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Abstract

One of the important criteria for physical implementation of a practical quantum
computer is to have a universal set of quantum gates with operation times much
faster than the relevant decoherence time of the quantum computer. In addition,
high-fidelity quantum gates to meet the error threshold of about 1072 ~ 10~* are also
desired for fault-tolerant quantum computation. So the main purpose of this thesis is
to focus on finding control parameter sequence in near time-optimal way using an op-
timization approach, the Krotov method, for high-fidelity quantum gates in the Kane
silicon-based donor spin quantum computer architecture where the donor electron
spins are defined as quantum bits (qubits). We first review the basics of silicon-based
donor spin quantum computer proposed by Kane, and how to control the system
and construct the quantum gates, including Hadamard gate, CNOT gate and so on,
in canonical gate decomposition ways. We then introduce the Krotov optimization
method which is one of the most effective and universal computation methods for
solving optimal control problems with a large dimension of state vectors. The Krotov
method is then applied to find the optimal control sequence of a Hadamard gate in the
Kane quantum donor electron spin computer. Quantum decoherece is still a major
obstacle for the implementation of a pratical quantum computer. We then consider a
decoherence model, derive a corresponding quantum master equation of the reduced
density matrix of the qubits, and construct equations of motion for quantum gate
evolution in the presence of external (thermal) environments. Finally, we apply the
Krotov method to find optimal control sequence for Hadmard gate operation under

the influence of external environments.
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Chapter 1

Introduction

Quantum mechanics is more fundamental laws than classical. It makes us believe
that the quantum computer could be done. In 1985, Deutsch [1].introduced the idea
of a quantum computer that makes use of superposition, interference entanglement or
other quantum effects based on the principles of quantum mechanics. In 1994, Shor
presented his quantum factoring and discrete logarithm finding algorithms. In 1996,
Grover published an quantum algorithm for searching an unordered database. These
quantum algorithms can very sustantially computational and make possible to solve
those problems which are impossible or difficult to solve with classical computers. All
of the quantum algorithms need a practical quantum computer to run and to achieve
what we want to do. To construct a quantum computer, the first thing is to find a
quantum system which has well-defined quantum bits and relatively long quantum
coherence time and can make universal quantum gates. The universal quantum gate
means that through the control of the system, if one can perform two qubit gate
operations, such as CNOT-gate or v SW AP-gate, and all of the single-qubit gate
operations then all other quantum gates can also be performed. Recently, the most
notable physical systems for quantum computer proposals are the linear quantum
optics, superconducting Josephson junction,ion trap,quantum dot, impurity in semi-
conductor and liquid state nuclear magnetic resonance(NMR). In this thesis, we study
the proposal of the Kane silicon-based donor spin quantum computer introduced in

chapter 2



An important requirement for a practical quantum computer is to have high-
fidelity quantum gates with a operation time much shorter than the decoherence
time. So to achieve a high-fidelity quantum gate operation in a shortest time is
desired. This near time-optimal, high-fidelity control problem has attracted much
attention recently. In this thesis, we will investigate quantum optimal control problem
for Kane quantum computer using optimization method called the Krotov method
[5] [6]. In some optimization methods, one may get stuck into local minima of the
optimal control problem. However, the method developed by Krotov can obtain the
global minimum result. The Krotov method can deal with almost all of the optimal
control problems if the equations of motion of the system can be formulated. We will
introduce this method in chapter 3.

In chapter 2 we describe the model for the Kane silicon-based donor spin quan-
tum computer, but in real case we need to consider the system coupled to external
environments. Therefore, in chapter 4 we will introduce the theory of open system
using the master equation approach. Also, in chapter 4 we will use Born and Markov
approximations. To obtain the master equation for a simple dephasing model which
will be used in our system.

In chapter 5, we will apply the Krotov method to investigate the quantum optimal
control problem for the quantum gate operations of the Kane quantum computer. We
will first introduce how to apply the Krotov method in quantum system. We will then
use the method to obtain optimal control sequence for a single qubit gate, Hadamard

gate.



Chapter 2

Silicon-base donor spin Quantum

Computer

2.1 Kane Quantum Computer Architecture and
Hamiltonian

The silicon-based donor spin quantum computer was proposed by Kane [2] in 1998.
The Kane computer satisfies the criteria that qubits can be identified, it is possible
to prepare initial states and control these state, and the decoherence time is slow
in comparison to typical gate speeds. Therefore, in principle, the Kane quantum
computer satisfies all of the important requirements of a quantum computer. In the
Kane quantum computer architecture, the phosphorous donor atoms are embedded
in a Si crystal and arranged in a array. As a first approximation, four of five valence
electrons of each 3'P atom bonds to neighboring Si atom, and the fifth electron forms
a hydrogen-like S-orbital around each *'P* ion. In the original proposal of Kane, the
nuclear spin of each phosphorous (*'P) represents a single qubit. Here we use the
phosphorous donor electron spins as qubit. The schematic diagram of Kane quantum
computer is shown in Fig. 2.1 Using the electrodes above and between each qubit and
the global static and oscillating magnetic fields, one can achieve the control of each

qubit. Using the formula of hydrogen-like atom, the Bohr radius and bound state
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Figure 2.1: The Kane quantum computer architecture

energy levels can be estimated be:

ay = emiaB, (2.1)
m* g
E, = €2me En ) (22)

where € = 11.7 is the susceptibility of Si, and the effective mass m* ~ m%. = 0.27m,
(where m, is the free electron mass, and m/. is the transverse effective mass in Si).
Using the value of the Bohr radius and the bound state energies of a hydrogen atom
: ap = 0.053nm and EX = —13.6eV/n? we obtained effective a}; ~ 2.3nm and
F ~ —2TmeV.

In the enough low temperatures (about milli-kelvin temperatures), the donor elec-
tron will only occupy the lowest energy bound state. Therefore,the electron donor
will be in the 1st s-orbital and concentrated at the donor nucleus, getting a large hy-
perfine coupling energy. The strength, A, of the hyperfine interaction is proportional
to the value of the donor electron wave-functiion evaluated at the nucleus,

8

A = T pipgapm|w O, 23)

where pp is th Bohr magneton, and pu, is the proton Bohr magneton. A typical
strength for hyperfine interaction is A = 1.2 x 10~*meV. Applying a voltage on



'A’ gates placed directly above each 3!P nucleus distort the shape of the electronic
wavefunction thereby reducing the strength of the hyperfine coupling. The total
effective single-qubit spin Hamiltonian including both hyperfine and Zeeman terms is

given by:
1 _ e
HB = —§gn,unBO'Z + §geuBBUZ + AU@ "On, (24)

where the effective g-factor of an electron in Si is g, = 2, the g-factor for a 3! P nuclear
spin is g, = 2.26. Under the influence of a constant magnetic field By in the z-axis,
electron an nuclear spin will undergo a Larmor precession around the z-axis. But
because of the hyperfine interation, the electron and nuclear spin may flip. Because
the energy conservation and the Zeeman energy of the electron spin is about 1000
times larger than the nuclear, the probabilities that the electron and nuclear spins flip
are very small. Therefore, if we initiate the nuclear spin in the lowest energy, spin-up
state, we might change the effective Larmor precession frequency of a selected electron
through tuning the hyperfine interaction strength achieved by applying a voltage on
A’ gate. Since the energy difference between the spin-up and spin-down state of the
targeted electron could be controlled, the qubit can be selectively addressed.

To analyze the energy levels of the system, we diagonalize the Hamiltonian in Eq.

(2.4). The Hamiltonian can be directly diagonalised. The eigen-energies are:

1 1
E‘TeTn>/ = §g€/"LBBO - §gn/~’/nBO + A7 (25)
ge,uBBO + gn,unBO
B = (e ominlop oy 20
e B + n nB
B = —yf (G2t B g g (2.7
1 1
Eueln>/ = _596/"6330 + §gTLMTLBO _'_ A7 (28)
where the eigenstates are:
|T6Tn>/ = |T6Tn>> (29)
| Teln> = cos(§)| Teln> +sin (%)\ LeTn>, (2.10)
| LeTn> = —sin(%)\ Toln> +cos(§)\ LeTn>, (2.11)
‘leln>/ = ‘leln>7 (212>
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Figure 2.2: Engergy levels of the donor electron-nucleus system obtained by using

2nd order approximation with a magnetic field B and hyperfine coupling A.

-1 24 . ) )
where ¢ = tan . Because of the hyperfine interaction, the eigen-
¢ ( %geMB B()"F%gn/inBO ) yp ’ g

states are not in the basis states:| TeT,>, | Teln>, | leTn> and | [.|,,>. However, the

typical hyberfine interaction 2A is about 500 times smaller than the Zeeman energy,
and we thus have ¢ ~ 0. Therefore, we can use the perturbation theory to treat the
small hypefine interaction. By using the second order perturbation theory, the energy

level are given as follows:

1 1
B> = 59ensBo = SgntnBo + A, (2.13)
1 1 2A?
B> = 59esBo + 5 gnptnBo — A+ : 2.14
febn> 2 ’ 2 ’ %ge,uBBO + %gn,unBO ( )
1 1 2A?
E eln = __QEMBBO - _gn,LLHBO - A - 9 215
el 2 2 %ge,uBBO + %gn,unBO ( )
1 1
B> = _§ge,uBBO + §gn,unBO + A. (2.16)

A schematic picture is shown in Fig.(2.2)



2.2 The Reduced Hamiltonian

2.2.1 Singel Qubit

If the nuclear spin is up and apply a constant magnetic field By, then the energy
difference between electron spin-up and -down state form Eq.(2.13) and Eq. (2.15) is
given in A by:

2A2
AE(A) = geptpBo +2A + 5 (2.17)

§ge/~LBBO + %gn/’LnBO .
By defining w(A) = AFE(A)/h, then we can write the effective Hamiltonian, H =
(h/2)w(A)ot. If now we applied a rotations magnetic field rotating in the x-y plant,

with the frequency of w,,., the effective Hamilonian will become :

hw(A 1
— w2( )az + ige,uBBac(cos (Wact) oy + sin (wect)oy). (2.18)

H

To understand the control processes, we change to the frame rotating with the rotating

magnetic field. It means:
p = UratpUlos, (2.19)

where

i

Uy = €297t (2.20)

Inserting both Eq.(2.19)and Eq.(2.20) into Liouville-Von Neumann equation p =
—%[H, p] and use the identity e%“’“"zt(cos (Weaet)oz + sin (wact)ay)e_%w”cgzt =o0,. We

can get the reduced Hamiltonian in the rotating frame as:

-~ h 1
H = E(w(A) - wac)az + §ge,uBBacO-:c- (221)

We tune the angular frequency of rf magnetic field B,. to the electron spin resonance
frequence obtained when no voltage is applied to the corresponding A gate, that is
Wae = w(Ap). If we define Aw = w(A) —w(Ap), then the qubits will effectively rotate
around the x-axis when Aw = 0 or equivalently A = Ay, and around an axis which

is slightly shifted with respect to this axis ,Aw # 0, desxribed by Eq.(2.21).



2.2.2 Two-qubit system

The spins of the two adjacent electrons are coupled via the exchange energy J. The

exchange energy contribution to the Hamiltonian is
Hj;=Jo,, - 0, (2.22)

where e; and ey are two adjacent electrons. The strength of the exchange interaction

can be approximated using the Herring-Flicker approximation [4].

1.6¢2 d 2d
J(a",d) = ()" exp (——

hea* “a a*

), (2.23)

which is vaild when the inter-donor spacing, d, is much greater than the effective
Bohr radius, a*. The exchange interaction drops off exponentially, and is thought of
as a short range interaction. We can change the voltage on the J gate to increase or
decrease the exchange energy( applying positive voltage will increase the exchange
energy, conversely, negative voltage will decrease). In a typical Kane quantum com-
puter’s scheme, the typical value of J is 4.23 x 10~°eV that requires the separation
between two neighboring donors is roughly 10-20nm that sets a stringent fabrication
condition to fabricate surface A and J gate within such a short distance.

The full two qubit Hamiltonian in the static and oscillating magnetic fields can

be written as

1 1
H = §ge,UBBO(O';e + Uge) - §gnlunBO(U;n + Ugn)

1 e e : e e
+§geuBBac(cos (wact) (0, + 02°) + sin (wact) (0, + 02°))

1 n n : n n
—§gn,unBac(cos (Wact) (03" + 02") 4 sin (wect)(0," 4 0"))

+ A0t o 4 Ayo® - 0 4 Jote - o (2.24)

Because the rortating operator U, of Eq.(2.20) commutes with the exchange interac-
tion Hamiltonian H ;, the effective reduced two qubits Hamiltonian with the exchange

interaction in the rotating frame can be similarly found and written as

~ h h 1
H = §Aw10; + §Aw2ag + ige,uBBac(a; + o)+ Jote . o (2.25)



Description Term Typical Value
Planck Constant (&) h 6.58211889(26) x1071¢ eVs
Electron Mass me 9.10938188(72) x 1073 kg
Proton Mass my, 1.67262158(13)x107%" kg
Elementary Charge e 1.602176462(63)x 10712 C
Bohr Magneton pup  5.788381749(43)x107° eV T~!
Proton Bohr Magneton L, 3.15251241x 10 8ev T—1
Electron g-factor Je 2.0023193043737(82)
Effective Proton g-factor in Si In 2.26
Unperturbed Hyperfine Interaction A 1.211x1077 eV
Minimum Varied Hyperfine Interaction A, 0.606x1077 eV
Constant Magnetic Field Strength By 20T
Electron Zeeman Energy (3ge15Bo) at By 1.159018851x10~* eV
Nuclear Zeeman Energy (3¢,/,Bo) at By 7.124539805x 1078 eV
Maximum Exchange Interaction J 8.3x107% eV

h

Energy Difference in Reduced Hamiltonian

2wo,

-6.065x1078 eV

Table 2.1: Typical parameters used for numerical calculations.

We will use the reduced Hamiltonian to obtain an optimal control parameter

sequence for quantum gate operations of the Kane donor electron spin quantum com-

puting.



Chapter 3

Global Methods:Krotov Method

3.1 Preliminary Description of The Problem

Krotov method [5][6] is one of the most effective universal methods for solving optimal
control problems with a large dimension of the state vectors to be of the order of
10* ~ 10°. So, it may one of the most appropriate and powerful method for solving
optimal control problems of quantum systems. In the Krotov method, we just need
to know the equation of motion of a system, and then we can find out the minima
of "the goal functional” which depend on the system and the control. Consider the

equation of motion of a system

dx

- = (), u®)]; (3.1)

and suppose we want to minimize functional

I[z(t),u(t)] = /0 Ot z(t), u(t))dt + Flz(T)] — min; (3.2)

Here x(t) means the system evolution with time or the trajectory, u(t) is control
value with time, and the vector-functional f[t, x(t),u(t)] and the functional F[z(t)]
are defined for all ¢, z(t),u(t) and are twice differentiable with respect to ¢ and z.
The initial vector z(0) = & is a given and fixed vector, xz(7") is final values of the
vector z(t), and u belong to a close set U. Where F[z(T)] and fO[t, z(t),u(t)] are

general functionals that represent that I depends on the terminal and intermediate

10



time value of x. The general functional, F'[z(T')], only depends on the final value of
x(t), and fO[t, z(t), u(t)] depends on the intermediative values of z(t) and u(t).
For the quantum system or multiaraument processes, we will have more than one
dax?

equation of motion, %~ = f'[t, z'(t), u(t)], and the minimization problem will become

to I[t,x(t), u(t)] = fOT FOlt, 2 (t), u(t)]dt + F[(z*(T)] ,where i = 1,2...n.

3.2 The Basic Idea of Krotov Method

3.2.1 Decomposition and Definitions

We introduce a real, differentiable function ¢[t, z(t)], and follow constructions:

_99 0

Rt w(t), u(t)] = - [t 2(6), u(®)] = fOlt o(0), w(t)] + 5 (3.3)
GIT,z(T)| = F(T,z(T))+ ¢(T,2(T)), (3.4)
Llx(t), u(t), ¢] = G[T, x(T)] —/0 Rt, x(t), u(t)]dt — ¢[0, z(0)]. (3.5)

It can be shown that for any function ¢[t, z(¢)] and all of x(t) and wu(t),
Liz(t),u(t), ¢] = Ix(t), u(t)]. The proof is shown as follows:

11



o006 = GITa(T)] ~ [ Rlta(t), @)t - fo(0)
= F(T,2(T) + 6(T,a(T)
- 82 0] = oo +
~0[0.7(0)
= F(T,2(1) + 6(,a(T)

- / OO 00 Ol () ule)t

— [0, 2(0)]
= F(T,%(T)) + ¢(T, =(T)) — /0 %dt

T / FOLt (1), u()dt — 6(0, 2(0))

= /f“tx (t)at

= I[t,z(t),u (3.6)

Therefore, minimizing I[t, z(t), u(t)] can be achieved by minimizing L[t, z(t), u(t), ¢],
and this means to minimizing G[z(T")] and maximizing R[t, z(t), u(t)].

For the quantum system or multiaraument processes, the equationals of R and
G will become to R[t, (1), u(t)] = 2% fi[t, 2 (t), u(t)] — fOlt,2(t), u(t)] + & and
G[T,2Y(T)) = F[T,z"(T)]+¢[T,z*(T)]. It is convenient for later to define the function

® = 2% and the functional R[t, 2 (t),u(t)] = H[t,z't), u(t), ®(t)] + %, where

H[t, 2 (t), u(t), ®(t)] = @f (t, 2" (1), u(t)] — fO[t, 2" (t), u(t)]. (3.7)

Note the parameter in H denoted by ®, which emphasizes that z* and g—i’ should be

treated as independent variables, with respect to H.

3.2.2 The iterative algorithm of Krotov method

The main goal of Krotov method is to find out a series of control, us(t) , to make
the value of the goal functional I[t,z(t),u(t)] become a monotonically decreasing

function, I[t,zs(t), us(t)] < I[t, xs11(t), us+1(f)]. The main idea is that because we

12



can be completely free in choosing the functional ¢[t, z(t)], if we can construct the
functional ¢[t, z(t)] to make the series of L[t, z(t), u(t), ®(¢)] being maximized, in
each s, then, when we randomly choose next wu, 1(t), without worrying about the
effect of u(t) on L[t, z(t), u(t), ®], we will get a smaller value of the goal functional.

Suppose that we have already found out the construction of the functional ¢[t, z(t)].
Then the optimal process will be as follows:

(1) We begin by taking an arbitrary control history u°(¢) and the corresponding
trajectory z°(t) (3.1).

(2) The functional ¢[t, z(t)] makes L[t, z(t), u(t), P(t)] a maximum at this control

u®(t) and trajectory z°(t). This is equivalent to the following two conditions:

R[t, 2°(t),u’(t)] = min R[t, x(t), u’(t)). (3.8)
G[T,z(T)] = max G[T,z(T)]. (3.9)

These conditions mean that the functionals R and G are calculated using the new
@[t x(t)]. Therefore, the current 2°(¢) will be the worst of all possible x(¢)’s in miniz-
ing the goal functional L[t, z(t), u(t), ®] = I[t,z(t),u(t)]. Any change in u(t) which
makes a new trajectory z(t) will now only improve the minimization of goal function
It z(t), u(t)].

(3) We can find a control u(t) denoted by @ that maximizes the functional , H
(3.7). The @ coressponds the condition:

u(t,z(t)) = arg max Hlt, x(t), u(t), .

= argmax Rt x(t), u(t)]. (3.10)

Be careful that the control @(t, x(t)) depends on the function of the trajectory x(t).
(4)The @ needs to satisfy the equation of motion (3.1), so we can get the new
history of control u!(¢) and the new trajectory z'(¢) by using the equation of motion.
(5)It is now guaranteed that minimization of the goal functional (3.2) has been
improved, I[t, z'(t),u'(t)] < I[t,2°(t),u’(t)]. The new history of the control and the
trajectory become a starting point of the next iteration and repeating 1-4 can achieve

further decrease in the goal functional.
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Next, we prove that the new I[t, z'(¢), u!(¢)] indeed smaller than the old I[t, z°(t), u°(¢)].

Because, the equation (3.6) that
It 2°(t),u’(t)] — I[t, x* (), u' (t)] = L[t,2°(t), u’(t); ®] — L[t, 2" (¢), u' (t); @] (3.11)
Therefore,
Lit,2°(t),u"(t); @] — Lt 2" (), u'(t); D]
= G[T,2°(T)] - G[T,="(T)]

o [ 10,000 = i ), 0

= A+ Ay + Az, (3.12)
where defined that
A, = G[T,2°(T)] - G[T, =" (T)], (3.13)
Ay = /0 [R(t, 2" (t),u(t)) — R(t, 2 (), u°(t))]dt, (3.14)
As = /0 [R(t, 2" (t),u’(t)) — R(t, 2°(¢), u°(t))]dt. (3.15)

Both conditions (3.8) (3.9) guarantee that A; and Az must be positive, and the choice
of a new control (3.10) ensures the positivity of A,. These conditions assure that the

new goal functional I will be smaller the the old one.

3.3 Construction of ¢

To carry out the above iterative method the key point main and difficulty is in step
(2). The condition of the functional ¢ should correspond both equations (3.8) and
(3.9). That will make sure the absolute maximum of the functional R and minimum
of the functional G on the old history of control u°(¢) and the old trajectory z°(¢).In

this section, we will present the construction of ¢ to first and two order in x.

3.3.1 First Order In z

If the equation of motions of the system are linear
oz
ot

= [t x(t),u(t)] = dlft,u(t)]a? +b" (i=1,2,..,n), (3.16)
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and the functional fO[t, z(t),u(t)] and F[z(T)] are concave with respect to z(t),

O fft a(t), u(t)] _ O2F[T, x(T)]
dxidr 021 (T) 02 (T)

(3.17)

then, we just need to use the first order ¢ in x. The first order means that the
functional ¢ needs to satisfy both conditions (3.8) and (3.9) but do not worry about
the second derivative of the functional R and G. In other words, the function ¢ just
needs to satisfy the conditions that the first derivative of the functionals R and G
are equal to 0. For these conditions, the functional ¢[t, z(t)] = ®;(¢)a’(t) should fit
below conditions:

aR(taanuo) 02¢(t,x0) a¢ af(tax0>u0) o afO(t’l.O’UO)

o e ICL LR ox
0 0p(t, a)
ot ?x 0 2 0 0
OH(t,z°,u’, ®)  0°¢(t, z°) 0 0¢(t,z”)
- I AL AL Rl
_ OH (t, 2° u®, @) (8_x2+2>8¢(t,x0)
Ox ot or Ot Ox
_ OH(t, 2" u’, D) N do(t, x°)
Ox dt
— 0, (3.18)
OG(T,z*(T))  OF(2%(T)) 0o(T,2°(T))
0x(T) — 0x(T) 0x(T)
0
- e f(;)T)) + (T, 2°(T))
= 0. (3.19)

Equations (3.18) and (3.19) are the equation of motion for the functional ® :

d®  9H[t,2° u’, D]

2 = 2

dt o ’ (8:20)
with boundary conditions

OF (T, z°(T)
0 _ 9
and
0,0
al_xzﬁH[t,x,u,(I)]7 (3.22)

dt 0P

15



with boundary conditions 2°(0) = &. For satisfying above conditions the easiest
choice of ¢ is ¢ = P[t,z(t)]z. In the multiaraument process, the easiest choice of
the functional ¢ that will also satisfy the above conditions is ¢;[t, z'(t)] = ®;(t)x(t).

Using the formula of the equation H (3.7), the condition becomes:
80t 20, 40
L P u)

d = —JT()d(t) o :

(3.23)

where

Jii(t) = W, (3.24)

and J7(t) is the transposed matrix.

3.3.2 Second Order in z

The functional ¢ can be freely chosen (3.6) but just need to satisfy both conditions

(3.8) and (3.9). Therefore, we can choose the functional ¢ in the form:
o(t,z(t)) = ®;(t)x" + 0.504;(t) Az’ Ax?  (i,5=1,2,..n). (3.25)

where the function A(z) =z — 2°. If we choose a suitable matrix, o;;, conditions of

(3.8) and (3.9) will make the functional ¢(t,x) € II. It means that:
O*R

°p _ , _ 250

d°R Az, S O Azj,  dR*>0; (3.26)

°G = A:):-(T)az—GAx-(T) —dG* >0 (3.27)
B N 0xi(TYoxi (T - '

Because we have freedom to choose the functional ¢, we can define that the matrix,

0;; is a diagonal matrix and satisfies conditions (3.26) and (3.27). It means:

0’R

— = i 7 =1,2,..n;
axlaI] 0? Z#]? Z?] Y ) n7

0’R

- ii\l), i = L =1,2,..n; 2
S O oii(t) oiu(t) =20 1 n (3.28)

and
0*G

_— = | £ ] 5 =1,2,..n;
52 (11023 (T) 0, i 7 J, Ly =12
82—G = ou(7) ou,(T)<0 i=1,2,..n (3.29)
0z (T)0x*(T) ey " = ST ’

The matrix o;; can be determine by the linear differential (or multiaraument pro-

cesses) equation (3.28) with the final condition (3.29).
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3.3.3 Algorithm

In previous section, we have already introduced Krotov method. In this section, we
will summarize the algorithm step by step.

STEP 1: Freely choose a history of control process, named u(t).

STEP 2: Using the equation (3.1) and initial conditions z(0) = ¢ finds the trajec-
tory 2°(t).

STEP 3: By equations (3.23) with the final condition (3.21), a vector-function
®(t) is found.

STEP 4: Using conditions (3.28) and (3.29), the matrix o;; is defined.

STEP 5: For this function ¢, the control @ is found according to equation (3.10).

STEP 6: The new trajectory z'(t) and the new history of control u!(¢) is found
by (3.1).

STEP 7: Repeat STEP 2 to STEP 6, until the optimal value is found.

3.4 Discrete time interval system

This Krotov method not only can deal with the continuous in time problems, but

also can handle discrete time interval problems. Consider a discrete in time problem:

z(t+1)=f(t,z,u), t=1,2,... T —1; z(0) =&, ueU, (3.30)
I[z(t),u(t)] = i Ot z(t),u(t)) + F(z(T)) — min. (3.31)

In the discrete in time system the optimal control method is similar to the con-
tinuous in time system. We may define a functional L[t, z(t), u(t), ¢] satisfying the

result of Eq.(3.6). To satisfy the condition, we can define the functional form as:

Rlt,z(t),u(t)] = o[t+1,z(t+1)] - o[t,x(t)] — fO©t,2(t),u(t)), (3.32)

GIT,x(T)] = F[T,=(T)] + ¢(T,=(T)], (3.33)
Lit,x(t),u(t),¢] = —(Q_ Rlt,2(t),u(®)]) = 6(0,2(0) + Glt,x(T)].  (3.34)
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It is easy to show that the functional ¢ can be an arbitrary functional. Similar to that
in the continuous systems, but satisfy conditions (3.8) and (3.9). we may choose the
functional, ¢, to have the same form as that for the continuous systems, Eq.(3.25).
Although, a discrete problem in time problem may not be practical, it is useful to
design and understand its algorithm. We will show a discrete example in the section

3.5.

3.5 Examples

3.5.1 Discrete variant

This problem comes from (A.I. Propoi [7]).

The goal function:
I =—2®(2) — min

where 2(?)(2) means the value of the second trajectory at 2 second, and the equations

of motion:
M (t+1) = 2W(t) + 2u(t),
2@t +1) = (V1) + 2D (1) + (),
t=0,1 zM0)=3  2P0)=0, -5<ult)<5.

Because the equations of motion are not linear, the function of ¢(¢,x) should take

the form:
(1) — £MO(4))2 (2) — 2(2)0(#))2
x x t T T t
¢(t,$> = (I)1( ) +(I)2( ) —|—0'11( 9 ( )) +O’22( 5 ( )) 3 (335)
where (W0 means each current trajectory. The function of ¢ just needs to satisfy

conditions (3.28) and (3.29), so we can take o9 = 0 and 017 = 0. Then equation

(3.35) becomes to :

(x(l) — (10 (t))2

o(t,x) = <I>1(t)3:(1) + ®g(t)x(2) + o 5

(3.36)
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Therefore, the functional R and G take the form:
Rit,z,u) = ®y(t+ 1D)(@W(t+ 1))+ ot + 1) (@ (t + 1))
+0.50 (W (t + 1) — W0t +1))? — &y (1) (2 V(1))
— 0y (2@ (1)) — 0.50 (D () — 2D0(£))?
= Oy (t+ 1)(=W(t) + 2u(t))
+ 0y (¢ + 1) (— (M) () + 2P (t) + u?(1))

+0.50 (¢ + 1) (a4 2u — 1) — @, (1) (1)

—®0y(t)2® — 0.50(2) (2 — M0(¢))2, (3.37)
G(z(T)) = —z(T)+ 21(2)z)(2) + P2(2)2?(2)
+0.50(2) (M (2) — 21°(2))2, (3.38)

Using conditions (3.28) and 3.29), we can get equations ¢ and o :
Di(t) = Dy(t+1)— 22D Dy(t +1),  By(2) = 0;
Dy(t) = Do(t+1), Dy(2) = 1;
o(t) = 20y(t+1)+o(t+1)—19, o(2) = a. (3.39)

Choose the simplest the history of control u°(¢): u(0) = u(1) = 0. Define § = 0 and
a = —1 to determine the matrix of 0. The results are shown in Table 3.1.It is clear
from Table 3.1 that when the iteration runs to 15, we can get the minimum value of
the goal functional I. Also, we can know all of the iteration processes of the optimal

control.

3.5.2 The Continuous in Time System With One Equation
of Motion

Consider the problem in [6]. The equation of motion is
T =u, lu| <1, z(0) = z(T) = 0; (3.40)
and the goal functional

T
I = / (u? — 2?)dt + %bzz(T) — min, (3.41)
0
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No. u(l)  w?®) =O1) 2M@©2) 2@01) 2@2)  &1(1) @y(1) I

1 0 0 3.0000 3.0000 -9.0000 -18.0000 -6.0000 1.0000 18.0000
2 -1.2000 2.4000 0.6000 5.4000 -7.5600 -2.1600 -1.2000 1.0000 2.1600
3 -1.6800 5.0000 -0.3600 9.6400 -6.1776 18.6928 0.7200 1.0000 -18.6928
4 -1.8720 5.0000 -0.7440 9.2560 -5.4956 18.9508 1.4880 1.0000 -18.9508
5  -1.9488 5.0000 -0.8976 9.1024 -5.2022 18.9921 1.7952 1.0000 -18.9921
6  -1.9795 5.0000 -0.9590 9.0410 -5.0815 18.9987 1.9181 1.0000 -18.9987
7 -1.9918 5.0000 -0.9836 9.0164 -5.0327 18.9998 1.9672 1.0000 -18.9998
8  -1.9967 5.0000 -0.9934 9.0066 -5.0131 19.0000 1.9869 1.0000 -19.0000
9  -1.9987 5.0000 -0.9974 9.0026 -5.0052 19.0000 1.9948 1.0000 -19.0000
10 -1.9995 5.0000 -0.9990 9.0010 -5.0021 19.0000 1.9979 1.0000 -19.0000
11 -1.9998 5.0000 -0.9996 9.0004 -5.0008 19.0000 1.9992 1.0000 -19.0000
12 -1.9999 5.0000 -0.9998 9.0002 -5.0003 19.0000 1.9997 1.0000 -19.0000
13 -2.0000 5.0000 -0.9999 9.0001 -5.0001 19.0000 1.9999 1.0000 -19.0000
14 -2.0000 5.0000 -1.0000 9.0000 -5.0001 19.0000 1.9999 1.0000 -19.0000
15 -2.0000 5.0000 -1.0000 9.0000 -5.0000 19.0000 2.0000 1.0000 -19.0000
16 -2.0000 5.0000 -1.0000 9.0000 -5.0000 19.0000 2.0000 1.0000 -19.0000

Table 3.1: Evolution of functional with the iteration numbers. The iteration number

is defnoted in ”No.” column. .
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where b > 0.

Now, we solve the problem with the following parameters: b = 10, T" = 4 by using
Krotov method. Using Eq.(3.3) and Eq.(3.4) and the form of ¢ (3.25), the functionals

R and G can be written as:

R = d@t)z(t) + %d(t)(A:E(t))z + ®(t)u(t)

+oAx(t)(u(t) — ul(t)) — u?(t) + 2%(t), (3.42)
G = oT)x(T)+ %J(T)(A:c(T))Q + %bﬁ(T). (3.43)

Since Ry, = 26 (t)+1 and Gy, = o(T')+b, we choose that o(t) = 0 and o(T) = —b—4.
Performing the algorithm, we obtain the result shown in Fig.(3.1) We just show the
result of the 1st, 3rd, 5th and 7th iterations in Fig.(3.1). The 8th and 9th iterations
are the same as the 7th. We use the 4th order Runge Kutta method with the segment
of integration partitioned into 200 pieces. Also, this result is consisted with the known

solution of this problem. The solution is

+t t<’7'1,
x(t) = +kcos(t—T/2) 7 <t< .
+T Ft ™ < t,

where T means the final time, and 7y, 75 and k are chosen according to smoothness
conditions, that is, & = +1 for t = 7, © = F1 for t = 7, +t = +kcos(t —T/2)
at t = 7 and tkcos(t —T/2) = £T Ft at t = 5. If we plot this solution and
the final iteration result on the same graph. It will overlaps with the solid-line curve
in Fig.(3.1). This demonstrates the validity and usefulness of the Krotov method.
We will apply this optimal method to investigate quantum gate operations in later

chapters.
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Figure 3.1: Optimal evolution of x for different numbers of iterations
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Chapter 4

Quantum system with

Environment

4.1 Master Equation

4.1.1 Density Matrix

For a closed quantum system, the physical object obeys Schrodinger equation,

0 i
awz' >= _ﬁH|¢i > (4.1)

where H is the total Hamiltonian. The density matrix can be defined as,
p =Y. Pl >< 15|, where the coefficients, P;, are non-negative and time indepen-
dent. Using Schrodinger equation Eq.(4.1), we can get the equation of motion of the

density matrix p,
po= D Pillh >< | + | >< ¢i))
= > P(—pHls >< il + 2| >< il H)
- _%(H;Rwi ><¢A—¥Pi|¢i><wi|H)

7

= —z(Hp—pH)

= __[Hv P], (42)
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(S+B,H ,OH 4, X)

Environment

Figure 4.1: Schematic picture of an open system

Equation (4.2) is called Liouville-Von Neumann equation of motion for the density
matrix. Note that Liouville equation, Eq. (4.2), can only be used in a closed quan-
tum system. Hence, it is not valid for the subsystem of a composite system whose
subsystems have interaction with one another. The equation can only describe the
whole system including the subsystem in which we are interested and the rest of the
system. In the next section, we will discuss how to write down the equation of motion

for the subsystem in which we are interested.

4.1.2 Derivation of Master Equation

Because Eq.(4.2) can only be used in closed system, when we solve a composite
system, we can divide the system into two part. A schematic picture is shown in
Fig.4.1 One part is the subsystem in which we are interested, the other part is a
bath. The Hamiltonian of the subsystem is time-dependent, Hg(t), and the bath is
the rest system with Hamiltonian, Hg. Also, consider that the subsystem and bath

are couple to each other, and the interaction Hamiltonian of the coupling term is
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denoted as Hgsp. Hence, the total Hamiltonian can be written as,

H(t) = Hs(t) ® Ip + Is ® Hp + Hsp, (4.3)
and the Hilbert space of the total system is defined by a tensor product,

H=Hs® Hp. (4.4)

Define the total density matrix (subsystem and bath) as x(t) obeying Liouville-Von

Neumann equation (4.2),

X(t) = =3 [H(t), x(t)], (4.5)

where H (t) is given by Eq. (4.3). Usually we assume that the interaction Hamiltonian
of the subsystem and bath is very weak compared with the rest of the Hamiltonian.

Therefore, we may use the interaction picture to fix the dominant term, the subsystem

and bath, Hg + Hp. Define
() = e%(HS'f‘HB)tX(t)e_%(HS'FHB)"*’
Y(t) = 6_%(HS"l‘HB)t)z(t)e%(HS'f‘HB)t’ (4.6)

and take a deviative of Eq.(4.6) respect with time, we obtain

X(O) = = (Hs + Hp)e FUISHR)g (et Ul o)

+e—%(Hs—i-HB)t)%(t)e%(HS""HB)t
e USRI () (Hg + Hy)eh (15119), (4.7)

Using Eq.(4.5), we obtain

x(t) = _%[HS+HB+H537X(t)]

4
h

+%e—%<HS+HB>t>z(t)e%<HS+HB>t(Hs + Hp + Hgsp). (4.8)

Comparing with Eq.(4.7) and Eq.(4.8), we obtain

(HS + Hp + HSB)e_%(HS'FHB)t)Z(t)e%(HS"'HB)t

e_%(HS"I‘HB)t)%(t)e%(HS'f‘HB)t

— —i‘HSBe_%(Hs—i_HB)t)z(t)e%(HS'i'HB)t

h
+%6_%(HS+HB)t>~<(t)6%(HS'FHB)"'HSB. (4.9)
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Defining
I{ISB(t) — o7 (Hs+Hp) "Hgp h(HS+HB)t7 (4.10)
and substituting Eq.(4.10) into Eq.(4.9), we obtain

)NC(t) = __e%(HS+HB)tHSBe_%(HS+HB)t)~<(t) + ﬁ)z(t)ff%(HS+HB)tHSB€_%(HS+HB)t

We may then obtain the integral form of Eq.(4.11) as

) /

W) = x0)+ [ solt). X1 (1.12)

Substituting Eq.(4.12) back into Eq.(4.11), we can get

X(t) = —%[ﬁsg(t),X(OH%/O %[ﬁgg(t/),i(t/)]dt']
= 5 sn(0). 50 55 [ Wsn(t) [Fso®). XD (1.13)

However, we are just interested in the evolution of the subsystem. Hence, we can

define the density matrix of the subsystem as p satisfying that

p(t) = Troam[x(t)] = Trp[x()]. (4.14)

If we take the trace of the full density matrix over the bath, in the interaction picture,

we obtain

Trl(t)] = Troler"s+®)x(p)eiMs o))

= eflstTyy [eﬁ Bl (t)e i Bt e Hst

= ciflst Z < PR Px(t)e FE gF e i st
= it Z <O Ix()lo7 >Jem it
7

= eI p [y (t)e R st

e%HBt (t)e hHBt|¢B ]6—%Hst

i
— Hstpe +

= o), (4.15)

Hst
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where EP and |¢P > correspond to the eigenvalue and eigenstate of Hg. Thus, in

the interaction picture, the density matrix of the subsystem can be shown to be
p(t) = entlstpe=nHst, (4.16)

It means that the transformation between p and p only depends on the Hamiltonian

of the subsystem Hg. Using Eq.(4.13) and Eq.(4.15), we obtain

plt) = %TTB[X(t)]:TrB[;(t)]
_ —%[FISB(t),X(O)]—% /0 [Hsp(t), [Hsp(t), x()])dt . (4.17)

Usually, Eq.(4.17) is difficult to solve in general case. In the next two sections, we

will introduce two approximations to solve Eq.(4.17).

4.1.3 Born Approximation

We assume that there is no interaction and correlation between the subsystem and

bath, before t = 0. Hence, x(0) = x(0) and
x(0) = p(0) ® Ry, (4.18)

where Ry is an initial density matrix of the bath. If the bath is very big and the
coupling interaction Hgp is very weak, we can assume that the bath as a reservoir.
Hence, we can assume that when ¢t > 0 the density matrix of the bath is the same as

initial density matrix,
X(t) = p(t) ® Ro. (4.19)

Therefore, Born approximation has two points:
(1)We don’t care about what happen before we detect or operate the subsystem.
(2)The density matrix of the bath is independent of time.
We usually assume that the density matrix of the beth stays in thermal equilibrium,

RO - Tre_ﬁ(HB) ’

(4.20)
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Subsituting Eq.(4.18) and Eq.(4.19) into Eq.(4.17), we have

) =~ Tralflsn(t).pl0) @ R

1 t

2 ), Tru[Hsp(t), [Hsp(t), p(t) @ Rolldt . (4.21)

We thus find in the Born approximation the equation of motion or master equation
of the p, Eq(4.21). However, usually Eq.(4.21) is very complicated, because the term
p(t") is influenced by not only present states but also the past evolution of states. We
will use one more assumption, Markovian approximation, to simplify Eq.(4.21). In

the next section, we will introduce the Markovian approximation.

4.1.4 Markovian Approximation

The most general form of coupling interaction, Hgg, can be defined as
HSB:ZS].@BJ.’ (4.22)
J

where S; are the system operators and B; are the bath operators. Inserting Eq.(4.22)
into Eq.(4.21),

B0) = 3 3 TrslS,(0)© By, 5(0) @ R

1 [ -, ,
12 / > TralS; ® By, [Sy ® By, plt) @ Rolldt . (4.23)
0 .k

If we consider a thermal bath, then the bath operator average in the thermal equilib-

rium state Ry, Eq.(4.20), vanishes:

Tr[Bi(t)Ro] = 0. (4.24)

According to Eq.(4.24), the first term of Eq.(4.21) vanishes. Also, in the second term,

we will obtain
Cjr(t —t) = Trp[B;(t)Bi(t ) Ro), (4.25)

named the bath correlation functions. In the Markovian approximation, we assume

that the bath correlation time is much smaller them typical system response time.
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In mathematics, this means that the both correlation function Cj; isn’t zero only at

t =t . Hence,
Cjr o< 6(t — 1), (4.26)

in this condition, the p(t') can be replaced by fj(t), in the second term of Eq.(4.21).
Therefore, the density matrix of the subsystem, p only depends on its present state.
Also, because of the property of the bath correlation functions, we can change the
time range of the Eq.(4.23) to t = co. With the above assumptions, Eq.(4.21) can be

rewritten to,

1) =~ Ow TrplHsp(t), [Hsp(t — 1), 5(t) © RolJdt (4.27)

called the Born-Markov master equation in the interaction picture. Using following

relation,
plt) = enllstpemitlst
= —5(t) = =[Hg, pt wHst Z o= rHst
P) o [Hs, p(t)] + en s pe™
d 1 i, d i
= 2ot) = —[Hs, p(t)] + ens! 2 pemi e, (4.28)

we can get the Born-Markov master equation in the Schrodinger picture, and the

form is
. ’l 1 & ~ ~ / - /
) =~ Ho,p(0)] = 35 | Trallsu(0). [Fsnlt ~ ). 5(0) @ Rllde. (429
0
We use the general form of the interaction between the subsystem and environment

Hsp =h» 5Ty (4.30)

where the s; are operators in the subsystem and I'; in the environment. Then, in the

interaction picture we can get

Hsp(t) =hY_ 5(t)Ti(1). (4.31)

29



Insert Eq.(4.31) into Eq.(4.27), we can get

j o= _z; /0 h Tral5(0T:(t), [3;(E)T;(t), pt) @ Ro))dt (4.32)
= -2 /0 T (Gi03) — 550 FD) < DO () >x
+[pjgt'>§j<t')§i<t> = 5p(t)3;(1)] < T;(1)Ti(t) >r)dt (4.33)
where we define that
<Tu®D;(t) >p = Tr[Rl(HT;(t)], (4.34)
< T(E)T5(t) >r = Tr[Rol;(E)Ti(1)]. (4.35)

Also we can get the specific form in the Schrodinger picture.

4.2 Master Equation for a Two-Level System

4.2.1 Thermal Equilibrium

We consider a two level system (|0 > and |1 > with Ey < E;) with Hamiltonian:

1

Hs = ghwaos, (4.36)
Hyp = ) byl v, (4.37)

kA
Hsp = Zh(/‘fz,ﬂ;,\a—+/’€k,A%,AU+), (4.38)

3

with

= e [ d 4.39

where Hg is Hamiltonian of the system, Hpr Hamiltonian of the reservoir and Hggr
Hamiltonian of the interaction between system and reservoir. The summation ex-
tends over reservoir oscillators with wavevectors k& and polarization states A, and
corresponding frequencies wy and unit polarization vector éj y. The system is posi-

tioned at 4 and V is the quantization volume. Comparing with Eq.(4.30), we can
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get the relation

ST =

I =

O—  52=04, (4.40)
= Z KJZ,W;,A’ Iy=T= Z Kk N\ VEA- (4.41)
kA k,lambda

In the interaction picture,

= iwaos/2ty o—i(waos/Dt _ 5 o—iwal (4.42)

= (iwaos /Dty pmilwacs/Dt _ o giwat (4.43)

= T =D minh ™ (4.44)
kA

= f(t) = Z KraYeae "W (4.45)
kA

Now, since the summation in Eq.(4.33) runs over ¢ = 1,2 and j = 1,2. Also, substi-

tuting the above equations into Eq.(4.33), we obtain

p =

— /w([a_a_ﬁ(t/) — J_/}(tl)a_]e—iw“‘(t”/) <THOTH(t) >k +hc.

I I

+[O’+O'+ﬁ(t ) — O'+ﬁ(t )O’+]€iwA(t+tl) < f(t)f(t,> >R +hc

oo p(t) — 0w p(t Yo_]emwat=t) < PHOD() > +hec.

-~ ’

Yo leat=) < POTHE) >p +hee)dt.  (4.46)

’ ’

+loro_p(t) —o_p(t

Now,we take the reservoir to be in thermal equilibrium at temperature 7', then

Ry = [ e mioma/maT (1 — o—huy /kpT), (4.47)

J

where kg is Boltzmann’s constant. Hence, we can get

/

<TfOTH () > = 0, (4.48)
<TWT({t)>r = 0, (4.49)
<P OTE) > = Y Ir P On(u;, 1), (4.50)
<D >k = 3 I Pe ™D la(w,, T) + 1), (4.51)

with

ﬁ(wj, T) = T’/’R(R(]’}/;’}/j) =

J

e—ﬁwj/kBT

(4.52)

1 — o, /kpT’
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where n(w;,T) is the mean number for an oscillator with frequency w; in thermal
equilibrium at temperature 7. Therefore, by using these relations Eqs.(4.48) ~ (4.51)
and making a change of variable 7 =t — ', Eq.(4.46) becomes

po=- /OOO([O'—0'+ﬁ(t —7) = ot — m)o_Je" T <THOD(t —7) >
Hopo_p(t — 1) — o_p(t — T)og]e™a” < ()T (t — 1) >p)dr.  (4.53)

Because, in the Markovian approximation, the 7 integration in Eq.(4.53) are much

shorter than the time scale for the evolution of p, we can replace p(t — 7) by p(t) and

get
po= A+ +i(A +A)(0—poy —0s0-p)
+[%ﬁ Vil (o4po_ — po_oy), (4.54)
where
v o= 27TZ / Kk, V)20 (ke — wa)d°k, (4.55)
A = ZP/W—_]{]{Z\)‘di”k, (4.56)
A = ZP / % (ke, T)dk. (4.57)
Using the following relations
o 0 = %(1 +0.), (4.58)
S %(1 _ o)), (4.59)
we obtain
b= —ig(2A 4 A)ou i+ 20+ ) 20_pos —or0p— fos)
+% n(2o4po_ —o_o.p—po_oy). (4.60)

Equation (4.60) is the master equation in thermal equilibrium. In the Schrédinger

picture, Eq.(4.60) will becomes

1
p = — i(wA +2A + Ao, p] + %(ﬁ +1)(20_poy —or0_p—poyo-)
+% n(20,po_ —o_o.p—po_oy). (4.61)
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Compared with Liouville-Von Neumann in the close system the equation of motion for
density matrix, Eq(4.61) has two extra dissipative parts coming from interacting with

the enviornment. In addition, the frequence w4 in Eq.(4.61) becomes to w4 +2A"4+A.

4.2.2 Dephasing

In above section, we use the interaction, Eq.(4.38), to obtain the master equation
in thermal equilibrium. However, the thermal and vacuum fluctuations in the envi-
ronment may also cause the off-diagonal component of the density matrix to decay
in time without changing the population in each state. This is called a depashing
process. To account for this addition dephasing process, interaction.

We add phenomenologically a reservoir interaction

Hdephasing = HR1 + HSRla (462)
Hg, = Z hwey Ye, (4.63)
k
Hgp, = Z h(’f;k%iaz + KjkYk0z) (4.64)
j.k
(4.65)

Using the similar method in the previous section, we can get

53(t) =o0_0, (4.66)
S4(t) = 040_, (4.67)
Ts(t) =Y wle™, (4.68)
ik
Da(t) =Y mpyie™, (4.69)
gk

Thus we just need to add the extra terms form interaction I'; and I'y. We can obtain

the dephasing part of the master equation using a method similar to that of obtaing
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Eq.(4.61),
)5dephase = - / [Uzazﬁ(t,) - Uzﬁ(t/)az] < F3(t 1:‘?)(t ) >Ry

0
+ (At

+ [UZUZﬁ(t/> —o.p(t

I nd !

)
Jo,0, —o.p(t)o,] < Ts(t )fg(t) >R,

’ /

Vo] < Ta(t)T4(t) >g,

’ ~ /

+ [ﬁ(tl)azgz - Uzﬁ(t )Uz] < F4(t )f4(t) >Ry - (470)

Similarly, we assume that the reservoir correlation time are much shorter than the

system dynamics, so Eq.(4.70) becomes to
po _ ZA ~ pr ~ ~
pdephase - _5 p[Um/)] + ?(Uzpaz — /)), (471>

where both coefficients, v, and A, depend on the thermal reservoir. Equation (4.71)

thus the total equation of motion in the Schrodinger picture can be written as

) (N v,
p= — walospl+ 5 +1)(20-pos —0r0-p—poso-)
+ %ﬁ(%wa— —0_01p—po_oy)+ %(Uzpaz - p), (4.72)
where
Wy =w, + 20 + A+ A, (4.73)

with A" and A given in the previous section. In the next chapter we will use the
dephasing model to describe the motion of the system in the silicon-base donor spin
quantum computer as the dephasing process may be the dominant source of decoher-

ence in that system.
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Chapter 5

Optimal Control in Open Quantum

Systems

5.1 Introduction

The criteria necessary for any quantum computer including:

(1)Well defined quantum bits (Qubits) in the system.

(2)The initial states can be prepared such as: |00... >.

(3)The gate operation time is shorter than decoherence time.

(4)The universal set of quantum gates can be constructed.

(5)Measurement of qubits can be performed.

Hence, one of the important criteria for a practical quantum computer is the con-
struction of quantum gates with operation times much shorter than relevant decoher-
ence time. In addition, high-fidelity quantum gates are also desired for fault-tolerant
quantum computation. The fidelity is defined as Tr(G'U), where the G is the de-
sired quantum gate U is the quantum gate in practice, and the error is defined as
1—Tr(G'U). The error threshold required for fault-tolerant quantum computation is
about 1073 ~ 107* [13]. Therefore, fast and high-fidelity quantum gates are desired.
We can use the optimal control theory, the Krotov method, to find out the near time
optimal. We may choose a time interval and use Krotov method to see whether we

can find the control sequence of the quantum gate which satisfies the required fidelity
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in this time interval. If yes, we can choose a shorter time interval to repeat the calcu-
lation. If not, we can choose a longer time interval to repeat the calculation. Then,
we can find a control sequence and using it to find out a quantum gate which satisfies
the required fidelity with the shortest time interval. In the following sections, we
will detail how to use the Krotov method to find out the near time-optimal control

sequence for a Hadmard gate.

5.2 Krotov Method in Density Matrix

5.2.1 Equation of Motion

We consider an open quantum system and the density matrix, p of the subsystem of

interest, has N x N dimensions. The equation of motion for density matrix can be

written as
. 7
plt) = —[Hs, pl+Tp,
= Mp, (5.1)
= =L (5.2)

where Hg is the full Hamiltonian of the subsystem, the superoperator I' denotes the
decoherence effect and M the Liouville superoperator. Also in Eq.(5.2), we change
the density matrix to a column vector and L is the corresponding matrix.

Equation(5.1) is the equation of motion for the density matrix or Eq.(5.2) is the
equation of motion for density column. We, however, want to get the equation of
motion for an operator evolution, so we use Eq.(5.2) and the relation p°(t) = Up®(0)
to

LUnp0) = LU@0),

dt
Ut)p(0) = LU(t)p(0),
= U(t) = LU(). (5.3)
Although, the Eq.(5.3) is the equation of motion for the operator revolution,its vari-

ables have real and imaginary parts. The Krotov method is developed in the real
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space. Therefore, we separate the equation of motion into two real functional. First,
we transform Eq.(5.3) into a different form with a matrix £ and a column U* such
that the expression U¢ = £™U¢ describes the same equation of motion as Eq.(5.3),
ie.,

U(t) = LU(),

= US(t) = L"U(¢), (5.4)
where U€ is a column vector and £™ is a matrix. Then,we can define that
U =Up+1iUj, (5.5)

where Uf, and Uy are real and imaginary part of the column vector, U¢. In addition,

we define

where Qi and €2 are real matirices corresponding to the real and imaginary parts of

the matrix £™. Inserting Eq.(5.5) and (5.6) back into the Eq.(5.4), we obtain

U + iU = (Qg + 1Q)(US + iUS),
= Ufz = fr=QrUp — Q;U7, (5.7)
= U= f;=QUs+ QrUE. (5.8)

It should be mentioned that because the dimension of the density matrix is N x IV,
when we use transformed Eq.(5.4), the dimension of the corresponding superoperator,
L will become N? x N2, thus the operator U also is N? x N2. In addition, we use
transformed Eq.(5.4), the dimension of the operator will become N* x N* Also, if
the equation of motion for operator evolution has N? x N? dimension, we will have
2N? x N? real functionals to describle the equation of motion. Another point is that
the control parameter is in the superoperator £ (L™, or in both real matrices (g
and €;). It means that both real matrices Q2 and €; are functional of time and the

control.
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5.2.2 Goal Functional

Following the descriptions in the previous section and in chapter 2, we use the Krotov

method to find the minimum value of the goal fuctional
T
TUR0.U5(0).e.t] = FURT).VAT) + [ F03(0.U5(0), e (59)

where the U§ and U§ are a 2 X N*-dimensional column vector, and € is the control pa-
rameter. In the Krotov method, both functionals F[U%(T), U¢(T)] and fO[US(t), US(t), ]
in the goal functional are real functionals. However, the quantum system is in a com-
plex Hilber space, so in general, the goal functional is complex. In our case we want

to find the minimum value of the error defined as

E = 1-Tr[GTU(T,0,¢)],
= 1—-7(G;Tje), (5.10)

where G is the desired quantum gate, U(T') is the final time quantum gate operation
which is obtained from the optimal control sequence and the equation of motion
for the operator evolution. So the error functional is complex. Also, the functional
7(G; T €) defined as fidelity is a complex number restricted to the interior of a circle
with a radius N centered at the origin in the complex plane. The modulus of 7 is

equal to N only for an optimal control operation satisfying
U(T,0;¢) = e~ @, (5.11)

where ¢(T') is a global phase. When 7 approaches N, the transformation imposed by
the field converges to the goal quantum gate. Although the functional 7 is complex,
we can separate several different real functionals can be associated whit it. In [§], the
optimization of the real part of 7, or the imaginary part, or a linear combination of

both was suggested to find the optimal control. In this thesis, the real part
Fr = —Re[r(G;T;€)] = —Re[Tr(GTU(T,0,¢))], (5.12)

was chosen. The functional reaches its minimum value, Fr = —N, when the control

induces the goal quantum gate but with the additional condition that the phase term
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e~(T) is equal to one. Another functional based on 7 but without any condition on

the phase can be defined. In this work the squared modulus of 7 with a negative sign

is studied:
Fsm = _‘T(G7 Tu E)Pv
= —Tr[G'U(T,0,e)Tr[GTU(T,0,¢)]", (5.13)
with minimum value F,,, = —N? when the control induces the goal quantum gate.

In our case, we can define the functional f° to be 0. Therefore, the goal functional

IUS(t), Us(t), € t], Eq.(5.9), can be defined as

IUZ(t), Ui (t),e,t]) =1 — 7(G; Ts€). (5.14)

5.2.3 Decompose the goal functional in Quantum System

In the Krotov method, we will decompose the goal functional into two parts by the
functional ¢, where the two parts include the functionals R and G. In this section,
we will introduce ¢, R and G functionals in the quantum system. The functional ¢
depends on time and the evolution of the system. According to Eq.(3.23), Eq.(3.25)
and the condition Eq.(3.28), we can write

[ Gplt, U UF(0)] = —TEO@(t) — JFOs(1) + 52 (0, UR,UP, ),
brft, U, UF (D] = TFO@R(E) — JEHOD1() + 52 (8, UR, U, ),
olt, Ug, Uf'(t)] = @ir(t)UR + @i (t)UF

+0.50;5(t) (AUS)? + 050, (8) (AUS)?,  (i=1,2,..n)

\

Using the definition of J, Eq.(3.24), the fact that the equations of motion, Eq.(5.7)

and Eq.(5.8) just depend on only the first power of U& or Uf, we obtain

Jp = Qp, (5.15)
J o= Q. (5.16)
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Also, in our case, the functional f° is 0, and we can get

dp(t) = —QLoz — Qe (5.17)
(1) = QFop - QLo (5.18)
0
R(T) = U (T(G; T 6)), (5.19)
o,(T) = 0. (5.20)
Then we can use Eq.(3.3) and Eq.(3.4) to obtain
R[t7 UR7UI 76] - 0Ulc%’fR+ ansz (‘%’ (521)

= —Re[Tr(GTU(T,0,¢))] + ¢[T, Us(T),Us(T)]. (5.23)

We have constructed real and imaginary parts of the functional ®, functional R, and
functional G for the quantum system. By following the algorithm of the Krotov

method, we can them find out the optimal control sequence for quantum gate U(T).

5.3 In Silicon-base Donor Spin Quantum Computer

5.3.1 System

We use the silicon-based electron spin quantum computing architecture discussed in
Chapter 2 to be our system. Because the rotation magnetic field is always on in this
scheme, electron will undergo a rotating around the x-axis when there are no voltages
applied on A gates, i.e. Aw = 0 with an angular frequency of wy = geptpBac/h. While
target electrons will perform a particular operation with time ¢, every spectator qubit
will rotate with an angle of 6, = —wgt. If the angle 6, equal to 2nmw, where n is
integral, then we don’t need any correction step for spectator qubits. Different gate
operation time ¢ will require different B,.. We choose n = 1 to minize the time, and
obtain

2mh

== 5.24
ge,uBt ( )

ac
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where t is the gate operation time. In general, decoherence may cause by two differ-
ent processes: includes two part: dephasing and relaxation. According to experiment,
however, depashing is the dominant source of decoherence for silicon-base donor spin
quantum computer. For example, Feher and Gere [9] measured the energy relaxation
time, 17, 11, > 10 hours for nuclear spin and 77, ~ 30 hours for electron spin at a
temperature of 7= 1.25K, B = 3.2T. In contrast, experimentally measured depash-
ing time, 75, is much shorter. Gordon and Bowers [10] measured 75, = 520us for
P:Si at T'=1.4K. Chiba and Harai [11] also mesured the electronic dephasing times
of P:Si, fining a time of Ty, = 100us. Recently, Tyryshkin et al. [12] experimentally
measured the decoherence time T5, of electron spins for a donor concentration of in
isotopically purified ?8Si, and obtain a value T, ~ 62ms at 7' = 6.9K. Therefore,
we assume that the only decoherence present in the system is dephasing. Using the
master equation

) l

p=—7[Hspl =T, (5.25)

where H; is full Hamiltonian,

2
Hs = Y Hp +Hy +Hy+ Huc,, (5.26)
i=1
Hp, = %ge,UBBOUie - %gnunBoai”, (5.27)
Hy, = Ay o™, (5.28)
H; = Jo'. o%, (5.29)
Hac, = %ge,uBBac(cos (Wact) (%) + sin (wect)(07)
—% Gt Bac (€05 (et (%) + sin (tet) (o) (5.30)

and the I'p is dephasing term.

Lp =) TelZey [ Zes P + TalZuss 120 ], (5.31)

1=1
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Where T, is the nuclear dephasing rate and I'. the electronic dephasing rate. The
dephasing rate, I, and I', are related to the dephasing times by

1

r. = —. 5.32
T (5.32)
1
r, = : :
T (5.33)

Here, we use the value of 60ms [12] as a conservative estimate for electronic dephasing
times. Additionally, we expect the nuclear spin dephasing times is much longer than
electronic dephasing times. Hence, the value of dephasing rate of the nuclear spin
can be approximated to 0 where compared with electron spin 75,' and the inverse of

gate the operation time. Thus, in the condition I',, ~ 0, Eq.(5.25) becomes to
) 1
p= _ﬁ[Hsu p] - Zre[zeﬂ [Zei7p]]’ (534>
j=1
We can go to the rotating frame which rotates with the frequence of the rotating

magnetic field, and use the relation

p = UporpUl, (5.35)

Upor = €30t (5.36)

where wy, is the frequence of the rotating magnetic field. Substituting Eq.(5.35) into
the Eq.(5.1), we can get the equation of motion of density matrix in the rotation

frame
§0) =~ Hs.p) = Y Tel e Ze 1), (5.37)

where the Hg is the reduced Hamiltonian,

2

7 h i 1 i le 2e
Hy = Z iAme + §ge,uBBac% + Jo'¢ -0, (5.38)
i=1
1 2A% —2A2
Aw = —(24—240+ 5 ). (5.39)
h §ge,uBBO + §gn,unBO

Equation (5.37) is the equation of motion for the density matrix. However, we

want to get the equation of motion for quantum gate the operator. Hence, first
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we change the arrangement of the density matrix into a column vector. A useful

transformation relation is

P11
P12
P11 P12 --- Pin .

al e P g s ae BT | (5.40)
P21
Pn1 Pn2 --- Pan .
pnn

where A and B are arbitrary matrices and B” is the transpose of the matrix B. Using

above relation, we can define the superoperator £
P 2
plt) = —[Hs,p) =Y TelZe,.[Ze;, ],
j=1
— °(t) = Lpf (5.41)

where p° is the density column vector arranged as Eq.(5.40). Also, we can use Eq.(5.3)
to obtain the equation of motion for the quantum gate operator and the analytical

solution of Eq.(5.7) and Eq.(5.8).

5.3.2 Hadamard Gate

In this section, we will apply the Krotov optimization method. To find a high-fidelity
Hadamard gate. The Hadamard gate is a single-qubit gate and is defined as:

H=— . (5.42)

The gate turns a [0 > into a (|0 > 4|1 >)/+/2 state and turns a |1 > state into a
(|0 > —|1 >)/V/2 state. Figure 5.1 is a schematic illuseration of a Hadamard gate
quantum circuit.

We consider a single-qubit case, so the index j just needs to be 1 in Eq.(5.41) and
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a|0>+b|1> a(|0>+|1>)A2+b(|0>-|1>)12

Figure 5.1: The symbol of the quantum circuit for Hadamard

Eq.(5.38)
pt) = —%[ﬁs, Pl = TelZey, [ Zey, pll,
_ _%( Hsp — pHg) — 20ef + 20 Zey e, (5.43)
where
Hg = gAwla; + %geuBBaCU;, (5.44)

and Aw has the same expression as Eq.(5.39). Using the relation of Eq.(5.40), we
may obtain

l

HHse "~ 1@ Hs' )= 2T I @ I7 + 2T, Z,, @ 27 (5.45)

e’

E:

where [ is the identity matrix. Therefore, we find the superoperator, £, in Eq.(5.3).
Using the relation(5.40) again to obtain the superoperator, £™, in the Eq.(5.4). Also,
we can use Eq.(5.5) and Eq.(5.6) to obtain the equaiton of motion for quantum gate
operator in the real functional form. The flow chart for getting the equaiton of motion
for quantum gate operator in the real function form is shown in Fig.5.2

Because when we find out the equation of motion we have changed the arrange-

ment of the density matrix, we need to change the form of the Hardmard gate in
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matrix — column -,
4>

matrix — column

— | U=LU | | U=L"U"

Us=Q,U;-Q,US

' Us=Q, U+ QU

Figure 5.2: The step for finding out the equation of motion for operator in real

functional.

the goal functional using Eq.(5.40). First, we need to understand the function of the

Hadmard gate acting on the density matrix

9> = Hlp>,

p=l¢><9¢| = H|p><gH = HpH, (5.46)

According to the flow chart, we have chaged the density matrix to the column vector
form with the relation, Eq.(5.40), so we should with the same relation to find the

Hadmard matrix for the density column vector. Using Eq.(5.40), we obtain

HpH'
1 I 1 P11 P12 1 1 1
= S i
V21 -1 P21 P22 V21 1
1 1 1 1 P11
1 1 -1 1 -1
- - Pt (5.47)
211 1 -1 -1 P21
1 -1 -1 1 P22
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and the Hadamard matrix in the density column vector representation is

(5.48)

[\
I S = S SR S
[
|
—_
|
—_

-1 -1 1
We can use the definition of the fidelity or error, Eq.(5.10) and Eq.(5.12) to obtain

the goal functional

I[U,e,t] = —Re[Tr(G'U(T,0,¢))]
(& 1 C (& C C (& C C
= [[UR> € t] = _é(URl + UR2 + UR3 + UR4 + UR5 - URG + UR?

—Upks + Upg + Uiio — U1 — Upia + Uy — Uiy

_U}CBIS + Uf?lﬁ)’ (549>

where Ug,; means the i-th component in the real part column, Ug. Now, we have equa-
tion of motion and goal functional then we can implement the Krotov optimization

method.

5.4 Result

We use silicon-base donor spin quantum computer architecture discussed in chapter
2 to be our system, and we follow the previous section to obtain following result.

Figure5.3 shows the optimal fidelity versus the gate operation time resulting from
the Krotov method. The best fidelity is about 0.9993 or error 7x10~* for the operation
time of 12.35 ns. The error is below the error threshold of 1072 [12].

We consider the rate of convergence for the Krotov method in open quantum
system. According to Fig. 5.4, we can obtain the optimal solution (the best fidelity)
when we repeat the algorithm three times.

The parameter A in Eq.(2.17) is our control parameter to implement a Hadamard
gate and the range of the parameter A is between 1.211 x 10~ eV and 0.606 x 10~7
eV. Using the Krotov method, we obtain the control sequence shows in Fig. 5.5, for

the near time-optimal, high-fidelity Hardmard gate.
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Figure 5.3: Relation of the optimal fidelity versus the gate operation time. The
highest fidelity occur at the gate operation time of 12.35ns
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Figure 5.4: Relation of iteration number and the fidelity. We pick the gate operation
time of 12.16ns
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Figure 5.5: The control sequence and the result from Krotov method

We use the control sequence in Fig. 5.5 to check the state evolution, and we define
the state |1) as the spin-up state and |0) as the spin-down. Figure 5.6, shows the
result of the time evolution of the probability of finding the electron spin (a) in state
|1) (b) in state |0) for an initial state |1) using the Hadamard gate sequence of Fig.
5.5. From Fig. 5.6, we see that if the initial state is |1), after the application of
the control sequence of Fig. 5.5, the donor electron spin has a probability 1/2 to be
in state |1 > and probability 1/2 in state |0 >. Similar, we check the other cases,
including the initial states |0), 1/v/2(|1) +|0)) and 1/v/2(|1) — |0)). These result are
shown in Fig. 5.7, Fig. 5.8 and Fig.5.9, respectively. For an initial state |0 > the
donor electron spin has 1/2 probability to evolve to |0) and |1), as shown in Fig. 5.7.
If the initial state is 1/v/2(|1) + |0)) it will evolve to |1), shown in Fig. 5.8. On the
other hand, if the initial state is 1/v/2(|1) — |0)), it, will evolve to |0), shown in Fig.
2.9.
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Figure 5.6: State probability evolution of the Hadamard gate for an initial state |1)
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Figure 5.7: State probability evolution of the Hadamard gate for an initial state |0)
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Figure 5.8: State probability evolution of the Hadamard gate for an initial state
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Chapter 6

Conclusion

This thesis was primarily concerned with the Krotov method for obtaining near time-
optimal and high-fidelity control sequence for quantum gate operations in open quan-
tum system. We explicitly find the optimal control sequence for Hadamard gate for
the Kane silicon-based donor spin quantum computing.

We have given our motivation to study this problem and have described the Hamil-
tonian for the silicon-base donor spin quantum computing. We have also analyzed
the control processes and given the equation of motion for an ideal unitary case. We
have described the basic idea of the Krotov method, a general method for optimal
control problem. The advantage of the Krotov method is that for implementing the
Krotov method, we just need to know the equation of motion of the system, and
the Krotov method can deal with a large dimension vector space. We have given
simple two examples to illustrate the use of the Krotov optimization method. One
is a discrete problem with a goal functional depending on just the final time and the
other is a continuous in time problem. We have also introduced the master equation
approach to describe open quantum systems under the Born-Markoff approximation.
We have derived the master equation for a two-state system in a thermal equilibrium
environment. To study the optimal control for the silicon-base donor spin quantum
computing we have detailed the Krotov method for obtaining optimal quantum gate
operations in an open quantum system. Using a dephasing model to obtain the equa-

tion of motion for our system, we have applied the Krotov method to obtain the near
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time-optimal and high-fidelity control sequence for a Hadamard gate. The opera-
tion time of 12.35 ns with 7 x 10=* error which is below the error threshold of 1073
[13] required for the fault-tolerant quantum computation. The Krotov method may
prove useful in implementing quantum gate operations in real quantum computing

experiments in the future.
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Appendix A

Changing a Matrix to a Column

We first consider a simple matrix multiplication of three 2x2 square matrices. Our

goal is to change the middle matrix from a matrix to a column vector, in a form

shown below.

ayy a by b c
ABC — 11 12 11 012 11
Q21 QA22 ba1  ba C21
b1
b2 c
—  M(aij, cij) = M(ai, cij) BS,
ba1
bao

C12

, (A1)

C22

(A.2)

where M(a,c) is a matrix depending on the element of matrix A and C. We can

directly calculate the multiplication to obtain

ay1biici1 + argbaicn

+ay1b12¢21 + a1abaca

ABC =
azibiicin + agborcin

+ag1b12¢21 + ag1b2acan
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a11bi1c12 + ajebaicio

+ay1b12¢21 + ajabraca

az1b11¢12 + ag1ba1ci2

+agibiacar + ag1baaca




comparing with Eq.(A.2), we can get

b1y @11C11 A11€C21 Q12C11  A12C21 b1
b2 a11C12 A11C22 Q12C12 A12C22 b12
M(CLZ'j, Cij) = . (A4)
ba1 a21C11  A21C21  Q22C11  (A22C21 ba1
bao A21C12 A21C22 G22C12  A22C22 bao

By observing Eq.(A.4), it is clear that Ma;;, ¢;;) is equal to A ® CT. Where the
symbol x denotes a tensor product and C7 is the transpose of the matrix C. The
matrix element of the multiplication of ABC' can be written as a;zbyc;;. We can
rewrite the resultant matrix element to a;zc;;br. If we pick out the element by to
become a column, the elements a;; and ¢;; will construct a new square matrix, M.
The character of the new matrix, M, is that the r-th row of M B¢ should be the same

as the element (ABC)g, and r,s and ¢ satisfy the condition
r=(s—1)x2+t. (A.5)
Therefore, if we have three multiplication N x N square matrix the condition becomes
r=(s—1)x N+t. (A.6)

Using Eq.(A.6) we obtain

a11€11 Q1121 ... Q11Cp1  Q12C11 ... Q1pCpl
a11€12  Q11C22 ... Q11Ch2  Q12C12 ... Q1pCp2
M(aijv Cij) = a11Cln  G11C2n  -.. G11Cpp  A12C1p - -+ Q1nCpn . (A7)
a21C11  Q21C21 ... Q21Cp1  QA22C2p ... (2pCpl
An1Cln  Ap1C2n .. Qp1Cnp An2Cpn - .. AppCpn
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We can further rewrite Eq.(A.7) in the following form

M (aij, C,’j)
Ci11 C21 ... Cpi Ci11 C21 ... Cpi
Cla2 C22 ... Cp2 Cl2 C22 ... Cpo
a1y . . ] . AT
Clp, Conp ... Cpn Clp, Con ... Cpn
Ci1 C21 ... Cpi Ci1 C21 ... Cpi
Cla2 C22 ... Cp2 Cl2 C22 ... Cp2
a921 . . . ... Qop
Cin Con ... Cpn Cin Con ... Cpn
Ci1 Ca ... Cm Ci1 Ca ... Cnm
Cig2 Ca2 ... Cp2 Ci2 C2 ... Cp2
an1 . ) ) . e Qpp
Cin Con ... Cpn Cin Copn ... Cpn
= A®CT. (A.8)

Therefore, when the matrix B is changed to a column vector, we can use Eq.(A.8)
to obtain equivalent result of ABC. Note that the column vector is arranged in the

following way:.

bll
bl2

bll b12 s bln

bor bay ... bop

21 22 2 N bln (A9)

621

bnl bn2 s bnn
bnn
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