
doi:10.6342/NTU202304108

國立臺灣大學電機資訊學院暨中央研究院

資料科學學位學程

碩士論文

Data Science Degree Program

College of Electrical Engineering and Computer Science

National Taiwan University and Academia Sinica

Master Thesis

以帶潛在標籤的關係圖神經網絡改進垃圾評論之檢測

Improving Detection of Spam Reviews via Relational Graph

Neural Networks with Potential Labels

洪贊濱

Tsan-Pin Hung

指導教授：謝宏昀 博士、王志宇 博士

Advisor: Hung-Yun Hsieh, Ph.D., Chih-Yu Wang, Ph.D.

中華民國 112年 8月

August, 2023

doi:10.6342/NTU202304108

doi:10.6342/NTU202304108

致謝	

日月如梭，轉眼間就過了三年，從剛進實驗室不懂的如何做研究的我到如今也慢慢知道

如何用自己的所去看待研究並在巨人的肩膀上改進現有的研究來完成自己得論文，一路走來

雖然跌跌撞撞，多虧有大家的幫助最後終於能運用自己所學順利的完成論文。	

首先我要特別感謝謝宏昀教授的指導指導和包容，感謝教授在一次次的討論中指點我該

如何看待以及深入研究課題，教授總能在我有盲點的時候點出來讓我知道該如何用不同的角

度去思考，讓我能夠從剛入學完全不懂如何閱讀論文和推進研究到現在能夠產生自己的觀點

並在閱讀一篇篇論文後深入研究主題，非常感謝教授不厭其煩的指導，成就如今的我。	

接下來我也要特別感謝我的共同指導老師王志宇研究員，感謝王老師在每個月的討論中

點出我沒注意到的地方，並提供了他的觀點來幫助我把研究做得更好，也感謝王老師提供了

強大的運算資源讓我能夠順利的跑出原本以為無法跑出來的結果。	

我要感謝大寬在我們三上和一起跟老師討論的過程中互相打氣，也感謝健達不管是修課

和研究上都幫助我許多，感謝這兩位同學讓我對論文的產出和口試沒那麼徬徨，也感謝政燁

學長在計中工讀時的協助，讓我增進了報告的能力，也感謝學長在口試前最後的提點，讓我

最終的實驗能更豐富。	

接下來感謝碩三時一起待在實驗的學弟妹，在我面臨研究和畢業壓力時不會感到孤獨，

在面對低潮時能夠更快的振作，也感謝宇翔在我壓力大的一直聽我抱怨幫我加油打氣，也感

謝昶凱在最後半年對我的幫助，你對我的提點讓我獲益良多。

最後我也要感謝在口試前幫我順口試投影片和內容的昶凱、定為、奕寶，在口試的前一

晚協助我修改口試投影片，也給了我很多建議，讓我能順利完成口試。

時光飛逝，三年一下就過了，如今也要畢業了，感謝在研究所遇到的各位給我的種種協

助，在我遇到瓶頸時拉我一把幫助我度過難關，讓我能夠堅持下去，也感謝各位對我的提點，

幫助我看到自己的不足之處，即使我也很多不足的部分仍在旁協助我，幫助我面對種種的難

關。	

2023/8/10	洪贊濱筆

doi:10.6342/NTU202304108

摘要	

在垃圾評論檢測領域，基於圖的檢測法由於能捕捉評論間的互動關係而受到廣泛矚目。

然而圖神經網路（GNN）反覆聚合鄰點訊息的特導致過平滑的問題，使得良性與惡性評論的

節點表示有可能趨同。雖然早前有研究試圖透過同時考慮同質和異質連接來降低影響，嘗試

反向聚合異質連接，但由於依然使用相同的聚合函數同時聚合不同標籤的鄰點，且假設所有

良惡評論節點表示應各自相近，導致未能有效避免過度平滑。此外，一次性更新所有節點的

表示在資料量增長時將導致記憶體需求過大，因此使用子圖聚合在實際應用中變得必不可

少。然而過去的方法在建構子圖時，並未考慮到圖的拓墣結構來進行鄰點採樣，因此無法有

效補捉緊密交互的鄰點之訊息。為了解決上述的問題我們提出了一種基於潛在關係的圖神經

網路垃圾評論模型，該模型根據圖的拓墣結構相似性對進行採樣產生子圖進行隨機訓練，在

聚合鄰點訊息前先使用分類器分類出潛在良性與惡性評論鄰點，接著使用分層的聚合策略，

將潛在良性與惡性評論視為兩種不同的關係分開進行聚合後，再組合這兩類評論鄰點的訊息

進行下一層的聚合。同時，我們設計了一種新的三元損失函數，使良性評論的表示與評論對

象的表示之間的相似度高於與惡性評論節點的相似度，來降低過度平滑的影響，更符合現實

中的觀察。我們的實驗結果證明了我們方法的有效性，在 yelpNYC資料集中使用隨機切分的

情況我們的方法在 AUC分數的表現上平均高於主要參考模型 6%和次要參考模型 1.5％，達

到了 0.84，而在按時間序切分的情況下，我們的 AUC分數上平均分別高於主要以及次要參考

模型 5.5%以及次要參考模型 6.5%，在其他資料及上也都得到優於參考模型的節結果，並且

在每一次的實驗結果中的 AUC的分數都優於其他兩者。

doi:10.6342/NTU202304108

ABSTRACT

Graph-based spam review detection has been appealing due to its ability to

capture review interactions. However, it has problems with over-smoothing be-

cause the recurrent aggregation of neighborhood data makes it difficult to dis-

tinguish between benign and spam reviews. Although existing studies consider

homogeneous and heterogeneous connections, but employ the same aggregation

function and presume that benign and spam review representations should be sim-

ilar, which results in inefficiencies. Additionally, updating all node representations

at once becomes unfeasible as data quantities increase due to memory constraints,

necessitating subgraph aggregation. However, prior approaches did not consider

the topological structure of the graph in subgraph construction, making it difficult

to capture information from closely interacting neighbors effectively. To address

these issues, we present a GNN model for spam review detection based on poten-

tial labels to overcome these problems. According to the topology of the graph,

our model sample subgraphs use a hierarchical aggregation strategy and treat

potential labels of benign and spam reviews as two different relationships. We

also designed a novel triplet loss function that ensures the similarity between the

representation of benign review and the target of review is higher than that with

spam review nodes, mitigating over-smoothing. Our experimental results demon-

strate the effectiveness of our method. In the YelpNYC dataset, under random

splitting, our approach outperformed the primary and secondary baseline models

by 6% and 1.5% respectively on average AUC scores, achieving a score of 0.84; in

the case of chronological splitting, our AUC scores were on average 5.5% and 6.5%

higher than the primary and secondary baseline models respectively, achieving a

score of 0.68. Our method also achieved superior results on other datasets and

consistently exceeded the AUC scores.

ii

doi:10.6342/NTU202304108

TABLE OF CONTENTS

ABSTRACT . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER 1 INTRODUCTION . 1

CHAPTER 2 BACKGROUND AND RELATED WORK 4

2.1 Spam Review . 4

2.2 Graph-based Spam Review Detection 5

2.2.1 Graph Neural Network . 6

2.2.2 Stochastic Training on Graphs 8

2.2.3 Neighbor Sampler . 10

2.3 Related Work . 10

2.3.1 GAS . 10

2.3.2 H2-FDetector [1] . 11

2.4 Summary . 12

CHAPTER 3 SYSTEM MODEL . 13

3.1 Dataset Description . 13

3.2 Comment Graph Construction . 14

3.2.1 Review Context Representation 15

3.2.2 Edge Representation . 15

3.2.3 Node Representation . 15

3.3 Graph Sampling . 16

3.4 Heterogeneous Graph Convolutional Network 17

3.4.1 Aggregation Stage . 19

3.4.2 Combination Stage . 20

3.4.3 Summary of the HGNN Model 20

3.5 Summary . 22

CHAPTER 4 METHODOLOGY . 23

4.1 Motivation . 23

iii

doi:10.6342/NTU202304108

TABLE OF CONTENTS iv

4.2 Model Architecture . 24

4.3 Topology Aware Graph Sampling 25

4.4 PL-RGNN Model . 25

4.4.1 Potential Label Identification 26

4.4.2 Relational Graph Attention Aggregation 28

4.5 Optimization . 30

4.5.1 Triplet Loss . 31

4.5.2 Focal Loss . 32

CHAPTER 5 PERFORMANCE EVALUATION 34

5.1 Experiment Setup . 34

5.2 Evaluate Method . 35

5.2.1 Metrics . 35

5.2.2 Visualization . 36

5.3 Average Performance Analysis . 36

5.4 Model Trade-off Analysis . 45

5.5 Embedding Visualization . 48

5.6 Performance Comparison of Different Embedding Methods with
Baselines . 50

5.7 Ablation Study . 52

5.8 Performance Comparison on Amazon dataset. 55

5.9 Summary . 56

CHAPTER 6 CONCLUSION AND FUTURE WORK 57

REFERENCES . 58

doi:10.6342/NTU202304108

LIST OF TABLES

1 Review datasets used in this work. 14

2 Examples of reviews . 14

3 Notation Table . 21

4 Model performance on YelpChi . 37

5 Model performance on YelpNYC and YelpZip under the random split. 38

6 Model performance on YelpNYC and YelpZip under the time-based
split. 38

7 Model performance on YelpNYC and YelpZip under the random split. 51

8 Model performance on YelpNYC and YelpZip under the time-based
split. 52

9 Ablation Study on YelpNYC and YelpZip under the random split. . 52

10 Ablation study on YelpChi . 53

11 Ablation Study on YelpNYC and YelpZip under the time-based split. 53

12 Experiment results on Amazon review dataset. 55

v

doi:10.6342/NTU202304108

LIST OF FIGURES

1 An illustration of Graph-Based Spam Review Detection Pipeline. . 6

2 Illustration of how a single node aggregates neighbor’s information. 7

3 Overview of neighbors Sampling methods. 9

4 System model . 13

5 Graph Construction . 14

6 An illustration of edge sampling. 16

7 An illustration of the HGCN model training pipeline. 17

8 An illustration of how the HGCN model updates the attribute of a
given node with input subgraph. 18

9 The overall architecture of PL-RGNN. 24

10 Pipeline of our PL-RGNN for aggregating product nodes. 26

11 An illustration of the neighbors’ aggregation. 27

12 Triplet . 31

13 Confusion matrix . 36

14 AUC, recall, and F1 of models on YelpChi under the time-based split 37

15 AUC, recall, and F1 of models on YelpZip under the random split
approach. 39

16 AUC, recall, and F1 of models on YelpNYC under the random split
approach. 40

17 AUC, recall, and F1 of models on YelpZip under the time-based
split approach. 41

18 AUC, recall, and F1 of models on YelpNYC under the time-based
split approach. 42

19 Spam review ratio for products. 44

20 Spam review ratio for products that predict failure. 44

21 Distribuction of reviewer id. 45

22 ROC and PRC Curve under the random split. 46

23 ROC and PRC Curve under the random split. 47

24 ROC and Curve under the time-based split. 48

25 t-SNE on the yelpChi under the time-based split. 49

vi

doi:10.6342/NTU202304108

LIST OF FIGURES vii

26 t-SNE on the yelpNYC. 49

27 t-SNE on the yelpZip under the time-based split. 50

28 Ablation study under the random split. 53

29 Ablation study under the time-based split. 54

doi:10.6342/NTU202304108

CHAPTER 1

INTRODUCTION

In modern society, online reviews play an important role in daily life; most

people would read online reviews before making a purchase decision. In 2022, 98%

of consumers read online reviews for local businesses, and only 21% of consumers

don’t trust online reviews as much as experts. [2] In other words, these user-

generated reviews are crucial for preserving confidence in the online ecosystem as

they significantly influence how consumers make purchasing decisions.

Due to the lack of rigorous controls, spam reviews can be generated and up-

loaded on e-commerce websites with relative simplicity, which is specifically the

reason for an increase in spam activities. Companies may hire people, referred to

as spammers, to create fraudulent evaluations of their goods or services. [3] These

spam reviews are frequently written to increase sales or the visibility and appeal

of the company’s products. Review spamming is the word used to refer to this

behavior.

Unfortunately, the growth of online e-commerce platforms has been followed

by a rise in fraudulent strategies such as spam activities. This increase is mainly

due to loose rules and controls, which make it relatively easy for spam reviews

to be created and posted on e-commerce platforms. Companies may hire peo-

ple—commonly known as spammers—to manufacture evaluations for their goods

or services, [3]. Increasing the visibility of products, boosting sales, or otherwise

changing the public opinion of a business’s products or services are frequently the

targets of these spam reviews. ‘Review spamming ’ is the typical term for this

fraudulent behavior.

Researchers are actively working to stop the growing threat of fraud in the

modern digital environment, particularly in the form of spam reviews [4]. Due to

the rapid increase in this fraudulent activity, quick and efficient prevention efforts

are required. As a result, both the academic and business communities have given

the problem of picking up and removing spam reviews a lot of attention. This

change has led to increasing attention on research aimed at understanding the

structure of spam reviews, creating powerful detection systems, and ultimately

reducing their incidence. Such carefully targeted efforts show how important and

well-known this topic is becoming.

For instance, feature-centric approaches try to extract or create informative

traits that help distinguish between benign and spam reviews [5]. In general,

1

doi:10.6342/NTU202304108

2

statistical learning or machine learning approaches are implemented to achieve

this. Natural language processing characteristics like Linguistic Inquiry and Word

Count (LIWC) and Part of Speech (POS) tagging are used in certain feature-

centric techniques [6]. However, experienced spammers can frequently readily

camouflage this rule-based features [7], prompting academics to examine alterna-

tive options, including graph-based techniques.

By their very nature, spammers collaborate and communicate often with other

spammers in order to spread their impact. network-based approaches can make

use of these behavioral patterns to distinguish between genuine and spam reviews

inside a graph structure. In recent research, GNNs have been used to address

this issue, often by constructing homogenous graphs using manually created rules.

However, this procedure may cause information to be lost between reviewers and

the items being evaluated.

Many academics have experimented with constructing homogenous graphs to

detect spam reviews. CARE-GNN [7] is a notable example. It employs rule-based

techniques to identify relationships between reviews and then maps the structured

data into a homogenous graph. They need domain-knowledge experts to define

rules for every dataset in order to create the graph. however, performing such an

operation would drop the information between reviews, which would have lost the

information between reviews.

Additionally, although graph-based techniques are capable of extracting spam

patterns from a graph structure, they mainly work on the homophilic assumption.

The graph-based model iteratively aggregates the information from neighbors to

generate the final embedding. This frequently results in an over-smoothing prob-

lem and a high false negative rate when combined with the excess imbalance

between spam and spam reviews. Recent research has sought to solve this prob-

lem by taking into account both homophilic and heterophilic connections inside

a homogeneous network, such as H2-FDetector [1]. However, they use a naive

approach that simply adds a minus operation to aggregate the heterophilic con-

nections, which can not efficiently aggregate the category message between spam

and benign reviews.

To address the above disadvantage, we propose a novel graph-learning frame-

work intended to reduce over-smoothing. Our system is constructed with the

intention of separately aggregating spam and benign neighbors. Our approach

guarantees a thorough comprehension of the unique features and attitudes of each

group. As a result, it produces a representation of a graph that is more precise and

balanced, improving model performance. This novel approach helps to improve

the validity and reliability.

doi:10.6342/NTU202304108

3

We also adapt the triplet loss to add to our model to reduce the over-smoothing

issue by distinguishing the embedding between different categories. The model’s

capacity to distinguish between several categories is improved by this inclusion,

which also strengthens the reliability of the results. In our system, we also include

a topology-aware neighbors sampling module. The robustness of our results is fur-

ther strengthened by this module’s assistance in sampling stronger tie neighbors.

Combining these complex methods yields a more comprehensive and robust model

for spam review detection.

The main contributions of this thesis are summarized as follows:

1. We propose a relational graph neural network with potential labels to ag-

gregate different potential labels separately.

2. We adapt the triplet loss to distinguish the benign and spam reviews of each

product.

3. We introduce the topology-aware neighbors sampling approach to sample

neighbors with stronger ties.

The remaining chapters of this thesis are organized as below:

• In Chapter 2, we discuss the background knowledge of spam review and

spam review detection as well as the related work that inspired us.

• In Chapter 3, we introduced the detection pipeline of our system and de-

scribed each module in our system.

• In Chapter 4, we describe our proposed methods, including the neighbors

sampling approach, our proposed detection model, and the optimization

approach.

• In Chapter 5, we reported the performance of our proposed method and

other baselines.

• In Chapter 6, we summarize our results and future work.

doi:10.6342/NTU202304108

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we briefly introduce the background of spam review and spam

review detection methods and organize the related work of these methods.

2.1 Spam Review

Nowadays, people may readily express their opinions on forums, blogs, and

e-commerce websites. In addition, it is widespread for people to read opinions

about services and products before purchasing. Opinion spam, which occurs when

biased reviewers post false feedback to either promote or disparage a product (or

service) in order to mislead customers for profit or reputation, has sadly become

a serious problem in online reviews. This conduct is referred described as ”review

spamming” [8]. In general, spam reviews usually can be categorized into three

different forms [9]:

• untruthful opinions: Reviews that intentionally fraudulent readers or

opinion mining systems by giving some specific objects undeserving posi-

tive feedback to promote the specific products (termed push attack [10])

or by giving some other specific products unfair or intentionally negative

reviews to damage their reputations (termed nuke attack [10]).

Collectively, these untruthful reviews are commonly referred to as fake re-

views. These fake reviews have caused great damage to personalized recom-

mendation systems and undermined consumer and company confidence in

the online market.

• reviews on brands only: Reviews that focus on the manufacturers, sellers,

or brands of the products rather than the things themselves. Considering the

fact that they may be beneficial, Researchers consider them to be spam [8]

because they frequently have prejudice and are not directed at any specific

products.

• non-reviews: Reviews can be categorized into two groups: 1) advertise-

ments and 2) pointless reviews with unrelated text (e.g., questions, answers,

and random texts).

The topic of spam review detection has been the focus of numerous investiga-

tions. Jindal and Liu [9] presented the first categorization of this topic into three

4

doi:10.6342/NTU202304108

2.2. GRAPH-BASED SPAM REVIEW DETECTION 5

categories: review-centric, reviewer-centric, and product-centric. They extracted

distinctive features from these categorizations and developed a logistic regression

model. Other traditional techniques use statistical learning to approach the issue.

These techniques carry out feature-centric spam review identification by employ-

ing supervised classifiers to extract anomaly patterns based on review-associated

semantic messages [11]. Furthermore, other studies concentrate on the use of lan-

guage models or utilize linguistic inquiry and word count (LIWC) or Part of speech

(POS) to extract different aspects from textual reviews.

The reality of the problem is further complex, even while the method of using

feature-centric or statistics-based spam review detection techniques can show to

be a significant benefit in the identification and labeling of spam reviews. Al-

though offering a complex design, such strategies are based on the recognition of

patterns and indications frequently associated with spam reviews. For example,

they can spot suspiciously high keyword frequency, unusual linguistic patterns, or

inconsistent rating behavior. These methods essentially examine a putative spam

review via the prism of statistical differences or gaps from the fraudulent set by

benign reviewers.

However, spammers have created adaptive methods that regularly prevent

these detection systems. They have developed the skill of controlling the specific

pattern these systems depend on, gradually reducing their effectiveness. They fre-

quently substitute alternatives or sentences with semantically similar meanings for

terms that have been detected. By employing this strategy, they avoid malicious

comments recognized by the spam review detection system.

Additionally, in order to hide their behavior, these spammers worked on their

ability to duplicate the habits of genuine reviewers. They adopt their review sub-

mission routines, use several rating scales, and adjust their commenting routines.

It becomes harder and harder for detection systems to discriminate between gen-

uine and spam reviews as a result of such camouflage behavior. The problem

comes from the fact that these spammers are essentially copying human behavior,

which is always changeable and unexpected.

2.2 Graph-based Spam Review Detection

Since spammers can easily disguise themselves as genuine reviewers with some

simple tricks, the focus on research in this area has shifted to more complex

detection techniques like graph-based methods [12]. A rising number of academics

are focusing their research on the investigation and use of graph-based approaches.

These approaches are made to make use of the intricate relationships that exist

between different entities, such as users, products, and reviews, in the context of

doi:10.6342/NTU202304108

2.2. GRAPH-BASED SPAM REVIEW DETECTION 6

Raw Data

Feature Extraction

Graph Construction
Embedding

Graph-based Algorithm prediction

Figure 1: An illustration of Graph-Based Spam Review Detection Pipeline.

the review system [5].

The graph-based method, which has received a commendation for its use in

representation learning on graphs such as social networks and knowledge graphs,

has developed into a crucial tool for studying and understanding complicated rela-

tional data. Recently, researchers have been more aware of how, despite their rela-

tive effectiveness, traditional feature-based methods sometimes ignore the complex

connections between reviews, reviewers, and products. Given that these relations

can be essential in detecting spam reviews in some situations, in particular, this

makes up a huge research interest.

The ability of the graph-based methods to represent data is well established.

The key idea behind this system is to illustrate the complex relationships between

reviewers, products, and reviews as a graph. Every node and edge in a homoge-

neous graph belongs to the same type. When different kinds of nodes (such as

users, products, and reviews) and edges coexist, the network is said to be hetero-

geneous.

2.2.1 Graph Neural Network

The primary advantage of Graph Neural Networks (GNN) is their power to

learn and represent features based on network structures and attributes, providing

a solid foundation for comprehending the entire graph in contrast to traditional

machine learning, which only models the relationships based on individual data

points. The interactions and larger relational contexts that are associated with

graph structures are sometimes overlooked by traditional approaches. While cap-

turing hidden patterns within the topological graph structure to provide a more

comprehensive and interconnected representation of the data, GNNs succeed in

scenarios where data relations are important.

Gilmer et al. [13] proposed a general Message Passing Neural Networks (MPNNs)

on a graph that can take an input graph G = (V,E), with a set of node features

X ∈ Rd×|V |, where d is the dimension of node features, and use these attributes

to generate node embeddings zu,∀u ∈ V.
In each message-passing iteration of a GNN, the hidden state of embedding hku

associated with each node u ∈ V is updated based on information aggregated from

u′s neighbors N (v) on the graph. Figure 2 illustrates how an MPNN generates

doi:10.6342/NTU202304108

2.2. GRAPH-BASED SPAM REVIEW DETECTION 7

embedding of a single node A. The model aggregates messages from A’s neighbors

(i.e., B, E, and F) in the Figure 2(a), the messages of these neighbors are based

on messages aggregated from their own neighbors, and so on. Figure 2(b) shows

the computation graph of how a two layers message passing model generates the

embedding of a single node A.

A

C

F

D

B

E

(a) Input graph

E

B

FA

C

F

A

E

A

A

D

Neighbors aggregation function

(b) Computation graph for updating the em-
bedding of node A

Figure 2: Illustration of how a single node aggregates neighbor’s information.

The hidden state of a node u’s embedding at l-th in this message-passing

update pipeline is formulated as follows:

h(l)u = UPDATE(l)
(
h(l−1)
u , AGGREGATE(k−1)

(
{h(l−1)

v , ∀v ∈ N (u)}
))

(2.1)

= UPDATE(l)
(
h(l−1)
u ,m

(l−1)
N (u)

)
, (2.2)

in this context, UPDATE and AGGREGATE stand as any distinct differentiable

functions, with mN (u) being the “message” accumulated from N (u), the set of

neighbors of node u.

During each iteration l within the GNN, the model leverages the AGGRE-

GATE function to process the set of node embeddings in the neighboring nodes

N (u), creating a message m
(l)
N (u) based on this collected neighbor information.

Following this, the model employs the UPDATE function to merge the message

m
(l)
N (u) with the embedding h

(k−1)
u of node u obtained from the preceding iteration.

The node embeddings at the starting point of iteration, l = 0, are set as node

features, which is to say, h
(0)
u = xu, ∀u ∈ V . After undergoing L times of GNN

message-passing, the output from the final iteration is used to establish the em-

beddings for each individual node. Consequently, the embeddings for each node

doi:10.6342/NTU202304108

2.2. GRAPH-BASED SPAM REVIEW DETECTION 8

are defined as:

zu = h(L)u , ∀u ∈ V. (2.3)

The most basic GNN message-passing that described in the Equation 2.1 is

defined as [14]:

h(l)u = σ

W (l)
selfh

(l−1)
u +W

(l−1)
neighbors

∑
v∈N (u)

h(l−1)
v + b(l)

 , (2.4)

where W
(l)
self, W

(l−1)
neighbors ∈ Rd(l)×d(l−1)

are trainable weight matrices, d(l) denotes the

degree of hidden state nodes embedding in the l-th iteration, and σ denotes a

non-linear activation function (e.g., ReLU, Sigmoid, ...).

Define the xv as the feature for node v, where xv ∈ Rd1 , and the feature we as

the feature for edge (u, v), where we ∈ Rd2 .

The paradigm of message-passing operations of the node-wise and edge-wise

at layer l + 1 can define as follows: [15]:

Edge-wise: m(l+1)
e = ϕ(x(l)e , x

(l)
v , x

(l)
u), (e, u, v) ∈ E , (2.5)

Node-wise: x(l+1)
u = ψ

(
x(l)u , ρ

(
{m(l+1)

e : (e, u, v) ∈ E}
))
, (2.6)

where ϕ is an edge-wise message function assigned to each edge that combines

the features of the edge with those of its incident nodes to generate a message.

Additionally, ψ is an update function for each node responsible for updating the

feature of nodes. And ρ represented the reduction function used to aggregate

incoming messages during this updating process. In the above equations, ϕ is a

message function defined on each edge to generate a message by

2.2.2 Stochastic Training on Graphs

Due to computational and memory limitations, training GNNs on large graphs,

especially ones with millions or even billions of nodes or edges, offers tough chal-

lenges. For such big graphs, the full-graph training method that updates all of

m
(l+1)
e and x

(l+1)
v simultaneously is frequently impossible. Consider performing a

GNNs convolution on a Graph with N nodes that have a hidden state size of H

with L layers as an example; for large values of N , maintaining all of the hidden

states requires O(NLH) memory, which would rapidly overtake a single GPU’s

capabilities.

However, performing a mini-batch of stochastic training on a graph is not

naive. The linkage of graphs is one of the major roadblocks. Nodes in a graph

doi:10.6342/NTU202304108

2.2. GRAPH-BASED SPAM REVIEW DETECTION 9

have relations, in contrast to traditional machine learning tasks where data points

are typically independent of one another and can be sampled independently. It

suggests that a node’s representation is based on its own attributes as well as

those of its neighbors and perhaps even nodes further away in the graph. When

processing a small subset of nodes or edges at once in a minibatch, this dependence

on nearby nodes becomes an issue. The model will be unable to produce an

effective representation for a node if it depends on the features of plenty of other

nodes that are not present in the current minibatch.

Furthermore, simply sampling N edges from the edges set E, where N << E,

can result in the sampling of isolated edges or disconnected subgraphs. This

can be troublesome since it does not give an exhaustive view of the structure of

the entire graph, which is necessary for efficiently training Graph Neural Networks

(GNNs). This setting produces isolated edges and disconnected subgraphs, making

them less useful to the learning algorithm. Additionally, the connectedness of the

manufactured graph, which is necessary for the propagation of messages in GNNs,

might be harmed if the sampled edges are isolated.

In order to accomplish such stochastic training on graphs, GraphSAGE [13]

samples a batch of nodes as well as a fixed size of neighbors for each node. Unlike

passing messages on the full graph that need to be loaded the entire graph into

memory, GraphSAGE [13] randomly samples a small, fixed number of neighbors

for each node, which helps to keep the size of the computation graph small and

manageable. Importantly, these neighborhoods are sampled individually for each

node in the minibatch, meaning the computation graph is different for each mini-

batch. By iteratively aggregating and transforming information from a node’s

local neighborhood, we are able to generate node embeddings that capture both

the local graph structure and features of nodes.

c cc

Figure 3: Overview of neighbors Sampling methods.

Figure 3 illustrates the neighbor sampling method. Assume we are employing a

2-layer GNN model. We first sample the 1-hop neighbors (shown by green nodes)

and then the 2-hop neighbors (represented by pink nodes) of each center node in

the batch (represented by an orange node). We first use the message from the pink

nodes to update the embedding of green nodes before determining the embedding

doi:10.6342/NTU202304108

2.3. RELATED WORK 10

of orange nodes. The final embedding for the orange nodes can be calculated using

the green nodes.

2.2.3 Neighbor Sampler

For the stochastic training approach, nodes aggregate messages selectively,

taking into account only a chosen subset of neighbors as opposed to all possible

neighbors. Thus the neighbor selection approach is a pivotal factor in graph-based

spam review detection and make a significant effect on the quality of the final node

and edge embeddings.

In CARE-GNN [7], they employ reinforcement learning to find the optimal

threshold to perform the top-p sampling and compute the similarity with neighbors

to measure the association with neighbors in terms of feature similarity to sample

top-p similar neighbors. With this approach, we can only aggregate the message

of nodes in which the feature is the most similar to the center nodes, and we also

can not aggregate the message from neighbors, which frequently interact with the

center node.

In PC-GNN [16], they separate their neighbor sampler into two parts: pick

and choose. In the pick stage, they sum up the adjacency matrices of all relations

and then use the two norms of the column vector of neighbors in the normalized

adjacency matrix and the label frequency of neighbors to calculate the sample

probability to pick the neighbors nodes. Then, they define a distance function

to calculate the distance of selected neighbor nodes and operate over-sampling of

neighbors in the minority class and under-sampling the neighbors in the majority

class. Though their approach can capture the local importance by the adjacency

matrix and the utilization of the distance function can help them sample the more

related nodes in terms of features, this approach can not efficiently capture the

neighbors with frequent interactions.

2.3 Related Work

2.3.1 GAS

Li et al. [17] proposed a novel anti-spam model that makes use of a Graph

Convolutional Network (GCN) in the setting of a bipartite graph with node and

edge attributes. This novel method was implemented on Xianyu, a well-known

Chinese online marketplace, and makes use of the task of spam review detection

as an edge classification task that utilizes the edge embedding together with the

source and target nodes that this edge links to identify the spam review.

To perform graph convolutional networks on bipartite graphs, Li et al. [17]

doi:10.6342/NTU202304108

2.3. RELATED WORK 11

design three aggregating functions for the user, product, and review entities, re-

spectively, to execute graph convolutional networks (GCN) on bipartite graphs.

The aggregating function for review entities aggregates the information of the re-

view product and review user that this edge links; aggregating function for user

and product utilize the edge embedding, and the product/user embedding of the

edges that linked to it with attention mechanism [18] to aggregate the neighbors’

information.

After aggregating the neighbors’ information, Li et al. [17] combine the node

attribute of the neighbors’ node with trainable weight matrices for both the user

and product node to generate the final node embedding. Ultimately, Li et al. [17]

use the user, product, and review embedding of the given review to identify spam

reviews.

In conclusion, GAS [17], employs a heterogeneous graph representation widely

applicable in real-world scenarios where data can be naturally depicted. This

method can update the review embedding by aggregating user and product mes-

sages. The Graph Convolutional Network (GCN)-based solution, on the other

hand, is constrained by severely unbalanced labeling and only depends on the ho-

mophily assumption. As a result, there may be a noticeably higher false negative

rate.

2.3.2 H2-FDetector [1]

H2-FDetector [1] models both homophilic and heterophilic connections (H2-

connection) between nodes simultaneously in the fraud graph, assimilation of ho-

mophilic connection nodes and discrimination of heterophilic connections. To ac-

complish this goal, they first recognized the H2-connection in a fraud graph, then

aggregated the message under the influence of the H2-connection. Ultimately, they

use the category features of all known fraudsters to identify new fraudsters.

Considering the premise that nodes with the same label are similar and those

with different labels are distinct, H2-FDetector [1] designs a H2-connection identi-

fication sub-layer to measure the difference or similarity between nodes and uses it

to predict whether an edge is a homophilic connection or heterophilic connection

from the nodes that have been labeled.

After extracting the edge connection types, H2-FDetector [1] combines neigh-

bor nodes from homophilic and heterophilic neighbors, making the representations

between homophilic connections similar. In contrast, the representations between

heterophilic connections become discriminative.

Then H2-FDetector [1] finds each class’s approximate category center to ex-

tract each class’s category information. The model derives the node representation

doi:10.6342/NTU202304108

2.4. SUMMARY 12

based on the H2-connection aggregate strategy in the previous submodule. How-

ever, some fraudsters are stranded in neighborhoods with an excessive number of

benign entities, which make them only able to aggregate message from their inter-

class neighbors but unable to learn inter-class similarities from other fraudsters.

To solve this issue, H2-FDetector [1] employs a prototype extraction strategy to

reduce the distance between each sample and the prototype, resulting in a closer

similarity between samples within the class.

In conclusion, the H2-FDetector model presented by Shi et al. [1] considers ho-

mophilic and heterophilic connections within a homogeneous graph. Consequently,

it necessitates the construction of a homogeneous graph from raw data, which may

inadvertently lead to the loss of some information during the graph-building pro-

cess. Furthermore, this particular model cannot harness the information about

the review target to predict the presence of spam reviews accurately.

2.4 Summary

In this chapter, we explore the topic of spam reviews, which are a big issue on

online platforms in Section 2.1 and give a precise definition of spam review. Along

with this definition, we also introduced some traditional detection methods. And

then, we explore the graph-based spam review detection techniques in Section 2.2,

which leverage the power of graph theory in order to extract the social interaction

between reviews. Finally, in Section 2.3, we introduced the related study that

inspired us and discussed the pros and cons of these methods.

doi:10.6342/NTU202304108

CHAPTER 3

SYSTEM MODEL

raw review data
Comment Graph

Graph Construction

GNN Review embedding Review embedding

Figure 4: System model

In this chapter, we explain our spam review detection pipeline. The system

constructs the comment graph from the raw review datasets. And then using

the GNN model to learn the social interaction between reviews to update its

embedding and utilize it to detect the spam review. The illustration of the spam

review detection pipeline is shown in Figure 4.

The sections are arranged as follows: Section 3.1 introduces the review dataset

we used in this work. In Section 3.2, we introduce how to construct the comment

graph from the dataset, and then in Section 3.3, we introduce how the system

sample subgraph further feeds into the GNN model. In Section 3.4, we introduce

how to use heterogeneous graph convolutional Networks to learn the embedding

of nodes and edges to identify spam reviews.

3.1 Dataset Description

To evaluate system performance, We used two open datasets from Yelp.com

that included restaurant reviews in different parts of America collected by Rayana

et al. [5]. Yelp.com is a well-known website for local business reviews. Users of

this website can submit a review of any of the products or services listed.

Yelp has a filter system that can separate reviews into recommended and un-

recommended (filtered) lists to identify fake/suspicious content. We classify them

as benign and spam, respectively. We also categorize users as spammers (authors

of filtered reviews) or benign (authors without filtered reviews).

Table 1 shows the summary statistics of reviews in these datasets. The two

datasets we use are YelpNYC and YelpZip. YelpNYC and YelpZip are different

because the YelpNYC dataset only contains restaurant reviews from New York

City, but YelpZip contains reviews from NJ, VT, CT, and PA.

These two datasets include reviews for several restaurants from 2004 to 2015.

Every review in Yelp datasets consists of a reviewer id, prod id, rating, review

13

doi:10.6342/NTU202304108

3.2. COMMENT GRAPH CONSTRUCTION 14

date, review context, and label. Rows in Table 2 are snippets of review data.

Review in row 1 means a reviewer whose reviewer id is 933 submitted a review to

a product/service whose prod id is 0 on 2014-01-21 and rated it five on a scale of

1-5, which is labeled as 0, which means “spam reviews”.

Table 1: Review datasets used in this work.

Dataset #Reviews (filtered %) #Reviewers (spammer %) #Products (restaurant) Time

YelpNYC 359,052 (10.27%) 160,225 (17.79%) 923 2004.10-2015.1

YelpZip 608,598 (13.22%) 260,277 (23.91%) 5044 2004.10-2015.1

YelpChi 67,395 (13.23%) 38,063 (20.33%) 201 2004.10-2012.12

Table 2: Examples of reviews

reviewer id prod id rating date review context label

933 0 5 2014-01-21 pretty cool place...good food...good people 1 (spam)

952 0 5 2014-01-16 Delicious lamb sandwich 0 (benign)

3.2 Comment Graph Construction

Comment Graph

Raw Data

Reviewer Nodes Product Nodes

Reviews context

reviewr1

product2

product1

product3

product4

e1

e3

e2

e5

U E V

e4
reviewr2

reviewr3

Figure 5: Graph Construction

The system creates embeddings or representations of reviewers, products, and

review context to detect spam reviews. The system constructs the comment graph

G(U, V,E) in this module, which is a heterogeneous information bipartite graph

doi:10.6342/NTU202304108

3.2. COMMENT GRAPH CONSTRUCTION 15

made up of nodes in two distinct sets, U (including reviewers) and V . (containing

products). An edge e ∈ E exists means that a reviewer u ∈ U has submitted a

review to the item v ∈ V .

Along with the graph structure, we also assume that each reviewer and prod-

uct have a real-valued attribute, xu, xi ∈ Rd, associated with the review context

submitted by/to, respectively. The edge with the attribution xe ∈ Rd represents

the review context, where d is the dimension of the review representation vector.

We present how we embed the review context into sentence vectors in Sec-

tion 3.2.1, how we use these sentence vectors to generate the edges attribute in

Section 3.2.2, and how we use these edges attribute to generate initial nodes at-

tribute in Section 3.2.3 in the following sections.

3.2.1 Review Context Representation

Since word embedding (WE) techniques have demonstrated great performance

in spam review detection [19], we employ them to vectorize the review sentence

to extract the information of the review context. This is a result of the ability

to identify word semantic similarities. In other words, using the WE approach,

terms with similar meanings would be considered similar.

Because words can have multiple meanings depending on the context, we em-

ploy sentence embedding, an extension of word embedding, to attempt to capture

the meaning of the review context. Each review context r is embedded into Rd,

where d is the dimension of the sentence vector.

3.2.2 Edge Representation

The system uses a pre-trained Transformer-based [18] language model: Sen-

tenceTransformers [20] to encode the review context into a sentence vector xe ∈ Rd,

d is the dimension of the sentence vector, as the initial edge attribute, to generate

the embedding of nodes and edges to identify the spam review further.

3.2.3 Node Representation

We employ mean pooling to combine sentence vectors of review context to

generate initial node embedding, inspired by Shehnepoor et al. [21]. Let N (v) be

the neighbors set of node v, U(e), and V (e) denote the reviewer and product nodes

that are connected by e. Since we use a bipartite graph to model the reviews data,

N (u) refers to the sets of restaurants v ∈ V that have been reviewed by a reviewer

u. In contrast, N (v) refers to the sets of reviewers that have submitted reviews

on restaurants v ∈ V that have been reviewed by a reviewer u. The initial node

doi:10.6342/NTU202304108

3.3. GRAPH SAMPLING 16

attribute of node v is defined as:

xv =


1

|N (v)|
∑
{xe|U(e) = v}, if v ∈ U

1

|N (v)|
∑
{xe|V (e) = v}, if v ∈ V.

(3.1)

3.3 Graph Sampling

(a) Sampling e1
(b) Neighborhood Sampling

(M = 2)

product2

product3

product4

e1

e3

e2

product2

product3

product4

e1

e3

e2

e6

e4

product1

e6

e5

e4

e5

reviewr2

reviewr3

reviewr1
product1

reviewr1

reviewr2

reviewr3

e4
product3

product4

e1

e3

e2

product1
reviewr1

reviewr2

(c) Subgraph

Figure 6: An illustration of edge sampling.

In this work, we employed a mini-batch strategy similar to Ying et al. [22] to

update the representation of nodes and edges further to identify the spam review

rather than feeding the complete comment network to the HGCN model. As

a result of the mini-batch approach’s ability to render model size regardless of

data size, this method is scalable for use in the criteria of large-scale graphs. To

generate a sub-graph for this work, we sample a specific number of neighbors for

each node.

The graph sampling approach is shown in Algorithm 1. The system samples

a set of edges E ′ ⊂ E. Ũ and Ṽ are stand for the reviewer and product nodes of

edge e ∈ E ′, respectively. For every edge e ∈ E ′, the system samples a specified

number M of the reviewer and product nodes’ neighbors that are linked to edge

e. The edges are then collected by the system and union to E ′, which is denoted

as Ẽ. Then the sampled reviewer and product nodes set of product and reviewer

nodes are unions with Ũ and Ṽ , respectively.

The illustration of the Algorithm 1 is shown in Figure 6. Let the size of

neighbors sample subset M = 2 without loss of generality. M is the maximum

amount of samples if the size of the neighbors set is greater than M . In the case

of Figure 6(a), the initial subgraph G(Ũ , Ṽ , Ẽ) is form by edge e1, reviewer node

u1 and product node i1 that linked to e1, that is Ũ = U(e1) = {u1}, Ṽ = V (e1) =

{v1}, and Ẽ = {e1}. Suppose that we sample u1’s neighbors {v3, v4} and edges set

{e3, e4}, v1’s neighbors {u2} and edges set {e2} to add into the subgraph which

doi:10.6342/NTU202304108

3.4. HETEROGENEOUS GRAPH CONVOLUTIONAL NETWORK 17

Algorithm 1 Graph sampling

Input: comment graph G(U,V,E), edge set E′ ⊂ E, neighbors size M

Output: comment graph subgraph G(Ũ, Ṽ, Ẽ)

1: Ẽ = {e | ∀e ∈ E ′}
2: Ũ = {u | u = U(e), ∀e ∈ E ′}
3: Ṽ = {v | u = V (e), ∀e ∈ E ′}
4: for each e ∈ E ′ do

5: u = U(e), v = V (e)

6: sampling neighbors subset Ñ (u) ⊂ N (u), |Ñ (u)| = M

7: sampling neighbors subset Ñ (v) ⊂ N (v), |Ñ (i)| = M

8: Ẽ = Ẽ ∪{e′ | v = V (e′), ∀ V (e′) ∈ Ñ (i)} ∪{e′ | u = U(e′), ∀ U(e′) ∈ Ñ (u)}

9: Ṽ = Ṽ ∪ Ñ (u)

10: Ũ = Ũ ∪ Ñ (v)

11: end for

shows in Figure 6(b). In other words, Ũ = u1 ∪ {u2}, Ṽ = v1 ∪ {v3, v4}, and

Ẽ = e1 ∪ {e2, e3, e4}. At the end, the system return the subgraph G(Ũ , Ṽ , Ẽ)

which shown in Figure 6(c).

3.4 Heterogeneous Graph Convolutional Network

reviewr1

product2

product1

product3

product4

e1

e3

e2

e5

e4
reviewr2

reviewr3

Input Graph Graph Neural Network
Embeddings

reviewr1

product2

product1

product3

product4

e1

e3

e2

e5

e4
reviewr2

reviewr3)

reviewr1product3 e3

=

Figure 7: An illustration of the HGCN model training pipeline.

After sampling the subgraph, the system aggregates neighbors’ information of a

given pair of nodes in the comment sub-graph by implementing the heterogeneous

graph convolutional network (HGCN) model to update their node’s representation.

Then the system uses the representation learned by the HGCN model to identify

the spam review. HGCN, being a model based on GCN, harnesses a heterogeneous

bipartite graph for its operations. Our system takes shape as a result of layer-

wise HGCN propagation on a bipartite graph. In each layer, a simultaneous

update for all nodes and edges aggregates the embeddings of surrounding nodes.

doi:10.6342/NTU202304108

3.4. HETEROGENEOUS GRAPH CONVOLUTIONAL NETWORK 18

A propagation layer can be bifurcated into two distinct phases: aggregation and

combination. The aggregation stage and the combination stage are the two main

steps that make up a propagation layer. The aggregation and combination stages

at any l − th layer where l ∈ [1, L]in an HGCN with L can defined as follows:

hlN (v) = σ
(
W l · AGG

(
{hl−1

u ,∀u ∈ N (v)}
))
. (3.2)

hlv = COMBIME
(
hl−1
v , hlN (v)

)
(3.3)

To update hlv, the representation of node v in layer l, the model aggregates the

representation hl−1
u , where u ∈ N (v) and then combines it with the representation

of itself. For every node v in the layer l, the model aggregates hl−1
v′ by using the

aggregating function AGG and a learnable weight matrix W l shared among all

nodes at layer l to aggregate hl−1
u , the representation from the previous layer of

its neighbors ∀u ∈ N (v). After aggregating the representation of v′s neighbors,

the model using the function COMBIME to combine the information of v′s

neighbors hlN(v) and self-representation from the previous layer hl−1
v to generate

new representation. The system takes h0v = xv for v ∈ U ∪ V as the initial node

representation.

Figure 8 illustrates how n−layers HGCN model updates a given reviewer node

of the input subgraph with the information of its neighbors. The model iteratively

uses aggregate the representation of k-hop neighbors to update the representation

of (k − 1)-hop neighbors for l times.

In the following sections, we explain how the model aggregates information

from neighbors in Section 3.4.1 and how it combines the knowledge of individual

nodes or edges with that of their neighbors in Section 3.4.2.

e4

e1

e3

e2

reviewr1

reviewr2

(a) Input Subgraph

Target Node

product3

product4

product1

product3

product4

e2

reviewr1

reviewr2

product1

reviewr1

e4 reviewr1

reviewr1 e3

e1

e4

e3

e1

(b) GCN layers

Figure 8: An illustration of how the HGCN model updates the attribute of a
given node with input subgraph.

doi:10.6342/NTU202304108

3.4. HETEROGENEOUS GRAPH CONVOLUTIONAL NETWORK 19

3.4.1 Aggregation Stage

At this stage, the model aggregates neighbors’ information to update the em-

bedding of the given node or edge. For example, to output the embedding of u0 in

Figure 8(a), the model needs to update embeddings of i1, i3 and i4 first, then use

them to update u1 to output the final representation. In addition, the model also

updates edge embedding by aggregating the representation of its incident nodes.

For the edge in the aggregation stage at layer l, the representation of an edge

e is defined as

hle = σ
(
W l

E · AGGl
E

(
hl−1
e , hl−1

U(e), h
l−1
V (e)

))
, (3.4)

where W l
E is a trainable weight matrix shared among all nodes at layer l, σ is a

non-linear activation function, and

AGGl
E

(
hl−1
e , hl−1

U(e), h
l−1
V (e)

)
=

([
hl−1
e ∥hl−1

U(e)∥h
l−1
V (e)

])
. (3.5)

To update hle, the representation of the given edge e at layer l, the model multiplies

a layer-wise weight matrix W l
E with the representation of the nodes e connected

to and by itself from the previous layer.

For a review node u ∈ U and product node i ∈ I, the representation of

the neighbors’ nodes and edges connected to it are gathered to summarize the

representation of neighbors of u and i at layer l which is denoted as hlN(u) and

hlN(v), respectively. They are defined as follows:

hlN(u) = σ
(
W l

U · AGGl
U

(
Hl−1

V E

))
hlN(i) = σ

(
W l

V · AGGl
I

(
Hl−1

UE

)) (3.6)

To update the reviewer node u and the product node i, the model multiplies layer-

wise weight matrices, with the gathering of information from their neighbors and

edges they connected to, which denote as Hl−1
IE and Hl−1

UE , where

Hl−1
V E = {

[
hl−1
v ∥hl−1

e

]
,∀e = (u, v) ∈ E(u)}

Hl−1
UE = {

[
hl−1
u ∥hl−1

e

]
,∀e = (u, v) ∈ E(v)}

(3.7)

For a user node u, the model concatenate hl−1
N(u), attribute of product nodes from

neighbors set N (u) and hl−1
e , attribute of edges e connected to u to gathering the

information of u’s neighbors from the previous layer, said Hl−1
IE . For a product

node i, the model concatenate hl−1
N(i), reviewer nodes from neighbors set N (i) from

the previous layer, said Hl−1
UE .

The model summarizes the information from neighbors of reviewer nodes and

product nodes with two kinds of aggregation functions: AGGl
U and AGGl

I to

doi:10.6342/NTU202304108

3.4. HETEROGENEOUS GRAPH CONVOLUTIONAL NETWORK 20

aggregatehl−1
u with Hl−1

IE and hl−1
i with Hl−1

UE to aggregate the information from

neighbors of reviewer nodes and product nodes, respectively. The aggregating

functions AGGl
U and AGGl

I are defined as follows:

AGGl
U

(
Hl−1

IE

)
= ATTNU

(
hl−1
u ,Hl−1

IE

)
AGGl

I

(
Hl−1

UE

)
= ATTNI

(
hl−1
i ,Hl−1

UE

) (3.8)

The attention function, denoted as ATTN , operates as a mapping function

that can describe as f : hkey × Hval → hval [18]. This function enables a trans-

formation that maps a single feature vector, hkey, and a collection of candidate

feature vectors, Hval, to a weighted sum of the elements contained in the collec-

tion of candidate feature vectors Hval. The importance of the qualities belonging

to nodes u or v in relation to the attributes of those nodes’ respective neighbor

nodes is highlighted by the weighting process.

The model uses the attention function to learn the weight matrix to com-

pute attention coefficients across pairs of attribute (hl−1
u , hl−1

v), v ∈ Hl−1
V E or

(hl−1
v , hl−1

v), v ∈ Hl−1
UE .

3.4.2 Combination Stage

After aggregating the information of neighbors, the model combines it with

the nodes representation of itself from the previous layer to update the node

representation by an equation defined as follows:

hlu = concat
(
V l
U · hl−1

u , hlNu

)
,

hlv = concat
(
V l
V · hl−1

v , hlNv

)
,

(3.9)

where V l
U , V

l
V are trainable weight matrices for the user and product nodes at the

layer l, respectively.

Through iterative updates, We can learn embeddings that contain information

gathered regarding the local structure of the graph, in which we combine and

aggregate messages from nearby nodes.

3.4.3 Summary of the HGNN Model

The entire Hierarchical Graph Convolutional Network (HGCN) procedure is

described by the algorithm 2. The model samples the adjacent nodes of the

chosen edges first (lines 1-4) before constructing a computational subgraph. then

updates the hidden state of edges using the edge-wise aggregation function phi (as

shown in line 5). as seen in lines 6 through 14, and performs node-wise message

doi:10.6342/NTU202304108

3.4. HETEROGENEOUS GRAPH CONVOLUTIONAL NETWORK 21

Table 3: Notation Table
Symbol Description

U Set of reviewer nodes

V Set of product nodes

E Set of edges

G(U, V,E) Heterogeneous bipartite graph formed by U , V , and E

e An edge in E

u A reviewer node in U

v A product node in V

Ũ Subset of reviewer nodes selected for the subgraph

Ṽ Subset of product nodes selected for the subgraph

Ẽ Subset of edges selected for the subgraph

G(Ũ , Ṽ , Ẽ) Subgraph formed by Ũ , Ṽ , and Ẽ

M Maximum size of the neighbor sample subset

N (v) Neighbors of node v

hlv Representation of node v at layer l

hlN (v) Representation of the neighbors of node v at layer l

W l Weight matrix shared among all nodes at layer l

AGG Aggregating function used by HGCN model

COMBIME Function used by the HGCN model to combine information

hN(u), hN(i) Aggregated representation of neighbors for reviewer and product nodes

HIE, HUE Gathering of information from neighbors for reviewer and product nodes

AGGl
U , AGGl

I Aggregating functions for reviewer and product nodes

ATTN Attention function

V l
U , V l

I Trainable weight matrices for reviewer and product nodes at layer l

doi:10.6342/NTU202304108

3.5. SUMMARY 22

Algorithm 2 HGCN algorithm

Require: 1) Edges set Ẽ ∈ E.
2) Numbers of layers L.
3) Functions V (Ẽ) and U(Ẽ) that map Ẽ to the product and user nodes that
Ẽ connected.
4) Comment Graph G(U, V,E).

Ensure: The hidden states of product and user nodes zu,zv and the review edges
ze in the L-th layer, ∀e ∈ Ẽ, ∀u ∈ U(Ẽ), ∀v ∈ V (Ẽ)

1: Initialize El ← Ẽ, U l ← U(Ẽ), V l ← V (Ẽ)
2: for l = L, . . . , 1 do
3: Update U l−1 ← U l, V l−1 ← V l

4: Sampling N (u) and N (v), ∀u ∈ U l−1, v ∈ V l−1

5: hle = ϕ(hl−1
e , hl−1

U(e), h
l−1
V (e)) ∀e ∈ El

6: for u ∈ U l do
7: H l

u = {[hl−1
e ∥hl−1

v] : ∀v ∈ N (u)}
8: hlN (u) = ϕ(H l

u)

9: hlu = ψ
(
hl−1
u , hlN (u)

)
10: end for
11: for v ∈ U l do
12: H l

v = {[hl−1
e ∥hl−1

u] : ∀u ∈ N (v)}
13: hlN (v) = ϕ(H l

v)

14: hlv = ψ
(
hl−1
v , hlN (v)

)
15: end for
16: end for
17: Ze = hle,∀e ∈ Ẽ
18: Zu = hlu,∀u ∈ Ũ
19: Zv = hlv,∀v ∈ Ṽ

passing psi for the node types U and V for each layer. It leverages the hidden

states of all nodes and edges after conducting convolutions of overall L layers to

create the final embeddings.

3.5 Summary

We provide the dataset used for our study in Section 3.1. Then, Section 3.2

explains the process we used to construct the Comment Graph G(U, V,E) and

how the initial graph embedding was also derived, and We describe how to sample

a computation graph for stochastic training in Section 3.3. Last but not least, we

describe how the Heterogeneous Graph Convolutional Network is used to enhance

the social interactions amongst reviewers in Section 3.4, which will be essential for

detecting spam reviews.

doi:10.6342/NTU202304108

CHAPTER 4

METHODOLOGY

In the previous chapter, we introduce how we derive the comment graph

G(U, I, E) from the review dataset and describe the detection of how the sys-

tem works. In the following Section, we address the disadvantages of existing

work in Section 4.1. Then we describe our model architecture in Section 4.2. We

also introduce how we sample the computation graph based on the graph topology

structure to train the model in Section 4.3. We further proposed a heterogeneous

potential relational graph attention neural network in Section 4.4. Ultimately, we

elaborate on how we optimize the model in Section 4.5.

4.1 Motivation

Although Graph Neural Networks (GNNs) have been shown to be effective at

leveraging the rich relational information present in graph-structured data for var-

ious tasks, their performance is sometimes limited when dealing with imbalanced

label distribution because of the GNN message-passing framework.

In the fraud detection tasks, benign entities were significantly more common

than fraudulent entities. Therefore, the GNN model would prefer to utilize the

information of benign entities to update the embedding of both fraudsters and

benign users. Though some existing works like H2-FDetector [1] utilize both ho-

mophilic and heterophilic interactions, they perform such operations on the graph

with a homophilic graph with one type of node. They used the reviews and set

several rules to construct the graph: nodes represent the review, and different

types of edges connect the nodes. However, using nodes to represent the reviews

and using a rules-based approach to connect these nodes would construct a large

graph that would result in high computation loading. Additionally, they used the

full graph to train the model, which is not scaleable. Furthermore, this approach

would lose the information between reviewers and reviews, which is important for

fraud detection.

To conquer these disadvantages, we proposed a multi-relation graph convolu-

tional method based on the bipartite graph so that the reviewing behavior can be

naturally represented, inspired by GAS [17]. They construct the bipartite com-

ment graph to perform the graph convolution and employ a mini-batch stochastic

23

doi:10.6342/NTU202304108

4.2. MODEL ARCHITECTURE 24

training strategy to train the graph representation; though the approach can re-

duce the computation loading, they only consider the homomophic of the graph

and sample the nodes.

4.2 Model Architecture

Comment Graph

Raw data
Graph Construction

Graph sampling

pesudo labal identitication

PR-HGAT model

u ve

MLP

++

Subgraph of Comment Graph

Construct KNN graph for reviews

GCN

product nodes
aggregation with potential

labal

user nodes aggregation

edges aggregation

Figure 9: The overall architecture of PL-RGNN.

To take advantage of the low computational loading and ability to aggregate

messages between reviews and review targets from GAS [17] and the advantage

of learning both homophilic and heterophilic connections and overcome the over-

smoothing and label imbalance issues from H2-FDetector [1], we design a heteroge-

neous potential relational graph neural network with potential label (PL RGNN)

that inspired by the R-GCN [23]. R-GCN aggregates neighbors under different

types of relations separately and combines then combine the categories’ messages

to update the nodes embedding.

The illustration of the overview of our PL-RGNN model is shown in Figure 9.

We construct the comment graph G(U, I, E) that has described Section 3.2. then

we sample a batch of edges and their l-hop neighbors to construct the computa-

tion graph where l is the number of layers in our PL-RGNN model. to perform

stochastic training. Then we utilize the different potential labels as different rela-

tions to perform the relational graph attention. Ultimately, we use the loss of the

potential-label classifier, distance-based loss between review edges and products,

and the loss of PL-RGNN prediction to update our model.

doi:10.6342/NTU202304108

4.3. TOPOLOGY AWARE GRAPH SAMPLING 25

4.3 Topology Aware Graph Sampling

Though GAS [17] already proposed a time-based sample strategy, they only

sample the based on the closest neighbors in terms of time. However, an existing

study [24, 25] shows that spammers tend to leave their comments in the review

burst. Thus under this strategy, the model would remain locally optima easier,

and only the top-M closest neighbors to the spam review would aggregate the

information from the spam reviews.

Some studies also tried to sample the neighbors with high quality. Both CARE-

GNN [26] and PC-GNN [16] measure the similarities between features. Addition-

ally, PC-GNN [16] uses the information of degrees to perform neighbors sampling.

They only consider the feature information and local structure from one-hop neigh-

bors; however, the same types of node pairs are at least 2-hop neighborhoods in our

tasks. Only considering the local structure of the 1-hop neighbors is not enough.

Inspired by the CARE-GNN [26] and PC-GNN [16], we employ node2vec [27]

as node feature of the graph topology structure and measure their cosine similarity

as weighted to sample the neighbors to construct the computation graph.

node2vec is a random walk embedding algorithm that is scalable to work on a

large graph. It used flexible and biased random walks to trade off the local and

global structures with depth-first search and breadth-first search random walks.

And we also consider the data imbalance issue by dividing the label frequency.

Therefore for a node v, we sample the neighbors with sampling probability:

p(v′) ∝ cos(emb(v), emb(v′))

LF(yv′)
, v′ ∈ N (v), (4.1)

cos(emb(v), emb(v′)) =
emb(v) · emb(v′)

∥emb(v)∥ × ∥emb(v′)∥
(4.2)

where emb(v) denotes the node2vec [27] embedding of node v, and LF(yv′) denotes

the label frequency of class yv′ .

4.4 PL-RGNN Model

Though the review behavior of the spammer or benign user is under the same

relation, their pattern and goal are distinguished; therefore, employing the same

aggregation function may not work well. Additionally, due to the data imbalance,

the model would update the embedding of nodes and edges mainly from the ma-

jority class: benign reviews. To address this problem, we treat benign reviews and

spam reviews as different relations rather than the same relation. Motivated by the

H2-FDetector [1], we identify the potential label of reviews and apply a relational

doi:10.6342/NTU202304108

4.4. PL-RGNN MODEL 26

Potential-labels identification Neighbors aggregation with potential labels for product nodes benign reviews prototype extraction

Figure 10: Pipeline of our PL-RGNN for aggregating product nodes.

graph convolution [23] to update the embedding that considers the social interac-

tion of entities in the computation graph. Different from H2-FDetector [1], we use

the aggregation strategy like RGCN [23] to perform the two-stage aggregation:

aggregate different potential labels separately and then aggregate the categories

information, rather than just minus the features with a heteromorphic connection.

4.4.1 Potential Label Identification

Based on the holomorphic assumption [28]: nodes with the same label are

similar, while nodes with different labels are dissimilar, and the observation is more

closely related to the review target than spam reviews. so we need to prevent direct

aggregation of the information from different labels to achieve better performance.

Inspired by the H2-FDetector [1], originally designed for a homomorphic graph,

we have adapted their homophily and heterophily connection (H2-Connection)

aggregation approach to function within the context of a heterogeneous graph

to aggregate the messages from neighboring nodes in the GNN convolution lay-

ers to effectively utilizes both homophily and heterophily connections to enhance

the performance of graph-based fraud detection. In order to extract the different

connection types to treat them differently, we employ a potential-label identifica-

tion module similar to H2-FDetector [1] by measuring the similarity or difference

between edge features that represent the review content and node features that

represent the review target.

Since we utilize a graph neural network to learn its embedding to identify

a spam review, U and I represent different types of nodes with attributes that

may lie in distinct vector spaces, we first apply separate linear transformation

for reviewer node V , product node I, and edge e, then a non-linear activation

function. For a node v ∈ V and i ∈ I, we perform the following operations:

Here, xu ∈ Rdu , xi ∈ Rdi , and xe ∈ Rde represent the initial attributes of re-

viewer node u, product node i, and review embedding, respectively. hu, hi, and he ∈

doi:10.6342/NTU202304108

4.4. PL-RGNN MODEL 27

Rdt denote the transformed features of reviewers, products, and reviews. W de-

notes a trainable projection matrix to transform the initial nodes and edges at-

tribute, b is the corresponding bias vector, and σ(·) is a nonlinear activation func-

tion.

Given a comment graphG(U, I, E), we defineH
(l−1)
V = {h(l−1)

v1 , h
(l−1)
v2 , . . . , h

(l−1)
vN }

as the set of node embeddings and dl−1 as the dimension. We also define H
(l−1)
E =

{h(l−1)
e1 , h

(l−1)
e2 , . . . , h

(l−1)
eM } as the set of review embeddings at layer l − 1, where

V = U ∪ I.

Figure 11: An illustration of the neighbors’ aggregation.

To perform such an aggregate approach, we first use a classifier to predict

whether a prior review label is spam/benign, then distinguish the spam review

embedding from the embedding of review targets. And then, we employ a layer-

wise loss the optimize this classifier that describes in Section 4.5

For every convolution layer l, the input to the H2-connection identification

sublayer is obtained from the transformation applied to the previous layer, with

the initial input given by H
(0)
U = XU , H

(0)
I = XI , H

(0)
E = XE. For each edge

eui ∈ E, the head (reviewer) node and tail (product) node are denoted by u and

i, respectively. For instance, for an edge e ∈ E, its input is (h̄
(l)
u , h̄

(l)
v):

h̄(l)u = σ(W (l)
u h(l−1)

u),

h̄(i)v = σ(W
(l)
i h

(l−1)
i),

h̄(e)v = σ(W (l)
e h(l−1)

e),

(4.3)

Here, h
(l−1)
u and h

(l−1)
i are the embeddings of u and i at layer l − 1, W

(l)
u ,W

(l)
i ∈

Rdl×dl−1 are trainable transformation matrices, and σ(·) is a nonlinear activation

function.

To capture more nuanced relationships between the review and its target, we

utilize the concatenation and difference between transformed embeddings barh
(l)
u

and h̄
(l)
u as input of a one-layer Multi-layer Perceptron (MLP) classifier with a

doi:10.6342/NTU202304108

4.4. PL-RGNN MODEL 28

tanh activation. This classifier predicts a potential label for reviews.

m(l)
ve = tanh

(
W (l)

c

[
h̄(l)v || h̄(l)e || (h̄(l)v − h̄(l)e)

])
(4.4)

Here W
(l)
c ∈ R3dl is a learnable matrix that transforms the input features vector

into hidden dimension d vector for the classifier, and [.||.] denotes the vector con-

catenation operation. Then, we can extract the connection types by applying the

sign function on m
(l)
uv:

ỹ(l)ue = sign(m(l)
uv) (4.5)

In the process, if ỹ
(l)
uv = 1, the edge eui ∈ E is considered homophilic (potentially

benign review). Conversely, if ỹ
(l)
uv = −1, the edge eve ∈ E is treat as heterophilic

(potentially spam review).

Therefore, we can get the connection types of all edges in graph G(U, I, E):

Ỹ (l) = {Ỹ {l}
ui }eui∈E. (4.6)

Then we treat the edges with different potential labels ỹ as different types of

relations.

4.4.2 Relational Graph Attention Aggregation

Since spammers and benign users have different interaction behavior with prod-

ucts and other users, we decide to treat them as different types of relations and

use different functions to aggregate their features and information rather than us-

ing the same function to aggregate but just adding a minus to the heteromorphic

connections that H2-FDetector [1] does.

In our work, we only apply a relational graph attention to aggregate the infor-

mation from the neighbors of product nodes since benign/spam is only meaningful

for products but worth nothing for users. Additionally, even the same review con-

tent would result in different labels that leave for different targets. Therefore we

update the feature of the user nodes and reviews content (edges), same with the

GAS [17].

For a review entity (user u, review target i, review content e), the hidden state

of review content e (edge) is defined as:

h{l}eui
= σ

(
αl
e

[
hl−1
e ∥hl−1

u ∥hl−1
i

])
, (4.7)

where hl−1 are hidden state from the previous layer, and α is the attention weight.

doi:10.6342/NTU202304108

4.4. PL-RGNN MODEL 29

For a user node u, the message of their neighbors N(u) is calculated as:

hlN(u) = σ
(
W l

U · AGGl
U

(
Hl−1

IE

))
,

AGGl
U

(
Hl−1

IE

)
= ATTNU

(
hl−1
u ,Hl−1

IE

)
,

Hl−1
IE = {

(
hl−1
i ||hl−1

e

)
,∀e = (u, i) ∈ E(u)},

(4.8)

where ATTN is the graph attention operation, Hl−1
IE are the features set of the

neighbors nodes of u and the corresponding edges, and W is the trainable weight

matrix. After we aggregate the message from neighbors, we use another weight

matrix to combine the message of u from the previous layer and the message from

neighbors to get hlu, the new hidden state of node u. The message combination

approach is defined as:

hlu =
(
V l
U · [hl−1

u ||hlN(u)]
)

(4.9)

As mentioned earlier, we treat benign reviews of the products and spam reviews

of the products as different relations. Therefore we adjust our aggregation strategy

for product i as below:

AGGl
Ibenign

(
Hl−1

UE

)
=

2∑
k=1

αbenign,kATTNIk

(
hl−1
i ,Hl−1

UE

)
,

Hl−1
UE = {

(
hl−1
u ||hl−1

e

)
,∀e = (u, i) ∈ E(I) ∧ ỹe = benign, }

(4.10)

AGGl
Ispam

(
Hl−1

UE

)
=

2∑
k=1

αspam,kATTNIk

(
hl−1
i ,Hl−1

UE

)
,

Hl−1
UE = {

(
hl−1
u ||hl−1

e

)
,∀e = (u, i) ∈ E(I) ∧ ỹe = spam},

(4.11)

we treat the reviews with different kinds of potential labels as different kinds of

relations and use the linear combination of basis transformations to compute the

attention, thus can learn different representations of different kinds of reviews.

Then we can combine the messages from the spam category neighbors and

benign category. It can be calculated as:

hlN(i) = σ
(
W l

I · [AGGl
I spam

(
Hl−1

UE

)
∥AGGl

I benign

(
Hl−1

UE]
))
. (4.12)

By separately training the representation, we can increase the influence of the

minority class to reduce the disadvantage of data imbalance and can help us model

different kinds of relations better.

After we get the embedding of the review embedding hle, user nodes hlu, and

doi:10.6342/NTU202304108

4.5. OPTIMIZATION 30

product nodes hlv from our PR-HGAT model. In order to aggregate the message

from high-order neighbors, we employ the approximate KNN Graph to create a

graph based on K nearest neighbors of reviews that are the same as GAS [17]

and feed into a single layer GCN model to capture the relation of reviews within

different review targets.

PE = GCN(HE), (4.13)

GCN(H) = σ
(
D̂− 1

2 ÂD̂− 1
2HW

)
, (4.14)

where:

• HE = {he|e ∈ E} to aggregate global messages from remote neighbors to

get the position embedding pe.

• Â is the adjacency matrix of the graph with self-connections added.

• D̂ represents the degree matrix of A.

• W is the weight matrix.

Ultimately, we employ an MLP as the classifier to predict whether a review is

spam.

F (zu, zv, zr, pr) =

{
0, if e is benign review,

1, if e is spam review.
(4.15)

4.5 Optimization

We update our model with three parts of losses: model predicts loss, potential-

label predicts loss, and embedding distance loss to train our model. For the model

predicts loss, we employ weighted cross-entropy loss that is frequently used in class

classification tasks that can define as:

LCE(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (4.16)

where yi is the label of i−th sample, N is number of sample, and ŷi is the predicted

probability of the i-th sample. And we also employ focal loss [29] to optimize

the potential label classifier, and we proposed a triplet-based loss inspired by

FaceNet [30] to update the model based on the embedding distance of (review,

product) pairs. The potential label predicts loss and embedding distance loss

would introduce in the following sections.

doi:10.6342/NTU202304108

4.5. OPTIMIZATION 31

4.5.1 Triplet Loss

Triplet loss was first introduced in FaceNet [30]; they optimize the face recogni-

tion model by minimizing the loss of triplet samples. A triplet sample includes an

anchor (a), a positive sample (p) with the same class as the anchor, and a negative

sample (n). The illusion is shown in Figure 12. During training, they dissimilitude

the negative samples and assimilated the positive samples with anchor samples.

The triplet loss of a triplet (a, p, n) defines as:

L = max
(
0, ∥d(a, p)∥22 − ∥d(a, n)∥22 + α

)
, (4.17)

where α is the margin, the goal is to let the positive is closer to the anchor than

the negative by a margin α.

anchor

negative positive

anchor

negative

positive

learning

Figure 12: Triplet

Approaches based on Graph Neural Networks (GNNs) play a crucial role in

capturing potential social interactions among reviewers, although they are exposed

to the over-smoothing problem. This issue occurs when nodes and edges aggregate

messages from their neighbors during the message-passing framework within the

graph convolution layer, which causes an increase in the similarity of features

between nodes and edges. Additionally, embedding fraudulent entities would be

harder to distinguish because the sample of benign entities is much more than the

fraudulent entities.

Furthermore, in our fraud detection tasks, different fraudster groups would

have different behavior patterns; even the same fraud would behave differently

when they attack different targets. Thus losses that only evaluate the class pre-

diction performance may not optimize the model well.

Based on such a phenomenon, we proposed a triplet-based loss in our work

to distinguish spam and benign reviews by evaluating their distance from prod-

ucts and overcoming the over-smooth issue. However, the production of every

possible triplet of samples in our study would result in a significant computa-

tional load given the truth that we need to find all valid triplets on (batch size ×
num neighborsnum layers) samples per batch. Slower convergence is also caused by

calculating the loss for each potential triplet. We carefully choose the triplets to

ensure that the distances between (negative, anchor) and (positive, anchor) pairs

are within the median of all possible pairs. This method avoids poor convergence

doi:10.6342/NTU202304108

4.5. OPTIMIZATION 32

rates and prevents evaluating the loss of outlier pairs.

By leveraging the assimilation of samples from the same class and separate

classes, we identify reviews with potential negative labels ebenign as negative sam-

ples, reviews with potential positive labels espam as positive samples, and product

nodes v as anchors in our study. The layer-wise triplet loss defines as:

Ll
triplet =

∑
v∈V

max
(

0, ∥d(hlv, h̃elbenign
)∥22 − ∥d(hlv, h̃

l
espam)∥22 + α

)
, (4.18)

where ẽbenign, ẽspam are edges connected to v with the median distance with po-

tential positive and negative labels.

Since we treat the reviews with different potential labels as different relations,

thus we also need to optimize the potential label classifier to train the model to

get the correct relation. In our work, we employ layer-wise Hinge Loss [31] to train

the potential-label classifier similar to H2-FDetector.

4.5.2 Focal Loss

In order to attain a high-quality potential-label classifier to feed into our PR-

HGAT model, we adopt the use of Focal Loss [29]. In contrast with traditional

loss functions, Focal loss provides an appropriate approach to the common issue

of class imbalance by boosting the importance of hard samples while decreasing

the impact of easy samples. This reduces bias toward the majority class and

enhances generalization to unseen data, both of which are crucial when working

with imbalanced datasets. The addition of Focal Loss is essential in improving

the performance of our potential-label classifier.

The focal loss is defined as:

FL(pt) = −αt(1− pt)γ log(pt), (4.19)

where:

• pt is the predicted likelihood of the positive class according to the model.

• αt is a class weighting factor typically employed to address the class imbal-

ance.

• γ is the focusing parameter that balances the contribution of the easy sam-

ples and hard samples.

By incorporating Focal Loss into our model, we can maintain equilibrium be-

tween positive and negative samples as well as balance the influence of both hard

and easy samples. This not only improves the model’s performance by focusing

doi:10.6342/NTU202304108

4.5. OPTIMIZATION 33

more on difficult situations that are frequently categorized incorrectly, but it also

lowers the impact of simple cases and keeps the model from being significantly af-

fected by them. As a result, Focal Loss helps the model to perform better overall,

especially when the dataset can be imbalanced.

doi:10.6342/NTU202304108

CHAPTER 5

PERFORMANCE EVALUATION

5.1 Experiment Setup

To show that our proposed method is more effective than related works, we

compare the PL-RGNN model with GAS [17] and H2−FDetector [1]. All of these

models are implemented with Deep Graph Library (DGL) [32] library. And we

employ pretrain SentenceBert [20] as the sentence embedding model for all reviews.

We generate node attributes for reviewers for both the GAS [17] model and

our proposed model by averaging the embedding vectors of the reviews they have

written; node attributes for products by averaging the embedding vectors of the

reviews that target to.

For the H2−FDetector [1], we used the embedding vectors of the reviews to

represent the nodes. And we also used three relations proposed by CARE-GNN [7]

to construct the multi-relation graph. The relations are:

• R-U-R: reviews are written by the same user,

• R-S-R: reviews on the same product that ranked the same star,

• R-T-R: reviews written in the same month on the same product.

In the following experiment, we use the pretrain SentenceBert [20] as the em-

bedding model of review sentences. We directly employ the pretrain sentence-

Bert [20] without fine-tuning to assign the embedding of reviews. The initial nodes

and edges attribute of the bipartite comment graph for our proposed methods and

GAS are given below:

• edges: sentence embedding of reviews,

• reviewer nodes: average sentence embedding of reviews that are given by

that specific reviewer.

• product nodes: average sentence embedding of reviews that are given to that

specific product.

We use all of the reviews to construct the comment graph, then assign the

nodes and edges attributes for the comment graph. After that, we mask the edges

to generate the training subgraph, validation subgraph, and testing subgraph.

34

doi:10.6342/NTU202304108

5.2. EVALUATE METHOD 35

For our spam review detection task, we use two different dataset split approach

to split the training set (70%), validation set (20%), and training set (10%) to learn

the generalized power of models, which are:

• random split: the approach that H2−FDetector [1] used. For GAS [17]

and our model, we split by the review edge; while split by the nodes for

H2−FDetector [1].

• time-based: training set for the initial (70%) reviews, validation set for the

following (20%), and the last (10%) for the testing set.

Due to the data imbalance issue, we employ AUC as the primary metric as

well as the F1-macro and recall to evaluate the model performance. And each

experiment is run with ten random seeds and reports the average scores in the

following section.

5.2 Evaluate Method

5.2.1 Metrics

We use the recall and F1-score metrics mentioned in Eqs to measure the model

performance. 5.1, and 5.2. Here, the terms “true positive” (TP) and “false

positive” (FP) are used to denote different types of classifications of fraud: fraud-

ulent classifications as fraudulent and non-fraudulent classifications as fraudulent.

Moreover, the terms “false negative”(FN) and “true negative” means fraudulent,

classified as non-fraudulent, and non-fraudulent, classified as non-fraudulent, re-

spectively. Figure 13 shows these four terms’ conditions.

Recall =
TP

TP + FN
, (5.1)

F1− score = 2 ∗ precision ∗ recall
precision+ recall

, (5.2)

the F1 score is the harmonic mean of the precision and recall, and the relative

contributions of each to the F1 score are equal. Since the label of the dataset is

an imbalance, we employ F1-macro, which calculates F1-score for every class and

find their unweighted mean.

In addition to recall and F1-score for measuring the model’s performance,

we also look at the Area Under the Receiver Operating Characteristic Curve

(AUC-ROC) and the Precision-Recall curve (PRC) to comprehend the trade-off

the model makes between sensitivity and specificity.

The AUC-ROC curve is a performance indicator for categorizing faults at dif-

ferent threshold values. The TPR vs. the FPR with different threshold settings

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 36

True Negative

True Positive

False Negative

(Type II error)

False Positive

(Type I error)
positive

negative

positive negative

ground True

Pr
ed

ic
te

d
Figure 13: Confusion matrix

is displayed on a probability curve known as a ROC. The ”area under the ROC

curve” (AUC) is an overall performance measure across any prospective classifying

criteria. The AUC of a model with 100% incorrect predictions is 0.0, while the

AUC of a model with 100% correct predictions is 1.0. AUC evaluates how well

predictions are scored rather than their absolute values, making it useful even

when classes are highly unbalanced.

This is an additional tool to evaluate the classified model’s efficacy. It plots

the precision (y-axis) and recalls (x-axis) based on various thresholds, much like

the ROC curve. Precision assesses the applicability of the findings, whereas recall

reflects the volume of truly relevant results returned. The weight in the AUC for

the PRC curve (AUC-PRC), which determines the weighted average of precisions

at each threshold, is the increase in recall from the preceding threshold.

5.2.2 Visualization

To illustrate the similarity between review sentences, we employ t-Distributed

Stochastic Neighbor Embedding (t-SNE), a widely used unsupervised machine

learning technique, to map the high-dimensional data into a 2D environment.

It facilitates data structure analysis of the local similarity patterns by mapping

complicated, multidimensional data to a lower-dimensional space. This method

is a manifold learning approach that is renowned for its potency in non-linear

dimensionality reduction.

5.3 Average Performance Analysis

We conduct a thorough experimental evaluation to determine the effectiveness

of our model. Three different datasets are used in this study, which is conducted

under two key evaluation criteria. We aim to evaluate the model’s associated ef-

fectiveness in its purpose and capacity to generalize and stabilize under different

conditions. Besides these three yelp datasets, we also compare the model perfor-

mance between baseline models and our models on the Amazon review dataset in

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 37

Section 5.8.

Table 4: Model performance on YelpChi

Random Split based on time

AUC F1 macro Recall AUC F1 macro Recall

GAS 0.9999 0.9912 1 0.9375 0.8241 0.8450

H2-FDector 0.8962 0.7220 0.8104 0.7216 0.4725 0.8151

our 1 0.9966 0.9966 0.9998 0.9874 0.9882

The experiment results on the yelpChi dataset are shown in Table 4. Overall,

under both situations, our model beats both the GAS and H2−FDector models

in terms of all three metrics. Our model displays almost ideal results for all three

metrics, especially for the split based on time, while others perform significantly

worse. Since our model and GAS are almost ideal under the random split situa-

tion, we only report the box plot under the time-based split situation, shown in

Figure 14.

prososed method GAS H2_FDetector
Model

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AU
C

(a) AUC score

prososed method GAS H2_FDetector
Model

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1

(b) F1 score

prososed method GAS H2_FDetector
Model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Re
ca

ll

(c) Recall

Figure 14: AUC, recall, and F1 of models on YelpChi under the time-based split

The lowest F1 score for the GAS model is much lower than the lowest F1 score

for our model. The F1 values for the GAS model are often lower compared to our

model, the AUC and recall scores for the GAS model are generally good but show

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 38

greater variation, especially for the recall. Lastly, the H2-FDector model has high

variability and typically receives worse results across the board.

Table 5: Model performance on YelpNYC and YelpZip under the random split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

GAS 0.8246 0.6191 0.7151 0.8274 0.6341 0.7128

H2-FDector 0.7800 0.5149 0.7988 0.6843 0.4838 0.7010

our 0.8400 0.6224 0.7424 0.8410 0.6491 0.7333

Table 6: Model performance on YelpNYC and YelpZip under the time-based split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

GAS 0.6116 0.4214 0.6513 0.6116 0.4214 0.6513

H2-FDector 0.6220 0.4229 0.7217 0.6285 0.4127 0.7282

our 0.6782 0.4554 0.7124 0.6573 0.4580 0.7330

The experiment result of model performance under the two situations is pro-

vided in Table 5 and Table 6. Table 5 shows the models performance under the

random split approach; we can find that our model slightly outperforms the other

two baselines with both datasets on AUC and F1 scores but lower on recall in

the yelpNYC dataset. Under the time-based split approach, the gap in model

performance between our model and the baseline model is even greater.

In conclusion, our model consistently performs at a high score across metrics

and datasets on average score, which shows that our model has a greater generalize

ability. Besides the average scores of these metrics, we also report the box plot of

our experiment result to help us illustrate the stability of these models.

Analyzing the data displayed in Figure 15 reveals that compared to the two

baseline models based on AUC score. Additionally, our model consistently out-

performs the greatest results attained by the other two models, even at its worst

performance. Though our model is sometimes worse on F1 score and recall, we

perform better on average and have the lowest variance among all models, proving

our method’s stability.

The experiment result on YelpNYC is illustrated in Figure 16. Compared to the

result in Figure 16, our model still outperform based on AUC, though sometimes

lower on F1 but have a small variance among the three. Additionally, our average

recall is greater than H2−FDetector [1] by 3%, sometimes lower than it. However,

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 39

H2_FDtector GAS prososed method
Model

0.675

0.700

0.725

0.750

0.775

0.800

0.825

0.850

AU
C

(a) AUC score

H2_FDtector GAS prososed method
Model

0.40

0.45

0.50

0.55

0.60

0.65

F1

(b) F1 score

H2_FDtector GAS prososed method
Model

0.4

0.5

0.6

0.7

0.8

Re
ca

ll

(c) Recall

Figure 15: AUC, recall, and F1 of models on YelpZip under the random split
approach.

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 40

H2_FDtector GAS prososed method
Model

0.78

0.79

0.80

0.81

0.82

0.83

0.84

0.85

AU
C

(a) AUC score

H2_FDtector GAS prososed method
Model

0.35

0.40

0.45

0.50

0.55

0.60

F1

(b) F1 score

H2_FDtector GAS prososed method
Model

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Re
ca

ll

(c) Recall

Figure 16: AUC, recall, and F1 of models on YelpNYC under the random split
approach.

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 41

the variance of the F1 score on H2−FDetector [1] is much higher, which means

that it is very unstable.

GAS H2 prososed method
Model

0.60

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

AU
C

(a) AUC score

GAS H2 prososed method
Model

0.1

0.2

0.3

0.4

0.5

F1

(b) F1 score

GAS H2 prososed method
Model

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Re
ca

ll

(c) Recall

Figure 17: AUC, recall, and F1 of models on YelpZip under the time-based split
approach.

Results in Figure 17 show that when compared to baseline models, our model

continues to perform better in terms of AUC score. Interestingly, the AUC score

of GAS is lower than H2−FDetector, which deviates from the pattern shown in

Figure 15(a). Additionally, as seen in Figure 17(b) and Table 6, our model has

the highest average and median F1 scores out of the three models.

A closer look at the recall scores demonstrates that our model outperforms

the H2−FDector in terms of performance. Although the average Recall score of

the H2−FDector is slightly higher than that of our model, it is important to note

that the recall of this model is much more unstable. This variation in recall scores

raises the risk that the H2−FDector is untrustworthy.

The result of the experiment of the yelpNYC dataset under the time-based

split is shown in Figure 18. Our model still outperforms the baseline model in

terms of the AUC score, though the medium of the AUC of the 2−FDetector is

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 42

GAS H2 proposed method
Model

0.58

0.60

0.62

0.64

0.66

0.68

AU
C

(a) AUC score

GAS H2 proposed method
Model

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

F1

(b) F1 score

GAS H2 proposed method
Model

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Re
ca

ll

(c) Recall

Figure 18: AUC, recall, and F1 of models on YelpNYC under the time-based split
approach.

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 43

higher than GAS, but the GAS is much more stable. And our F1 score performs

better than others in general, though the medium of these three models is very

similar; both the Q1 and Q3 of F1 with our model are greater than other baseline

models. However, our performance in terms of Recall may not be as good as other

models, but the Q1 of our model is greater than the Q2 of GAS, and the medium

of our model is greater than the maximum of the GAS.

In conclusion, Our proposed model consistently beats the two baseline mod-

els—GAS and H2−FDector—across all experiments and datasets in most cases.

The model performs better overall regarding the AUC score, particularly in ex-

periments under time-based splits. Even as the performance of the model reduces,

it continues to outperform the top-performing baseline models.

While there are some situations where it does sometimes get worse, the low

variance in the F1 scores, as opposed to the higher variability shown in the

H2−FDector model, provides evidence for the stability of our model.

With regard to recall, the model displays mixed performance. While the av-

erage recall is 3% higher than H2−FDector, there are some situations where the

recall is lower. Considering this, the model outperforms the H2−FDector in recall

scores, which shows significant unpredictability and worse reliability.

The model performs well across all situations, with especially high average

scores across metrics and datasets, as a result. This demonstrates the model’s

outstanding generalizability. In addition to these average outcomes, the box-plot

results demonstrate the model’s consistency, demonstrating how it performs under

various scenarios.

In our experiments, we find that the AUC score of our proposed methods is

near 1 in terms of AUC, recall, and F1. To figure out the reason, we dive into the

statistic of the dataset to have a clear picture. First, we calculate the spam review

ratio of products to know if there are any biases in this dataset; the histogram of

the spam review ratio for the yelpChi and yelpNYC is shown in Figure 20.

doi:10.6342/NTU202304108

5.3. AVERAGE PERFORMANCE ANALYSIS 44

0.2 0.4 0.6 0.8 1.0
Ratio

0

20

40

60

80

100
Nu

m
be

r o
f O

cc
ur

en
ce

s
Histogram of spam ratio in yelpChi

(a) yelpChi

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Ratio

0

100

200

300

400

Nu
m

be
r o

f O
cc

ur
en

ce
s

Histogram of spam ratio in yelpNYC

(b) yelpNYC

Figure 19: Spam review ratio for products.

Both of the datasets have many products with a high ratio of spam reviews or

a low ratio of spam reviews, so the spam review ratio within all products may not

be a key reason for making the performance on yelpChi significantly better.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Ratio

0

2

4

6

8

10

Nu
m

be
r o

f O
cc

ur
en

ce
s

Histogram of spam ratio in yelpChi

(a) yelpChi

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Ratio

0

20

40

60

80

100

Nu
m

be
r o

f O
cc

ur
en

ce
s

grouped of spam ratio in yelpNYC

(b) yelpNYC

Figure 20: Spam review ratio for products that predict failure.

Then, we collect the product of reviews; if we predict whether a review is a

spam failure and calculate the spam review ratio of that product in the entire

dataset, we can observe that the distribution of the spam ratio change is notable.

Therefore we further analyze whether the distribution of failure-predicted review

of these datasets is different.

doi:10.6342/NTU202304108

5.4. MODEL TRADE-OFF ANALYSIS 45

28000 30000 32000 34000 36000
reviewer_id

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

Histogram of reviewer_id in yelpChi

(a) yelpChi

0 20000 40000 60000 80000 100000 120000 140000 160000
reviewer_id

0.0%

5.0%

10.0%

15.0%

20.0%

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
es

Histogram of spam ratio in yelpNYC

(b) yelpNYC

Figure 21: Distribuction of reviewer id.

We can find that the distribution of reviewer id is very different. In the Yelp

dataset we use, the record is sorted by the products, then we assign the reviewer id

to reviewers increasing; the larger the reviewer id is, the later records the reviewer’s

first comment. In figure 21, we can find that the failure-predicted reviewer in

yelpChi is distributed in a certain interval, which indicates that in this dataset,

there are lots of reviewers who only review certain products. Therefore if we

know which product the spam reviews target, we can identify spam reviews easily,

moreover since we design the benign prototype extraction to lower the similarity

between spam review embeddings and product nodes embedding and larger the

similarity between benign review embeddings and product nodes embedding if a

benign review given to a spam target product, we can better distinguish then,

thus can further boost the performance to a higher level.

5.4 Model Trade-off Analysis

In this section, we examine Receiver Operating Characteristic (ROC) and

Precision-Recall curve (PRC)analysis. These provide insight into the trade-offs

that our proposed model and other baseline models suffer in performing at vari-

ous threshold levels. This will allow us to comprehend these models’ performance

under different classification thresholds better.

• ROC Curve plots the FPR vs. TPR, which can help us illustrate the model

trade-off between sensitivity and specificity.

• PRC illustrates the trade-off between precision and recall; a big area under

the curve denotes both high recall and high precision.

In the following analysis, we used the model state of the last to test the model

performance under different thresholds. Since two of the three models display

doi:10.6342/NTU202304108

5.4. MODEL TRADE-OFF ANALYSIS 46

almost ideal results on the yelpChi dataset under the random split, so we do not

show the PRC and AUC-ROC curves on this dataset.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

H2-FDetector (area = 0.6201)
GAS (area = 0.9692)
our (area = 0.9996)

(a) yelpChi

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

H2-FDetector (area = 0.5212)
GAS (area = 0.8004)
our (area = 0.9952)

(b) yelpChi

Figure 22: ROC and PRC Curve under the random split.

Figure 22 illustrates the results of the examinations we performed on the

YelpChi dataset under the time-based split criteria. A full comparison of the

evidence shows that our proposed model outperforms all other baseline models

across various thresholds. Although it looks to have a larger area under the PRC

than H2−FDector, it’s essential to note that H2−FDector performs better when

it comes to high precision.

Figure 23 illustrates the experiment with a random split; our model has a

higher sensitivity and is more capable of accurately detecting positive examples.

The area under the ROC curve is higher than others, which indicates that it

has a superior trade-off between sensitivity and specificity with respect to various

threshold settings.

Furthermore, the PRC also indicates our model’s better performance which

has a wider area under the PRC, which suggests that it has a greater accuracy at

various recall levels. As a result, not only is our model effective. As a result, in

addition to being our model effective at detecting positive instances (high recall),

it also makes sure that the majority of cases that are expected to be positive are

really positive.

In summary, the ROC and PRC curves suggest our model performs better than

others in terms of sensitivity and precision over a wide variety of threshold values.

This makes our model a trustworthy and solid option for this work.

doi:10.6342/NTU202304108

5.4. MODEL TRADE-OFF ANALYSIS 47

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

H2-FDetector (area = 0.7767)
GAS (area = 0.8149)
our (area = 0.8440)

(a) yelpNYC

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

GAS (area = 0.7102)
H2-FDetector (area = 0.7651)
our (area = 0.8265)

(b) yelpZip

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

GAS (area = 0.2225)
H2-FDetector (area = 0.2331)
our (area = 0.4737)

(c) yelpNYC

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve

GAS (area = 0.2682)
H2-FDetector (area = 0.2946)
our (area = 0.4694)

(d) yelpZip

Figure 23: ROC and PRC Curve under the random split.

doi:10.6342/NTU202304108

5.5. EMBEDDING VISUALIZATION 48

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

Receiver Operating Characteristic Curve

H2-FDetector (area = 0.6310)
GAS (area = 0.6360)
our (area = 0.6801)

(a) yelpNYC

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Receiver Operating Characteristic Curve

H2-FDetector (area = 0.6318)
GAS (area = 0.6226)
our (area = 0.6531)

(b) yelpZip

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve
H2-FDetector (area = 0.1445)
GAS (area = 0.1893)
our (area = 0.2262)

(c) yelpNYC

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Precision-Recall Curve
H2-FDetector (area = 0.1888)
GAS (area = 0.1945)
our (area = 0.2105)

(d) yelpZip

Figure 24: ROC and Curve under the time-based split.

Figure 24 illustrates the experiment with a time-based split. When evalu-

ating the stability and reliability of the model in real-world settings where data

is frequently temporal and unstable, this figure gives an overview of the model’s

performance. There is a noticeable variation between this figure and Figure 23,

which shows the model’s performance in the lack of a random split. Although

there is a reduction in our model’s performance in the time-based split scenario,

our model still manages to outshine the other two baseline models in terms of

both ROC and PRC across almost all thresholds.

In conclusion, our model performs better than others across a variety of thresh-

old settings and shows improved capacity to balance sensitivity and specificity

under various assessment criteria.

5.5 Embedding Visualization

To visually illustrate the local similarity of the reviews inside an individual

set, we use the method of t-SNE in this section. By assigning each data point a

position on a two-dimensional map, t-SNE is an effective probabilistic approach

doi:10.6342/NTU202304108

5.5. EMBEDDING VISUALIZATION 49

for displaying high-dimensional data. It works especially well for the display of

complex data structures.

40 20 0 20 40
comp-1

15

10

5

0

5

10

co
m

p-
2

yelpChi_split_H2
0
1

(a) H2-FDector

30 20 10 0 10 20 30 40
comp-1

15

10

5

0

5

10

15

20

co
m

p-
2

yelpChi_split_GAS
0
1

(b) GAS

20 10 0 10 20 30 40
comp-1

20

10

0

10

20

30

co
m

p-
2

yelpChi_split_our
0
1

(c) Our model

Figure 25: t-SNE on the yelpChi under the time-based split.

Figure 25 presents the t-SNE embedding of the reviews from the yelpChi

dataset under the time-based split; it shows that our methods successfully sepa-

rate benign reviews from spam, which the other two baseline approaches cannot

do. Although there is a distinct distribution for spam and benign reviews in the

case of the H2-FDetector, a significant amount of the spam reviews are tightly

grouped with a group of benign reviews, making it difficult to distinguish between

the two.

40 20 0 20 40
comp-1

20

15

10

5

0

5

10

co
m

p-
2

yelpNYC_H2

0
1

(a) H2-FDector (random split)

40 30 20 10 0 10 20 30
comp-1

20

15

10

5

0

5

10

15

co
m

p-
2

yelpNYC_GAS
0
1

(b) GAS (random split)

30 20 10 0 10 20
comp-1

15

10

5

0

5

10

15

20

co
m

p-
2

yelpNYC_our
0
1

(c) Our model (random split)

40 20 0 20 40
comp-1

15

10

5

0

5

10

co
m

p-
2

yelpNYC_split_H2
0
1

(d) H2-FDector (time based split)

20 10 0 10 20
comp-1

20

10

0

10

20

co
m

p-
2

yelpNYC_split_GAS
0
1

(e) GAS (time based split)

20 10 0 10 20
comp-1

20

10

0

10

20

co
m

p-
2

yelpNYC_split_our
0
1

(f) Our model (time based split)

Figure 26: t-SNE on the yelpNYC.

Figure 26 illustrates the review embeddings of the experiment result on the

yelpNYC dataset. The embedding of the experiment result of H2-FDector under

the time-based split is similar to Figure 25(a), which is also tightly grouped with

doi:10.6342/NTU202304108

5.6. PERFORMANCE COMPARISON OF DIFFERENT EMBEDDING METHODS WITH
BASELINES 50

a group of benign reviews. Comparing our experiment results with GAS reported

similar results, but the embeddings of GAS are much close, which means that it

may result in a more serious over-smoothing issue than our proposed model.

40 20 0 20 40
comp-1

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

co
m

p-
2

yelpZip_split_H2
0
1

(a) H2-FDector

20 10 0 10 20
comp-1

20

10

0

10

20

co
m

p-
2

yelpZip_split_GAS
0
1

(b) GAS

30 20 10 0 10 20 30
comp-1

10

0

10

20

co
m

p-
2

yelpZip_split_our
0
1

(c) Our model

40 20 0 20 40
comp-1

10

5

0

5

10

15

co
m

p-
2

yelpZip_H2
0
1

(d) H2-FDector

40 20 0 20 40
comp-1

10

5

0

5

10

co
m

p-
2

yelpZip_GAS
0
1

(e) GAS

20 10 0 10 20
comp-1

15

10

5

0

5

10

15

20

co
m

p-
2

yelpZip_our
0
1

(f) Our model

Figure 27: t-SNE on the yelpZip under the time-based split.

Figure 27 illustrates the experiment results on the yelpZip dataset; all of the

models perform worse than the experiment results on the yelpZip dataset shown in

Figure 26 in general, especially for H2-FDector under the time-split approach result

in a serious over-smoothing issue; we can not even distinguish any spam review

from benign review, which means that they are very closed in the embedding

space, though embedding for spam and benign reviews with both of our model

and GAS are not easy to distinguish, the difference of distribution between benign

reviews are better, and the distribute of the review embedding are more sparse.

Thus we conclude that we have better performance.

5.6 Performance Comparison of Different Embedding Meth-
ods with Baselines

In the following experiments, we directly employ different sentence embedding

methods to compare the performance of our model; the embedding methods we

use are:

• SentenceBert: a BERT model modification made specifically for embedding

sentences. It makes use of transformer architectures to take into account

doi:10.6342/NTU202304108

5.6. PERFORMANCE COMPARISON OF DIFFERENT EMBEDDING METHODS WITH
BASELINES 51

semantics at both the word and sentence levels, creating a dense vector

space that encodes complex interactions between sentences.

• CBOW: The Word2Vec approach’s Continuous Bag-of-Words paradigm. It

attempts to forecast the term that best fits the context by using the context

of each word as input. The embeddings in this context-sensitive model are

trained by optimizing the prediction error.

• glove: The approach that places an emphasis on the statistical link between

words is called Global Vectors for Word Representation. It generates rep-

resentations that incorporate both local word meanings and overall corpus

statistics by computing word co-occurrence matrices and factorizing them.

For CBOW embedding, we train the model on the entire review sentences first

and then use this model to generate the word vectors of each word in the review

sentences and take the average as the final sentence embedding of the given review.

For glove embedding, we employ the pretrain word vector that training on

Wikipedia to vectorize the word and average these word vectors in review sentences

to generate the final sentence embeddings.

The performance of our proposed methods with different embedding methods is

reported in Table 7 and Table 8. In table 7, we can observe that the sentenceBert

outperforms other embedding methods in terms of AUC and F1 but has a lower

Recall than CBOW; in table 8, the sentenceBert only outperform others in term

of AUC and recall on YelpNYC dataset. Though the Glove embedding method

performance is better than others on the YelpZip dataset under the time-based

split scenario, but the AUC scores under the random split scenario are the lowest

among the three; therefore, we choose SentenceBert embeddings in our proposed

methods.

Table 7: Model performance on YelpNYC and YelpZip under the random split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

CBOW 0.7909 0.5653 0.6472 0.7939 0.5653 0.7951

Glove 0.7474 0.6119 0.4693 0.7705 0.5750 0.7205

SentenceBert 0.8400 0.6224 0.7424 0.8410 0.6491 0.7333

doi:10.6342/NTU202304108

5.7. ABLATION STUDY 52

Table 8: Model performance on YelpNYC and YelpZip under the time-based split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

CBOW 0.6444 0.4248 0.7107 0.6412 0.4469 0.7436

Glove 0.6515 0.4755 0.6169 0.6975 0.4825 0.7443

SentenceBert 0.6782 0.4554 0.7124 0.6573 0.4580 0.7330

5.7 Ablation Study

In this section, we analyze the effect of the topology-aware sampler, our PR-

HGAT model, and our optimization approach in our proposed method to figure

out the effect of these three components.

In the following experiment, All represents our full model with all components

that we mention; wo triplet means that we removed the triplet to train our pro-

posed model; and Uniform means that we employ a uniform sampler to sampler

neighbors to form the computation graph to train our model; at the end Wo PR-

GAT means that use removes the pseudo-relation aggregation mechanism, teat

spam reviews, and benign reviews as the same relation, which equal multi-head

graph attention neural network.

Table 9: Ablation Study on YelpNYC and YelpZip under the random split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

All 0.8382 0.6224 0.748 0.845 0.6396 0.7896

wo triplet 0.7899 0.5779 0.6910 0.7749 0.5639 0.7476

Uniform 0.7951 0.6352 0.5479 0.7681 0.6025 0.6104

Wo PL-GAT 0.7686 0.5920 0.7377 0.7686 0.5608 0.7377

The experiment result of the ablation study under the random split approach

is reported in Table 9 and illustrated in Figure 28, we can find that without

one of any components, the AUC score would have a significant drop, and the

performance are also outperforms others model in terms of Recall. Though the

F1 score employs a uniform sampler, its recall score of it is the lowest of all, which

indicates that it can not efficiently recognize spam reviews.

doi:10.6342/NTU202304108

5.7. ABLATION STUDY 53

AUC F1 Recall
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

yelpZip random split

All
wo triplet
Uniform
Wo PR-GAT

(a) yelpZip

AUC F1 Recall
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

yelpNYC random split

All
wo triplet
Uniform
Wo PR-GAT

(b) yelpNYC

Figure 28: Ablation study under the random split.

Table 10: Ablation study on YelpChi

time-based split

AUC F1 macro Recall

All 0.9999 0.9899 1.0000

wo triplet 0.9983 0.9880 0.9972

Uniform 0.9994 0.9827 0.9989

Wo PR-GAT 0.9992 0.9889 0.9983

Table 11: Ablation Study on YelpNYC and YelpZip under the time-based split.

Yelp NYC Yelp Zip

AUC F1 macro Recall AUC F1 macro Recall

All 0.6778 0.5007 0.6255 0.6621 0.5032 0.6531

wo triplet 0.4699 0.0912 1 0.6552 0.4418 0.7580

Uniform 0.6595 0.4147 0.7396 0.6643 0.3935 0.8476

Wo PR-GAT 0.6493 0.3382 0.8490 0.6565 0.4364 0.7726

doi:10.6342/NTU202304108

5.7. ABLATION STUDY 54

AUC F1 Recall
0.0

0.2

0.4

0.6

0.8

1.0
Sc

or
es

yelpChi time based Split

All
wo triplet
Uniform
Wo PR-GAT

(a) yelpChi

AUC F1 Recall
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
or

es

yelpZip time based Split
All
wo triplet
Uniform
Wo PR-GAT

(b) yelpZip

AUC F1 Recall
0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

es

yelpNYC time based Split
All
wo triplet
Uniform
Wo PR-GAT

(c) yelpNYC

Figure 29: Ablation study under the time-based split.

The numeral ablation study results under the time-based split approach are

shown in Table 10 and Table 11. The illustration is shown in Figure 29. The ”full”

model has the highest AUC scores across two datasets, as well as the F1 score,

which indicate that it has the best overall performance in terms of both precision

and recall. and the ability to distinguish between spam and benign. However, the

recall is lower than others.

As seen in Figure 29(c), the F1 score on the YelpNYC dataset decreases to

almost zero when the triplet loss component is taken out, and the recall score of

the model increases to 1, which means that the results are significantly skewed.

Thus the triplet loss is the key component within our model.

Similar to the experiment result without the triplet loss, the model’s perfor-

mance suffers from biased predictions without our pseudo-relation aggregation

technique, as shown by the decline in F1 scores. The effect is less severe than the

triplet loss component; since we can consider it as multi-head graph attention,

though.

The AUC score may occasionally somewhat improve if we swap from our

topology-aware neighbor sampler to a uniform neighbor sampler. The F1 score, on

the other hand, sharply declines, showing that the model’s conclusions are likewise

skewed and that its capacity to recognize good evaluations is reduced.

In summary, each of these components is essential to improving the perfor-

mance and balance of our proposed approach. When we remove the triplet loss

component, the F1 score, which measures a test’s accuracy and recall, has dropped

significantly. This implies that the outcomes of the model are strongly skewed in

the absence of the triplet loss component. Therefore, the triplet loss component

is crucial for preserving the model’s predictions’ balance and making sure they do

not skew too far in the direction of false positives or false negatives.

Similarly, the absence of our pseudo-relation aggregation mechanism also re-

sults in a reduction in the model performance. This is evident from the decrease in

F1 scores, which further indicates a reduction in the model’s accuracy and recall.

doi:10.6342/NTU202304108

5.8. PERFORMANCE COMPARISON ON AMAZON DATASET. 55

By lowering the bias in the model’s predictions, the pseudo-relation aggregation

method aids in improving prediction accuracy. Although the effects of removing

this component are not as severe as those of removing the triplet loss component,

they are nonetheless substantial and harmful to the model’s overall performance.

Last but not least, we sometimes see a tiny improvement in the AUC score

when we switch from our topology-aware neighbor sampler to a uniform neighbor

sampler. A greater AUC implies better classifier performance. The AUC, or Area

Under the Curve, is a performance indicator for the classification issue at various

threshold values. The F1 score, however, drops significantly. This implies that

the model’s predictions are skewed in this situation as well, and its capacity to

recognize benign reviews is diminished. As a result, the topology-aware neigh-

bor sampler is essential to preserving the model’s capacity to identify spam from

benign reviews.

In general, the triplet loss, the pseudo-relation aggregation approach, and the

topology-aware neighbor sampler all work together to enhance the performance

and balance of our proposed approach. With all of these components in effect, we

can provide a more balanced outcome, allowing us to distinguish between spam

and benign reviews more successfully. This balance is essential to ensure that our

model is accurate and trustworthy and that it doesn’t unfairly penalize genuine

reviews or fail to detect spam.

5.8 Performance Comparison on Amazon dataset.

in addition to the Yelp review dataset, we further use the Amazon reviews

dataset of product reviews under the Musical Instruments category. [33]. We label

reviews with more than 80% helpful votes as benign reviews and reviews with less

than 20% helpful votes as spam reviews that are similar to previous work [34]. In

the following experiments, we only use these labeled records to train and compare

the performance of models. The total records we use are 36379 reviews, 85% of

these reviews are labeled as benign, and 15% of these are labeled as spam.

Table 12: Experiment results on Amazon review dataset.

random split time based split

AUC F1 macro Recall AUC F1 macro Recall

proposed method 0.7698 0.6450 0.6099 0.7078 0.6307 0.4444

GAS 0.6948 0.5897 0.5222 0.6062 0.5663 0.3297

H2-FDector 0.6739 0.5223 0.6493 0.6497 0.5773 0.6207

The experiment results on Amazon are reported in table 12; we can observe

doi:10.6342/NTU202304108

5.9. SUMMARY 56

that our proposed methods outperform baseline models in terms of AUC and F1,

especially in the AUC scores. But our methods have a lower recall score than

H2-FDector.

5.9 Summary

In this chapter, we introduced how we set up our experiment environment in

Section 5.1, then we introduced the evaluated metric we used to compare the model

performance between our proposed method and baseline models that inspired us

in Section 5.2. Then we compare the experiment results ten times to illustrate

the model performance in Section 5.3. In Section 5.4, we dive into PRC and

AUC-ROC to know the model performance under different thresholds setting.

And we also observed the t-sne review embeddings to figure out how the model

distinguishes the spam and benign review in Section 5.5. After that, we compare

our model performance with different sentence embedding methods in Section 5.6.

We also do the ablation study to show that the three components: triplet loss, the

pseudo-relation aggregation approach, and the topology-aware neighbor sampler,

are essential for our model in Section 5.7. Last but not least, we compare the model

performance on the Amazon reviews dataset, which is also a popular dataset for

spam review detection tasks.

doi:10.6342/NTU202304108

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, we directly construct a bipartite comment graph in which the

review behavior can be naturally represented. Then we iterative sample sub-graph

to perform stochastic training to generate the embedding that utilizes the social

interaction between reviews.

We proposed a model that contains the topology-aware neighbors sampling

to sample neighbors that can aggregate messages from more important neighbors

and design a pseudo-relation heterogeneous graph attention network to extract the

different patterns based on the predicted label to overcome the label imbalance

of the dataset. Last, by not least, we carefully designed our loss function by

employing focal loss to balance the influence of hard and easy samples and also

adapt triplet loss to distinguish the benign and spam review. By these three

components, we get a robust model compared to our baseline model and also have

more generalized power than they.

In our work, we have concentrated on sampling neighbors based on the graph-

topology structure that is purely generated from review behavior. We have not,

however, added more details like star ratings and review counts. In the future, in-

corporating these more data points may allow us to improve our model. Utilizing

data from reviews and star ratings allows us to capture a wider range of rela-

tions and interactions, which improves our comprehension and analysis of various

interconnections.

57

doi:10.6342/NTU202304108

REFERENCES

[1] F. Shi, Y. Cao, Y. Shang, Y. Zhou, C. Zhou, and J. Wu, “H2-fdetector: a
gnn-based fraud detector with homophilic and heterophilic connections,” in
Proceedings of the ACM Web Conference 2022, 2022, pp. 1486–1494.

[2] J. Pitman. (2022) Local consumer review survey 2022. https:
//www.brightlocal.com/research/local-consumer-review-survey/?SSAID=
314743&SSCID=81k6 t41ah.

[3] N. Hussain, H. Turab Mirza, G. Rasool, I. Hussain, and M. Kaleem, “Spam
review detection techniques: A systematic literature review,” Applied Sci-
ences, vol. 9, no. 5, p. 987, 2019.

[4] S. K. Maurya, D. Singh, and A. K. Maurya, “Deceptive opinion spam detec-
tion approaches: a literature survey,” Applied intelligence, vol. 53, no. 2, pp.
2189–2234, 2023.

[5] S. Rayana and L. Akoglu, “Collective opinion spam detection: Bridging re-
view networks and metadata,” in Proceedings of the 21th acm sigkdd interna-
tional conference on knowledge discovery and data mining, 2015, pp. 985–994.

[6] F. Abri, L. F. Gutierrez, A. S. Namin, K. S. Jones, and D. R. Sears, “Fake
reviews detection through analysis of linguistic features,” arXiv preprint
arXiv:2010.04260, 2020.

[7] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters,” in
Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM’20), 2020.

[8] A. Mukherjee, V. Venkataraman, B. Liu, and N. Glance, “What yelp fake
review filter might be doing?” in Proceedings of the international AAAI
conference on web and social media, vol. 7, no. 1, 2013.

[9] N. Jindal and B. Liu, “Opinion spam and analysis,” in Proceedings of the 2008
international conference on web search and data mining, 2008, pp. 219–230.

[10] I. Gunes, C. Kaleli, A. Bilge, and H. Polat, “Shilling attacks against rec-
ommender systems: a comprehensive survey,” Artificial Intelligence Review,
vol. 42, no. 4, pp. 767–799, 2014.

[11] C. Yuan, W. Zhou, Q. Ma, S. Lv, J. Han, and S. Hu, “Learning review
representations from user and product level information for spam detection,”
2019.

[12] G. Wang, S. Xie, B. Liu, and S. Y. Philip, “Review graph based online store
review spammer detection,” in 2011 IEEE 11th international conference on
data mining. IEEE, 2011, pp. 1242–1247.

58

https://www.brightlocal.com/research/local-consumer-review-survey/?SSAID=314743&SSCID=81k6_t41ah
https://www.brightlocal.com/research/local-consumer-review-survey/?SSAID=314743&SSCID=81k6_t41ah
https://www.brightlocal.com/research/local-consumer-review-survey/?SSAID=314743&SSCID=81k6_t41ah

doi:10.6342/NTU202304108

REFERENCES 59

[13] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neu-
ral message passing for quantum chemistry,” in International conference on
machine learning. PMLR, 2017, pp. 1263–1272.

[14] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning, vol. 14, no. 3, p. 51, 2020.

[15] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu,
Y. Gai, et al., “Deep graph library: A graph-centric, highly-performant pack-
age for graph neural networks,” arXiv preprint arXiv:1909.01315, 2019.

[16] Y. Liu, X. Ao, Z. Qin, J. Chi, J. Feng, H. Yang, and Q. He, “Pick and
choose: A gnn-based imbalanced learning approach for fraud detection,” in
Proceedings of the Web Conference 2021, 2021, pp. 3168–3177.

[17] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection with
graph convolutional networks,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019, pp. 2703–
2711.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[19] A. Barushka and P. Hajek, “Review spam detection using word embeddings
and deep neural networks,” in IFIP International Conference on Artificial
Intelligence Applications and Innovations. Springer, 2019, pp. 340–350.

[20] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Association for Computational
Linguistics, 11 2019. Online Available at: https://arxiv.org/abs/1908.10084

[21] S. Shehnepoor, R. Togneri, W. Liu, and M. Bennamoun, “HIN-RNN:
A graph representation learning neural network for fraudster group
detection with no handcrafted features,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–14, 2021. Online Available at:
https://doi.org/10.1109%2Ftnnls.2021.3123876

[22] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
“Graph convolutional neural networks for web-scale recommender systems,”
in Proceedings of the 24th ACM SIGKDD international conference on knowl-
edge discovery & data mining, 2018, pp. 974–983.

[23] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. v. d. Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” arXiv preprint
arXiv:1703.06103, 2017.

[24] S.-j. Ji, Q. Zhang, J. Li, D. K. Chiu, S. Xu, L. Yi, and M. Gong, “A burst-
based unsupervised method for detecting review spammer groups,” Informa-
tion Sciences, vol. 536, pp. 454–469, 2020.

https://arxiv.org/abs/1908.10084
https://doi.org/10.1109%2Ftnnls.2021.3123876

doi:10.6342/NTU202304108

REFERENCES 60

[25] Z. Wang, S. Gu, and X. Xu, “Gslda: Lda-based group spamming detection
in product reviews,” Applied Intelligence, vol. 48, pp. 3094–3107, 2018.

[26] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph
neural network-based fraud detectors against camouflaged fraudsters,” in
Proceedings of the 29th ACM International Conference on Information and
Knowledge Management (CIKM’20), 2020.

[27] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for net-
works,” in Proceedings of the 22nd ACM SIGKDD international conference
on Knowledge discovery and data mining, 2016, pp. 855–864.

[28] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning
on large graphs,” Advances in neural information processing systems, vol. 30,
2017.

[29] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proceedings of the IEEE international conference on
computer vision, 2017, pp. 2980–2988.

[30] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding
for face recognition and clustering,” in 2015 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, jun 2015. Online Available
at: https://doi.org/10.1109%2Fcvpr.2015.7298682

[31] Y. Wu and Y. Liu, “Robust truncated hinge loss support vector machines,”
Journal of the American Statistical Association, vol. 102, no. 479, pp. 974–
983, 2007.

[32] M. Wang, D. Zheng, Z. Ye, Q. Gan, M. Li, X. Song, J. Zhou, C. Ma, L. Yu,
Y. Gai, T. Xiao, T. He, G. Karypis, J. Li, and Z. Zhang, “Deep graph library:
A graph-centric, highly-performant package for graph neural networks,” arXiv
preprint arXiv:1909.01315, 2019.

[33] J. Ni, J. Li, and J. McAuley, “Justifying recommendations using distantly-
labeled reviews and fine-grained aspects,” in Proceedings of the 2019 confer-
ence on empirical methods in natural language processing and the 9th inter-
national joint conference on natural language processing (EMNLP-IJCNLP),
2019, pp. 188–197.

[34] S. Zhang, H. Yin, T. Chen, Q. V. N. Hung, Z. Huang, and L. Cui, “Gcn-
based user representation learning for unifying robust recommendation and
fraudster detection,” 2020.

https://doi.org/10.1109%2Fcvpr.2015.7298682

	學位論文封面_洪贊濱
	洪贊濱_審定書
	致謝＆摘要
	Improving_Detection_of_Spam_Reviews_via_Relational_Graph_Neural_Networks_with_Potential_Labels
	Abstract
	List of Tables
	List of Figures
	Chapter 1 — Introduction
	Chapter 2 — Background and Related Work
	2.1 Spam Review
	2.2 Graph-based Spam Review Detection
	2.2.1 Graph Neural Network
	2.2.2 Stochastic Training on Graphs
	2.2.3 Neighbor Sampler

	2.3 Related Work
	2.3.1 GAS
	2.3.2 H2-FDetector shi2022h2

	2.4 Summary

	Chapter 3 — System Model
	3.1 Dataset Description
	3.2 Comment Graph Construction
	3.2.1 Review Context Representation
	3.2.2 Edge Representation
	3.2.3 Node Representation

	3.3 Graph Sampling
	3.4 Heterogeneous Graph Convolutional Network
	3.4.1 Aggregation Stage
	3.4.2 Combination Stage
	3.4.3 Summary of the HGNN Model

	3.5 Summary

	Chapter 4 — METHODOLOGY
	4.1 Motivation
	4.2 Model Architecture
	4.3 Topology Aware Graph Sampling
	4.4 PL-RGNN Model
	4.4.1 Potential Label Identification
	4.4.2 Relational Graph Attention Aggregation

	4.5 Optimization
	4.5.1 Triplet Loss
	4.5.2 Focal Loss

	Chapter 5 — Performance Evaluation
	5.1 Experiment Setup
	5.2 Evaluate Method
	5.2.1 Metrics
	5.2.2 Visualization

	5.3 Average Performance Analysis
	5.4 Model Trade-off Analysis
	5.5 Embedding Visualization
	5.6 Performance Comparison of Different Embedding Methods with Baselines
	5.7 Ablation Study
	5.8 Performance Comparison on Amazon dataset.
	5.9 Summary

	Chapter 6 — Conclusion and Future Work
	References

