.86(30)
181 # [ <3.50(45) <3.59(57) <3.68(63) <3.77(73) <3.86(80) ]
182
183 # check for results directory
184 if [ -d ${BASE}/results ] ; then
185 echo "${BASE}/results exists!"
186 else
187 mkdir -p ${BASE}/results
188 fi
189
190 # dataset type: 1, ascendant; 2, descendant
191 for (( type=1 ; type<3 ; type++))
192 do
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193
194 if [ ${type} = 1 ] ; then
195 SAMPLING_CODE=ascD
196 tp=a
197 cr=">"
198 icr="<" # inverse criteria
199 elif [ ${type} = 2 ] ; then
200 SAMPLING_CODE=descD
201 tp=d
202 cr="<"
203 icr=">" # inverse criteria
204 else
205 echo "Exception caught! (type)"
206 fi
207
208 # 5 datasets
209 for (( d = 1 ; d < 6 ; d++ ))
210 do
211
212 if [ ${d} = 1 ] ; then
213 cut_point=3.50
214 elif [ ${d} = 2 ] ; then
215 cut_point=3.59
216 elif [ ${d} = 3 ] ; then
217 cut_point=3.68
218 p
219 elif [ ${d} = 4 ] ; then
220 cut_point=3.77
221 elif [ ${d} = 5 ] ; then
222 cut_point=3.86
223 else
224 echo "Exception caught! (5 datasets)"
225 fi
226
227 for (( rnd = 1 ; rnd < 101 ; rnd++ ))
228 do
229
230 # check the working directories
231 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} ]; then
232 echo "${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} exists!"
233 else
234 mkdir -p ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}
235 chmod 777 ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}
236 fi
237
238 # change to the working directory
239 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}$

{d}${rnd}
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240
241 # execute the database query
242 PGSQL_QUERY
243
244 done
245
246 done
247
248 done
249 ;;
250
251 -gam)
252
253 for (( type=1 ; type<3 ; type++))
254 do
255
256 if [ ${type} = 1 ] ; then
257 SAMPLING_CODE=ascD
258 tp=a
259 cr=">"
260 icr="<" # inverse criteria
261 elif [ ${type} = 2 ] ; then
262 SAMPLING_CODE=descD
263 tp=d
264 cr="<"
265 icr=">" # inverse criteria
266 else
267 echo "Exception caught! (type)"
268 fi
269
270 # 5 datasets
271 for (( d = 1 ; d < 6 ; d++ ))
272 do
273 for (( rnd = 1 ; rnd < 101 ; rnd++ ))
274 do
275 echo "

################################################
"

276 echo "########### ${type}RDo training
################"

277 echo "#### The ${d}-${rnd} repeat processing
....####"

278 echo "
################################################
"

279 # check the working directories
280 # if working directory
281 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} ]; then
282 echo "${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} exists!"
283 echo "I will use it for modelling"
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284 else
285 echo "You have to run preprocess first!"
286 fi
287
288 # create gam working directory
289 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam ]; then
290 echo "${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam exists!"
291 echo "I will use it for storing the gam

results."
292 else
293 mkdir -p ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam
294 fi
295
296 # go to the working directory
297 cd ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam
298 #### 4. R execution

###################################
299 cat > tr${SAMPLING_CODE}${d}${rnd}.R <<_EOF
300 # tr${SAMPLING_CODE}${d}${rnd}
301 # load grasper library
302 library(grasper)
303
304 # Data input
305 XXX <- read.table("../XXX", header=T, sep=",")
306 YYY <- read.table("../YYY", header=T, sep=",")
307 XXXpred <- read.table("$XXXpred", header=T)
308
309 # (1) set grasp options
310 OPT <- list()
311 OPT$TITLE <- as.character("R-GRASP: ")
312 OPT$LAYOUT <- eval(parse(text = as.character("c(3,3)")))
313 OPT$NBBARS <- as.integer(10)
314 #OPT$WEIGHTS <- as.character(WEIGHTS)
315 OPT$RESOLUTION <- as.numeric(1000)
316 OPT$SEP <- as.character(",")
317 print(OPT)
318 apply.ok <- TRUE
319
320 # (2) grasp import
321 grasp.in(YYY,XXX,XXXpred)
322
323 # select response
324 gr.Yi <- 2
325 # select predictors

selX <- c(4,5,6)
326
327 # grasp GAM model family=quasibinomial, F

73



A. Demo program

328 grasp.model(gr.Yi, trace=TRUE, df=4, calcdf=FALSE, stepfam = "
quasibinomial()")

329 grasp.scope(gr.selX, df = 4, calcdf = FALSE)
330 grasp.step.gam(direction = "both", steps = 1000, trace = TRUE,

limit = 0.05, test = "F")
331 grasp.pred()
332 grasp.pred.plot(gr.predmat, resolution = 1000)
333
334 grasp.ascii(gr.Yi, resolution=1000)
335 _EOF
336
337 R CMD BATCH tr${SAMPLING_CODE}${d}${rnd}.R
338
339
340
341 done
342 done
343 done
344
345
346
347 ;;
348
349 -maxent)
350
351 for (( type=1 ; type<3 ; type++))
352 do
353
354 if [ ${type} = 1 ] ; then
355 SAMPLING_CODE=ascD
356 tp=a
357 cr=">"
358 icr="<" # inverse criteria
359 elif [ ${type} = 2 ] ; then
360 SAMPLING_CODE=descD
361 tp=d
362 cr="<"
363 icr=">" # inverse criteria
364 else
365 echo "Exception caught! (type)"
366 fi
367
368 # 5 datasets
369 for (( d = 1 ; d < 6 ; d++ ))
370 do
371 for (( rnd = 1 ; rnd < 101 ; rnd++ ))
372 do
373
374 # check the working directories
375 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} ]; then
376 echo
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377 else
378 echo "You have to run preprocess first! (

option -p or --preprocess)"
379 fi
380
381
382 # create gam working directory
383 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/maxent ]; then
384 echo ""
385 else
386 mkdir -p ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/maxent
387 fi
388 # change to the working directory
389 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}$

{d}${rnd}/maxent
390
391 # preprocess the input file sample.csv
392 SWD_PREPROCESS
393 # maxent modelling
394 MAXENT_MODELLING
395
396 done
397 done
398 done
399 ;;
400
401 -vgam)
402 for (( type=1 ; type<3 ; type++))
403 do
404
405 if [ ${type} = 1 ] ; then
406 SAMPLING_CODE=ascD
407 tp=a
408 cr=">"
409 icr="<" # inverse criteria
410 elif [ ${type} = 2 ] ; then
411 SAMPLING_CODE=descD
412 tp=d
413 cr="<"
414 icr=">" # inverse criteria
415 else
416 echo "Exception caught! (type)"
417 fi
418
419 # 5 datasets
420 for (( d = 1 ; d < 6 ; d++ ))
421 do
422 for (( rnd = 1 ; rnd < 101 ; rnd++ ))
423 do
424
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425 # check the working directories
426 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} ]; then
427 echo ""
428 else
429 echo "You have to run preprocess/modelling

first! (option -p or --preprocess)"
430 exit 1
431 fi
432
433
434 # create gam working directory
435 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/gam ]; then
436 echo ""
437 else
438 echo "You cannot evaluate before modelling"
439 exit 1
440 fi
441 # change to the working directory
442 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}$

{d}${rnd}/gam
443
444 # sample with grass
445 GRASS_SAMPLE
446 EVALUATE
447
448 done
449 done
450 done
451 ;;
452
453 -vmaxent)
454 for (( type=1 ; type<3 ; type++))
455 do
456 if [ ${type} = 1 ] ; then
457 SAMPLING_CODE=ascD
458 tp=a
459 cr=">"
460 icr="<" # inverse criteria
461 elif [ ${type} = 2 ] ; then
462 SAMPLING_CODE=descD
463 tp=d
464 cr="<"
465 icr=">" # inverse criteria
466 else
467 echo "Exception caught! (type)"
468 fi
469
470 # 5 datasets
471 for (( d = 1 ; d < 6 ; d++ ))
472 do
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473 for (( rnd = 1 ; rnd < 101 ; rnd++ ))
474 do
475
476 # check the working directories
477 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd} ]; then
478 echo ""
479 else
480 echo "You have to run preprocess/modelling

first! (option -p or --preprocess)"
481 exit 1
482 fi
483
484
485 # create gam working directory
486 if [ -d ${BASE}/${SAMPLING_CODE}${d}/${

SAMPLING_CODE}${d}${rnd}/maxent ]; then
487 echo ""
488 else
489 echo "You cannot evaluate before modelling"
490 exit 1
491 fi
492 # change to the working directory
493 cd ${BASE}/${SAMPLING_CODE}${d}/${SAMPLING_CODE}$

{d}${rnd}/maxent
494
495 # sample with grass
496 GRASS_SAMPLE
497 EVALUATE
498 done
499 done
500 done
501 ;;
502
503 -h|--help)
504 cat << EOF
505 Preprocess
506 =====================
507 -p preprocess the datasets
508 this step will create sampling datasets locate at ${

BASE}, for example:
509 ${BASE}/ascD1, and prepare the prerequisite files for

modelling and
510 validation.
511 Following file will be created:
512 ${SAMPLING_CODE}${dataset}raw.csv [raw data]
513 XXX [ predictor variables ---> for gam ]
514 YYY [ response variables ---> for gam ]
515 sample.csv [ sample with data ---> for maxent]
516
517
518 Modelling
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A. Demo program

519 ======================
520 -gam generalized additive models
521 -maxent maximum entropy principles
522
523 Evaluation
524 ======================
525 -vgam evaluate the gam results
526 -vmaxent evaluate the maxent results
527
528 -h | --help : display this help
529
530 EOF
531 exit 0
532 ;;
533
534 *)
535 echo "-p -maxent -gam -vgam -vmaxent or -h for more

information"
536 exit 1
537 ;;
538
539 esac

Listing A.1: Scenario2-BA
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Appendix B

NPMC results

Table B.1: Results of the multiple Behren-Fisher-Test in ascendant accumulative RDo
datasets in GAM of scenario 1. In column “cmp”, 1 indicates the dataset1 (RDo8); 2
indicates the dataset2 (RDo7-8); 3 is RDo6-8 4 is RDo5-8; 5 is RDo4-8; 6 is RDo3-8.

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.47020 0.3516111 0.5887889 1.0000000 0.9819211 N/A
2 1-3 0.55835 0.4410956 0.6756044 0.5175224 0.7119003 N/A
3 1-4 0.50285 0.3842914 0.6214086 0.9969894 1.0000000 N/A
4 1-5 0.49325 0.3744033 0.6120967 0.9997751 0.9999990 N/A
5 1-6 0.56655 0.4491364 0.6839636 0.3988447 0.5851660 N/A
6 2-3 0.58540 0.4688037 0.7019963 0.1756152 0.2882897 N/A
7 2-4 0.53845 0.4201327 0.6567673 0.8050105 0.9425640 N/A
8 2-5 0.52805 0.4085328 0.6475672 0.9086242 0.9869894 N/A
9 2-6 0.59635 0.4789512 0.7137488 0.1019124 0.1763965 N/A

10 3-4 0.44295 0.3252928 0.5606072 1.0000000 0.7362566 N/A
11 3-5 0.42745 0.3101454 0.5447546 1.0000000 0.4843283 N/A
12 3-6 0.50780 0.3888456 0.6267544 0.9920453 0.9999966 N/A
13 4-5 0.49405 0.3752672 0.6128328 0.9997093 0.9999997 N/A
14 4-6 0.57240 0.4548383 0.6899617 0.3218797 0.4891300 N/A
15 5-6 0.57880 0.4622213 0.6953787 0.2391153 0.3783997 N/A
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Table B.2: Results of the multiple Behren-Fisher-Test in ascendant accumulative RDo
datasets in MAXENT of scenario 1. In column “cmp”, 1 indicates the dataset1 (RDo8);
2 indicates the dataset2 (RDo7-8); 3 is RDo6-8 4 is RDo5-8; 5 is RDo4-8; 6 is RDo3-8.

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.53100 0.4129206 0.6490794 0.8784263 0.9764527 N/A
2 1-3 0.55700 0.4394237 0.6745763 0.5386762 0.7342307 N/A
3 1-4 0.57235 0.4553479 0.6893521 0.3167277 0.4830739 N/A
4 1-5 0.54050 0.4226605 0.6583395 0.7744258 0.9244208 N/A
5 1-6 0.57790 0.4612967 0.6945033 0.2497722 0.3937401 N/A
6 2-3 0.52305 0.4048770 0.6412230 0.9383052 0.9942870 N/A
7 2-4 0.54145 0.4238174 0.6590826 0.7607830 0.9163710 N/A
8 2-5 0.50940 0.3912733 0.6275267 0.9887428 0.9999647 N/A
9 2-6 0.55145 0.4341314 0.6687686 0.6183859 0.8091645 N/A

10 3-4 0.51860 0.4001965 0.6370035 0.9613392 0.9981084 N/A
11 3-5 0.48805 0.3698263 0.6062737 0.9999660 0.9998379 N/A
12 3-6 0.52665 0.4084266 0.6448734 0.9142579 0.9884255 N/A
13 4-5 0.47020 0.3522769 0.5881231 1.0000000 0.9803350 N/A
14 4-6 0.50835 0.3901002 0.6265998 0.9905586 0.9999846 N/A
15 5-6 0.53890 0.4211841 0.6566159 0.7929353 0.9356845 N/A

Table B.3: Results of the multiple Behren-Fisher-Test in descendant accumulative RDo
datasets in GAM of scenario 1. In column “cmp”, 1 indicates the dataset1 (RDo3-8); 2
indicates the dataset2 (RDo3-7); 3 is RDo3-6 4 is RDo3-5; 5 is RDo3-4.

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.48135 0.36782433 0.5948757 0.9997811 9.976e-01 N/A
2 1-3 0.39405 0.28370192 0.5043981 1.0000000 6.793e-02 N/A
3 1-4 0.21420 0.12603469 0.3023653 1.0000000 4.773e-15 ***
4 1-5 0.06225 0.01941706 0.1050829 1.0000000 0.000e+00 ***
5 2-3 0.41370 0.30233027 0.5250697 1.0000000 2.166e-01 N/A
6 2-4 0.22975 0.13834774 0.3211523 1.0000000 1.459e-13 ***
7 2-5 0.06955 0.02328466 0.1158153 1.0000000 0.000e+00 ***
8 3-4 0.29965 0.19779913 0.4015009 1.0000000 1.180e-06 ***
9 3-5 0.10255 0.04384222 0.1612578 1.0000000 0.000e+00 ***

10 4-5 0.24260 0.14778631 0.3374137 1.0000000 8.252e-12 ***
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Table B.4: Results of the multiple Behren-Fisher-Test in descendant accumulative RDo
datasets in MAXENT of scenario 1. In column “cmp”, 1 indicates the dataset1 (RDo3-8);
2 indicates the dataset2 (RDo3-7); 3 is RDo3-6 4 is RDo3-5; 5 is RDo3-4.

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.49535 0.38101271 0.6096873 0.9979746 9.999e-01 N/A
2 1-3 0.36320 0.25426643 0.4721336 1.0000000 6.092e-03 **
3 1-4 0.31975 0.21483574 0.4246643 1.0000000 4.381e-05 ***
4 1-5 0.17700 0.09489415 0.2591058 1.0000000 0.000e+00 ***
5 2-3 0.37430 0.26537849 0.4832215 1.0000000 1.472e-02 *
6 2-4 0.33810 0.23237529 0.4438247 1.0000000 3.319e-04 **
7 2-5 0.19735 0.11124963 0.2834504 1.0000000 0.000e+00 N/A
8 3-4 0.47045 0.35663549 0.5842645 0.9999997 9.697e-01 N/A
9 3-5 0.31580 0.21126374 0.4203363 1.0000000 1.287e-05 ***

10 4-5 0.33855 0.23055308 0.4465469 1.0000000 5.766e-04 **

Table B.5: Results of the multiple Behren-Fisher-Test in ascendant accumulative RDo
datasets in GAM of scenario 2. In column “cmp”, 1 indicates the ascD1 dataset; 2 is the
ascD2; 3 is the ascD3; 4 is the ascD4 and 5 is the ascD5

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.51625 0.4030617 0.6294383 0.9285366 0.9958472 N/A
2 1-3 0.50050 0.3871368 0.6138632 0.9900539 1.0000000 N/A
3 1-4 0.45730 0.3442176 0.5703824 1.0000000 0.8395583 N/A
4 1-5 0.45610 0.3432678 0.5689322 1.0000000 0.8244191 N/A
5 2-3 0.47940 0.3661877 0.5926123 0.9999485 0.9887558 N/A
6 2-4 0.43565 0.3235118 0.5477882 1.0000000 0.5142199 N/A
7 2-5 0.44150 0.3291592 0.5538408 1.0000000 0.6079554 N/A
8 3-4 0.46100 0.3480062 0.5739938 1.0000000 0.8793439 N/A
9 3-5 0.45990 0.3469964 0.5728036 1.0000000 0.8676399 N/A

10 4-5 0.49510 0.3813400 0.6088600 0.9964294 0.9999946 N/A
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Table B.6: Results of the multiple Behren-Fisher-Test in ascendant accumulative RDo
datasets in MAXENT of scenario 2. In column “cmp”, 1 indicates the ascD1 dataset; 2 is
the ascD2; 3 is the ascD3; 4 is the ascD4 and 5 is the ascD5

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.45525 0.3427027 0.5677973 1.0000000 0.81280593 N/A
2 1-3 0.49520 0.3819564 0.6084436 0.9967566 0.99999390 N/A
3 1-4 0.38970 0.2803226 0.4990774 1.0000000 0.04787775 N/A
4 1-5 0.45030 0.3376270 0.5629730 1.0000000 0.74614759 N/A
5 2-3 0.53745 0.4247303 0.6501697 0.7154295 0.89498942 N/A
6 2-4 0.43910 0.3270473 0.5511527 1.0000000 0.56935505 N/A
7 2-5 0.49420 0.3811446 0.6072554 0.9974066 0.99997815 N/A
8 3-4 0.39660 0.2869319 0.5062681 1.0000000 0.07621253 N/A
9 3-5 0.45440 0.3417848 0.5670152 1.0000000 0.80238462 N/A

10 4-5 0.55700 0.4447511 0.6692489 0.4360458 0.63248874 N/A

Table B.7: Results of the multiple Behren-Fisher-Test in descendant accumulative RDo
datasets of scenario 2. In column “cmp”, 1 indicates the descD1 dataset; 2 is the descD2;
3 is the descD3; 4 is the descD4 and 5 is the descD5

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.63250 0.5233923 0.7416077 4.577828e-03 8.714e-03 **
2 1-3 0.67190 0.5662663 0.7775337 5.016986e-05 7.371e-05 ***
3 1-4 0.69250 0.5887779 0.7962221 1.069885e-05 3.173e-06 ***
4 1-5 0.70060 0.5982262 0.8029738 8.102625e-07 8.468e-07 ***
5 2-3 0.55030 0.4378501 0.6627499 5.260283e-01 7.415e-01 N/A
6 2-4 0.57710 0.4652972 0.6889028 1.940149e-01 3.248e-01 N/A
7 2-5 0.58340 0.4722328 0.6945672 1.407128e-01 2.421e-01 N/A
8 3-4 0.51790 0.4043139 0.6314861 9.156844e-01 9.952e-01 N/A
9 3-5 0.53680 0.4237044 0.6498956 7.191173e-01 9.060e-01 N/A

10 4-5 0.51045 0.3971580 0.6237420 9.587799e-01 9.997e-01 N/A
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Table B.8: Results of the multiple Behren-Fisher-Test in descendant accumulative RDo
datasets in MAXENT of scenario 2. In column “cmp”, 1 indicates the ascD1 dataset; 2 is
the ascD2; 3 is the ascD3; 4 is the ascD4 and 5 is the ascD5

cmp effect lower.cl upper.cl p.value.1s p.value.2s significance

1 1-2 0.45525 0.3427797 0.5677203 1.0000000 0.81344993 N/A
2 1-3 0.49520 0.3820339 0.6083661 0.9967753 0.99999389 N/A
3 1-4 0.38970 0.2803975 0.4990025 1.0000000 0.04654412 N/A
4 1-5 0.45030 0.3377041 0.5628959 1.0000000 0.74733016 N/A
5 2-3 0.53745 0.4248074 0.6500926 0.7141939 0.89351607 N/A
6 2-4 0.43910 0.3271240 0.5510760 1.0000000 0.56919599 N/A
7 2-5 0.49420 0.3812220 0.6071780 0.9974271 0.99997816 N/A
8 3-4 0.39660 0.2870069 0.5061931 1.0000000 0.07578694 N/A
9 3-5 0.45440 0.3418619 0.5669381 1.0000000 0.80190561 N/A

10 4-5 0.55700 0.4448279 0.6691721 0.4357837 0.63194231 N/A
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